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Abstract: This paper presents the Hybrid and Self-Adaptive Differential Evolution algorithms
(HSADE) to solve an egg distribution problem in Thailand. We introduce and formalize a model for a
multi-product, multi-depot vehicle routing problem with a time window, a heterogeneous fleet and
inventory restrictions. The goal of the problem is to minimize the total cost. The multiple products
comprise customers’ demands with different egg sizes. This paper presents a Mixed Integer Linear
Programming (MILP) model, an initial solution-based constructive heuristic, a new self-adaptive
mutation strategy, and a neighborhood search structure with the probability to improve DE. The two
measurements of criteria are the heuristic performance (HP) compared with the solution obtained
by MILP and the relative improvement (RI) of the solution compared with Thailand’s current egg
distribution practice. The computational results show that the performance of HSADE is better
than the current practice, and HSADE can provide on average a 14.13% improvement in total cost.
Additionally, our proposed algorithm can be applied to similar agriculture logistics in Thailand
and worldwide.

Keywords: egg distribution; multi-depot; multi-product; differential evolution algorithms

1. Introduction

Thailand is the second economy of Southeast Asia and one of the world’s leading
producers of agriculture products. According to the statistics of Thai exports in 2020, the
Thai agricultural export growth decreased by 9.31%. The export of agricultural production
consists of rice 22.24%, cassava 21.47%, sugar 29.51% and others 26.78% [1]. Thailand has
expanded exports to China by 2.86%, with the top three products being frozen chicken,
fresh fruit and frozen shrimp. The frozen chicken had the highest exports. China has
encountered a shortage of pork because of African swine fever, which caused the high
price of pork in China’s market. Chinese people have turned to consume chicken instead
of pork. Therefore, China imports more chicken products from Thailand [2]. In the past,
the government and private sectors have worked continually to co-develop Thailand’s
logistics system. In addition, the Thai business sector has increased the awareness and
importance of the development of logistics management systems within the organization.
In 2020, Thailand increased logistics costs per GDP, with the freight forwarding agency
increasing by 6.7% and the warehouse storage by 5.7% [3].

The poultry industry of Thailand is the most promising agri-food segment, especially
the egg industry. The logistics of the egg industry can be separated into three parts, which
are inbound logistics, internal logistics and outbound logistics (Figure 1). First, the inbound
logistics of egg production starts with purchasing chicks from a hatchery and transporting
them to pullet-raising farms. Second, the internal logistics of egg production is when chicks
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turn into a hen at about 17 weeks old; the hens must be moved to a laying unit (hen houses)
for harvesting eggs until the age of 75 weeks. Eggs must be sorted by size at the egg
processing center, then sent to the egg packaging process. Once the hens cannot perform
as layers (spent hens), they will be moved to be slaughtered at the farm’s slaughterhouse.
Third, outbound logistics of production is where companies collect eggs (finished goods),
store the eggs for safe inventory, and distribute products (eggs and chicken) to customers or
end consumers. In the logistics of the egg industry, egg distribution planning is considered
a crucial problem because egg distribution is a main cause of increasing total cost in the
egg industry. Nowadays, the case study company has insufficient suitable decision tools.

Figure 1. Flowchart of hen and egg production in the case study company.

At present, the case study company has no decision tools for minimizing total cost in
outbound logistics. The egg distribution problem is highly complex, primarily because of
the need to respect labor costs of a driver, variety of vehicle capacity (volume), duration
time of route restriction, the time window of the customer, various demands of egg sizes
for each customer and inventory restrictions. Moreover, the characteristic of the problem
can be classified as a multi-depot problem since eggs can be delivered from more than
one distribution center, and the numbers of available vehicles are different at each depot.
Therefore, if the outbound logistics of the egg industry cannot be managed effectively,
there will be an increase in transportation distance, transportation time and the number of
transport vehicles which directly increases the total cost.

This paper focuses on the outbound logistics activity of the case study. The problem is
formulated as a Multi-Depot, Multi-Product Heterogeneous Fleet Vehicle Routing Problem
with Time Window and Inventory restriction (MDPVRPTWI) in the various practical
operations of the real-world industry. The objective is to minimize total costs consisting of
transportation costs, labor costs of drivers and holding costs. To solve this problem, the
customer’s distance from each depot, numbers of vehicles used and holding cost at each
depot are considered for modeling and solving to obtain optimal solutions. We developed a
Mixed Integer Linear Programming (MILP) model for a small-sized problem. This problem
is considered an NP-hard (non-deterministic polynomial-time hardness) problem that
cannot be solved by MILP optimally in a small computational time. We developed a hybrid
and new self-adaptive process for the Differential Evolution (DE) algorithm to solve a
large-sized problem.

The remainder of this paper is organized as follows. Section 2 is the literature review.
An overview of the egg distribution problem is presented in Section 3. Section 4 introduces
the proposed solution strategy. The experimental results are given in Section 5. Finally,
Section 6 is the conclusion of the work of this paper.

2. Literature Review

A brief review of multi-depot, heterogeneous fleet, time window, multi-product, and
inventory restriction and solution is presented in this section.
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Pick-up and delivery problems (PDPs) are concerned with a type of vehicle routing
problem (VRP) in which goods or persons come from different origins and go to different
destinations [4]. PDP issues occur in various contexts, including logistics, ambulatory care
and robotics [5,6]. Vehicles available to pick up and deliver cargo can have heterogeneous
capacities. Each vehicle’s load must not exceed its capability. However, depending on the
problem, additional assumptions, and restrictions on vehicle paths, such as time windows
or repeated visits at certain vertices, can be presented. Wang et al. [7] proposed an exact
method and a constructive heuristic approach from the min-max split delivery multi-depot
vehicle routing problem with a minimum service time requirement. In this problem, each
customer requires a specified amount of service time. They generated instance ranges from
10 to 500 and 3 to 20 for the customer and depot, respectively, to investigate the constructive
heuristic. They tested the heuristic on three sets of data with 43, 21 and 258 instances. The
heuristic result on the first and second sets of data was 2% and 1.5%. However, the third set
of heuristics is more substantial when the average number of customers per route is small
and there is a medium level of average customer service time. Kachitvichyanukul et al. [8]
studied a multi-depot vehicle routing problem with multiple pick-up and delivery requests.
They developed a solution approach based on Particle Swarm Optimization (PSO) to create
a new particle for an assignment using a vehicle that created a decoding method to find the
best solution. They used 56 sample problems with the best-known solution and divided the
instance problems into 13, 17 and 26 for clustered location, random location, mixed cluster
and random locations. All the instance problems were compared with their previous work
and the best-known solutions. The conclusion showed that the new decoding method for
PSO provided better solutions for their problems than their previous work. Mancini [9]
developed an exact method, initial solution and Adaptive Large Neighborhood Search
(ALNS) based metaheuristic on the multi-depot multi-period vehicle routing problem
with a heterogeneous fleet for minimizing the total cost. They proposed 1 to 9 instances
and a number of customers ranging from 50 to 75 customers. They compared the LANS
algorithm results with the Large Neighborhood Search (LNS) algorithm. LANS showed
higher-quality performance over LNS that averaged a computational time of 400 s and
obtained an averaged percentage improvement of 55% to the constructive heuristic.

