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Abstract: In this paper, we propose a new method for detecting abnormal human behavior based
on skeleton features using self-attention augment graph convolution. The skeleton data have been
proved to be robust to the complex background, illumination changes, and dynamic camera scenes
and are naturally constructed as a graph in non-Euclidean space. Particularly, the establishment of
spatial temporal graph convolutional networks (ST-GCN) can effectively learn the spatio-temporal
relationships of Non-Euclidean Structure Data. However, it only operates on local neighborhood
nodes and thereby lacks global information. We propose a novel spatial temporal self-attention
augmented graph convolutional networks (SAA-Graph) by combining improved spatial graph
convolution operator with a modified transformer self-attention operator to capture both local and
global information of the joints. The spatial self-attention augmented module is used to understand
the intra-frame relationships between human body parts. As far as we know, we are the first group
to utilize self-attention for video anomaly detection tasks by enhancing spatial temporal graph
convolution. Moreover, to validate the proposed model, we performed extensive experiments on
two large-scale publicly standard datasets (i.e., ShanghaiTech Campus and CUHK Avenue datasets)
which reveal the state-of-art performance for our proposed approach when compared to existing
skeleton-based methods and graph convolution methods.

Keywords: video anomaly detections; skeleton; self-attention; graph convolutional networks

1. Introduction

Video anomaly detection is a highly challenging task in unsupervised video analysis.
In recent years, surveillance video anomaly detection has gained widespread attention
owing to its applications in public security, social security management, and the rising
trends in deep learning and computer vision. Inherently, the abnormal events are also
complex in nature due to various reasons such as messy background/objects, motion in
the scene, etc. Therefore, the complexity of the abnormal events creates a bottleneck issue
in the detection of such events from real-world video data. Additionally, handling and
modeling of video data itself are difficult because of its high dimensionality, noise, and a
diversity of events and interactions involved. So far, many efforts have been reported in
literatures that provide in-depth studies on video anomaly detection by mainly focusing
on appearance features, depth features, optical flow modeling, etc., but very less attention
has been paid to skeleton-based video anomaly detection models. Likewise, we explicitly
use a common structure of surveillance video, i.e., people and objects moving on a static
background where most abnormal phenomena are caused by the humans. However,
most of these models are primarily based on the image level and instead of focusing on
normal pattern modeling of humans, emphasize more on background hence increasing the
burden on background model. Therefore, to mitigate the above stated issues, we employ
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skeleton features and take advantage of their compactness, strong structure, semantically
rich properties, and strong description of human behavior and movement. In this way, the
analysis can be free from any interference caused by the factors such as illumination and
busy background.

Nowadays, graph convolutional networks (GCN) are listed among the most popular
methods available for analyzing Non-Euclidean Structure Data. As an effective represen-
tation of Non-Euclidean Structure Data, they can effectively capture spatial (intra-frame)
and temporal (inter-frame) information. While referring to skeleton-based action recogni-
tion, Yan et al. [1] proposed the spatial temporal graph convolutional networks (ST-GCN),
which first apply GCN to model skeleton data. The ST-GCN model has been proven to
perform well on skeleton data [2–4], but as spatiotemporal graph convolution operation
only operates on a local neighborhood node and is restricted by the size of the convolution
kernel, it lacks the global information. Moreover, the correlation between body joints
in the human skeleton that are not directly connected are also underestimated, e.g., the
left hand and right foot. Transformer self-attention [5] was originally applied in natural
language processing tasks to encode the short-distance and long-distance correlations
between the words in sentences. Likewise, considering the sequential nature and hier-
archical structure of the human skeleton sequences, this mechanism can be extended to
the skeleton data. Self-attention can resolve the major shortcoming of ST-GCN (i.e., it
can only capture the local features of the spatial dimension) because of its flexibility in
dealing with long dependencies. Recently, the self-attention method is used in one of the
works to solve the locality of the convolution operator by capturing the global context of
pixels in the image [6]. The proposed novel spatial temporal self-attention augmented
graph convolutional network (SAA-Graph) contains a new graph convolution operator
by combining improved spatial graph convolution operator with a modified transformer
self-attention operator to capture both local and global information of the joints. The
improved spatial graph convolution operator uses a data-driven approach to improve the
flexibility of the model building graphs and brings in more versatility to align with various
data samples. Our work uses self-attention mechanism on skeleton data to enhance the
graph convolution. We capture the information of local and global joints by combining
the operator of the improved spatial graph convolution with the modified transformer
self-attention operator. Spatiotemporal graph convolution operation only operates on a
local neighborhood node and is restricted by the size of the convolution kernel, it lacks the
global information. Therefore, the autoencoder constructed with spatiotemporal graph
convolution also lacks global information. We use self-attention to solve the locality of the
graph convolution operator by capturing the global information in the skeleton data.

