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Abstract: Key-dependent message (KDM) security is of great research significance, to better analyse
and solve the potential security problems in complex application scenarios. Most of the current KDM
security schemes are based on traditional hard mathematical problems, where the public key and
ciphertext are not compact enough, and make the ciphertext size grow linearly with the degree of the
challenge functions. To solve the above problems and the inefficient ciphertext operation, the authors
propose a compact lattice-based cryptosystem with a variant of the RLWE problem, which applies an
invertible technique to obtain the RLWE∗ problem. It remains hard after the modification from the
RLWE problem. Compared with the ACPS scheme, our scheme further expands the set of challenge
functions based on the affine function of the secret key, and the size of public key and ciphertext is
Õ(n), which is independent of the challenge functions. In addition, this scheme enjoys a high level
of efficiency, the cost of encryption and decryption is only ploylog(n) bit operations per message
symbol, and we also prove that our scheme is KDM-CPA secure under the RLWE∗ assumption.

Keywords: key-dependent message; RLWE problem; invertible; challenge functions

1. Introduction

With the rise of cloud computing and cloud storage technology, some application
scenarios also need to encrypt the secret key and its related information. In 1984, Gold-
wasser and Michali [1] first introduced the concept of key-dependent message security,
which ensures the security of message f (sk) directly calculated from the secret key sk.
The KDM (Key-dependent message)-secure public key encryption scheme was originally
applied to the hard disk encryption process, and the secret key and user’s data were
encrypted together. Later, it has also been widely used in formal proof [2,3], homomorphic
encryption [4] and some advanced cryptographic protocols [5].

At Eurocrypt 2001, Camenisch and Lysyanskaya [5] presented a circular-secure en-
cryption scheme of provable security under the random oracle model, and the KDM attack
capability of the adversary is defined by the set of challenge functions that can be queried.
In 2002, Black, Rogaway and Shrimp-ton [6] considered such a situation, that is, in the
application process of hard disk encryption, an adversary was allowed to obtain a cipher-
text, which was encrypted by the secret key {sk1, . . . , sk`} related function f of the user
j under the public key pk j. Compared with semantic security, the KDM security model
has stronger security and a higher research value, which mainly depends on its efficiency
and the set of challenge functions that can be queried. However, various KDM-secure
public key encryption schemes are different in construction. Until 2008, Boneh et al. [7]
proposed a public key encryption scheme based on the DDH (decisional Diffie–Hellman)
assumption, and proved the KDM-CPA (Chosen Plaintext Attack) security of the scheme
under the standard model. After that, Applebaum et al. [8] proposed the first lattice-based
public key encryption scheme of KDM-CPA security, which was named the ACPS scheme.
The security follows from the LWE (Learning with Error) assumption, because of its good
linear structure, and has compact ciphertexts and a high level of computational efficiency.

Appl. Sci. 2021, 11, 12161. https://doi.org/10.3390/app112412161 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app112412161
https://doi.org/10.3390/app112412161
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112412161
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112412161?type=check_update&version=3


Appl. Sci. 2021, 11, 12161 2 of 12

Similarly, the ACPS scheme has post-quantum security and its challenge functions are
affine functions.

At Crypto 2010, Brakerski and Goldwasser et al. [9] extended the technique in [7]
and proposed further construction of KDM-secure schemes, so that the security of the
scheme could be based on more mathematically hard problems, mainly the QR (Quadratic
Residuosity) problem [10] and the DCR (Decisional Composite Residuosity) problem [11].
The KDM security of this scheme can be attributed to the indecipherable (IND) security.
However, the encryption method in [9] is similar to the circular security assumption which
encrypts the message in bit. Therefore, the KDM-secure scheme constructed according
to the above method has the disadvantages of not being compact as well as inefficient
encryption and decryption. At Eurocrypt 2010, under the standard model and standard
assumption, Barakerski et al. [12] constructed a KDM-CPA secure scheme based on the
DDH or LWE assumption. For arbitrary but fixed polynomials L and N, given the size of
the secret key k, the adversary can attack at most N(k) public keys and a circuit of size
L(k), namely, the set of challenge functions contains a Boolean circuit with polynomial size.
Therefore, it is also known as a bounded KDM-secure scheme, which is inefficient and
the ciphertext includes a garbled circuit of the same size as its set of challenge functions.
In 2011, Brakerski, Goldwasser et al. [13] proposed a KDM-secure public key encryption
scheme with respect to polynomial functions with a degree less than d, where d is a constant.
The KDM-CPA security follows from the DDH or LWE assumption. Since the construction
of the scheme still follows the construction of [7], the ciphertext is not compact enough
and the ciphertext size is an exponential function related to d. In the same year, Malkin
et al. [14] proposed a public key encryption scheme based on the DCR assumption with
KDM-CPA security. The ciphertext size is a linear function related to d, which improves
the efficiency of the above scheme.

