
applied
sciences

Article

Enhanced Collaborative Filtering for Personalized
E-Government Recommendation

Ninghua Sun 1,2, Tao Chen 1,*, Wenshan Guo 1 and Longya Ran 1

����������
�������

Citation: Sun, N.; Chen, T.; Guo, W.;

Ran, L. Enhanced Collaborative

Filtering for Personalized

E-Government Recommendation.

Appl. Sci. 2021, 11, 12119. https://

doi.org/10.3390/app112412119

Academic Editors:

Ángel González-Prieto and

Fernando Ortega

Received: 29 November 2021

Accepted: 13 December 2021

Published: 20 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Public Administration, Huazhong University of Science and Technology, Wuhan 430074, China;
ninghua_sun@hust.edu.cn (N.S.); wenshanguo@hust.edu.cn (W.G.); d201881080@hust.edu.cn (L.R.)

2 Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
* Correspondence: egov@hust.edu.cn

Abstract: The problems with the information overload of e-government websites have been a big
obstacle for users to make decisions. One promising approach to solve this problem is to deploy
an intelligent recommendation system on e-government platforms. Collaborative filtering (CF) has
shown its superiority by characterizing both items and users by the latent features inferred from
the user–item interaction matrix. A fundamental challenge is to enhance the expression of the user
or/and item embedding latent features from the implicit feedback. This problem negatively affected
the performance of the recommendation system in e-government. In this paper, we firstly propose
to learn positive items’ latent features by leveraging both the negative item information and the
original embedding features. We present the negative items mixed collaborative filtering (NMCF)
method to enhance the CF-based recommender system. Such mixing information is beneficial for
extending the expressiveness of the latent features. Comprehensive experimentation on a real-world
e-government dataset showed that our approach improved the performance significantly compared
with the state-of-the-art baseline algorithms.

Keywords: e-government public services; collaborative filtering; recommender system; negative
sampling

1. Introduction

E-government refers to providing online applications to enhance the access to, and
the delivery of, government information and service to the public for citizens by using
modern technologies [1,2]. As more and more professional services are loaded on the
website, however, it is harder for ordinary citizens without expertise to quickly find the
target service from hundreds of service items in a certain scenario of e-government because
of information overload [3,4]. The existing solutions for the e-government platforms are
personalized recommendations that aim to find out target service items for the users based
on their preferences, behaviors, and other information [5].

The collaborative filtering (CF) algorithm is one of the most widely used recommender
algorithms since it collectively learns users and items latent representations from the user–
item rating matrix [5–7]. In most recommender models, this matrix is binary with a value of
1 representing implicit feedback (e.g., click, browse, and collection) between a user and an
item, and a value of 0 otherwise. In the e-government recommendation scenarios, the users’
preferences also are implicit feedback—such as document browsing, online certificate
status query, and new-born settlement. However, most existing e-government recommen-
dation models need an explicit indication of users’ preference (i.e., ratings) which most
e-government platforms are unable to provide. Therefore, how to learn users’ preferences
from implicit feedback based on CF is key to the e-government recommender task.

Advanced CF models focus on the use of embedding technology to obtain users and
items latent features, such as matrix factorization (MF) [5,6] and neural networks [8–10].

Appl. Sci. 2021, 11, 12119. https://doi.org/10.3390/app112412119 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app112412119
https://doi.org/10.3390/app112412119
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112412119
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112412119?type=check_update&version=1

Appl. Sci. 2021, 11, 12119 2 of 16

Neural collaborative filtering [6] (NCF) is a popular pointwise CF algorithm for recom-
mendation with implicit feedback, which leverages the flexibility and non-linearity of
neural networks to replace dot products of matrix factorization. In specific, this model is
structured with two subnetworks including generalized matrix factorization (GMF) and
multilayer perceptron (MLP) and models the interactions from two pathways instead of
simple dot products. After the NCF, many algorithms have been proposed, which have
mainly focused on how to enhance the expressiveness of users and items embedding
features with the implicit data [11–13]. However, together with NCF, they have made a
premise of user–item interactions: for a user, he disliked un-interacted items. They ignored
the effect of negative items on positive items.

In this paper, we argue that this premise may hinder the expression of interacted
items and our understanding of user’s needs, that is some unrated items should be viewed
as the potential preference for the user. Consider the following example: a user queried
the tourist flow on the e-government website, and unclicked other services. As shown in
Figure 1: intuitively, the user will book a travel appointment in the future, which means the
service “appointment” may be the false-negative item. When training the recommender
model, such potential preferences may enhance the embedding feature of items and lead to
a better result.

Figure 1. Illustration example of items in the e-government website.

This study aims to return a list of recommended items while relaxing the assumption
that all the un-interaction items are not the users’ preferences in training. In this work,
we also treat the implicit feedback as a binary rating matrix. Factually, it is hard to know
whether an un-interaction item is true negative or false negative. In our solution, two
strategies are designed: negative items sampling and negative mixing. In the negative
items sample, we try to construct a function to evaluate a user’s preference for the negative
items, and then select a better one from them. In negative mixing, we introduce a mixing
method to enhance the embedding of positive items by injecting the information from
negative items into them. We summarize the main contributions of this thesis as follows:

• We propose a simple negative item mixing collaborative filtering framework (NMCF)
to enhance the representation of items. Unlike other neighborhood-based methods,
this method mixed the latent features of the negative item with the positive item.
The mixed layer effectively simulated the connectivity of the interaction graph and
captured the high-order features. To the best of our knowledge, this is the first to
introduce the idea of mixing negative information to the personalized e-government
service recommendation.

• To obtain more information on user preferences, we proposed an effective time-
sensitive distance measure for the recommendation. Unlike other methods, the dis-
tance can measure the similarity between the interaction pairs, which is advantaged
in describing the interaction data in measure space visually.

• We conduct comprehensive experiments on a real-world e-government dataset, which
is provided by the Administrative Examination and Approval Bureau of Wu Hou
District, Chengdu. The result demonstrated the effectiveness of our model for the
personalized public service recommendation task.

The rest of this article is organized as follows. Section 2 elaborates on the related
research. The proposed method is described in Section 3. Section 4 presents an empirical
study on the Wuhou services dataset. Finally, Section 5 discusses and concludes our work.

Appl. Sci. 2021, 11, 12119 3 of 16

2. Related Work

In this section, we provide a brief review of previous works on collaborative filtering
algorithms for a personalized recommendation. Collaborative filtering technology can
be further classified into two types: neighborhood-based recommendation systems and
model-based recommendation systems.

2.1. Collaborative Filtering Recommendation

As a typical recommender system technique, the collaborative filtering algorithm has
drawn a large amount of attention from academic circles due to its excellent performance
in dealing with personalized recommendations. Its success has inspired some efforts at
using CF in the modeling of recommendation systems. Especially, refs. [14,15] provided a
novel recommendation model based on CF to return the best top-K items for users.