Most authors have developed a mathematical model to solve multi-product vehicle
routing problems and planning problems in transport-related industries, which are difficult
to solve in a reasonable amount of time for medium or large-sized problems [10] and for
the multi-depot vehicle routing problem [11,12]. In 2014, Salhi et al. [13] proposed a mixed
vehicle routing problem on the multi-depot routing with a heterogeneous vehicle and a
mixed-integer linear model for solving the problem. The multi-product VRP can be better
illustrated in Figure 2.

Figure 2. The delivery route for single-product vehicle and multi-product vehicle.
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In the last decade, inventory restrictions have also been extensively studied to solve
the problem. For example, Chen et al. [14] proposed an improved variable neighborhood
search (VNS) algorithm with a heuristic to solve VRP with an unpaired pick-up, delivery
and split loads. They considered a constraint about the demand of customers for each
various product and inventory restriction. The inventory levels and quantity of demanded
products were described that should be suitably allocated to minimize total cost. Qiu
et al. [15] studied multi-product multi-vehicle production routing problems (MMPRPs)
with fixed production startup cost, setup cost of each problem, and inventory restriction.
Their objective was to minimize total cost, including the operational cost of the production,
inventory cost and transportation cost. Bouanane et al. [16] proposed a hybrid genetic
algorithm that incorporates three different procedures to solve the multi-depot vehicle
routing problem: simultaneous delivery and pick-up, and inventory restrictions. Table 1
summarizes the studies about the VRP in the literature.

Table 1. Summary of literature for the VRP.

Paper
Constraints Solution Method

Multi-
Depot

Time-
Window

Heterogeneous
Fleet

Multi-
Product Periodic Pick Up &

Delivery Inventory Exact Heuristic Metaheuristic

Landrieu et al. [5]
√ √ √ √

Ai and Kachitvichyanukul [6]
√ √ √ √

Liu et al. [11]
√ √ √ √ √

Hasani-Goodarzi and
Tavakkoli-Moghaddam [10]

√ √

Battarra et al. [4]
√ √

Salhi et al. [13]
√ √ √ √

Chen et al. [14]
√ √ √ √ √

Kachitvichyanukul et al. [8]
√ √ √ √ √

Wang et al. [7]
√ √ √ √

Mancini [9]
√ √ √ √

Lalla-Ruiz et al. [12]
√ √

Qiu et al. [15]
√ √ √ √ √ √

Bouanane et al. [16]
√ √ √ √

This research
√ √ √ √ √ √ √

In the scholarly literature, logistics for egg industry applications have received much
attention. Most of the egg industry research has been focused on value chain optimization
and the allocating pullets problems, such as transportation supply for smooth operations.
We refer readers to Seydim and Dawson [17], Boonmee et al. [18], Dechampai et al. [19] and
Hisasaga et al. [20] In previous work in the same company case study, Boonmee et al. [18]
studied the inbound logistics of egg production for allocating pullets to hen houses to
minimize the total cost. The total cost included the cost of farm utilization, transportation
cost from pullet farms to hen farms, and loss from mixing hens at different ages in the same
hen houses. They used traditional Growing Neural Gas (GNG) and Hybrid GNG to solve
their problem. Additionally, Dechampai et al. [19] presented a vehicle routing problem with
mixed pick-up and delivery services (PDP). They developed two heuristics to minimize
the total cost of fuel and vehicle utilization in the internal logistics of egg production to
minimize the distance from pullet farm to hen farm and the vehicle rental cost. The first
heuristic used the Differential Evolution (DE) algorithm for clustering the pullet houses.
The second heuristic used multifactor-based evolving Self-Organizing Maps (SOM) with
the DE algorithm for minimizing the transfer from pullet farms to the hen farms.

Various approaches have been used to solve the problem. DE has been established
as a new evolutionary strategy during the last decade. The DE algorithm was first imple-
mented by Storn and Price [21] and was effectively implemented to optimize algorithms.
One of the most efficient evolutionary algorithms is DE, which is a population-based
metaheuristic. DE has been used successfully in various areas, including output schedul-
ing [22] and transportation [23]. For the VRP scheduling problem, Kunnapapdeelert and
Kachitvichyanukul [24] created four new DE-based algorithms for solving the multi-depot
vehicle routing problem. Two of the improved DE algorithms are focused on subgrouping,
and the other two are based on strategy swapping. In the same year, Akararungruangkul
and Kaewman [25] proposed DE to solve the location routing problem (SLRP) when the
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objective function is fuel consumption. Fan et al. [26] presented a DE with knowledge-based
control parameters and strategy adaptation, combining three well-known test suites. Later,
Zhang et al. [27] proposed the parallel DE to minimize transport costs and penalties due
to logistics service providers’ delays. Marinaki et al. [28] developed a distance-related
DE to maximize the total price collected. Recently, Sethanan and Jamrus [29] proposed
a hybrid DE to solve the multi-trip vehicle routing problem with backhauls and hetero-
geneous fleets in the beverage logistics industry. They demonstrated the benefit of using
self-adaptive strategies because the user does not have to change the control parameters.
The total computational effort was able to converge faster and significantly reduced into
efficient solutions. As a result, this paper proposes a new Hybrid and Self-Adaptive Dif-
ferential Evolution algorithm (HSADE) that combines their respective benefits, increasing
the robustness to solve the problem. We suggest the HSADE that includes Hybrid and
Self-Adaptive modification of the DE algorithm, which can also include self-adaptive muta-
tion strategies, control parameters for crossover rate probability and hybrid neighborhood
search structures using the probability exchange equation. We focus on addressing egg
distribution planning transportation by improving the efficient solution in terms of the
total cost, including the transportation cost, labor cost and holding cost. There is no work
in the literature to the best of our knowledge interested in the interaction between these
constraints: multi-depot, heterogeneous fleet, time window, multi-product and inventory
restriction.