With an increase of application scenarios, the KDM-secure encryption scheme also
has a significant role in identity authentication. Under the LWE assumption, Peikert
et al. [15] proposed the first identity-based encryption scheme with KDM security, where
the challenger can answer encryption queries with respect to affine functions. In 2019,
Chen et al. [16] focused on the KDM security of an identity-based encryption scheme,
proposing a generic way to reach it from public key encryption, so that it remained KDM
secure. Most of the discussed schemes directly encrypt the secret key, but in practice, the
set of challenge functions may be composed of the secret key in more complex forms. At
Asiacrypt 2020, Kitagawa et al. [17] proved an encryption scheme with circular security
that can be transformed into a KDM-secure encryption scheme, in which circular security
is the most basic form of KDM security, that is, it can securely encrypt a secret key in
bit. Therefore, the question of how to face more complex encryption scenarios, as well as
constructing compact ciphertext, is worth intensive study.

Motivation. Through the above comparison, we can observe three urgent problems
in KDM-secure public key encryption schemes: (1) how to securely encrypt the complex
functions of the secret key (not only itself); (2) how to construct the public-key encryption
scheme with compact ciphertexts, and independent of the challenge functions, and (3) The
existing compact cryptosystems are all based on lattice problems. A question is raised of
how to modify the LWE problem to improve the efficiency of encryption and decryption.

Our Results. In this paper, we analyse the KDM security of the public-key encryption
scheme, and choose to use the RLWE (Ring-Learning with error) problem to build the
compact cryptosystems. First, we apply the invertible technique [18] to obtain the RLWE∗

problem, then provide a new version by scaling the noise, and proving that it remains
hard after the above modification. After that, we give a useful transformation to obtain the
RLWE∗ assumption-Hermite normal form (HNF), namely, the secret chooses form error
distribution. As it happens, through noise scaling, the secret key just fits into the message
space Rt, so our scheme can securely encrypt the linear functions of its secret key. Therefore,
we easily construct a compact public-key scheme, analyze its correctness, and prove its
key-dependent message security under the RLWE∗ assumption.
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In particular, through the proof of KDM-CPA security, we observe that the ciphertexts
are pseudorandom with encrypting the secret key directly. If we do not expand the message
space by scaling the noise, then it is possible to construct a symmetric-key scheme for KDM
security by directly encrypting the secret key to its linear functions. Therefore, we further
improve the RLWE∗ problem, propose its variant k-RLWE∗ problem, and demonstrate
its hardness. For the message space R2, given a small enough Hamming weight h and

making
(

n
h

)
large enough, we can obtain a binary secret symmetric-key scheme with

less ciphertext noise. Finally, we prove that our scheme is KDM-CPA secure under the
special k-RLWE∗ assumption and the cost of encryption and decryption is only ploylog(n)
bit operations per message symbol.

Organization. In Section 2, we describe some important lemmas and give the formal
definition of KDM-secure cryptosystems. In Section 3, we first introduce the RLWE∗

problem and a HNF (Hermite normal form) transformation, then construct a compact
public-key scheme with KDM-CPA security. In Section 4, similarly to the previous section,
the variant k-RLWE∗ problem and symmetric-key scheme are presented. In Section 5, we
provide a detailed performance comparison. Finally, the conclusion is given in Section 6.

2. Preliminaries
2.1. Basic Notation

In this paper, we use the following notation and lemmas. We will use a ring R. In
our concrete instantiations, we prefer to use either R = Z (the integers) or the polynomial
ring R = Z[x]/

(
xd + 1

)
, where d is a power of 2. For integer q, we use Rq to denote R/qR.

Sometimes we will use abuse notation and use R2 to denote the set of R-elements with
binary coefficients, when R = Z, R2 may denote {0, 1}, and when R is a polynomial ring,
R2 may denote those polynomials that have 0/1 coefficients. For a ∈ R, we use the notation
[a]q to refer to a mod q, with coefficients reduced into the range (−q/2, q/2].

For the security parameter λ, denote a negligible function negl(λ). For some distribu-
tion χ, writing e← χ means that e is distributed according to χ, the error distribution χ
is the discrete gaussian distribution DZn ,σ for some σ > 0. The usual norm `1(s) over the

reals equals
n
∑

i=1
|si|. The `∞(s) norm is defined as max{|s1|, |s2|, . . . , |sn|}.

Lemma 1. (see [19]). Let n ∈ N. For any real number σ = ω
(√

log n
)
, we have

Pr
x←DZn ,σ

[‖x‖ > σ
√

n] ≤ 2−n+1. (1)

Lemma 2. (see [20]). Let n ∈ N. For any real number σ = ω
(√

log n
)
,and any c ∈ Zn, the

statistical distance between the distributions DZn ,σ and DZn ,σ,c is at most ‖c‖/σ.