Generally, the feedback information can be divided into two types: explicit and
implicit feedback. Explicit feedback, such as rating scales, is a scoring mechanism used
to express users’ explicit preference over items or services. Implicit feedback, such as
browsing or clicking, is automatically collected by the recommender system [16]. Generally,
the collaborative recommendation system for dealing with these behaviors is categorized
into two directions: neighborhood-based or memory-based collaborative filtering [17,18]
and model-based collaborative filtering [19,20].

2.1.1. Neighborhood-Based Recommendation System

There are two different neighborhood-based recommendations based on the k-nearest
neighbor algorithm [21]: Item/object-based collaborative filtering and user/customer-
based collaborative filtering. Item-based and user-based collaborative filtering techniques
(item-based CF and user-based CF) are based on full raw ratings in a user–item matrix.
The goal of these technologies is to find similar items or users. The most used similarity
metrics include the Pearson correlation coefficient and cosine similarity. However, these
approaches are more vulnerable to suffering from the sparse data problem. This fact may
cause difficulty in computing similarity and evaluating the rating matrix.

Recently, some scholars attempt to solve this problem. Reference [22] proposed an
algorithm that combines item-based CF and deep learning. It not only models the interaction
between two items by using similarity metrics but also models the interaction among all
interacted item pairs by using neural networks. Reference [23] presented that there is a
method to combine item-based CF and user-based CF according to a new similarity measure.

2.1.2. Model-Based Recommendation System

In terms of model-based recommendation algorithms, not only the initial rating
data but also the latent parameters of the model are used to make predictions [24]. Sev-
eral common kinds of model-based recommendation algorithms—e.g., MF and neural
networks—are available. MF, as a classical model-based CF, uses the latent features of
users and items to make rating predictions. The widely adopted optimization algorithms
for MF include adaptive moment estimation [25], stochastic gradient descent [26], and
alternating least squares [27]. It usually achieves better performance in comparison to
nearest-neighbor techniques.

To improve the accuracy and expressiveness of MF, embedding technology is intro-
duced to learn the latent features. Embedding layer is frequently used in the neural network
models, which can effetely transform a high-dimensional sparse binary vector (i.e., one-hot
vector) into a dense low-dimensional vector. A simple user embedding construction of the
user u which belongs to the user set U is presented in Figure 2. The figure shows that the
dimension of the input one-hot vector x(u) is |U|. Additionally, the element x(u)j is in the

jth, corresponding to the real binary value of the one-hot vector. The output dimension is
m and user embedding is expressed in the equation

eu = Wx(u) = wu

Appl. Sci. 2021, 11, 12119 4 of 16

where, W ∈ Rm×|U| describes the weight matrix mapped the user one-hot vectors into
lower-dimensional vectors. Analogously, the embedding layer can also be used to get the
item latent feature. As a typical neural network learning algorithm, gradient descent, or
its variants such as adaptive moment estimation (Adam) is widely adopted to update the
weights of the embedding layer.

Figure 2. Example embedding layer of an input user ID.

2.2. Hybrid Recommendation

To better learn the representations of users and items, many current models attempted
to propose hybrid algorithms [28,29]. For example, work [30] integrates MF with a marginal-
ized denoising auto-encoder to effectively learn users’ and items’ latent features. It is also
efficient to introduce neighbor-based models in MF [31] and social network-based to extend
the process of similarity computation for generic modeling of features [32]. In recent years,
neural network models have been integrated into the MF framework to search high-order
user or item latent features [33], which have achieved much better performance. Thus, it
is natural to explore the feasibility of applying this model to the e-government services
recommendation. Additionally, some scholars argued that merely using the rating scores
may not be enough to model users’ preferences. Therefore, work [34] proposes a hybrid
model by introducing auxiliary information, such as users’ ratings, reviews, and social
data. Work [35] not only learned the rating data but also captured features from reviews
data with the help of a convolutional neural network (CNN). Work [36] also uses the
reviews information to mining users’ potential preferences for the items based on the naive
Bayes algorithm.

Compared with the above-mentioned method, the proposed method in our work has
such advantages: (1) one of the most basic components of the model is the negative item
sampling that can capture the high order indication of users’ potential preferences. We
extract and then propagate the high-order information to get better predictions. (2) This
model has constructed a time-sensitive distance, which provides abundant information to
evaluate the correlation of the interactions under limited information.

3. Proposed Negative Mixing CF

In this part, we first clarify the notations used in this paper and explain the detailed
selection of the negative items for each positive item. Then, we present how the negative
item was mixed with the positive item. Finally, we construct the prediction layer for a
recommendation.

3.1. Notations

In the implicit feedback scenario, we denote the user–item rating matrix Q , (yui)|U|×|I|,
where U and I are the sets of all the users and items, respectively. yui = 1 represents an
interaction (u, i), while yui = 0 represents user u has not interacted on item i. Naturally, the

Appl. Sci. 2021, 11, 12119 5 of 16

implicit feedbacks are denoted as Q+ , {(u, i)|yui = 1, u ∈ U, i ∈ I}, and the set Ui ⊆ U
are the users that both interacted with item i.

3.2. Negative Items Sampling

Recall that the nodes set in the connected graph can be transformed into a metric
space by defining the metric function. In this way, the distances can be calculated as the
weighted shortest-path distance between two nodes in the graph. In the recommender
scenario, the user–item interaction histories can be represented as an undirected graph
G = (V, E) where the nodes set V are the union of users set U and items set I and the
edges set E each of which is composed of a node pair indicating that the user u interacts
with item i (Figure 3). Therefore, we can calculate the distance between the users and items
based on the connectivity of the interaction graph.

Figure 3. Transformation of rating matrix and graph.

We first define the metric function d(u,i) : E→ R (each edge is mapped to a real
number) for the graph G based on the auxiliary information (e.g., interaction timestamp) of
the feedback and demographic information (e.g., age). Therefore, the weight for (u, i) ∈ E is

d(u,i) = d(i,u) =
(

f(u,i)(∆t, n)− Cave

)
(1)

f(u,i)(∆t, n) =
γ2(n− N)2 + e−γ1

1
|∆t|

2
(2)

where f(u,i)(∆t, n) evaluates the user u′s preference for item i. Specifically, ∆t is the time
delay between user u′ interaction at timestamp t and the latest interaction, and n is the age
when user u first interacted with item i, N is the mode of users age in the training set, and
γ1, γ2 are scale factors. A smaller deviation of age n from N or smaller time delay ∆t leads
to a closer distance between (u, i). Cave is the average of f(u,i)(∆t, n) overall interaction
pairs. Considering the example: for the interaction path (u1 → i1 → u2 → i2), the distance
between the user u1and its negative item i2 can be formulated as

d(u1,i2) = d(u1,i1) + d(i1,u2)
+ d(u2,i2) (3)

Then we present a negative sampling strategy based on the defined function. For each
active interaction pair (u , i), we select the negative items from the interaction pairs set
H(u ,i) of which each user is connected to the positive item i . Formally,

H(u,i)=
{(

u′, i′
)∣∣yu′i = 1, yu′i′ = 1, u′ 6= u, i′ 6= i

}
(4)

We conform to the following information selection strategy for the learning process:

• For positive interaction (u, i) and H(u,i) 6= ∅, if the distance value d(u ,i′) is less than
the given constraint value ε, the negative item i′ is selected to mix with positive item i.
The constraint ε worked as a ‘gate’ described in Figure 4.