3. Overview of the Egg Distribution Problem
3.1. Problem Overview

The egg distribution problem consists of multi-depot, multi-product, heterologous
fleet vehicle routing problems, time window and inventory restriction. The problem
includes multi-depots; each vehicle must start its route from these depots and return to
the same depot. Each depot has different maximum quantities of egg sizes from other
depots, and the cargo space of each depot is also different. That means an egg shortage
can occur at each depot. The fleet of the vehicle is heterologous, which means that the
capacity of all vehicles is different. The vehicle must return to the depot within the duration
time of the route. The limit of working hours of drivers is considered. Each depot has a
different maximum number of vehicles. Split delivery is not considered, which means that
customers must be visited only once. The Time window and service time of customers
must be respected. The demand of each customer has at least one egg size and must be less
than or equal to the total capacity of the vehicle, so customers must receive different egg
sizes from a single-vehicle; all of the different egg sizes can also be supplied by each depot.

3.2. Assumptions

The presented mathematical model is based on the following assumptions:

• Each customer must be serviced by a single-vehicle;
• Each customer has a demand for multi-products;
• A vehicle must service each customer under the time window of the customer;
• Each vehicle must start and return from its route to the same depot;
• A vehicle must return to the depot before the duration time of the route;
• A vehicle can deliver multi-products;
• Each depot has a different maximum number of vehicles;
• Each depot has different maximum quantities of each product;
• Demands of all customers must be less or equal to the supplies of all depots;
• The demands of all customers must be satisfied;
• The fleet of vehicles is heterogeneous.

This section proposed a mixed-integer linear programming model with the objective
of minimizing the total cost consisting of transportation cost, labor cost and holding cost.
The model is presented below with an explanation of each assumption and each constraint.
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3.3. Indices, Parameters and Decision Variables

This section defines the indices, parameters and variables used in the proposed mixed-
integer linear programming model. The variables and parameters for the model are
summarized in Table 2.

Table 2. Indices Parameters and Decision variable of egg distribution problem.

Symbol Description

Indices
i, j Indices of all customers and depots; i, j = 1, 2, . . . , N + M
k Index of all vehicles; k = 1, 2, . . . , K
p Index of all egg sizes; p = 1, 2, . . . , P

Parameters
N Number of customers
M Number of depots
K Number of vehicles
P Number of products

Cij Transportation cost between customer i and customer j
Dij Distance between customer i and customer j
tij Travel time between customer i and customer j
fk Labor cost of vehicles k

Qkp Maximum capacity of vehicle k for egg size p
vip Inventory of egg size p at depot i
Hip Holding cost of egg size p at depot i
dip Demand of customer i for egg size p
L Positive Large number

D′ Maximum distance a vehicle can travel
K′i Maximum number of vehicles departing from depot i
si Service time of the delivery at customer i
ei Earliest arrival/delivery time at customer i
li Latest time at customer i
Tk Maximum duration time of vehicle k
Ii Maximum inventory at depot i

Decision variable
xijk

{
1 i f vehicle k travels f rom customer i to customer j

0 otherwise
uk

{
1 i f vehicle k is used
0 otherwise

gi

{
1 i f depot i is operated
0 otherwise

yipk

{
1 i f the demand o f customer i f or egg size p is f ul f illed by vehicle k

0 otherwise
zij

{
1 i f the customer j is allocated to depot i

0 otherwise
ai Arrival time of the delivery vehicle at customer i
wi Waiting time of the delivery vehicle at customer i
Aik A non-negative time that indicates when vehicle k departs from customer i
T′′ik Variable used for elimination of sub-tours.

Objective function

min
N+M

∑
i=1

N+M
∑

j=1

K
∑

k=1
Cijxijk +

K
∑

k=1
fkuk

+(
N+M

∑
i=1

P
∑

p=1
(vip Hipgi)−

N+M
∑

i=1

N+M
∑

j=1

K
∑

k=1
(zijdjk Hip))

(1)

Subject to
N+M

∑
i=N+1

N

∑
j=1

xijk ≤ uk ∀k = 1, . . . , K (2)
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K

∑
k=1

N+M

∑
i=1

xijk = 1 ∀j = 1, . . . , N (3)

K

∑
k=1

yipk = 1 ∀i = 1, . . . , N, ∀p = 1, . . . , P (4)

P

∑
p=1

yipk ≤ L
N+M

∑
j=1

xjik ∀i = 1, . . . , N , ∀k = 1, . . . , K (5)

N+M

∑
j=1

xjik ≤
P

∑
p=1

yipk ∀i = 1, . . . , N, ∀k = 1, . . . , K (6)

N+M

∑
i=1

xijk ≤ 1 ∀j = 1, . . . , N , ∀k = 1, . . . , K (7)

N+M

∑
i=1

xihk −
N+M

∑
j=1

xhjk = 0 ∀h = 1, . . . , N + M, ∀k = 1, . . . , K (8)

N

∑
i=1

xijk ≤ 1 ∀k = 1, . . . , K, ∀j = 1, . . . , N + M (9)

N

∑
i=1

yipk dip ≤ Qkp ∀k = 1, . . . , K, ∀p = 1, . . . , P (10)

N+M

∑
i=1

N+M

∑
j=1

Dijxijk ≤ D′ ∀k = 1, . . . , K (11)

N

∑
j=1

K

∑
k=1

xijk ≤ K′i ∀i = N + 1, . . . , M (12)

N+M

∑
i=N+1

N

∑
j=1

xijk = uk ∀k = 1, . . . , K (13)

N

∑
i=1

N+M

∑
j=N+1

xijk = uk ∀k = 1, . . . , K (14)