Lemma 3. (see [21]). Let n ∈ N. m = 2n, and let f (x) = Φm(x) = xn + 1 and let R =
Z[x]/(Φm(x)). For any s, t ∈ R, ‖s · t(mod Φm(x))‖ ≤

√
n · ‖s‖ · ‖t‖ and ‖s · t(mod Φm(x))‖∞

≤ n · ‖s‖∞ · ‖t‖∞.

2.2. The RLWE Problem

This simple version of the RLWE problem comes from [22], and the LWE problem can
choose the secret from the noise distribution by the transformation T.

Definition 1. (RLWE). For security parameter λ, let f(x) = xd + 1 where d = d(λ) is a power of
2. Let q = q(λ) ≥ 2 be an integer. Let R = Z[x]/( f (x)) and let Rq = R/qR. Let χ = χ(λ) be
a distribution over R. The RLWEd,q,χ problem is to distinguish the following two distributions:
In the first distribution, one samples (ai, bi) uniformly from R2

q. In the second distribution, one
first draws s← Rq uniformly and then samples (ai, bi) ∈ R2

q by sampling ai ← Rq uniformly,
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ei ← χ and setting bi = ai·s + ei, let this distribution be As,χ. The RLWEd,q,χassumption is that
the RLWEd,q,χproblem is infeasible.

Lemma 4. (see [8]). Let q = pe be a prime power. There is a deterministic polynomial-time
transformation T that, for arbitrary s ∈ Zn

q and error distribution χ, maps As,χto Ax,χ where

x ← χn , and maps U
(
Zn

q ×Zq

)
to itself. The transformation also produces an invertible square

matrix A ∈ Zn×n
q and b ∈ Zn

q that, when mapping As,χ to Ax,χ , satisfy x = −ATs + b.

Theorem 1. (see [23]). Let K be the mth cyclotomic number field having dimension n = ϕ(m)
and R = OK be its ring of integers. Let α <

√
log n/n , and let q = q(n) ≥ 2, q = 1 mod m be a

poly(n) -bounded prime such that αq ≥ ω
(√

log n
)
. Then there is a polynomial-time quantum

reduction from Õ
(√

n/α
)

-approximate SIVP (or SVP) on ideal lattices in K to R-DLWEq,Yα
.

Alternatively, for any ` > 1, we can replace the target problem by the problem of solving R-
DLWEq,Dξ

given only ` samples, where ξ = α(n`/ log(n`))1/4.

2.3. Key-Dependent Message Security

We now define key-dependent message security by a game played between the
challenger and the adversary A, and KDM security guarantees the direct encryption of the
secret key sk and its correlation function f (sk). The KDM attack capability of the adversary
A is mainly determined by the collection of secret key functions F that it can query,
expressed as F ⊂

{
f | f : K` →M

}
, whereK andM are the secret key space and message

space of the encryption scheme. Given public keys {pk1, . . . , pk`} and encryption of the
key-dependent message f (sk1, . . . , sk`), the adversary A cannot effectively distinguish it
from the ciphertext that is encrypted by the message {0, 1}, and so we can call the scheme
KDM-CPA secure with respect to F . F is a family of sets of functions parameterized by
the security parameter λ and the number of users `. The game proceeds as follows:

1. The challenger chooses a bit µ← {0, 1} . Run the scheme’s key generation algorithm
` times. It gives {pk1, . . . , pk`} to the adversary A.

2. Adversary A makes encryption queries of the form (i, f ), where 1 < i < ` and
f ∈ F . To process a query, the challenger computes m← f (sk1, . . . , sk`) , then computes
the challenge ciphertexts and returns to the adversary A.

c =

{
Enc(pki, m), µ = 0,

Enc
(

pki, 0|m|
)

, otherwise.
(2)

3. Adversary A attempts to guess µ and outputs µ′ ∈ {0, 1}.
The scheme is KDM-CPA secure if for every probabilistic polynomial-time adversary

A, the distinguishing advantage Adv(A) = |Pr[µ = µ′]− 1/2| ≤ negl(n). This shows that
the scheme can securely encrypt any functions F of its own secret key, taking the place of
a message.

The KDM-CPA security definition of the symmetric-key scheme is similar. In the first
stage, the challenger generates the secret key without giving anything to the adversary A.
In the second stage, it uses the secret key for encryption (and uses it as the input of f (sk)).
Everything else is just the same.

3. Compact Public-Key Cryptosystem with KDM Security

In this section, we will describe the construction of a public-key scheme based on
the variant of the RLWE problem. At first, we introduce the RLWE∗ problem by applying
the invertible technique, and then give the new version by scaling the noise. After that,
to ensure that the secret chooses form error distribution, a useful transformation is given
to obtain the RLWE∗ assumption-Hermite normal form. Finally, we construct a compact
public-key scheme, analyze its correctness, and prove its key-dependent message security.
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3.1. The Invertible Version of RLWE Problem

According to [18], authors presented a variant of RLWE problem, defined as the
RLWE∗ problem. It is similar to the RLWE problem except that a chooses from R∗q , in which
R∗q is the ser of invertible elements of Rq. Therefore, we call RLWE∗ the invertible variant.