Appl. Sci. 2021, 11, 12119 6 of 16

• For positive interaction (u, i), H(u,i) = ∅, the positive item i is selected to mix with
itself.

• For a negative interaction (u, i), the item i is also be selected.

Also, a pseudo code of negative interaction selection for positive interaction is per-
formed in Algorithm 1.

Figure 4. Information selection strategy with distance constraint.

3.3. Negative Mixing

For an interaction (u, i) and its selected interaction (u′, i′) ∈ H+
(u,i), we denote their

latent feature vectors as (eu, ei) and (eu− , ei−), respectively. Inspired by the mixup [37],
we introduce the idea of negative mixing to inject negative information ei− into positive
embeddings. Specially, we compute the composite item feature e′i by a linear combination
of ei and its selected negative item feature ei−

e′i = ei + s
(
ei, eu−

)
ei− (5)

where score s
(
ei, eu−

)
is the decay factor of the selected item, which evaluates how much

information is propagated from ei− to ei conditioned to their mutually interactive user
latent feature eu− . Thus, decay factor s

(
ei, eu−

)
should contain the collaborative information

between positive item latent vector ei and user latent vector eu− . Generally, the inner
product can be more collaboratively informative than the connection. The calculation
formula is

s
(
ei, eu−

)
=
〈
ei, eu−

〉
(6)

The expressiveness of the item latent feature has been enhanced because of the mix of
the selected information. Taking (i2 → u2 → i1 → u1) or (i2, u2)→ (i1, u1) as an example,
i2 propagates its latent feature information to i1 via u2, which is beneficial for better
estimation of u1’s preferences. The interaction (u2, i2) ∈ H(u,i) is selected to provide
implied information for positive interaction (u1, i1). A high collaborative filtering score
of (u2, i1) suggests that more latent feature i2 can provide. The process is necessary for
the binary rating data of e-government, which loses explicit preference expression. The
mixed information introduces a deeper interaction to enhance the abstract expression of
connected interactions.

Appl. Sci. 2021, 11, 12119 7 of 16

Algorithm 1: Negative interaction selection for positive interaction.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 17

Algorithm 1: Negative interaction selection for positive interaction
Input: rating matrix 𝑸; interaction (𝒖, 𝒊); threshold 𝜺
Output: the selected interaction (𝒖ᇱ, 𝒊ᇱ) for (𝒖, 𝒊)

1. for 𝒖ᇱ in (𝑼) (𝒊)\{𝒖} do
2. for 𝒊ᇱ in 𝑰\{𝒊} do
3. if 𝒚𝒖ᇲ𝒊ᇲ = 𝟏 do
4. add (𝒖ᇱ, 𝒊ᇱ) in set 𝑯(𝒖,𝒊);
5. end if
6. end for
7. end for
8. randomly sample (𝒖ᇱ, 𝒊ᇱ) from 𝑯(𝒖,𝒊) ;
9. calculate 𝒅൫𝒖ᇲ,𝒊ᇲ൯, 𝒅(𝒖,𝒊), 𝒅൫𝒖ᇲ,𝒊൯ according to Equations (1)–(3);
10. 𝒅 = 𝒅(𝒖,𝒊) + 𝒅൫𝒖ᇲ,𝒊൯ + 𝒅(𝒖ᇲ,𝒊ᇲ)
11. while 𝒅 > 𝜺 do
12. randomly sample (𝒖ᇱ, 𝒊ᇱ) from 𝑯(𝒖,𝒊) ;
13. 𝒅 = 𝒅(𝒖,𝒊) + 𝒅൫𝒖ᇲ,𝒊൯ + 𝒅(𝒖ᇲ,𝒊ᇲ)
14. end while
15. return (𝒖ᇱ, 𝒊ᇱ)

3.4. Prediction Layer
In this subsection, we present the prediction layer based on the original MF predictor.

In our work, MF characterizes each item and user by latent features obtained from the
embedding layer. For each interaction (𝑢, 𝑖), we will estimate a predictor 𝑦ො௨௜ ∈ (0,1) that
evaluates the probability of user 𝑢 will act on item 𝑖. The rating factor 𝑦ො௨௜ integrated the
original predictor 𝑦ො௨௜ଵ and mix-based predictor 𝑦ො௨,௜೘೔ೣଶ in the equation 𝑦ො௨௜ = 𝜎൫𝑤ଵ𝑦ො௨௜ଵ + 𝑤ଶ𝑦ො௨,௜೘೔ೣଶ + 𝑏൯ (7)

where 𝜎 and 𝑤௜(𝑖 = 1,2), are the sigmoid function, and the weights to be trained, respec-
tively. Additionally, 𝑏 stands for the bias item. We obtain original predictor 𝑦ො௨௜ଵ and mix-
based predictor 𝑦ො௨,௜೘೔ೣଶ by 𝑦ො௨௜ଵ =< 𝑒௨, 𝑒௜ > (8)𝑦ො௨,௜೘೔ೣଶ =< 𝑒௨, 𝑒௜ᇱ > (9)

3.5. Optimization
3.5.1. Objective Function

For each interaction pair (𝑢, 𝑖), the learning task can be formulated as a supervised
binary classification that predicts the probability of user 𝑢 prefers item 𝑖. Naturally, we
adopt the log loss objective function for evaluating the performance: ℒ = − ∑ 𝑦௨௜𝑙𝑜𝑔𝑦ො௨௜(௨,௜)∈୕శ∪୕ష + (1 − 𝑦௨௜)𝑙𝑜𝑔(1 − 𝑦ො௨௜) (10)

For the negative cases Qି, we uniformly sample them from unobserved (negative)
interactions in each iteration and control the sample ratio. To avoid overfitting, the regu-
larizing term ∥ θ ∥ଶଶ was adopted to penalize the magnitudes of the parameters, and the
regularizing term λ was determined by cross-validation. Finally, the objective function of
the model is expressed to learn Equation (10):