T′′ik − T′′jk + (N + M)xijk ≤ N + M− 1
∀i = 1, . . . , N + M, ∀j = 1, . . . , N, ∀k = 1, . . . , K

(15)

T′′ik ≥ 0 ∀i = 1, . . . , N + M, ∀k = 1, . . . , K (16)

aj ≥ ai + wi + si + Cij + L
K
∑

k=1
(xijk − 1)

∀i = N + 1, . . . , N + M, ∀j = 1, . . . , N,
(17)

ei ≤ ai + wi ≤ li ∀i = 1, . . . , N (18)

ai + wi + si + tij + L
(

xijk − 1
)
≤ Aik

∀i = 1, . . . , N, ∀j = 1, . . . , N + M, ∀k = 1, . . . , K
(19)

Aik ≤ Tk ∀j = 1, . . . , N + M, ∀k = 1, . . . , K (20)

N

∑
j=1

zijdjp ≤ vipgi ∀i = N + 1, . . . , N + M (21)

N

∑
j=1

P

∑
p=1

zijdjp ≤ Ii ∀i = N + 1, . . . , N + M, ∀p = 1, . . . , P (22)
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−zij +
N+M

∑
h=1

(xihk + xhjk) ≤ 1 ∀i = N + 1, . . . , N + M, ∀j = 1, . . . , N

∀k = 1, . . . , K
(23)

N+M
∑

i=N+1
zij ≤ 1 ∀j = 1, . . . , N (24)

xijk ε {0, 1} ∀i = 1, . . . , N + M, ∀j = 1, . . . , N + M, ∀k = 1, . . . , K (25)

yipk ε {0, 1} ∀i = 1, . . . , N + M, ∀p = 1, . . . , P, ∀k = 1, . . . , K (26)

uk ε {0, 1} ∀k = 1, . . . , K (27)

zij ε {0, 1} ∀i = N + 1, . . . , N + M, ∀j = 1, . . . , N (28)

gi ε {0, 1} ∀i = 1, . . . , N + M. (29)

The objective Equation (1) minimizes the total cost, which includes the transportation
cost, labor cost and holding cost. Equations (2) and (3) guarantee each customer is delivered
to by one vehicle. Equation (4) guarantees a single vehicle must deliver each customer’s
demand for given eggs. Equations (5) and (6) ensure the demand of customer i for egg
size p can be fulfilled by vehicle k only when this vehicle delivers to customer i. Flow
conservation constraints are guaranteed in Equations (7) and (9). The limit of the capacity
of vehicle constraint is in (10). Equation (11) limits the maximum distance of the vehicle.
Equation (12) is related to the limits of the maximum number of vehicles departing from
depot i. Equations (13) and (14) check vehicle availability. Sub-tour elimination constraints
are in Equations (15) and (16). Equations (17) and (18) specify the time window at each cus-
tomer, and the service time is the time interval between deliveries. Equations (19) and (20)
define the duration time of the route. Equation (21) is the operation cost when each de-
pot is assigned. Equation (22) ensures the inventory constraints for the depot are given.
Equations (23) and (24) specifies that a customer can be assigned to a depot only if there
is a route from that depot going through that customer. Equations (25)–(29) are the basic
restrictions on the decision and binary variables.

4. Solution Strategies

The MILP developed in Section 3 can be solved optimally for small-sized instances. We
developed a Hybrid and Self-Adaptive Differential Evolution algorithm (HSADE) to solve
our proposed model and compared performance solutions through numerical experiments
in handling large-sized instances. The traditional Differential Evolution algorithm (DE)
initializes a set of the dimension of vectors and obtains the best dimensions iteratively
via the DE mechanisms (i.e., mutation, recombination). In solution strategies, HSADE
combines the constructive heuristic for the initial solution, the self-adaptive mutation
strategies, and the neighborhood search by probability (NSP).

In Sections 4.1–4.4 we divided this section to explain the frameworks for the proposed
HSADE; first, the initialization representation is described, then the procedure of the self-
adaptive mutation strategies and the proposed HSADE are presented and, finally, the
fitness value and the selection operation of HSADE are described. The Framework of the
HSADE algorithm is shown in Figure 3
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Figure 3. Framework of the HSADE algorithm.

4.1. Initialization of HSADE

In HSADE, the dimensions in each vector are identified by a limited number of
the vehicles on each depot id and a customer id sequence in which the customer’s id is
sorted in increasing order. A random real number in the range (0–1) is generated for each
corresponding id (Figure 4). The vectors are split into two sub-vector arrays of length
|D|+|N| since there are |D| depots and |N| customers, for example, two depots and ten
customers, denoted as vector array Tg. The first array is the ratio number of the route for
each depot id in Tg(1, |D|), while the second array is the customer’s id and the random
read number in Tg(1, |N|) (Figure 4a)
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Figure 4. The vector initialization. (a) HSADE vector; (b) Customer sequence and depot.

For example, see the first array in Figure 4a, where the limited number of the vehicles
from each depot equals three and four. The dimensions with the random number are {0.57,
0.36}. Depot 1 has the probability of selecting a vehicle equal to 1/3, which means the range
[0,0.33], [0.33,0.66], and [0.66,1.00] for vehicles number 1, 2 and 3, respectively. Depot 1,
as the random number is 0.57, must have at least two vehicles. Similarly, Depot 2 has the
random number 0.36 so must assign at least two vehicles. (see Figure 4b).

In the second array, the customer sequence can be obtained with ascending Rank
Order Value (ROV) decoding from a randomly real number. Consequently, the customer
sequence is depicted as {3,8,10,4,7,1,9,5,6,2} Figure 4b.

4.1.1. Initial Solution of HSADE

This section represents generating a feasible initial solution by the constructive heuris-
tic. There are two parts to generate an initial solution. The first is to cluster customers to
each of the depots |D|. The clustered customers are assigned to the nearest depot because
the objective function is to minimize the total cost. For example, there are two depots, D1
and D2, and |N| customers. The distances between customers and the depot are di,D1, and
di,D2. Each customer must be assigned to a single depot. The selection, if di,D1 is less than
di,D2, then assigns customer i to depot 1; if di,(D1 is greater than di,D2, then assign customer
i to depot 2; if di,D1 is equal to di,D2, assign a depot arbitrarily.