RLWE∗ problem. For s ∈ Rq and error distribution χ, we define A∗s,χ as the distri-
bution obtained by sampling the pair (a, as + e) ∈ R∗q × Rq, where R∗q denote the set of
invertible elements of Rq. The Decision RLWE∗ problem is to distinguish between A∗s,χ and

U
(

R∗q × Rq

)
. Please note that for R∗q , [23] claim that for any q ≥ 2, the fraction of invertible

elements in Rq is at least 1/poly(n, log q). Moreover, ref. [18] further shows that as long as
q = Ω(n), an element choosing from U

(
Rq
)

is invertible with overwhelming probability.
Hence, the RLWE problem remains hard even when applying the invertible technique.

Scaling the noise. This technique was first formally proposed in [24] and generated the
RLWE∗ samples as (a, a · s + t · e); security is not affected when t ∈ Z∗q and q are relatively
prime, and other parameters are as above.

Definition 2. (Decision RLWE∗). The average-case decision version of the RLWE∗ problem,
denoted RLWE∗q,χ, is to distinguish the following two distributions with non-negligible advantage:
In the first distribution, one samples (ai, bi) uniformly from R2

q. In the second distribution, one
first draws s← Rq uniformly and then samples (a, b = a · s + t · e) ∈ R2

q by sampling a← R∗q
uniformly, where R∗q denote the set of invertible elements of Rq, e← χ and t ∈ Z∗q .

3.2. A Generic Transformation

In this section, we make a useful transformation to sampling s← χ . There is no
loss of security, and it is ensured that the secret can be placed in the message space. The
transformation lemma follows.

Lemma 5. For modulus q, arbitrary s ∈ Rq and the error distribution χ, there is a deterministic

polynomial-time transformation T, which maps A∗s,χ to A∗φ,χ where φ← χ , and mapsU
(

R∗q × Rq

)
to itself.

Proof. The transformation T to access the distribution D over R∗q × Rq, possibly A∗s,χ or

U
(

R∗q × Rq

)
. Then, we prove it in two steps.

The first step. Transformation T generates the sample
(

a, b
)
∈ R∗q × Rq by drawing

from the distribution D. When D = A∗s,χ, we have b = a · s + t · x, where x ← χ .
The second step. To transform samples from D into samples from a different distribution,

the sample (a, b) ∈ R∗q × Rq from D will be transformed into (a′, b′) ∈ R∗q × Rq, where
a′ = −a−1 · a, b′ = b + a′ · b.

Especially a′ ∈ R∗q is uniform due to a← R∗q being invertible modulo q and a chooses

from U
(

R∗q
)

. If D = U
(

R∗q × Rq

)
, then (a′, b′) is also subject to U

(
R∗q × Rq

)
. If D = bA∗s,χ,

then b = a · s + t · e, so we have

b′ = b + a′ · b = a · s + t · e + a′ · (a · s + t · x) = a′ · (t · x) + t · e, (3)

where φ = t · x, therefore, (a′, b′) is subject to bA∗φ,χ, as desired. �

Definition 3. (The RLWE∗ assumption-Hermite normal form). As in the previous definition,
for all security parameters λ ∈ N, the RLWE∗ assumption suggests that, for any ` = poly(λ),
we have

{(ai, ai · s + t · ei)}i∈[`] ≈ {(ai, ui)}i∈[`], (4)

in which s is sampled from the noise distribution χ, and other parameters remain unchanged.
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3.3. Basic RLWE∗-Based Encryption Scheme

For security parameter λ, let q = 1 mod 2n and t ∈ Z∗q relatively prime, in which
{1, . . . , q− 1} ⊇ Z∗q . Let χ = DZn ,σ be an error distribution with σ ≥ ω

(√
log n

)
and

σ� t; we sampled s from error distribution χ, so all s ∈ Rt with overwhelming probability
when the secret chooses from error distribution. Let R = Z[x]/( f (x)), Rq = Zq[x]/( f (x))
where f (x) = xn + 1 and n = n(λ) is a power of 2.

• RPKE1.KeyGen
(
1λ
)
: Sample s← χ . Output sk = s. Sample a← R∗q uniformly,

e← χ and set b = a · s + t · e, where t ∈ Z∗q and R∗q denote the set of invertible
elements of Rq. Output the public key pk = (a, b) ∈ R∗q × Rq.

