
����������
�������

Citation: Lim, J.; Kim, B.; Lee, H.;

Choi, D.; Bok, K.; Yoo, J. An Efficient

Distributed SPARQL Query

Processing Scheme Considering

Communication Costs in Spark

Environments. Appl. Sci. 2022, 12,

122. https://doi.org/10.3390/

app12010122

Academic Editor: Elisa Quintarelli

Received: 7 December 2021

Accepted: 21 December 2021

Published: 23 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

An Efficient Distributed SPARQL Query Processing Scheme
Considering Communication Costs in Spark Environments

Jongtae Lim 1 , Byounghoon Kim 1, Hyeonbyeong Lee 1, Dojin Choi 1, Kyoungsoo Bok 2 and Jaesoo Yoo 1,*
1 Department of Information and Communication Engineering, Chungbuk National University, Chungdae-ro 1,

Seowon-Gu, Cheongju 28644, Korea; jtlim@chungbuk.ac.kr (J.L.); bhkim@chungbuk.ac.kr (B.K.);
lhb@chungbuk.ac.kr (H.L.); mycdj91@chungbuk.ac.kr (D.C.)

2 Department of SW Convergence Technology, Wonkwang University, Iksandae 460, Iksan 54538, Korea;
ksbok@wku.ac.kr

* Correspondence: yjs@cbnu.ac.kr or yjs@chungbuk.ac.kr; Tel.: +82-43-261-3230

Abstract: Various distributed processing schemes were studied to efficiently utilize a large scale
of RDF graph in semantic web services. This paper proposes a new distributed SPARQL query
processing scheme considering communication costs in Spark environments to reduce I/O costs
during SPARQL query processing. We divide a SPARQL query into several subqueries using a
WHERE clause to process a query of an RDF graph stored in a distributed environment. The
proposed scheme reduces data communication costs by grouping the divided subqueries in related
nodes through the index and processing them, and the grouped subqueries calculate the cost of
all possible query execution paths to select an efficient query execution path. The efficient query
execution path is selected through the algorithm considering the data parsing cost of all possible
query execution paths, amount of data communication, and queue time per node. It is shown through
various performance evaluations that the proposed scheme outperforms the existing schemes.

Keywords: SPARQL; Apache spark; RDF; distributed query processing; communication cost

1. Introduction

The semantic web allows computers to understand and manipulate the meaning
of documents [1–3]. The semantic web has emerged to process various resources and
data management by computers automatically. As studies on semantic web services were
conducted actively, a Resource Description Frame (RDF) that can manage resources over
the web was studied [4–6]. RDF is a standard metadata model that expresses resource
information in the semantic web. The RDF identifies a relationship between expressed
values and processes data intelligently. RDF forms a graph through a triple structure, which
is expressed with the subject (S), predicate (P), and object (O) [7–10].

As the volume of the RDF graph increases over the semantic web, some studies on
SPARQL Protocol and RDF Query Language (SPARQL), which is a language that can
query and process RDF data, were conducted [11–14]. SPARQL is an RDF query language,
which consists of PREFIX, SELECT, and WHERE clauses [15–17]. PREFIX means an RDF
graph set used in a query. SELECT means variable expressing query results. WHERE
means conditions to process the query. There are other clauses: ORDER BY clause to
designate an order of query results, LIMIT clause that designates how many records are
displayed in the query result, and OFFSET clause that designates from which lines the
query result starts. As web-based services increase in scale, it becomes impossible to store
the entire RDF graph data, which is used in services in a repository based on a single node.
Moreover, performance degradation occurs when a large scale of RDF graph is queried and
processed [18–24]. Thus, not only a scheme of how to store RDF graph in the distributed
manner but also a query processing scheme of the stored RDF graph are required [24–29].

The existing query processing schemes that divide a SPARQL query into subqueries
and process the divided subqueries were proposed for SPARQL query processing [30–38].