The second is to find the route to each customer for each depot by the Nearest Neighbor
Heuristic (NNH) [30]. The NNH starts with the nearest customer of each depot, then finds
the shortest distance connecting the previous customer until all customers are selected.

Referring to Section 4.1, the encoding of the initial solution with initialization of
HSADE, Figure 5a represents the customer sequences {4,2,6,5}, and the customer sequences
{10,7,9,1,3,8} are clustered by D1 and D2, respectively. Both sequencings are generated
by NNH.

4.1.2. Initial Solution Translation of HSADE

The purpose of the initial solution translation is to convert the initial solution back
to the current vector. As explained, a vector is encoded as a vector array, which consists
of the customer’s id (denoted by CT-10) and a random real number (Figure 5a) (denoted
by RN-10). Referring to the Section 4.1.1 (Figure 5a), the constructive heuristic obtained a
customer sequence {4,2,6,5,10,7,9,1,3,8} (denoted by FT-10); the dimension sequence CT-10
is replaced into FT-10. The initial solution translation is to change the RN-10 to the new
position dimension that corresponds with a customer sequence (1, |N|).
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Figure 5. Initial solution translation of HSADE. (a) Current vector (before the initial solution translation);
(b) Initial solution by constructive heuristic; (c) Current vector (after the initial solution translation).

For example, Figure 5b obtains a customer sequence CT-10, the dimension sequence
corresponds to {0.090, 0.133, 0.210, 0.409, 0.666, 0.695, 0.778, 0.858, 0.949, 0.990} (denoted
by HCT-10) and when decoded the vector can return to the initial solution of a customer
sequence FT-10. Thus, the translation obtains the new dimension changed from RN-10
to HCT-10 (Figure 5c). In the vector iteration, the initial solution dimension is the role to
guide for updating the new generation of target vectors.

4.2. Self-Adaptive Differential Evolution Algorithm with Mutation Strategies Adaptation

This section represents the new self-adaptive DE algorithm with mutation strategies
adaptation. The mutation strategy is used to generate a mutated vector (vt+1

i ), where the
performance of DE is significantly influenced by the selection of mutation strategies [31].

The famous mutation equation strategies are listed as follows:

DE/rand/1 : vt+1
i = xt

r1 + F
(

xt
r2 − xt

r3
)

(30)

DE/rand/2 : vt+1
i = xt

r1 + F
(

xt
r2 − xt

r3
)
+ F

(
xt

r4 − xt
r5
)

(31)

DE/rand/current− to− best/1 : vt+1
i = xt

i + F
(

xt
best − xt

i
)
+ F

(
xt

r1 − xt
r2
)

(32)

DE/rand/current− to− best/2 :
vt+1

i = xt
i + F

(
xt

best − xt
i
)
+ F

(
xt

r1 − xt
r2 + xt

r3 − xt
r4
) (33)

DE/rand/rand− to− best/1 : vt+1
i = xt

r1 + F
(

xt
best − xt

i
)
+ F

(
xt

r1 − xt
r2
)
, (34)

where r1, . . . ,r5 are the random vectors within the range of the number of the population
[1,NP], and each r must be different (i.e., r1 6=r2 6=r3 6=r4 6=r5). The mechanism of self-adaptive
mutation strategies) is introduced below.

4.2.1. Self-Adaptive Mutation Strategies

The self-adapting mutation procedure can be described as follows:
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(1) The number of vectors of each mutation strategy for adapting mutation strategies
(called the Weak strategy) is computed as follows:

vt
i,Strname

= vt
weaki ,Strname

i f ∆βt
i ≥ ∆γt

i , (35)

where Equation (35) denotes ∆βt
i =
∣∣∣ f (ut

i,Strname

)
−best

(
f
(
ut))∣∣, which is the difference be-

tween the objective function value of each vector and the best objective function value, and
∆γt

i =
∣∣avg( f (ut) )− f (ut

i,Strname
)
∣∣∣ is the difference between the average objective function

value and the objective function value of each vector. It is how to select the weak strategies
out of all vectors.

(2) the number of weak strategy updates for the new strategy is as follows:

vt+1
i,Strname

= vt
weaki ,Strname

=

{
vt

i,bestStrname
, i f Strname 6= bestStrname

vt
i,randomStrname

, i f Strname = bestStrname
. (36)

The Equation (36) is to eliminate the weak mutation strategies from the individual
vector. For example, the best strategy is strategy 1. If vector i is the weak vector that is
formed from another mutation strategy except strategy 1, it must be updated to use strategy
1. In other words, vector i is formed from the best mutation strategy (strategy 1). It has
been updated from random strategies.

4.2.2. Self-Adaptive Control Parameters

In order to increase the performance of the Crossover Rate (CR), this section represents
the self-adaptive control parameters CR ∈ [0, 1]. The crossover mechanism is to generate a
trial vector by replacing the dimension of the target vector. The following equation creates
the trial vector:

ut+1
i,j =

{
vt+1

i,j , i f randj ≤ CR or j = randn(i)
xt

i,j , i f otherwise
. (37)

This section has used Equation (38) for adapting the crossover probability.

CR = CRmin + t ∗ CRmax − CRmin
Max(t)

(38)

where CRmin, CRmax, t, Max(t) are the minimum crossover rate probability, maximum
crossover rate probability, computation time and limited computation time, respectively.
Due to it being in the early stages of evolution, the trial vectors are identical to the target
vectors. As the iteration increases, the similarity to the target vectors decreases, and the trial
vectors become more identical to the mutated vectors. By increasing the CR, the capacity
for local search can be improved.

4.3. The Neighborhood Search by Probability

This section aims to inter-change the clustering of customers in each depot. The
neighborhood search by probability (called NSP) is used to exchange the customers based
on a probability calculated by Equation (39):

p(Ci, Dn) =
max

{
d(Ci, D)− d(Ci, Dn), 0

}
∑N

n=1 max
{

d(Ci, D)− d(Ci, Dn), 0
} , (39)

where d(Ci, Dn) indicates the distance customer i to depot n, and d(Ci, D) indicates the
average distance between customer i and all depots.
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For example, the distance between customer 1 and depots 1, 2 and 3 are 7, 4 and 5,
respectively. The average distance of customer 1 and all depots is 5.34. The probability that
customer 1 is assigned to depots 1, 2 and 3 equals 0.00%, 80.00% and 20.00%, respectively.
Although depot 2 is closest to customer 1, there is a chance to assign customer 1 to depot 2.