• RPKE1.Enc(pk, m): Notice that m ∈ Rt, due to the lemma by the noise scaling. Sample
r, e1, e2 ← χ . Compute c1 = a · r + t · e1, c2 = b · r + t · e2 + m, output the ciphertext
c = (c1, c2) ∈ Rq × Rq.

• RPKE1.Dec(sk, c): Input the corresponding secret key and ciphertext, then output
m = (c2 − c1·s) mod q mod t.

The correctness of the scheme is obvious, compute (c2 − c1·s) = m + te2 − te1s + ter,
according to the Lemma 3, we have

‖te2 − te1s + ter‖ ∞ = t · ‖e2‖∞ + t · ‖e1s‖ ∞ + t · ‖er‖ ∞

= t · σ
√

n + 2t · n
(
σ
√

n
)2

< q/2
(5)

if q > t · poly(n) · σ2, where t = σ
√

n, the ciphertext can be decrypted correctly.
The KDM-CPA security follows from the RLWE∗ assumption by noting the pseudoran-

dom distribution A∗s,χ. Observe that f (sk) = k · s + t ·w ∈ Rt, where k, s, w all choose from
error distribution. The ciphertext is indistinguishable from uniform even if m is replaced
with any linear function of the scheme’s own secret key.

Theorem 2. Let k← DZn ,σ and w← DZn ,σ′ , where σ′ ≥ 2ω(log n) · σ2, σ = ω
(√

log n
)
. Under

the RLWE∗assumption, the above cryptosystem RPKE1 about f (sk) = k · s + t ·w satisfies KDM-
CPA security.

Proof. For any probabilistic polynomial-time adversary A, we use a three-step hybrid
game to prove that the ciphertext with key-dependent message f (sk) in the RPKE1 scheme
is computationally indistinguishable from one that carries no information on the message.
Therefore, the distinguishing advantage of the adversary A is negligible.

Game H0: Let pk = (a, b)← RPK1.KeyGen
(
1λ
)

, the remaining parameters are as
above, and Hybrid game H0 is mainly used to generate the challenge ciphertexts.

c =
{

(c1 = a · r + t · e1, c2 = b · r + t · e2 + k · s + t · w), µ = 0
(c1 = a · r + t · e1, c2 = b · r + t · e2 + 0 ), µ = 1

(6)

Game H1 : Similar to the hybrid game H0, hybrid game H1 generates the challenge
ciphertexts related to f (sk) in different ways.

c =
{ (

c∗1 = a′, c∗2 = a′ · s + t · w
)
, µ = 0

(c1 = a · r + t · e1, c2 = b · r + t · e2), µ = 1
(7)

where a′ = a · r + k, k← χ and w← DZn ,σ′ . Observe that c1 = a · r + t · e1, r and e1 choose
from the error distribution χ, just like the ciphertext c∗1 = a · r + k without scaling the noise,
hence c∗1 is indistinguishable from c′. In addition, observe c2 = b · r + t · e2 + k · s + t ·
w, compute

c2 = (a · s + t · e) · r + t · e2 + k · s + t · w = (a · r + k) · s + t · (w + e2 + er) (8)
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define a′ = a · r + k, then c2 = a′ · s + t · (w + e2 + er). By Lemma 1 and Lemma 2, we have

‖e2 + er‖ ≤ ‖e2‖+
√

n · ‖e‖ · ‖r‖ ≤ σ
√

n +
√

n ·
(
σ
√

n
)2

= n0.5 · σ + n1.5 · σ2 (9)

Let ∆ = n0.5 · σ + n1.5 · σ2, σ′ ≥ 2ω(log n) · σ2, compute ∆
σ′ ≤

n0.5·σ+n1.5·σ2

2ω(log n) ·σ2 = 2−ω(log n).
By Lemma 3, DZn ,σ′ is statistically indistinguishable from DZn ,σ′ ,∆, it holds that c2 ≈ a′ · s +
t · w, and therefore, the challenge ciphertext c∗2 = a′ · s + t · w is indistinguishable from c2.
To sum up, the distinguishing advantage between the H1 and H0 is negligible, namely

|adv(A, H0)− adv(A, H1)| ≤ negl(n). (10)

Game H2: Hybrid game H2 generates the challenge ciphertext from U
(

Rq × Rq
)

when
µ = 0. Everything else is exactly the same.

c =
{ (

c∗1 = u1, c∗2 = u2
)
, µ = 0

(c1 = a · r + t · e1, c2 = b · r + t · e2), µ = 1
(11)

where ui (i = 1, 2) chooses from U
(

Rq
)
. Observe the hybrid game H1, a′ = a · r + k is

indistinguishable from uniform,
(
c∗1 = a′, c∗2 = a′ · s + t · w

)
∈ Rq × Rq just happens to be

an instance of the RLWE problem. Therefore,
(
c∗1 , c∗2

)
is pseudorandom, and then

|adv(A, H1)− adv(A, H2)| ≤ negl(n). (12)

Since the challenge ciphertext (u1, u2) ∈ U
(

Rq × Rq
)
, thus we have

adv(A, H2) = negl(n). (13)

Finally, we conclude that

adv(A, H0) = (adv(A, H0)− adv(A, H1)) + adv(A, H1)
≤ |adv(A, H0)− adv(A, H1)|+ adv(A, H1)

≤ |adv(A, H0)− adv(A, H1)|+ |adv(A, H1)− adv(A, H2)|
+adv(A, H2) = negl(n).