3.4. Prediction Layer

In this subsection, we present the prediction layer based on the original MF predictor.
In our work, MF characterizes each item and user by latent features obtained from the
embedding layer. For each interaction (u, i), we will estimate a predictor ŷui ∈ (0, 1) that
evaluates the probability of user u will act on item i. The rating factor ŷui integrated the
original predictor ŷ1

ui and mix-based predictor ŷ2
u,imix

in the equation

ŷui = σ
(

w1ŷ1
ui + w2ŷ2

u,imix
+ b
)

(7)

where σ and wi(i = 1, 2), are the sigmoid function, and the weights to be trained, re-
spectively. Additionally, b stands for the bias item. We obtain original predictor ŷ1

ui and
mix-based predictor ŷ2

u,imix
by

ŷ1
ui = 〈eu, ei〉 (8)

ŷ2
u,imix

=
〈
eu, e′i

〉
(9)

3.5. Optimization
3.5.1. Objective Function

For each interaction pair (u, i), the learning task can be formulated as a supervised
binary classification that predicts the probability of user u prefers item i. Naturally, we
adopt the log loss objective function for evaluating the performance:

L = −∑(u,i)∈Q+∪Q− yuilogŷui + (1− yui)log(1− ŷui) (10)

For the negative cases Q−, we uniformly sample them from unobserved (negative)
interactions in each iteration and control the sample ratio. To avoid overfitting, the regu-
larizing term ‖ θ ‖2

2 was adopted to penalize the magnitudes of the parameters, and the
regularizing term λ was determined by cross-validation. Finally, the objective function of
the model is expressed to learn Equation (10):

Lours(θ) = L+ λ ‖ θ ‖2
2 (11)

Appl. Sci. 2021, 11, 12119 8 of 16

where θ = {WE, WMF} indicates the weight parameter of the model, WMF = {w1, w2} is
the output layer weights; WE is the set of embedding layer weights that allow us to get
user and item latent features flexibly and effectively.

3.5.2. Training

We use Adam [25] to optimize prediction loss Lours(θ). Adam algorithm performs one-
step optimization for the stochastic objective function. The method computes individual
adaptive learning rates for different parameters from the estimates of first and second
moments of the gradients. The training process is aimed to find out the local minimum of
Lours(θ), by using Adam to update the Lours(θ) w.r.t. parameters. The gradient of Lours(θ)
concerning the parameters is present in Equation (15). The process of training in our work
is performed in Algorithm 2. We empirically find out that the parameters have converged
within 30 epochs.

∂Lours

(
x(u)j , x(i)k , x′(u)j , x′(i)k |θ

)
∂θ

= ∑(u,i)∈Q+∪Q−(yui − ŷui)
(
θTZ

)′
+ λ‖θ‖ (12)

(
θTZ

)′
=



ŷ1
ui, θ = w1

ŷ2
u,imix

, θ = w2

w1(∑ w̃i) + w2(∑ w̃i + (∑ w′u)w̃′ hi), θ = (whu)m×|U|
w1(∑ wu) + w2(∑ wuw̃′ i(1 + ∑ w′u)), θ = (w̃hi)m×|I|

w2(∑ wuw̃′ i(∑ w̃i)), θ = (w′hu)m×|U|
w2(∑ wu(∑ w′uw̃i)), θ = (w̃′ hi)m×|I|

where wu, w′u ∈ Rm describe the column vectors of the user u and selected user embedding
weight matrix, respectively. Additionally, whuand w′hu indicate their elements located in
hth; Likewise, w̃i, w̃′i are the column of embedding weight matrix of the item i and selected
negative item and their elements w̃hi, w̃′hi, are in hth.

Algorithm 2: Negative item mixing collaborative filtering.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 17

Algorithm 2: Negative item mixing collaborative filtering

Input: training set 𝒖, 𝒊, 𝒖ᇱ, 𝒊ᇱ, 𝒚𝒖,𝒊; 𝒖ᇱ, 𝒊ᇱ are the selected negative samples
Output: parameters 𝜽

1. Initialize 𝜽
2. while not convergent do
3. for all 𝒖, 𝒊, 𝒖ᇱ, 𝒊ᇱ do
4. calculate latent features 𝒆𝒖, 𝒆𝒊, 𝒆𝒖ష , 𝒆𝒊ష from embedding layer
5. calculate CF score 𝒔൫𝒆𝒊, 𝒆𝒖ష ൯ according to Equation (6)
6. calculate predictor 𝒚ෝ 𝒖,𝒊, according to Equations (7)–(9)
7. perform parameters’ updating via Adam algorithm
8. end for
9. end while
10. return 𝜽

4. Experiments
In this section, we present datasets and experiments to evaluate our proposed

method. The algorithms were coded in Python 3.7.0, and computations were conducted
on a personal computer with a Windows10 operating system, 2.3 GHz CPU, and 8 GB
RAM. We aim to answer the following research questions:

RQ1: How does NMCF perform as compared to other state-of-the-art recommender
system models?

RQ2: How do negative sample features affect NMCF?
RQ3: What are the effects of hyper-parameters on the NMCF model?

4.1. Experimental Settings
4.1.1. Dataset

We obtain the data from the Administrative Examination and Approval Bureau of
Wuhou District, Chengdu. The dataset contains 106,630 interaction histories (14,129 users
and 361 items) spanning from October 2015 to August 2019. Each user is identified by a
unique user ID. The service items including public services, administrative examination,
and approvals of the citizens, are identified by unique item ID. Table 1 exhibits the implicit
interaction information of the dataset. Each entry includes the user ID, item ID, interaction
time, and auxiliary information such as the user’s gender (Male = 1, Female = 0). The data
indicates users’ behaviors, for example, a 54-year-old man with ID “001” clicked the item
with ID “67540” on 21 October.

Table 1. Example of e-government service interaction entries

User ID Gender Age Item ID Time
001 1 54 67540 21 October 2015
002 0 32 1453670 10 November 2015
003 1 30 12356 12 May 2017
004 0 27 67540 22 April 2018
005 0 45 3457091 10 July 2019

The recommendation system of personalized public service aims to predict a person-
alized top-K recommendation list for a user based on his interaction history. To simulate
the real situation, we choose the leave-one-out scheme to split the train set and test set.

4. Experiments

In this section, we present datasets and experiments to evaluate our proposed method.
The algorithms were coded in Python 3.7.0, and computations were conducted on a per-
sonal computer with a Windows10 operating system, 2.3 GHz CPU, and 8 GB RAM. We
aim to answer the following research questions:

RQ1: How does NMCF perform as compared to other state-of-the-art recommender
system models?

RQ2: How do negative sample features affect NMCF?

Appl. Sci. 2021, 11, 12119 9 of 16

RQ3: What are the effects of hyper-parameters on the NMCF model?