After calculating the probability, the next step is to randomize the number of customers
to inter-change nodes (k). where k ∈ [2, round up (N ∗ 0.2)] that mean k should be the
random number between 2 to round up 20% of the number of customers.

The neighborhood search strategies, a kind of changing sequence, is developed to four
neighborhood search structures and described for k = 2 as follows:

• Inter-exchange by probability, randomize k customer nodes from each depot in a clus-
tered customer sequence, as demonstrated in Figure 6a. The neighborhood structure
is defined as Nh1;

• Inter-insertion by probability, randomize k customer nodes from one depot to an-
other depot in a clustered customer sequence, as demonstrated in Figure 6b. The
neighborhood structure is defined as Nh2;

• Intra-exchange without probability is similar to inter-exchange but change k customer
nodes only for the same depot. The neighborhood structure is defined as Nh3;

• Intra-insertion without probability is similar to inter-insertion but insert k customer
nodes only for the same depot. The neighborhood structure is defined as Nh4.

Figure 6. Methods of neighborhood search. (a) Inter-exchange; (b) Inter-insertion structure.

The sequencing of the structure neighborhood is selected by two random operations
between inter-depot and intra-depot neighborhood search structures. For example, iteration
1 used sequencing of structure neighborhood {Nh1,Nh4}, but iteration 2 used {Nh2,Nh3}.
The idea of the NPS is to increase the search to prevent moving into a trap solution.

Neighborhood Search Translation

Similarly to Section 4.1.2, the neighborhood search translation is used to return the
position sequence with the new changed customer sequence. For example, a customer
sequence before entering the NSP is {6, 3, 7, 8, 5, 1, 2, 4, 9, 10} denoted by NS10 (Figure 7),
the dimension position corresponding to the customer sequence is {0.090, 0.133, 0.210, 0.409,
0.666, 0.695, 0.778, 0.858, 0.949, 0.990} (denoted by RS10). The NSP that changes NS10 to a
new customer sequence is {8, 3, 7, 6, 10, 2, 1, 4, 9, 5}(denoted by NSP10) (Figure 7b) with the
corresponding dimension position RS10.
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Figure 7. Neighborhood search translation. (a) Before NSP; (b) After NSP; (c) Translated NSP.

Neighborhood search translation returns NSP10 to the initial customer id {1, . . . ,|N|},
and corresponding dimension position RS10 reorders to original dimension position
(Figure 7). Therefore, the Neighborhood search translation changes as shown in Figure 7a
to Figure 7c. The random dimension position must be translated to change to a new
dimension position before the new iteration is performed in the current iteration.

4.4. The Fitness Value and Selection Operation

The selection mechanism of DE differs from the other evolutionary algorithms. The
fitness value of the trial vector ut

i,j is compared with that of its target vector xt
i,j in each

generation; the one with a better fitness value (in this case, lower total cost) will propagate
the population of the next generation. The population of the next generation xt+1

i,j is selected
as follows:

xt+1
i,j =

{
vt

i,j , i f f
(

vt
i,j

)
≤ f

(
xt

i,j

)
xt

i,j , otherwise.
(40)

5. Numerical Experiments

In this section, we report on numerical experiments using a PC with an Intel Core i7,
2.20 GHz CPU and 16 GB DDR4 RAM to demonstrate the performance of HSADE. Our
computational experiments were performed on three-size instances: small-sized, medium-
sized, and large-sized instances. Specifically, the small-sized instance is compared with
HSADE for heuristic performance (HP), calculated from Equation (41). The MILP was
implemented by LINGO v.17(LINDO Systems, Inc. 1415 North Dayton Street. Chicago, IL
60642). The HSADE algorithm was developed through the MATLAB Version 9.4.0.813654
(R2018a) software (John N. Little, Cleve Moler, Steven Bangert, Natick, Massachusetts,
United States). The relative improvement (RI) is determined using Equation (42) to measure
the percentage improvement between current practices and the HSADE algorithm.

HP =

(
Optimal
Solname

)
× 100 (41)
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RI =
(

SolCT − Solname

SolCT

)
× 100, (42)

where
HP = the heuristic performance (%).
Optimal = the optimal solution obtained from the mathematical model.
RI = the relative improvement (%) between current practices and meta-heuristics.
SolCT = the solution obtained from current practices.
Solname = the solution obtained from the meta-heuristics.
The numerical experiments were tested with 18 randomly generated instances and 1

case study. The factors of all instances and a case study are shown in Table 3.

Table 3. The factors of data generated for each problem instance.

Size
Instances

Instance
Name No. Depot No.

Customer

Size of
Demand

(Egg Trays)

No. Vehicles
of Each
Depot

No. Product
Types

Capacity
Size of

Vehicles S/L

Small S1 2 12 U (10,60) 4 2 60/100
S2 2 12 U (10,60) 4 2 60/100
S3 3 15 U (10,60) 4 2 60/100
S4 3 15 U (10,60) 4 3 60/100
S5 3 20 U (10,60) 4 3 60/100

Medium M1 4 50 U (20,100) 8 4 80/120
M2 4 50 U (20,100) 8 4 80/120
M3 4 50 U (20,100) 10 4 80/120
M4 4 75 U (20,100) 10 4 80/120
M5 4 75 U (20,100) 15 5 80/120
M6 4 100 U (20,100) 15 5 80/120
M7 4 100 U (20,100) 15 5 80/120

Large L1 6 160 U (40,150) 40 6 150/200
L2 6 160 U (40,150) 45 6 150/200
L3 6 240 U (40,150) 50 6 150/200
L4 6 240 U (40,150) 55 6 150/200
L5 6 360 U (40,150) 60 6 150/200
L6 6 360 U (40,150) 65 6 150/200