Appl. Sci. 2022, 12, 122. https://doi.org/10.3390/app12010122 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12010122
https://doi.org/10.3390/app12010122
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-2588-2033
https://doi.org/10.3390/app12010122
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12010122?type=check_update&version=2

Appl. Sci. 2022, 12, 122 2 of 18

As a result, communication amount is increased, and the cost of query processing becomes
higher since many joins occur or a large amount of data are generated when fetching results
from the divided data in various environments in which data are divided [39,40]. In the
existing schemes, query processing is conducted by searching many nodes and finding data
accordingly during SPARQL query requests over the peer-to-peer (P2P) environment. The
data transmission and join cost occurs in order to generate result data from the distributed
result data during query processing through searching data via many nodes [41]. Another
scheme in the past considered the join and communication costs during query processing.
However, it assumed an environment where data were replicated in a few nodes. The
data communication and join cost can be reduced if data are replicated and stored rather
than distributed and stored. However, the existing schemes cannot be utilized in a data
distributed environment if all RDF graphs cannot be stored in a single node [42]. More
recently, a scheme that reduces the disk I/O cost during data parsing and join cost during
query processing in the Spark environment, which was a distributed in-memory platform,
was proposed [43–45]. However, it does not consider the communication cost during query
processing in a distributed environment, resulting in a large amount of cost generated
during query processing of a large scale of RDF graph [43].

In this paper, we propose a distributed SPARQL query processing scheme considering
Spark environments to reduce join and communication costs that occurred during query
processing, which are problems in existing schemes. The proposed scheme reduces disk
I/O cost through query processing in the Spark environment, which is a distributed in-
memory environment. In addition, it reduces join and communication costs during query
processing through the query execution paths considering data communication costs and
various costs that occur during query processing. A single SPARQL query is divided into
multiple subqueries based on the WHERE clause of SPARQL, and subqueries are grouped
for distributed query processing. The data communication cost is reduced during query
processing through grouping. The grouped subqueries select optimal query execution
paths through the algorithm considering data parsing, data communication and join costs,
and queue time. The unnecessary join and queue time can be reduced by performing query
processing through the selected query execution paths.

The rest of this paper is organized as follows. In Section 2, previous studies related to
the query processing scheme proposed in this paper are described. In Section 3, the query
processing scheme proposed in this paper is explained in detail. In Section 4, performance
evaluation on existing and proposed schemes is conducted. Finally, in Section 5, conclusions
and future study plans are presented.

2. Related Work

In ref. [39], Leida and Chu proposed a distributed SPARQL query processing scheme
in a distributed grid environment. A SPARQL query was divided based on the WHERE
clause, and a single atom was created for each condition and transferred to a few nodes
according to the query performing plan. For each atom, the weight of each (S, P), (S, O),
and (P, O) was calculated, and the lowest value was chosen as the atomic weight in the
calculation. Once the weight was calculated, a query path, in which atoms that are able
to connect to each of the atoms are combined, was created. The created query path was
then divided into many query paths (as many as the number of the nodes uniformly based
on the weight of the atoms). The divided query paths were then transferred to the nodes
randomly to process the query.

In ref. [41], Zhou et al. proposed a query processing scheme when RDF graphs were
stored in a distributed manner in P2P environments. A SPARQL query was divided based
on the WHERE clause, and a single subquery was created for each condition. Each of the
subqueries searches to see whether it is connected to the node that stores the data through
the index starting from the SPARQL query-requested node. Each of the subqueries verifies
whether query processing can be conducted in a node through the index, and the index
is searched using the hash function based on the values of constants that propose a triple

Appl. Sci. 2022, 12, 122 3 of 18

pattern variable of the subquery. The node that stores the data is verified through the index,
and a query is transferred to the data node to process a query of preferred data. It then
receives the query result to complete the query processing. If no index information of the
subqueries is found in the node, subqueries are transferred to the neighboring node in the
clockwise direction.

In ref. [42], Hammoud et al. proposed a SPARQL query processing scheme while
a large amount of RDF graph was replicated in each of the slaves in the master–slave
environment. It proposed a distributed SPARQL query processing scheme in the repli-
cated distributed environment to reduce the join and communication costs that occur
in a distributed environment. It was performed assuming that all RDF graphs can be
stored in a single node. All RDF graphs were stored in a single node, and a single node
can perform a more efficient query processing scheme if SPARQL queries are processed
through replication.

In ref. [43], Chen et al. proposed a distributed SPARQL query processing scheme in
a Spark environment. Apache Spark is a general-purpose high-performance distributed
platform [43–45]. As with other functions, Spark can process MapReduce tasks and stream-
ing processing. The existing platforms that provide analysis functions on big data have
degraded performance because they are run on a disk basis during query processing. How-
ever, Spark enables faster analysis on big data as query processing can be conducted on a
faster memory basis. All tasks in Spark are performed through resilient distributed datasets
(RDDs). An RDD is a set of distributed data (objects) that cannot be modified [46,47].
All tasks inside Spark are processed by creating a new RDD, modifying existing RDDs,
or calling operations (functions or methods) in RDDs to calculate the results [48]. The
requested SPARQL query excludes the conditions that include predicates such as type and
class, which are unnecessary query types, during query processing and is transformed
to TR-SPARQL. It is then divided into a few subqueries based on the WHERE clause of
SPARQL. The divided subqueries create all connectable query paths. The data parsing cost,
join cost, and communication cost is calculated for each of all the created query paths, and
the least-cost query path is selected. Query processing is performed in the Spark distributed
memory environment through the selected query path, and subqueries are transformed to
a Resilient Discreted SubGraph (RDSG) format to perform a join action with other RDSGs.