Specifically, the extracted spatiotemporal graph of skeleton features is encoded to gen-
erate a latent vector using the encoder part of a spatial temporal self-attention augmented
graph convolutional autoencoder (SAA-STGCAE). The deep embedded clustering layer is
used to softly assign the latent vector to the clusters. We use the Dirichlet process mixture
model to measure their distribution. We can obtain the normality score for each sample
and determine whether the action should be classified as normal or not. An overview of
proposed method can be viewed in Figure 1.

The key contributions of this work are summarized in this paper as follows: (1) We
propose a novel spatial temporal self-attention augmented graph convolutional clustering
networks for skeleton-based video anomaly detection tasks by employing the spatial tem-
poral self-attention augmented graph convolutional autoencoder to extract the relevant
features and embedded clustering; (2) We design a new spatial self-attention enhancement
graph convolution operator to understand the intra-frame interaction between different
body parts and capture the local and global features of a skeleton in the frame; (3) Our
model achieves state-of-the-art AUC of 0.789 for the ShanghaiTech Campus anomaly detec-
tion datasets and also exhibits excellent performance metrics for CUHK Avenue datasets.
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Figure 1. Framework Diagram: First, we perform pose estimation algorithm to extract skeletons for
each frame in each video. The extracted pose of skeleton is encoded to generate a latent vector using
the encoder part of a spatial temporal self-attention augmented graph convolutional autoencoder.
The deep embedded clustering layer is used to softly assign the latent vector to the clusters, and Pnk
represents the probability of the sample being assigned to the cluster k.

2. Related Work
2.1. Video Anomaly Detection

Video anomaly detection is defined as a way to find abnormal patterns or actions
in the data. These abnormalities are defined as infrequent or rare events. Traditional
methods for abnormal event detection that extract and analyze the hand-crafted low-level
visual features are unable to characterize the more complex behaviors. Additionally, the
extracted features by such methods are relatively single, which demonstrates the fact that
the generalization ability of hand-crafted features is usually weak and is not robust to crowd
scenes. For instance, trajectory [7,8] is used to describe the trajectory of moving objects.
Similarly, Histogram of Oriented Gradient (HOG) [9] and Histogram of Flow (HOF) [10]
can characterize the shape and contour information of the human body in a static image.
Accordingly, optical flow [11] can describe the changes in the gray value of pixels between
adjacent frames and is often used to characterize the motion information. Zhang et al. [12]
associated optical flows to capture short-term trajectories between multiple frames and
described short-term trajectories by histogram-based shape descriptor. However, the
mentioned methods revealed only a suboptimal performance when subjected to complex
surveillance scenarios and large-scale video anomaly detection datasets.