4.1. Experimental Settings
4.1.1. Dataset

We obtain the data from the Administrative Examination and Approval Bureau of
Wuhou District, Chengdu. The dataset contains 106,630 interaction histories (14,129 users
and 361 items) spanning from October 2015 to August 2019. Each user is identified by a
unique user ID. The service items including public services, administrative examination,
and approvals of the citizens, are identified by unique item ID. Table 1 exhibits the implicit
interaction information of the dataset. Each entry includes the user ID, item ID, interaction
time, and auxiliary information such as the user’s gender (Male = 1, Female = 0). The data
indicates users’ behaviors, for example, a 54-year-old man with ID “001” clicked the item
with ID “67540” on 21 October.

Table 1. Example of e-government service interaction entries.

User ID Gender Age Item ID Time

001 1 54 67540 21 October 2015
002 0 32 1453670 10 November 2015
003 1 30 12356 12 May 2017
004 0 27 67540 22 April 2018
005 0 45 3457091 10 July 2019

The recommendation system of personalized public service aims to predict a person-
alized top-K recommendation list for a user based on his interaction history. To simulate
the real situation, we choose the leave-one-out scheme to split the train set and test set.
For each user, we keep his latest action as the test set and train the remaining interac-
tion histories. We follow the common strategy that randomly selects 100 negative items
and then ranks the test item among the 100 negative items according to their predictive
score [6,38]. Meanwhile, we also sample from the remaining items without user interaction
for training. To avoid sample imbalance, we adopt the ratio between positive and negative
samples (1:1).

4.1.2. Evaluation Metrics

We adopt the widely used metrics—including recall, normalized discounted cumula-
tive gain (NDCG), precision, and F1—to evaluate the performance of personalized top-K
item lists. For better understanding, Table 2 shows the evaluation metric for four users
with three recommendation items. Specifically, the metric recall is the fraction of correctly
predicted positive samples to the total positive samples. Thus, higher recall indicates a
better performance. The formula is shown below as Equation (13).

Recall@K =
1
|U|∑u

TP
TP + FN

(13)

where, |U| is the number of users, TP and FN are the number of true positive and false
negative samples, respectively. True positive means the number of items in the top-N
recommendation that hit the target. False negative means the number of the positive items
test set that was falsely identified as the negative items.

Precision is the number of correctly predicted positive instances over the total number
of predicted positive instances. Higher precision also indicates a better performance. See
Equation (14) for details. Additionally, we use the F1 score to balance equally between
Recall and Precision. The formula is shown in Equation (15)

Precision@K =
1
|U|∑u

TP
TP + FP

=
1
|U|∑u

x
K

(14)

Appl. Sci. 2021, 11, 12119 10 of 16

F1@K =
2 ∗ Precision@K ∗ Recall@K
(Precision@K + Recall@K)

(15)

where FP is the number of false-positive instances. ‘False positive’ means the number of
items in the top-N recommendation list that were falsely identified as the target items. The
NDCG evaluates the gap between the predicted ranked item list and users’ real interaction
list. The closer the NDCG value is to 1, the better the model performance is.

NDCG@K =
1
|U|∑u

DCG@K
IDCG@K

(16)

DCG@K = ∑K
i=1

2ri − 1
log2(i + 1)

(17)

IDCG@K = ∑
|REL|
i=1

2ri − 1
log2(i + 1)

(18)

where, ri = 1 if the target test item in the position i; otherwise, ri = 0; |REL| indi-
cates that the recommendation list is sorted in the best way. In the implicit feedback
scenarios, IDCG@K = 1.

Table 2. Example evaluation metric for four users.

User Recommendation
topK = 3 Test Item Recall@3 Precision@3 NDCG@3

User1 [item1, item2, item3] Item1 1/(1 + 0) 1/3 (2 − 1)/log2(2)
User2 [item2, item4, item5] Item4 1/(1 + 0) 1/3 (2 − 1)/log2(3)
User3 [item1, iitem4, item3] Item5 0/(0 + 1) 0/3 0
User4 [item3, itme4, item5] Item5 1/(1 + 0) 1/3 (2 − 1)/log2(4)
mean 0.75 0.25 0.53

4.1.3. Parameter Settings

We empirically select the optimal parameter settings for the proposed method. Specif-
ically, we conduct a grid search to find out the optimal hyperparameters, which include
the max number of epochs, learning rate, batch size, scale factors γ1 and γ2, and threshold
ε. The size of the embedding layers is fixed to 64 for all the models, that is the dimension of
latent features.

• Batch size

A batch is a set of samples that are randomly sampled from the training set. Its size is
usually set to a larger value. We conduct experiments to search the optimal value of batch
size in {128,256,521,1024}.

• Max number of the epoch

Epoch means one training over the entire sample dataset. Similarly, epoch is searched
in {20,30,50,100}.

• Learning rate

The learning rate is the hyperparameter for updating weights in the process of gradient
descent. Likewise, the learning rate is tested in {0.001,0.003,0.005,0.01}.

• Negative items selection parameters

For scale parameter γ1 in the constructed metric function, we apply a grid search in
{1,1.5,2,2.5,3}, for scale parameter γ2, we apply a grid search in {0.02,0.04,0.06,0.08,0.10}. For
distance constraint ε , we apply a grid search in {0.5,0.8,1.0,1.3,1.5}.

Consequently, the best values of batch size, max number of the epoch, learning rate,
scale parameters γ1 and γ2, threshold ε are determined: batch size = 1024, epoch = 30,
learning rate = 0.003, γ1 = 2 and γ2 = 0.06, ε = 1, respectively.

Appl. Sci. 2021, 11, 12119 11 of 16

4.1.4. Comparative Methods

We compare our proposed model with the following methods:
• User-based CF (UCF)—UCF is the classical neighborhood-based collaborative filtering
method. UCF obtains the new predictor scores by averaging (weighted) ratings over
similar users. In other words, a user might choose according to ratings given to that item
by the other users who have a similar preference with that of the target user. Similarity
computation is critical to UCF. In this paper, we adopt the Pearson correlation coefficient
because of its better performance. The Pearson correlation coefficient between users u and
v is denoted as

pearson(u, v) =
∑i∈I (rui − ru)(rvi − rv)√

∑i∈I (rui − ru)
2
√

∑i∈I (rvi − rv)
2

(19)

where, I is the set of items.
• Baseline-MF—MF evaluates the observed user–item rating matrix by a linear combination
of user and item latent features. It is one of the most successful realizations of latent features
models. MF can be enforced by using the embedding neural network [39]. In our work, we
apply an embedding layer to obtain the nonlinear latent features of baseline-MF.