Previously, SPARQL query processing schemes were proposed in various environ-
ments. A query processing using the existing schemes has various characteristics. However,
not considering the data transfer and the disk I/O may be a problem when a large amount
of RDF graph data cannot be stored in a single node anymore by limitation of memory
and storage. The reason is that a lot of data transmission and disk I/Os occur to process
queries in a distributed storage environment. In particular, graph processing creates a lot of
join operations that cause a lot of data transmission and disk I/Os. In refs. [32,34], a large
amount of RDF graphs were distributed, and a query processing scheme was conducted
in accordance with a distributed stored environment. However, it did not consider data
communication and join costs incurred during query processing. Thus, the query pro-
cessing cost increased as the RDF graph and queries were more complex or larger during
query processing. [42] performed a scheme considering data communication and join costs
incurred during query processing. However, a system structure proposed in [42] was a
scheme in a replicated environment rather than distributed stored environment. Although
a scheme in a replicated environment was proposed assuming that all RDF graphs can be
stored in a single node, a problem occurs if a large amount of RDF graphs cannot be stored
in a single node anymore.

3. The Proposed Distributed SPARQL Query Processing Scheme

In Section 3, we introduce a distributed SPARQL query processing scheme considering
Spark environments to reduce join and communication costs that occurred during query
processing. As volumes of the RDF graphs increase, distributed storage and an efficient
query processing scheme are required. However, the existing schemes did not consider

Appl. Sci. 2022, 12, 122 4 of 18

the communication and join costs incurred during query processing, entailing a large cost
during query processing of a large amount of RDF. In addition, the disk I/O cost increases
as data size increases. Thus, a query processing scheme is needed in consideration of the
many costs incurred during query processing. We proposed a distributed stored RDF graph
query processing scheme in the Spark environment. It reduces disk I/O costs through query
processing in the Spark environment, which is a distributed in-memory environment. It also
reduces the communication cost through grouping the divided SPARQL subqueries when
a query on distributed RDF graph is processed. In addition, join, and communication costs
are reduced by setting a query processing order through efficient query execution paths.

3.1. Overall Architecture

The proposed scheme is a master–slave structure in the Spark cluster environment,
as shown in Figure 1. RDF is a directed graph G = (V, E) represented by triple patterns
such as subject–predicate–object, where the vertices V are the subject and the object, and
the directed edges E are the predicates expressing the relation between the subject and
object. A client sends a request for SPARQL query processing to the master, and the master
divides the SPARQL query into subqueries SQi in the query decomposition. The divided
subqueries SQi are grouped based on the criterion of related nodes. For the grouped
subqueries GQj, all possible query execution paths are created that are query-processable
in the query execution path generation. From the created possible performing query paths,
the optimal query execution path is identified through the algorithm that considers join
and communication costs and queuing time in each of the query execution paths. The join
and communication costs can be reduced during query processing by processing a query
through the optimal query execution path. The subqueries that are grouped into slaves
according to the selected query execution path are transferred as they are transformed into
each of the RDD, and RDF subgraph SGi that are matched with the subqueries are parsed.
For each of the subqueries, the intermediate results IRi are produced after data parsing,
and query processing is performed through data communication and join according to
the query execution path. After query processing is complete, a slave that owns the result
sends the results to the master. Once the master receives the result from the slave, it sends
the result to the client to complete the query processing.

Figure 1. Overall architecture of the proposed scheme.

Appl. Sci. 2022, 12, 122 5 of 18

3.2. Query Decomposition

A SPARQL query that is optimized to distributed data is divided into subqueries and
transferred for query processing of RDF graph in a distributed environment. If queries that
are unsuitable to distributed data are transferred and processed, efficient query processing
cannot be conducted, and disk I/O cost and data communication cost are increased during
query processing. In addition, communication cost increases as the number of subqueries
increases during query processing after a SPARQL query is divided into subqueries. Thus,
efficient query processing that can reduce the communication cost through grouping of
subqueries is conducted.