Recently, various works have used deep learning-based models to address the problem
of video anomaly detection. Such models can be roughly categorized into reconstructive
models, predictive models, and generative models. The reconstruction model uses the
difference between reconstructed image and the original image as a basis for scoring
and positioning of anomaly detection, and often relies on autoencoders [13,14]. The
prediction model, on the other hand, utilizes the recurrent neural networks [15–17] or 3D
convolutions [14] and emphasizes on addition of prediction and generation of future frames
based on the original reconstruction to calculate the loss. Finally, the generative models
primarily use the variational autoencoders (VAEs) or GANs to reconstruct, predictor model
the distribution of the data. The early anomaly detection work of Leo et al. [18] has been
used for human activity recognition in wide-area automatic visual surveillance. A method
proposed by Liu et al. [19] uses a future frame prediction model by combining U-Net and
Beyond-MSE. Wu et al. [20] proposed a Fast Sparse Coding Network based on High-level
Features to discriminate spatio-temporal fusion features for video anomaly detection to
achieve higher accuracy. In another work, Morais et al. [21] adhered two RNN branches
together to form global and local features, using a message-passing encoder–decoder RNN
architecture. The work by Luo et al. [22] is the first one which applies graph convolutional
networks on skeleton-based video anomaly detection to analyze the graph connection of
human joints. Progressively, Markovitz et al. [23] proposed an approach to use embedded
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pose graphs and a Dirichlet process mixture for video anomaly detection with a new
coarse-grained setting for exploring broader aspects of video anomaly detection.

2.2. Skeleton-Based Action Recognition

Most of the conventional techniques for skeleton-based action recognition generally
rely on hand-crafted features to model the human body [24–26]. However, it is evident
from the literature that hand-crafted features can only perform well on some certain
types of datasets [27], which further illustrates the fact that the hand-crafted features are
extracted from one data set cannot be always transferred to other data set. Moreover, deep
learning has revolutionized the activity recognition by proposing techniques which can
directly improve the robustness through data-driven approaches to achieve unprecedented
performance metrics, where the most widely used models are RNNs and CNNs.

The RNN-based method is suitable for processing time series data due to its unique
structure while skeleton sequences are natural time series of joint coordinate positions, but
its spatial modeling ability is weak. Alternatively, many CNN-based researches encode the
skeleton joints to multiple 2D Pseudo images to learn useful features [28,29]. However, ex-
isting CNN-based models largely fail to capture the various aspects of a skeleton sequence.
Banerjee et al. [30] extracted four feature representations from the angle information and
kinematics information of human movements, which then captured the complementary
features of key joint sequences. Even so, neither RNNs nor CNNs can fully represent the
structure of skeletal data because skeletal data are naturally embedded as graphs rather
than vector sequences or two-dimensional grids.

Lately, GNN-based methods have been proposed which demonstrate a better perfor-
mance by considering the fact that human skeleton data is a natural topological graph data
structure (joints and bones can be treated as vertices and edges, respectively) rather than im-
ages and sequences vector. In order to retain the skeleton spatial information and improve
the feature generalization ability, Yan et al. [1] proposed the ST-GCN to directly model
the human skeleton data as the spatiotemporal graph structure by realizing the automatic
extraction of robust spatiotemporal features from human skeleton data. It has strong ex-
pression and generalization capabilities, thus achieves better performance than previously
reported methods. Inspired by this work, we used an improved ST-GCN block to construct
a spatial temporal self-attention graph convolutional autoencoder, named SAA-STGCAE.
We encoded to generate a latent vector using the encoder part of SA-STGCAE.

2.3. Transformer

The Transformer was originally proposed for natural language processing. It uses
the attention mechanism to achieve parallel capturing of sequence dependencies and to
process tokens at each position of the sequence simultaneously. The transformer follows
and encoder–decoder structure and only relies on multi-head self-attention [5]. Recently,
the self-attention mechanism has also been implemented for visual tasks [6] to enhance the
standard convolution. Likewise, Our work uses self-attention mechanism on skeleton data
to enhance the graph convolution.