(14)

This proves the KDM-CPA security of the RPKE1 scheme. �

4. Efficient Symmetric-Key Encryption Scheme

The above public-key scheme expands the message space due to the noise scaling,
resulting in low efficiency. In this section, we will introduce a KDM secure symmetric-key
scheme without scaling the noise. For the symmetric-key scheme, we can generate the
following ciphertext (c1 = a, c2 = b + m) by the RLWE∗ problem, where b = a · s + e. If
secret key s replaces message m, consider the ciphertext (c1 = a, c2 = b + s), we will have
that c = (a, (a + 1) · s + e). If we define a′ = a + 1, then (a′, a′ · s + e) is an instance of the
RLWE problem, so the challenge ciphertext (c1 = a′, c2 = a′ · s + e) is pseudorandom, and
it is easy to prove the KDM security. By way of the above, we can easily extend to any
linear function about s, just like f (sk) = k · s + w, where k ∈ Rq and w← χ . Then, we will
obtain a challenge ciphertext (a, (a + k) + w + e), therefore, for the sake of convenience,
we might wish to define the following problem.

4.1. The Variant of RLWE∗ Problem

Definition 4. (k-RLWE∗). As in the previous Definition 2, the k-RLWE∗ problem is to distinguish
the following two distributions with non-negligible advantage: In the first distribution, one samples
(a, b) uniformly from Rq × Rq. In the second distribution, one samples (a, b) ∈ R∗q × Rq by
sampling a, k← R∗q uniformly, where s ∈ Rq, e← χ and setting b = (a + k) · s + e, let this
distribution be bA∗s,χ.
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Observe that the k-RLWE∗ problem, when k = 0, is a complete RLWE∗ problem. If
k 6= 0 ∈ Rq,we give a probability polynomial-time reduction to prove that the k-RLWE∗

problem remains hard, even when A∗s,χ is respectively replaced by bA∗s,χ.

Lemma 6. For any n ≥ 1, q ≥ 2, and error distribution χ, there is a probability polynomial-time
reduction from RLWE∗to the k-RLWE∗that reduces the advantage by at most 2−n.

Proof. Given a sample (a0, b0) ∈ R∗q × Rq and a sample (k, b1) ∈ R∗q × Rq from the given
RLWE∗ oracle, the reduction outputs a new instance (a′ = a0, b′ = b0 + b1) ∈ R∗q × Rq.

If samples (a0, b0) and (k, b1) are chosen from U
(

R∗q × Rq

)
, then b0 and b1 are uniform

in Rq, and b1 is pseudorandom by RLWE problem, the reduction outputs a uniform sample
(a′ = a0, b′ = b + b1) ∈ R∗q × Rq, up to statistical distance 2−n.

If sample (a0, b0) is chosen from U
(

R∗q × Rq

)
and the distribution of (k, b1) is A∗s,χ,

then b0 is uniform in Rq, and b1 = k · s + e1 is pseudorandom, the reduction outputs a
uniform sample (a′ = a0, b′ = b + b1) ∈ R∗q × Rq, up to statistical distance 2−n. In addition,

a sample (a0, b0) from A∗s,χ and a sample (k, b1) from U
(

R∗q × Rq

)
are the same as above.

On the other hand, if given samples (a0, b0) and (k, b1) from the distribution A∗s,χ, the
equation b′ = b0 + b1 = a0 · s + e0 + k · s + e1 = (a0 + k) · s + (e0 + e1). Let e′ = e0 + e1, we
notice that (a′, b′) ∈ R∗q × Rq is exactly a k-RLWE∗ instance, the reduction outputs a sample
(a′ = a0, b′ = (a + k) · s + e′) ∈ R∗q × Rq from bA∗s,χ, up to statistical distance 2−n.

To sum up, if the RLWE∗ problem is infeasible, then the k-RLWE∗ problem is also
infeasible—namely, bA∗s,χ is indistinguishable from uniform, as desired. �

After that, we also give the Hermite normal form of the k-RLWE∗ problem, this
modification makes the secret short and useful in the following symmetric-key scheme.

Lemma 7. For modulus q, arbitrary s ∈ Rq and the error distribution χ, there is a determin-
istic polynomial-time transformation T, which maps bA∗s,χ to bA∗φ,χ where φ← χ , and maps

U
(

R∗q × Rq

)
to itself.