As mentioned in Section 2, the inputs of the embedding layer are the one-hot vectors
of users and items, and the outputs are the low-ranked vector representations. In this way,
the users and items are embedded into the latent space with the help of the embedding
layer. Finally, the MF used the dot of users and items to predict users’ preferences on each
item.
• Singular Value Decomposition (SVD)—SVD is a matrix factorization technique com-
monly used in a recommender system, producing low-rank approximations [27]. In the
recommendation scenario, SVD is used to decompose the rating matrix Q with the rank
r as

fSVD(Q) = U × S×VT (20)

where, U ∈ R|U|×|U| and V ∈ R|I|×|I| are the orthogonal matrices, singular matrix
S ∈ R|U|×|I| is a diagonal matrix whose diagonal elements are non-negative real val-
ues. Especially, the rank r′ of the matrix S is less than r. In this way, the rating matrix is
transformed into a lower-ranked matrix. In this paper, we conduct an experiment for SVD
on the e-government services dataset with the rank r′ = 64.
• Time-Decayed BPR—On the basis of the Bayesian personalized ranking (BPR) framework,
time-aware information is introduced [40]. Time-decayed BPR integrated the time-aware
information and time-invariant information to model users’ preferences. In this paper, the
method was denoted as TBPR.

4.2. Performance Comparison (RQ1)

In this part, we answer the first research question raised. For all results, we perform
10 technical replicates and take the mean as the final results. The experimental results of the
top-5 are presented in Table 3. The detailed results (from top-1 to top-5) have been provided
in Figure 5. We also use a pair-wise T-test to analyze all the results of the experiments.
Through comparative analysis in this work come to the following conclusions:

(1) The proposed NMCF performed much better than MF, UCF, SVD, and TBPR in
various evaluation metrics. The results demonstrate that NMCF is advantaged in
the highly sparse e-government services dataset. The selected negative information
successfully exploits the extra implicit preference of the users for better performance.

(2) Since the task of e-government recommendation is to find the target service item
for users, we cared more about whether the target items have been selected in the
top-K recommendation lists. Recall@5 score of the NMCF approach has shown that it
hits more than 75% of users’ target items in the top-5 recommendations, which has

Appl. Sci. 2021, 11, 12119 12 of 16

improved by 51%, 41%, 18%, and 11% compared with that of SVD, UCF, TBPR, and
MF, respectively.

(3) Since all experiments were performed 10 replicates, the freedom degree of t-distribution
is 9. From Table 4, we accept the hypothesis that NMCF performs better than baseline
models in terms of Recall@5, Precision@5, and NDCG@5 for significance levels of
0.0005 and 0.0025. The method NMCF successfully exploits the extra information,
which is a high order indication of user preference, for a better recommendation.

Table 3. Results of top-5 evaluation metrics.

Recall@5 Precision@5 F1@5 NDCG@5

UCF 0.36 0.06 0.10 0.22
Improve 0.41 0.09 0.16 0.37

SVD 0.26 0.04 0.08 0.15
Improve 0.51 0.11 0.18 0.44

TBPR 0.59 0. 12 0.20 0.45
Improve 0.18 0.03 0.06 0.14

MF 0.66 0.13 0.22 0.46
Improve 0.11 0.02 0.06 0.13
NMCF 0.77 0.15 0.26 0.59

Table 4. T-test for paired comparisons.

Recall@5 Precision@5 NDCG@5

MF UCF SVD TBPR MF UCF SVD TBPR MF UCF SVD TBPR

231.49 473.28 167.70 326.00 22.61 199.91 75.98 3.90 129.88 444.69 146.34 60.75
<0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0025 <0.0005 <0.0005 <0.0005 <0.0005

4.3. Influence of Selection Negative Samples (RQ2)

In this section, we explore the influence of selection negative samples on NMCF. We
focus on investigating the influence of threshold ε, which is the constraint for selecting
controls. The evaluation scores at different thresholds are shown in Figure 6. The threshold
follows the abscissa, the ordinate evaluation metrics score of our new model for result
analysis. As we can see, the recall@1 is sensitive to the value of ε. When ε = 1, recall@1 of
our model achieved the best result.

4.4. Sensitivity Analysis of Hyperparameters (RQ3)

In this part, we make a very thorough analysis of the influence of hyperparameters on
the proposed method in the e-government dataset. Specifically, we investigate the impact
hyperparameters of the learning rate and batch size. As can be seen from Table 5, the
learning rate affects the performance of our model. This suggests that a lower learning rate
might achieve a better result. Specifically, Recall@5, Precision@5, and F1@5 achieve the
best results when the learning rate is 0.001. Next, we discuss the impact of batch size on
NMCF. It can be seen from Table 6 that a lower batch size might achieve a better NDCG@5.
Recall@5, precision@5, and F1@5 achieve the best result when the batch size is 1024.

Table 5. Impact of learning rate on the performance of NMCF.

LR Recall@5 Precision@5 F1@5 NDCG@5

0.001 0.7768 0.1554 0.2589 0.5888
0.003 0.7731 0.1546 0.2577 0.59370
0.005 0.7616 0.1523 0.2539 0.5792
0.01 0.7482 0.14965 0.2494 0.5536

Appl. Sci. 2021, 11, 12119 13 of 16

Table 6. Impact of batch size on the performance of NMCF.

Batch Size Recall@5 Precision@5 F1@5 NDCG@5

128 0.7756 0.1551 0.2585 0.6019
256 0.7729 0.1546 0.2576 0.5922
512 0.7763 0.1553 0.2588 0.5965

1024 0.7768 0.1554 0.2589 0.5888

Figure 5. Comparison results (from top-1 to top-5) of different methods. (a–d) the results of NMCF
compared with the baseline methods in terms of recall, precision, F1 score, and NDCG.

Appl. Sci. 2021, 11, 12119 14 of 16

Figure 6. Selection of threshold ε in our model.

5. Conclusions and Future Work

In this paper, the aim is to capture more latent features to model users’ preferences.
We presented an efficient NMCF method for e-government services recommendations.
Different from evaluating the similarity of users or items (such as neighborhood-based CF),
NMCF uses the implicit characteristics (e.g., interaction timestamp) and users’ ages to eval-
uate the distance between the user and the item interaction. In this study, NMCF not only
learns the interaction information but also capture feature from negative items based on the
similarity of interaction pairs. The proposed model is closely related to real e-government
problem settings and can be rapidly reused in practice without feature engineering. It can
effectively solve the problems encountered in the e-government platforms, such as lower
willingness to use because of bad user experience. For example, users may be unable to
transform spoken language (such as ‘baby’) into written language (such as ‘neonates’), let
alone find the items regard neonates. Thus, our method can effectively solve the problem
by generating personalized recommendations for users. Two potential limitations need
to be considered. Firstly, the similarity measure constructed in this paper may consume
more time, when the number of users and items is huge. Secondly, the randomly selected
items based on a similarity metric might not adequately capture users’ preferences. In
future work, we will put more effort into mining users’ fine-grained preferences based on
attribute information with the help of an attention mechanism. In this way, we can not
only capture users’ fine-grained preferences for items but also improve the performance of
the model.