2.4. Graph Convolutional Neural Networks

The implementation methods for graph convolutional neural networks (GCN) are
mainly divided into two categories: (1) Spectral-based method and (2) Spatial-based
method. Spectral-based method uses graph Fourier transform to convert the graph data into
frequency domain data and then performs the calculation by exploiting the fundamental
property of time domain convolution being equivalent to frequency domain multiplication.
On the other hand, Spatial-based methods construct a convolution kernel directly in the
spatial domain for feature extraction. In this work, we adopt the spatial-based graph
convolutional neural network (GCN) method to extract features from structured graph
data composed of human skeleton sequences.
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3. Proposed Method

We propose a framework called SAA-STGCN for skeleton-based anomaly detection.
The overall framework diagram of proposed method is illustrated in Figure 1. The sug-
gested method focuses on human behavior detection while searching for anomaly detection.
First, we directly perform the pose estimation algorithm to extract the human skeletons
in each frame of the input video to generate spatiotemporal graphs (Section 3.1). This
step makes the algorithm robust to complex backgrounds, lighting changes, human scales,
and dynamic camera views. Next, we use the encoder part of SAA-STGCAE as a feature
extractor to embed data and generate latent vectors (Sections 3.2 and 3.3). The deep embed-
ding clustering layer (Section 3.4) is used to softly assign latent vectors to the clusters, and
then each sample is represented by the probability that it is assigned to k cluster. Later on,
we use the Dirichlet process mixture model (Section 3.5) to evaluate a set of distribution
parameters in the estimation stage and uses the fitted model to provide a score for each
embedding sample. The normality score provided by the model is used to determine
whether the action is normal or not.

3.1. Spatiotemporal Graph Connection Configuration for Skeleton

The original skeleton data that can be obtained from pretrained video pose estimation
algorithms or motion capture devices are provided as a sequence of vectors. We define N
as the number of joints in skeleton and T as the total number of frames. For each person,
a spatiotemporal graph is established as G = (V, E), where V = {vtn | t = 1, 2, · · · , T;
n = 1, 2, · · · , N} is the set of all the joint nodes as the vertices of the graph, and E represents
the set of all the edges describing natural connections in the human body structure and
time as the edge of the graph. Further more, E consists of two subsets Es and Et, where
Es = {(vsi, vsj) | s = 1, 2, · · · , T; i, j = 1, 2, · · · , N} represents the connection of any pair of
joints (i, j) in each frame t. Et = {(vtn, v(t+1)n) | t = 1, 2, · · · , T; n = 1, 2, · · · , N} represents
the connection between each frame along the continuous time. Figure 2a shows an example
of the constructed spatiotemporal graph, where the joints are represented as vertices and
their natural connections in the human body are represented as spatial edges (the blue
lines in the Figure 2a) and the corresponding between two adjacent frames are connected
as temporal edges (the green lines in the Figure 2a).

We adopt the spatial configuration partition [1] to divide the neighborhood of a node
into three subsets according to graph distance. First, the center of gravity is determined as
the average coordinate of all joints of the skeleton in the frame, then the first subset is the
root node itself (red node in Figure 2b), the second subset is the neighbor nodes closer to
the center of gravity than the root node (green node in Figure 2b), and the third subset is
adjacent nodes away from the center of gravity (blue node in Figure 2b).

Figure 2. (a) The description of the spatiotemporal graph follows ST-GCN [1]; (b) The configuration
of spatial configuration partitioning. The three colors represent three different subsets.
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3.2. Feature Extraction

The proposed SAA-STGCAE uses a spatial self-attention augmented graph convolu-
tion module (SAA-Graph) presented next and the temporal convolution module (TCN) to
embed the spatiotemporal graphs as shown in Figure 3. We employ the same temporal
convolution module as ST-GCN and execute a 1× Kt convolution on the feature map
obtained from the spatial dimension, where Kt is the kernel size in the time dimension.
Then, we use encoder part of SAA-STGCAE to embed the extracted skeleton pose into the
spatiotemporal graph to generate latent vectors for clustering branch.