The proof will be showed in Appendix A.

Definition 5. (The k-RLWE∗ assumption-Hermite normal form). As in the previous definition
4, for any ` = poly(λ), the k-RLWE∗ assumptionholds that,

{(ai, (ai + 1) · s + ei)}i∈[`] ≈ {(ai, ui)}i∈[`], (15)

where sampling s← χ , other parameters remain unchanged.

4.2. Symmetric-Key Scheme with KDM Security

As in the previous section, given the security parameter λ, let q = q(λ) ≥ 2, and an
error distribution χ = χ(λ). Let R = Z[x]/( f (x)), Rq = Zq[x]/( f (x)) where f (x) = xn + 1
and n = n(λ) is a power of 2. We demonstrate a symmetric-key scheme based on the
k-RLWE∗ problem. In order to reduce the norm of ciphertext noise, [25] uses a binary
secret s ∈ R2, which shows that the scheme is secure under this optimization, as long as

the Hamming weight h is small enough and
(

n
h

)
is large enough. In the final results,

they construct a somewhat homomorphic encryption scheme by setting t = 2, h = 63 and
f (x) = xn + 1, where m ∈ Rt. Therefore, as a symmetric-key scheme, the security is not
affected when the results for the RLWE setting continue to the k-RLWE∗ setting.

• RSKE2.KeyGen
(
1λ
)
: Sample s← R2 . Output sk = s as the secret key.
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• RSKE2.Enc(sk, m): To encrypt a message m ∈ R2, sample uniformly, e← χ and set
b = (a + 1) · s + 2e. Output the ciphertext c = (c1 = a + 1, c2 = b + m) ∈ Rq × Rq.

• RSKE2.Dec(sk, c): Compute c2 − c1·s, then output m = (c2 − c1·s) mod q mod 2.

According to the encryption algorithm, c2 − c1·s = m + 2e, compared with the pre-
vious public-key encryption scheme, the ciphertext noise is small, that is ‖2e∞‖ < q/2,
namely q > 4σ

√
n, then the ciphertext can be decrypted correctly.

The KDM-CPA security is similar to that of Section 3.3, except that there is no public
key. Although the message space is reduced to R2, there still exists a linear function
f (sk) = k · s + 2w ∈ R2 to realize KDM security.

Theorem 3. Sample k← Rq uniformly and w← DZn ,σ , where σ ≥ ω
(√

log n
)
. There exists a

linear function f (sk) = k · s+ 2w ∈ R2 that makes the RSKE2 scheme satisfy KDM-CPA security,
assuming that k-RLWE∗ is hard.

Proof. The proof of Theorem 2 is similar to RPK1. Therefore, this section gives a brief narra-
tive. First, by f (sk) replacing m, we generate the challenge ciphertext c = (c1 = a + 1, c2 =

(a + 1) · s + 2e + k · s + 2w), where k U← Rq and w← DZn ,σ . Observe that c2 = (a + 1 + k) ·
s + 2(e + w), defining a′ = a + 1 and e′ = w + e, then we have the challenge ciphertext
c = (a′, (a′ + k) · s + 2e′, ), which is exactly an instance of the k-RLWE∗ problem. It means
that the challenge ciphertext c is pseudorandom, namely the adversary A cannot distin-
guish it from the ciphertext that is encrypted by the message 0. Therefore, the above RSK2
scheme is KDM-CPA under the k-RLWE∗ problem. �

5. Performance

In this section, we give a detailed performance comparison between our RPKE1
scheme, RSKE2 scheme and the ACPS scheme [8]. For the same security parameter λ,
through the analysis of the ACPS scheme, it is easy to see the difference between the lattice
problems on which these schemes are based. Firstly, our scheme has replaced LWE through
RLWE, which improves its application efficiency. Secondly, about the noise distribution, in
order to obtain the appropriate key-dependent ciphertexts, the ACPS scheme introduces
the noise flooding technique (namely, e← Ψσ′ ), which leads to the growth of the modulo
q and the decline of efficiency. Due to the problem of quantum reduction of the LWE
problem, the standard deviation of the additional noise distribution is σ′ ≈ n−1 · σ−4,
where σ = ω

(√
log n

)
, and m = O(n log n) ≤ n log n ≈ n · σ2, p = Õ

(√
mn
)
≈ n · σ3,

q = p2 ≈ n2 · σ6 = ploy(n) · σ6. As shown in Table 1, we have the same standard deviation
σ = ω

(√
log n

)
, but no extra noise distribution Ψσ′ in the ciphertext generation. The

w← DZn ,σ′ in the hybrid game is irrelevant, because this does not affect the efficiency of
the scheme at all. In addition, we also greatly reduce the message space Rt and the modulo
size q = t · ploy(n) · σ2, where t = σ

√
n. Note the last line, adding the symmetry scheme;

ACPS also gave a symmetric-key cryptosystem similar to it. Although different in types, as
a variant of RPKE1 it also highlights its advantages.