CS1 8 500 U (30,300) 250 6 300/400

In Table 3, the first column shows the size instances, including small (instances S1–S5),
medium (instances M1–M7), large size instances (instances L1–L6), and the case study
(instance CS1). The second column shows instance names, and the third to sixth columns
show the characteristics of the problems in which the number of depots, the number of
customers, size of demand (egg trays) (egg tray carries 36 eggs), the number of vehicles of
each depot, number of product types, and capacity size of the vehicles. Note that the size
of demand is randomly generated using a uniform distribution U (min, max). The vehicles’
capacity size, including two fleet sizes, is the small fleet size (S) or large fleet size (L). From
Table 3, the number of depots is divided into three groups, which are small, medium, and
large-scale test instances. There are two to three, four and six for small, medium, and
large-sized instances, respectively. Sizes of demand (egg trays) for small, medium, and
large-sized test instances are between 10 to 60 egg trays, 20 to 100 egg trays, and 40 to
150 egg trays. The number of customers for small, medium, and large-sized test instances
is 12–20, 50–100, and 160–360 nodes, respectively. The number of vehicles in each depot
for small, medium, and large-sized test instances are 4, 8–15, 40–65 vehicles, respectively.
The number of product types for small, medium, and large-sized test instances are 2–4,
4–5, 6 product types, respectively. The capacity sizes of vehicles for small, medium, and
large-sized test instances are 60/100, 80/120, and 150/200. Moreover, presently, the case
study company has the customers’ orders size of demand ranging from 30 to 300 for 500
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customers per day. The case study company has 250 vehicles per eight depots with capacity
sizes of vehicles 300/400 to transport the products. The number of product types is six.

We set the computation time as the stopping criteria of our proposed method. The
limited computation time of LINGO is set to 30 min, 1440 min and 4320 min for small,
medium and large-sized instances, respectively. Our proposed method used a limited
computation time of 5 min, 15 min and 30 min for small, medium and large-sized instances,
respectively. The traditional DE, DE combined initial solution (IDE), and IDE combined self-
adaptive (ISDE) were selected for comparison with the HSADE algorithm. The parameter
values used in our implementation include scaling factor (F) = 2, Cmin = 0.5, Cmax = 1 [32]
and the population is set to 25. The DE and IDE used the DE/rand/1 (Equation (30))
mutation strategy. The self-adaptive mutation strategy is set as Ts = 0.2 × Tmax for using
the single mutation strategy DE/rand/1 when T < Ts. If T ≥ Ts, then the self-adaptive
mutation strategy is used to change the mutation strategies of the vectors. The current
practice in egg distribution is based on a greedy algorithm.

The computational results are shown in Table 4, and the statistical test has been
performed using the Wilcoxon signed-rank test shown in Table 5. The HSADE yields
a better solution than all other proposed algorithms, including the current practice, DE,
IDE and ISDE. The statistical test indicates that the solutions obtained from our proposed
algorithm were significantly different at a p-value ≤ 0.05 compared to those obtained from
the LINGO for 19 instances (Table 5, second row). However, our proposed solution for
small-sized instances was not significantly different compared to the LINGO. In Table 5, the
fifth column for the HSADE shows that the solutions were significantly different, compared
with all algorithms.

Table 4. Computational results showing the total cost.

Instance
LINGO Current

Practice

The Proposed Method (Best)

Total Cost DE IDE ISDE HSADE

S1 1836 1863 1836 1836 1836 1836
S2 1880 1899 1880 1880 1880 1880
S3 1750 1820 1750 1750 1750 1750
S4 2056 2120 2056 2056 2056 2056
S5 2344 2511 2344 2344 2344 2344
M1 2740 3191 2972 2906 2939 2867
M2 5652 6628 6142 6177 6006 5897
M3 6233 7726 6976 6746 6677 6582
M4 6657 8318 7253 7078 7111 7001
M5 8315 9973 9473 9134 8970 8773
M6 15,001 17,961 16,909 16,445 16,054 15,742
M7 19,692 23,972 22,014 21,491 21,149 20,805
L1 76,850 112,064 84,311 82,263 81,618 80,645
L2 124,300 171,747 139,627 134,522 133,432 130,321
L3 161,918 213,755 182,669 175,969 173,796 171,020
L4 190,615 277,488 209,356 205,258 204,531 200,409
L5 240,685 324,516 275,091 259,837 259,487 252,696
L6 281,520 367,720 318,981 305,452 303,086 297,469

CS1 400,924 539,238 444,532 435,715 426,236 421,168

Table 5. Statistical test results of the total cost obtained from Table 4.

Method Current
Practice DE IDE ISDE HSADE

LINGO 0.0001 0.001 0.001 0.001 0.001
DE 0.001 0.001 0.001
IDE 0.002 0.001

ISDE 0.001
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Additionally, the heuristic performance (HP) percentage was measured using the
solution obtained from all compared algorithms by comparing it with the optimal solution
obtained from the LINGO. The results show that the HSADE algorithm provided 100%
HP for the small-sized instance. Based on the medium-sized instance, the range of HP of
the HSADE algorithm is 94.66% to 95.85% (with an average of 95.14%), compared to the
lower bound solution. Similarly to the medium-sized instances, the large-sized instances
demonstrate a range of HP of 94.64% to 95.38% (with an average of 95.06%). The HP of the
HSADE algorithm compared with the case study was 95.20%. The average HPs of current
practice, DE, IDE, ISDE and HSADE algorithms are 82.92%, 92.48%, 94.40%, 95.11% and
96.40%, respectively (Table 6, Figure 8).

Table 6. The heuristic performance (HP) results for testing instances.