Figure 3. Spatial temporal self-attention augmented graph convolutional block. It is internally
composed of a spatial self-attention augmented graph convolution (SAA-Graph, as shown in Figure 4)
followed by a temporal convolution (TCN) [1] and batch normalization.

3.3. Spatial Self-Attention Augmented Graph Convolution

We propose a new graph convolution operator called Spatial Self-Attention Aug-
mented Graph Convolution (SAA-Graph), which is based on the improved ST-GCN block
and uses the Self-Attention module to enhance spatial graph convolution, as shown in
Figure 4.

Figure 4. Spatial self-attention augmented graph convolution combines an improved ST-GCN block
and a self-attention module to enhance spatial graph convolution.

3.3.1. Spatial Graph Convolution

For the spatial dimension, we use adjacency matrices of three types: static adjacency
matrices (A1), globally-learned adjacency matrices (A2), and adaptive adjacency matrices
(A3). A1 is a N × N hard-coded adjacency matrix of graph representing the physical
structure of the human intra-body connections, A2 is also an N × N adjacency matrix,
which is learned by initializing a fully-connected graph according completely to the training
data. The matrix and the parameters of the model are optimized together during training
process. The matrix element can be any value, which can not only indicate whether there
is a connection between two joints, but also the strength of the connection. A3 is learned
an adaptive graph for each sample to represent the strength of the connection between
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two vertices. We embed the input twice by using two sets of learned weights, then we
transpose one of the embedded matrices and take the dot product between the two and
normalize to get the adaptive adjacency matrix, similar as [4].

Each adjacency type is applied with its own graph convolution operation (GCN) by
using individual weights instead of replacing the original A1 with A2 or A3. Then, the
output of GCN applies a 1× 1 convolution as a learnable reduction measure for weighting
the stack output and provides the required number of output channels. In this way, the
model can increase flexibility without reducing the original performance.

For the spatial dimension, the graph convolution operation is formulated as

GCNl( fl)=
3

∑
i=1

(D−
1
2

k (Al + I)D−
1
2

k ) finWi, l = 1, 2, 3; (1)

GCN( fout) = Concat(GCN1, GCN2, GCN3). (2)

where Al is adjacent matrixs, Dk is a degree matrix, I is an identity matrix describing the
self-connection of joints, fin is the set of joints, and Wi is trainable parameter of the neighbor

subset. (D−
1
2

k (Al + I)D−
1
2

k ) means a normalization of the Al + I.

3.3.2. Spatial Self-Attention (SAA) Module

The transformer model employing self-attention originally designed to operate on
words in NLP tasks. The self-attention mechanism reduces the dependence on external
information and is better at capturing the internal correlation of data or features. The SAA
applies a modified self-attention operator, as depicted in Figure 5, to capture the spatial
features of different joints in the same frame and dynamically build spatial relationships
within and between joints to strengthen the correlation of body joints that are not directly
connected in human skeletons.

Figure 5. Self-attention of skeleton joints. (1) We calculate a query q a key k and a value vector v;
(2) The query of the joint and the key of all the other joints is performed by dot product (�), and a
weighted value is obtained to represent the strength of the connection between each pair of joints;
(3) Each joint is scaled to a new node due to its correlation; (4) The new features are added (⊕) the
weighted nodes together.

The relations between joints are dynamically generated in SAA, thus the relevant
structure of skeleton is adaptively generated, not fixed for all actions. The SAA is achieved
by independently calculating the correlation between each pair of joints in each frame, as
shown in Figure 6. When the source node that calculates the weight needs to calculate the
weighted results, all the other nodes are required to participate in the calculation, which is
a manifestation of the ability to capture the global characteristics.
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Figure 6. Illustration of Spatial Self-Attention (SAA). For ease of explanation, the process is only
shown with a group of five joints as an example, but in fact it runs on all joints.