Author Contributions: Conceptualization, T.C.; Methodology, N.S.; Validation, T.C., N.S. and W.G.;
Resources, T.C.; Data curation, N.S.; Writing—original draft preparation, N.S.; Writing—review and
editing, T.C. and L.R.; Project administration, W.G. and L.R.; Funding acquisition, T.C. and N.S. All
authors have read and agreed to the published version of the manuscript.

Funding: The APC was funded by (1) Fundamental Research Funds for the Central Universities,
China No. HUST: 2020JYCXJJ036; (2) Humanities and Social Science Fund of Ministry of Education
of China No.19YJA630010; (3) National Natural Science Foundation of China No.71734002, 72042016;
and (4) Chinese National Funding of Social Sciences No.18ZDA109, 17ZDA102.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank the Administrative Examination and Approval Bureau
of Wuhou District, Chengdu (Wuhou District Government Affairs Service Center) for providing us
with the dataset.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2021, 11, 12119 15 of 16

References
1. Layne, K.; Lee, J. Developing fully functional E-government: A four stage model. Gov. Inf. Q. 2001, 18, 122–136. [CrossRef]
2. Tomažič, K.; Mišič, T.U. Parliament-citizen communication in terms of local self-government and their use of social media in the

European Union. Lex Localis-J. Local Self-Govern. 2019, 17, 1057–1079. [CrossRef]
3. Lee, T.; Lee-Geiller, S.; Lee, B.-K. Are pictures worth a thousand words? The effect of information presentation type on citizen

perceptions of government websites. Gov. Inf. Q. 2020, 37, 101482. [CrossRef]
4. Ayachi, R.; Boukhris, I.; Mellouli, S.; Ben Amor, N.; Elouedi, Z. Proactive and reactive e-government services recommendation.

Univers. Access Inf. Soc. 2015, 15, 681–697. [CrossRef]
5. Koren, Y.; Bell, R.; Volinsky, C. Matrix factorization techniques for recommender systems. Computer 2009, 42, 30–37. [CrossRef]
6. He, X.; Liao, L.; Zhang, H.; Nie, L.; Hu, X.; Chua, T.-S. Neural collaborative filtering. In Proceedings of the 26th International

Conference on World Wide Web, Perth, Australia, 3–7 April 2017; pp. 173–182.
7. Rendle, S.; Freudenthaler, C.; Gantner, Z.; Schmidt-Thieme, L. BPR: Bayesian Personalized Ranking from Implicit Feedback. In

Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, Montreal, QC, Canada, 18–21 June 2009;
AUAI Press: Arlington, VA, USA, 2009; pp. 452–461.

8. Guo, H.; Tang, R.; Ye, Y.; Li, Z.; He, X. DeepFM: A Factorization-Machine based Neural Network for CTR Prediction. In
Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI ’17), Melbourne, Australia,
19–25 August 2017; pp. 1725–1731.

9. Cheng, H.-T.; Koc, L.; Harmsen, J.; Shaked, T.; Chandra, T.; Aradhye, H.; Anderson, G.; Corrado, G.; Chai, W.; Ispir, M.; et al.
Wide & Deep Learning for Recommender Systems. In Proceedings of the 1st Workshop on Deep Learning for Recommender
Systems, Boston, MA, USA, 15 September 2016; pp. 7–10.

10. Park, K.; Lee, J.; Choi, J. Deep neural networks for news recommendations. In Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management, Singapore, 6–10 November 2017; pp. 2255–2258.

11. Yang, C.; Miao, L.; Jiang, B.; Li, D.; Cao, D. Gated and attentive neural collaborative filtering for user generated list recommenda-
tion. Knowl.-Based Syst. 2019, 187, 104839. [CrossRef]

12. Guo, Y.; Yan, Z. Recommended System: Attentive Neural Collaborative Filtering. IEEE Access 2020, 8, 125953–125960. [CrossRef]
13. Chen, W.; Cai, F.; Chen, H.; De Rijke, M. Joint Neural Collaborative Filtering for Recommender Systems. ACM Trans. Inf. Syst.

2019, 37, 1–30. [CrossRef]
14. Li, X.; She, J. Collaborative Variational Autoencoder for Recommender Systems. In Proceedings of the 23rd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, ACM, New York, NY, USA, 13–17 August 2017; pp. 305–314.
[CrossRef]

15. Zhang, S.; Yao, L.; Xu, X.; Wang, S.; Zhu, L. Hybrid Collaborative Recommendation via Semi-AutoEncoder. In Proceedings of the
International Conference on Neural Information Processing, Guangzhou, China, 14–18 November 2017; pp. 185–193.

16. Ding, J.; Yu, G.; Li, Y.; He, X.; Jin, D. Improving Implicit Recommender Systems with Auxiliary Data. ACM Trans. Inf. Syst. 2020,
38, 1–27. [CrossRef]

17. Fu, M.; Qu, H.; Moges, D.; Lu, L. Attention based collaborative filtering. Neurocomputing 2018, 311, 88–98. [CrossRef]
18. Al-Bashiri, H.; Abdulgabber, M.A.; Romli, A.; Kahtan, H. An improved memory-based collaborative filtering method based on

the TOPSIS technique. PLoS ONE 2018, 13, e0204434. [CrossRef]
19. Srikanth, T.; Shashi, M. An effective preprocessing algorithm for model building in collaborative filtering-based recommender

system. Int. J. Bus. Intell. Data Min. 2019, 14, 489. [CrossRef]
20. Xiao, Y.; Wang, G.; Hsu, C.-H.; Wang, H. A time-sensitive personalized recommendation method based on probabilistic matrix

factorization technique. Soft Comput. 2018, 22, 6785–6796. [CrossRef]
21. Wang, D.; Yih, Y.; Ventresca, M. Improving neighbor-based collaborative filtering by using a hybrid similarity measurement.