Instance Current
Practice

Heuristic Performance (HP) %

DE IDE ISDE HSADE

S1 98.56 100.00 100.00 100.00 100.00
S2 99.00 100.00 100.00 100.00 100.00
S3 96.16 100.00 100.00 100.00 100.00
S4 96.99 100.00 100.00 100.00 100.00
S5 93.35 100.00 100.00 100.00 100.00
M1 85.87 92.20 94.29 93.23 95.58
M2 85.28 92.03 91.51 94.11 95.85
M3 80.68 89.35 92.40 93.36 94.70
M4 80.04 91.79 94.06 93.62 95.09
M5 83.38 87.78 91.04 92.70 94.78
M6 83.52 88.72 91.22 93.45 95.30
M7 82.15 89.46 91.63 93.12 94.66
L1 68.58 91.16 93.42 94.16 95.30
L2 72.38 89.03 92.41 93.16 95.38
L3 75.75 88.65 92.02 93.17 94.68
L4 68.70 91.05 92.87 93.20 95.12
L5 74.17 87.50 92.63 92.76 95.25
L6 76.56 88.26 92.17 92.89 94.64

CS1 74.36 90.20 92.02 94.07 95.20
Average 82.92 92.48 94.40 95.11 96.40

Figure 8. The heuristic performance (HP) results for testing instances.
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The relative improvement (RI) results are shown in Table 7. The total costs of the
solutions obtained from the current practice were compared with the DE, IDE, ISDE and
HSADE algorithms. The results show that the HSADE algorithm outperforms all other
algorithms (Figure 9). The average RI of DE, IDE, ISDE and HSADE algorithms is 10.55%,
12.35%, 12.99% and 14.13%, respectively; that means that the HSADE algorithm combined
with the initial solution, self-adaptive mutation formula and hybrid neighborhood strategies
search is more effective than DE, IDE and ISDE.

Table 7. The relative improvement (RI) results for testing instances.

Instance
Relative Improvement (RI) %

DE IDE ISDE HSADE

S1 1.45 1.45 1.45 1.45
S2 1.01 1.01 1.01 1.01
S3 3.85 3.85 3.85 3.85
S4 3.02 3.02 3.02 3.02
S5 6.66 6.66 6.66 6.66
M1 6.87 8.94 7.90 10.16
M2 7.34 6.81 9.39 11.03
M3 9.71 12.69 13.58 14.81
M4 12.81 14.91 14.52 15.84
M5 5.02 8.42 10.06 12.04
M6 5.86 8.45 10.62 12.36
M7 8.17 10.35 11.78 13.22
L1 24.77 26.60 27.17 28.04
L2 18.71 21.68 22.31 24.13
L3 14.55 17.68 18.70 20.00
L4 24.56 26.03 26.30 27.78
L5 15.24 19.94 20.04 22.14
L6 13.26 16.94 17.58 19.11

CS1 17.57 19.20 20.96 21.90
Average 10.55 12.35 12.99 14.13

Figure 9. The relative improvement (RI) results for testing instances.

6. Conclusions

This paper proposes the HSADE algorithm to solve the realistic egg distribution
problem in Thailand. The problem has dealt with the multi-product (egg sizes), multi-depot
vehicle routing problem, with heterogeneous fleets, time window constraints and inventory
restrictions to minimize the total cost. The MILP model of egg distribution in Thailand has
been formalized. The differential evolution algorithm is selected as the core mechanic to
develop the best algorithm to solve the large-sized test instance and the case study. The
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constructive heuristics adopt the initial solution to guide the solution through a customer
clustering method. The hybrid and self-adaptive differential evolution were developed.
The hybrid with neighborhood structure, including k-random inter-exchange and k-random
insertion by probability, k-random intra-exchange, and k-random intra-insertion, were
implemented to avoid trapping in a local optimum. The self-adaptive mutation strategy
was developed with a new self-adaptive algorithm to change the mutation formula. The
optimal solution for a small-sized instance and the lower bound solution for medium and
large-sized problems are the criterion to measure the Heuristic Performance (HP) with
our proposed algorithm. The current practice of egg distribution in Thailand has been
developed to measure relative improvement (RI) to demonstrate the ability to improve our
proposed algorithm from the current practice. For the computation result of our HSADE
algorithm applied to egg distribution, LINGO solves the MILP model with a prespecified
time limit for 19 instances. The test results show that our proposed algorithm can provide
the optimal solution; the HSADE algorithm significantly outperforms LINGO both in
solution quality and CPU time. The heuristic performance (HP) showed that the HSADE
algorithm obtained a near-optimal solution ranging from 94.64% to 95.85% and the current
practice obtained a solution ranging from 68.58% to 85.87% for medium and large-sized
instances. The average heuristic performance (HP) of HSADE is 96.40% for all instances.
Additionally, the relative improvement (RI) has been compared to the total cost of the
solution obtained from the current practice with DE, IDE, ISDE, and HSADE algorithms.
Those algorithms had average relative improvements equal to 10.55%, 12.35%, 12.99%, and
14.13%, respectively.

The statistical results obtained using the Wilcoxon signed-rank test showed that
compared the total cost of LINGO and our proposed algorithm. As a result, our proposed
algorithm obtains solutions that are not significantly different from the optimal solution
for the small-sized instances. Additionally, the statistical test for large-sized instances
showed that the proposed HSADE algorithm was significantly better than the DE, IDE,
and ISDE algorithms, respectively. Furthermore, the solutions of IDE were significantly
different from the solutions of ISDE which DE combined initial solution based on nearest
neighbor heuristic (IDE) and IDE combined self-adaptive strategy (ISDE). This implies that
the self-adaptive mutation strategy did significantly improve the IDE solution. Therefore,
the HSADE algorithm in this paper will assist the egg distribution industry in reducing
total transportation costs.

The HSADE algorithm had solutions that yield better results than each other algorithm
for all test instances because the initial solution, mutation strategy adaptation, and the
neighborhood search structure can enhance the exploitation capability of DE. In the larger-
size instances and the case study, the HSADE algorithm obtained the solution near the
lower bound solution from LINGO. Additionally, the HSADE algorithm took only 30 min
instead of 4320 min. Therefore, within the time constraints of the egg industry in Thailand,
Thai entrepreneurs can apply the HSADE algorithm to improve egg distribution planning
transportation. The mathematical and proposed algorithms in this paper should prove
beneficial to similar agriculture logistics in Thailand and worldwide.

Our future work will consider a variant of the egg distribution problem in Thailand
that considers horizontal planning, such as a multiple-period, periodic, multiple-time win-
dow, mixed-time window, and so forth. Additionally, although our proposed mathematical
model is efficient, research to determine the solutions to the problem should be carried out
by using different mathematical models to compare the strengths of various approaches in
solving the problems of this nature.
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Abbreviations

N Number of customers;
D Number of depots;
NNH Nearest neighbor heuristic;
Nh Neighborhood search strategies;
T Computation time;
Ts Computation time set for self-adaptive mutation strategy;
U Uniform distribution;
HP Heuristic performance;
RI Relative improvement.
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