For each joint vtn of the skeleton at time t, we first calculate the query vector qt
n ∈ Rdq , the

key vector kt
n ∈ Rdk , and the value vector vt

n ∈ Rdv by applying trainable linear transformations
to the joint features jtn ∈ RCin with parameters Wq ∈ RCin×dq , Wk ∈ RCin×dk , Wv ∈ RCin×dv ,
shared by all nodes. Where Cin is the number of input features and dk, dq, dv are the channel
dimensions of the key vectors, the query vector and the value vector, respectively. Then, for each
pair of body joints (Vtn, Vtm), the score αt

nm, which represents the strength of the correlations
between the two joints, is determined by αt

nm = qt
n · (kt

m)
T ∈ R,∀t ∈ T, then it is used to weight

each joint value vt
m, and a weighted sum is calculated to get a new embedding zt

n ∈ RCout for
joint vtn, as shown in Equation (3).

zt
n = ∑

m
so f tmaxm(

αt
nm√
dk

)vt
m. (3)

Multi-head attention [5] is multiple independent self-attention calculations applied by
repeating the process many times, each time with a diverse set of learnable parameters as
an integrated function to prevent overfitting.

headNh(XN) = So f tmax(
(XNWq)(XNWk)

T√
dNh

k

)(XNWV), (4)

where XN is the reshaped input, and Wq ∈ RCin×Nh×dh
q , Wk ∈ RCin×Nh×dh

k , and

Wv ∈ RCin×Nh×dh
v are learned linear transformations. Then the outputs of all heads are

concatenated as
SAN = Concat(head1, . . . , headNh)W

o, (5)

where Wo is a learnable linear transformation combining outputs of all heads.

3.4. Deep Embedded Clustering

The beginning of clustering layer is the embedding of SAA-STGCAE. We adjust
the deep embedded clustering [31] and use our proposed SAA-STGCAE architecture for
soft clustering spatiotemporal graphs. The embedding is fine-tuned based on the initial
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reconstruction to obtain a cluster-optimized embedding, then each sample is represented
by its probability pnk assigned to each cluster

pnk = Pr(yn = k|Zn, Θ) =
exp(θT

k Zn)
K
∑
k′

exp(θT
k Zn)

. (6)

where Zn is the latent embedding generated by the encoder part of SAA-STGCAE, yn is the
soft cluster assignment, and Θ is the clustering layer’s parameters with cluster number k.

We perform an algorithm optimization following the clustering goal [31] to mini-
mize the Kullback–Leibler (KL) divergence between the current model probability cluster
prediction P and the target distribution Q

qnk =

pnk/(∑
n′

pn′k)
1
2

∑
k′

pnk′/(∑
n′

pn′k)
1
2

, (7)

Lcluster = KL(Q||P) = ∑
n

∑
k

qnklog
qnk
pnk

. (8)

In the process of expectation, we fixed the model and updated the target distribution
Q, and during the maximization step, the model is optimized to minimize the clustering
loss, Lcluster.

3.5. Normality Score

The Dirichlet process mixture model [32] is a useful measure for assessing the distri-
bution of proportional data and theoretically ideal for processing large, unlabeled dataset.
It evaluates a set of distribution parameters in the estimation stage, and uses a fitted model
to provide a score for each embedded sample in the inference stage. In the testing phase,
the fitted model is used to score each sample with logarithmic probability. The normality
score provided by the model is used to determine if the action is normal or not.

4. Experiment

We evaluate the performance of our method for video anomaly detection on two
public datasets: ShanghaiTech Campus [17] and CUHK Avenue [33], which can easily
identify pedestrians and extract human skeleton data. Figure 7 shows some normal and
abnormal events in the dataset used in our experiment. We compare our proposed network
with appearance-based [13,17,19] and skeleton-based [21,23] methods. All experiments are
evaluated on the frame-level AUC measurement.