Expert Syst. Appl. 2020, 160, 113651. [CrossRef]
22. Xue, F.; He, X.; Wang, X.; Xu, J.; Liu, K.; Hong, R. Deep Item-based Collaborative Filtering for Top-N Recommendation. ACM

Trans. Inf. Syst. 2019, 37, 1–25. [CrossRef]
23. Kant, S.; Mahara, T. Nearest biclusters collaborative filtering framework with fusion. J. Comput. Sci. 2018, 25, 204–212. [CrossRef]
24. Lee, H.; Lee, J. Scalable deep learning-based recommendation systems. ICT Express 2019, 5, 84–88. [CrossRef]
25. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning

Representations, San Diego, CA, USA, 7–9 May 2015; pp. 1–15.
26. Bottou, L. Stochastic Gradient Descent Tricks. In Neural Networks: Tricks of the Trade; Springer: Berlin/Heidelberg, Germany, 2012;

pp. 421–436.
27. He, X.; Zhang, H.; Kan, M.-Y.; Chua, T.-S. Fast Matrix Factorization for Online Recommendation with Implicit Feedback. In

Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, Association
for Computing Machinery, New York, NY, USA, 17–21 July 2016; pp. 549–558. [CrossRef]

28. Zhang, S.; Yao, L.; Sun, A.; Tay, Y. Deep Learning Based Recommender System. ACM Comput. Surv. 2019, 52, 1–38. [CrossRef]
29. Li, S.; Zhao, H. A Survey on Representation Learning for User Modeling. In Proceedings of the Twenty-Ninth International Joint

Conference on Artificial Intelligence, International Joint Conferences on Artificial Intelligence Organization, California, CA, USA,
11–17 July 2020; pp. 4997–5003. [CrossRef]

http://doi.org/10.1016/S0740-624X(01)00066-1
http://doi.org/10.4335/17.4.1057-1079(2019)
http://doi.org/10.1016/j.giq.2020.101482
http://doi.org/10.1007/s10209-015-0442-z
http://doi.org/10.1109/MC.2009.263
http://doi.org/10.1016/j.knosys.2019.07.010
http://doi.org/10.1109/ACCESS.2020.3006141
http://doi.org/10.1145/3343117
http://doi.org/10.1145/3097983.3098077
http://doi.org/10.1145/3372338
http://doi.org/10.1016/j.neucom.2018.05.049
http://doi.org/10.1371/journal.pone.0204434
http://doi.org/10.1504/IJBIDM.2019.099964
http://doi.org/10.1007/s00500-018-3406-4
http://doi.org/10.1016/j.eswa.2020.113651
http://doi.org/10.1145/3314578
http://doi.org/10.1016/j.jocs.2017.03.018
http://doi.org/10.1016/j.icte.2018.05.003
http://doi.org/10.1145/2911451.2911489
http://doi.org/10.1145/3285029
http://doi.org/10.24963/ijcai.2020/695

Appl. Sci. 2021, 11, 12119 16 of 16

30. Li, S.; Kawale, J.; Fu, Y. Deep Collaborative Filtering via Marginalized Denoising Auto-encoder. In Proceedings of the 24th ACM
International on Conference on Information and Knowledge Management, ACM, New York, NY, USA, 19–23 October 2015;
pp. 811–820. [CrossRef]

31. Cao, Y.; Li, W.; Zheng, D. An Improved Neighborhood-Aware Unified Probabilistic Matrix Factorization Recommendation. Wirel.
Pers. Commun. 2018, 102, 3121–3140. [CrossRef]

32. Xu, C. A novel recommendation method based on social network using matrix factorization technique. Inf. Process. Manag. 2018,
54, 463–474. [CrossRef]

33. Batmaz, Z.; Yurekli, A.; Bilge, A.; Kaleli, C. A review on deep learning for recommender systems: Challenges and remedies. Artif.
Intell. Rev. 2019, 52, 1–37. [CrossRef]

34. Ji, Z.; Pi, H.; Wei, W.; Xiong, B.; Wozniak, M.; Damasevicius, R. Recommendation Based on Review Texts and Social Communities:
A Hybrid Model. IEEE Access 2019, 7, 40416–40427. [CrossRef]

35. Liu, H.; Wang, Y.; Peng, Q.; Wu, F.; Gan, L.; Pan, L.; Jiao, P. Hybrid neural recommendation with joint deep representation
learning of ratings and reviews. Neurocomputing 2019, 374, 77–85. [CrossRef]

36. Wei, W.; Wang, Z.; Fu, C.; Damaševičius, R.; Scherer, R.; Wožniak, M. Intelligent recommendation of related items based on naive
bayes and collaborative filtering combination model. J. Phys. Conf. Ser. 2020, 1682, 012043. [CrossRef]

37. Zhang, H.; Cisse, M.; Dauphin, Y.N.; Lopez-Paz, D. Mixup: Beyond Empirical Risk Minimization. Available online: https:
//github.com/facebookresearch/mixup-cifar10 (accessed on 9 September 2021).

38. Elkahky, A.M.; Song, Y.; He, X. A Multi-View Deep Learning Approach for Cross Domain User Modeling in Recommendation
Systems. In Proceedings of the 24th International Conference on World Wide Web, International World Wide Web Conferences
Steering Committee, Geneva, Switzerland, 18–22 May 2015; pp. 278–288. [CrossRef]

39. Liu, Y.; Wang, S.-L.; Zhang, J.-F.; Zhang, W.; Zhou, S.; Li, W. DMFMDA: Prediction of Microbe-Disease Associations Based on
Deep Matrix Factorization Using Bayesian Personalized Ranking. IEEE/ACM Trans. Comput. Biol. Bioinform. 2020, 18, 1763–1772.
[CrossRef] [PubMed]

40. Liu, B.; Chen, T.; Jia, P.; Wang, L. Effective public service delivery supported by time-decayed Bayesian personalized ranking.
Knowl.-Based Syst. 2020, 206, 106376. [CrossRef]

http://doi.org/10.1145/2806416.2806527
http://doi.org/10.1007/s11277-018-5332-2
http://doi.org/10.1016/j.ipm.2018.02.005
http://doi.org/10.1007/s10462-018-9654-y
http://doi.org/10.1109/ACCESS.2019.2897586
http://doi.org/10.1016/j.neucom.2019.09.052
http://doi.org/10.1088/1742-6596/1682/1/012043
https://github.com/facebookresearch/mixup-cifar10
https://github.com/facebookresearch/mixup-cifar10
http://doi.org/10.1145/2736277.2741667
http://doi.org/10.1109/TCBB.2020.3018138
http://www.ncbi.nlm.nih.gov/pubmed/32816678
http://doi.org/10.1016/j.knosys.2020.106376

	Introduction
	Related Work
	Collaborative Filtering Recommendation
	Neighborhood-Based Recommendation System
	Model-Based Recommendation System

	Hybrid Recommendation

	Proposed Negative Mixing CF
	Notations
	Negative Items Sampling
	Negative Mixing
	Prediction Layer
	Optimization
	Objective Function
	Training

	Experiments
	Experimental Settings
	Dataset
	Evaluation Metrics
	Parameter Settings
	Comparative Methods

	Performance Comparison (RQ1)
	Influence of Selection Negative Samples (RQ2)
	Sensitivity Analysis of Hyperparameters (RQ3)

	Conclusions and Future Work
	References