Table 1. Parameter setting of ACPS and our schemes.

Schemes σ σ
′ Message Space Modulo q Challenge F

ACPS ω
(√

log n
)

n−1 · σ−4 Zp, p = n · σ3 ploy(n) · σ6 affine
functions

RPKE1 ω
(√

log n
)

/ Rt, t =
√

n · σ ploy(n) · σ3 linear
functions

RSKE2 ω
(√

log n
)

/ R2, t = 2
√

n · σ linear
functions

Finally, we estimate the concrete parameters for our scheme. Compared with ACPS,
we have greatly improved its efficiency; the cost of encryption and decryption is only



Appl. Sci. 2021, 11, 12161 10 of 12

polylog(n) bit operations per message symbol. By these parameters including modulus
q, degree n and error distribution χ = DZn ,σ, we can obtain concrete secret key size,
public key and ciphertext size. For example, the public key size of the ACPS scheme is
m · n · log q ≈ n2 · log2 n = Õ

(
n2), the ciphertext size is n · log q = Õ(n) and the secret key

for ACPS and RPKE1 are σ ·
√

n (both s← χ ). Performance comparison of ACPS and our
scheme are listed in Table 2. All sizes are in bits.

Table 2. Performance comparison of ACPS and our schemes.

Schemes pk sk Ciphertext Enc/Dec KDM Security

ACPS Õ
(
n2) σ ·

√
n Õ(n) n · polylog(n) Yes

RPKE1 Õ(n) σ ·
√

n Õ(n) polylog(n) Yes
RSKE2 / 1 Õ(n) polylog(n) Yes

There are many encryption schemes for KDM security, not only ACPS, but also many
schemes based on traditional mathematical problems. However, in terms of computational
efficiency, the lattice-based cryptosystems are still safer and more efficient. Additionally,
the ciphertext operations mainly consist of encryption and decryption, but other schemes
do not have compact ciphertexts. Hence, from the usability perspective, our schemes are
superior to previous schemes.

6. Conclusions

In this paper, we introduce lattice-based cryptosystems with strong security properties
to solve the problem that the ACPS scheme is inefficient when sampling from discrete
gaussian distribution with sufficiently large standard deviation and generating extra “mal-
formed” distributions. The public-key and symmetric-key cryptosystems provide security
for key-dependent messages. Compared with the previous scheme, our scheme is compact
and has a stable set of challenge functions. Both the size of public key and ciphertext
are Õ(n), and the cost of encryption and decryption is only ploylog(n) bit operations per
message symbol. Therefore, our scheme satisfies KDM-CPA security under the RLWE∗

assumption, and carries the advantages of having simple operation, parallelization and
improved asymptotic efficiency.

However, there are still some problems to be explored and improved in this scheme,
such as using an additional noise distribution in the hybrid game, and future work is still
required to construct a fully homomorphic encryption scheme with circular security.
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Appendix A. Proof of Lemma 7

Proof. The transformation T to access the distribution D over R∗q × Rq, possibly bA∗s,χ or

U
(

R∗q × Rq

)
. Then, we prove it in two steps.

The first step. Transformation T generates the sample
(

a, b
)
∈ R∗q × Rq by drawing

from the distribution D. When D = bA∗s,χ, we have b = (a + k) · s + x, where x ← χ .
The second step. To transform samples from D into samples from a different distri-

bution. The sample (a, b) ∈ R∗q × Rq from D will be transformed into (a′, b′) ∈ R∗q × Rq,
where a′ = −a−1 · a, b′ = b− ϕ + a′ · b, and ϕ = (a′ + k) · s + e1, e1 ← χ .
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Particularly a′ ∈ R∗q is uniform due to a← R∗q is invertible modulo q and a chooses

from U
(

R∗q
)

. If D = U
(

R∗q × Rq

)
, then (a′, b′) is also subject to U

(
R∗q × Rq

)
. If D = bA∗s,χ,

then b = (a + k) · s + e, so we have

b′= b− ϕ + a′ · b =
(
a− a′

)
· s + (e− e1) + a′ · (a + k) · s + a′ · x

=
(
a− a′

)
· s + (e− e1) +

(
−a + a′

)
· s + a′ · x

= (k− 1) · a′ · s + a′ · x + (e− e1)

Notice that we cannot obtain a reasonable distribution bA∗φ,χ, set k = 1; in fact, the
k-RLWE∗ problem remains hard. Then we have

b′ = a′ · x + (e− e1) =
(
a′ + 1

)
· x + (e− e1 − x) =

(
a′ + 1

)
· φ + e′,

where φ = x and e′ = e− e1 − x, therefore, (a′, b′) is subject to bA∗φ,χ, as desired. �
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