Figure 7. Some normal and abnormal event frames in CUHK Avenue and ShanghaiTech datasets.
The abnormal event in the abnormal frame is displayed by the red box.
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4.1. Dataset

ShanghaiTech Campus dataset [17] is a new complex and large-scale anomaly detec-
tion dataset. The video data of the dataset were collected under 13 scenes with complex
lighting conditions and different camera angles in campus. Most of anomalous events in
the dataset can be caused by humans, which are the target of our method. We conduct more
detailed experiments on this dataset. The previous work [21] divides a subset from Shang-
haiTech Campus which contains only anomalous events related to human, denominated
HR-ShanghaiTech. We also evaluate our method on this subset.

CUHK Avenue [33] contains 16 training and 21 testing video clips including 47 ab-
normal events such as movement of pedestrians, the wrong direction of movement, the
appearance of abnormal objects. The clips are captured in CUHK campus avenue with a
single view.

4.2. Implementation Details

We use Alpha-Pose algorithm [34] to extract skeletons for each frame in each clip in
the dataset. For video streams of unknown length, we divide the input pose sequence
into fixed-length clips with the sliding window method. For more than one person in
the clip, each person is scored individually and we take the highest score of each person
in the frame. As done in work [35], the number of heads of multi-head attention is set
to 8, and the embedding dimensions of dq, dk, and dv in each layer are 0.25× Cout in all
these experiments.

The training of the model includes two stages, the pre-training stage of an autoencoder
and the optimization stage of the refinement embedding and clustering adjustment. The
pre-training stage of the autoencoder learns to encode and reconstruct sequences by mini-
mizing reconstruction loss, named Lreconstruction, which is the L2 loss between the original
spatiotemporal graph and the reconstruction of SAA-STGCAE. The optimization stage
combines reconstruction loss and clustering loss and the combined loss function is

L = Lreconstruction + λ · Lcluster. (9)

where λ value is used for weighted clustering loss. The default value is 0.6.

4.3. Comparison with State-of-the-Art Methods

The most popular evaluation metric of video anomaly detection is area under ROC
curve (AUC) in previous work [14,15,17,19,33,36]. We report the same metric of frame-level
AUC results in Table 1. following the previous work for performance evaluation. A higher
value indicates better anomaly detection performance.

Table 1. Anomaly Detection Results. The performance of different methods on ShanghaiTech Campus
Dataset, Human-Related ShanghaiTech Campus Dataset (HR-ShanghaiTech) and CUHK Avenue
(Avenue). The results are frame-level AUC scores.

Method ShanghaiTech
Campus

HR-ShanghaiTech
Campus Avenue

Appearance
Conv-AE [13] 0.704 0.698 0.848

TSC sRNN [17] 0.680 N/A N/A
Liu et al. [19] 0.702 0.727 0.862

Skeleton

MPED-RNN [21] 0.734 0.754 0.863
Normal Graph [22] 0.734 0.765 0.873

GEPC [23] 0.749 0.756 0.876
Ours 0.789 0.793 0.884
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According to AUC indicator, we compare our method with appearance-based methods
and skeleton-based ones. In general, the skeleton-based methods perform better than the
appearance-based methods, especially on the HR-ShanghaiTech Campus subset on the
HR-ShanghaiTech Campus subset where the anomaly is only related to humans. The
reason is that these algorithms only focus on human posture instead of irrelevant features,
such as complex background, illumination changes, dynamic camera views, etc. As to the
skeleton-based methods, the GCN-based method [22,23] performs better than the RNN-
based methods [21], because skeleton can be naturally defined as a graph structure and
Graph convolutional networks have advantages over RNN networks in processing Non-
Euclidean Structure Data. In addition, our method performs better than GEPC [23] which
builds an autoencoder with ST-GCN can only capture local features in spatial dimensions
to model the relationship of skeletons, while our method utilizes self-attention to capture
global features of skeletons to enhance graph convolution. Therefore, the SAA-Graph
can understand the intra-frame interaction of different body parts, and can dynamically
establish the relationship between the bones and joints to represent the various parts of the
human body.

4.4. Ablation Study

We conduct some experiments to evaluate the effectiveness of our model with the
SAA-Graph module by comparing it with the graph convolution baseline (Graph) and
self-attention single module (SA), where all these methods adopt the same temporal
convolution (TCN). We follow the GEPC [23] settings to implement the graph convolution
baseline (Graph) and the results of simplified modules of our method are listed in Table 2.
Regarding SA, it conditionally depends on movement and is independent of natural human
body structure. From Table 2, we can see the performance of the self-attention module can
achieve a similar effect to that of the graph convolution baseline, which demonstrates that
self-attention module can replace the graph convolution baseline. The experimental results
confirm that the self-attention module is effective, and the best result can be obtained by
the SAA-Graph in the control experiments.

Table 2. Ablation study of SAA-Graph component.

ShanghaiTech Campus HR-ShanghaiTech Campus

SAA-Graph/Graph 0.749 0.756

SAA-Graph/SA 0.746 0.749

SAA-Graph 0.789 0.793

4.5. The Visualization of SAA-Graph

In order to further analyze cases of success and failure, each sample is scored by
using the logarithmic probability of the fitted model and visualize the video clips on the
ShanghaiTech dataset. As shown in Figure 8, our model SAA-Graph can effectively detect
human-related abnormal events in most cases. SAA-Graph can produce high regularity
scores in normal activities and low regularity scores in abnormal activity. Abnormal
conditions will produce a strong drop peak.
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Figure 8. Normality Score of video clips from ShanghaiTech dataset. Regularity score is normalized
to [0, 1] and the red areas in the figure represent anomalies.

4.6. Fail Cases Analysis

The performance of SAA-Graph is better than the related methods, but there are
still some failure cases. Figure 9a shows the vehicle appearing in the video, which is
non-human related incidents and can not be processed by our method because no skeleton
is extracted. Figure 9b shows that the abnormal motion tracking skeleton may be lost
when obstructed by obstacles. The main reason of this error is the inaccuracy of skeleton
detection and tracking. We tested the current advanced skeleton detection methods, all
of them have inaccurate skeleton phenomena, such as low-resolution areas of the target
person or obstruction by obstacles. Figure 9c shows the pattern of a slow cyclist misjudged
to walk due to similar speed and posture to walking due that all appearance features are
filtered out. Although individual movements and postures can reflect anomalies in most
cases, they do not include the interactions between multiple people and between people
and objects in the event. We will consider using visual features to enhance the skeleton
structure as a future work to solve this problem.

Figure 9. The failure cases on the ShanghaiTech Campus dataset. (a) Vehicle appears in the clip,
which is not processed by our method; (b) Abnormal motion tracking skeleton may be lost when
obstructed by obstacles; (c) False negative situation is a misjudgment by a slow cyclist.

5. Conclusions

In this work, we propose a novel spatial temporal self-attention augmented graph
convolutional clustering networks for skeleton-based video anomaly detection tasks by
employing the SAA-STGCAE to extract features and embedded clustering. We proved that
the SAA-Graph can achieve a more flexible and dynamic representation between skeletons
while overcoming the locality of graph convolution. This data-driven approach increases
the flexibility of the graph convolutional network and brings more versatility to adapt to
various data samples. To the best of our knowledge, we are the first to consider using
self-attention for video anomaly detection tasks as an enhancement of spatial temporal
graph convolution to capture global features. Our proposed model achieves the excellent
performance on both two anomaly detection datasets, ShanghaiTech Campus and CUHK
Avenue. Future work includes detecting abnormal phenomena between humans and
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human–object interactions, enhancing skeleton features with appearance features, and
looking for a fully self-attentional solution, which leads to improved network performance
and reduces the number of parameters.
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