For example, if the RDF graph is distributed over a few nodes, as shown in Figure 2,
only N1 is searched to know the job of the person called “Kim.” However, the communi-
cation cost has to be increased because slave nodes N1, N2, and N4 have to be searched
once a SPARQL query is requested to find the living city of “Kim.” As shown in the above
example, query decomposition is needed to reduce the communication cost and achieve
efficient query processing.

Figure 2. Example of an RDF graph.

When a query is requested, the query is divided into multiple subqueries based on
the WHERE clause. The divided subqueries are grouped through the proposed RDF index
first. The subqueries grouped through the index are then second grouped with related
subqueries among S, P, and O. The data communication cost is reduced during query
processing through the second grouping. In addition, the second-grouped queries are
stored as a format of RDD and utilized. This can not only reduce the disk I/O cost incurred
in existing schemes by storing queries at the RDD format inside the Spark but also achieve
more efficient query processing than existing schemes through query processing in the
in-memory environment.

A query that is optimized to distributed data should be sent to process RDF graph
queries in a distributed environment. If queries that are unsuitable to distributed data are
transferred and processed, efficient query processing cannot be conducted, and disk I/O
cost and data communication cost are increased during query processing. Thus, efficient
query processing can be conducted by decomposing a SPARQL query into subqueries. As
shown in Figure 3, once the SPARQL query is entered, the WHERE clause in the SPARQL is
divided. The WHERE clause is decomposed into subqueries. After being decomposed into
subqueries, related nodes are searched through the index. The index is composed based
on S, P, and O about all triple data. It has information about S, P, and O of each record,
and information about all combinations of S, P, and O such as SP, PO, SO, or SPO, etc., are
also stored. The ID numbers of the nodes that store the information are also stored. The
index used is different according to the characteristics of the subqueries. For example, if
the subject index’s type is Name, all of the Name information is stored, and a node where
the Name is stored is also stored along with the ID number of the node. If a data record

Appl. Sci. 2022, 12, 122 6 of 18

called Name is stored in multiple nodes, plural ID numbers of the nodes are stored. For
example, if there is a query (Kim, isJob, ?A) among the subqueries, since “?A” in the object
is a variable, the value is not known. In such a case, although the object is not known, the
subject and predicate are known, thus that it can be searched through the SP index out of
the indices.

Figure 3. Example of a SPARQL query.

A query can be efficiently processed in the distributed stored RDF environment by
decomposing a query entered by the client. However, in order to produce a final result when
a single query is decomposed into multiple subqueries, intermediate results decomposed
through communication should be made into a single final result with regard to query
processing results of subqueries. A large amount of communication cost is incurred to have
a single final result. To overcome this, subqueries are grouped with related subqueries,
thereby reducing the communication cost during query processing.

If only related nodes of subqueries are known through the index, subqueries are only
sent to the related nodes. For only adjacently connected subqueries, related node ID are
compared. For example, if SG1 is related to N1 and N2 and SG2 is related to Nodes N1, N2,
N3, and N4, SG1 only knows predicate and object. Thus, SG1 has a small number of related
nodes compared to other subqueries. On the other hand, SG2, which knows only predicates,
may have many related nodes depending on how the stored data are distributed. In such
a case, the communication cost may increase according to the number of related nodes
during query processing. Thus, it is important to reduce the number of related nodes of
SG2 compared to that of SG1, which is an adjacent subquery. The unnecessary data transfer
during query processing and data parsing cost can be decreased by reducing the number
of related nodes of SGi through only adjacent nodes that are shared in common via the
comparison of related nodes of SG1 and SG2.

Grouping of related nodes can be conducted through the related node and adjacent
subqueries. In addition, related and unrelated subqueries are distinguished even inside
each node. During grouping, S, P, and O of each SQi are compared. The second grouping
is conducted based on SQi that have the same S, P, or O, or the same variables during the
comparison. The join cost can be reduced by query processing of related SQi though second
grouping. Figure 4 shows the subquery grouping by the node. In N1, N2, and N3, only a
single group is made since grouping is conducted through common variables in subqueries
included in the related nodes. In contrast, in N4, although SQ3, SQ4, and SQ6 are related to
N4, SQ3 and SQ4 can be grouped into a single group through the “?W” variable. However,
SQ6 does not have S, P, and O that are related to SQ3 and SQ4, which cannot be grouped
into a single group. Thus, in N4, two groups are produced.

Figure 4. Grouping of subqueries by node.

Appl. Sci. 2022, 12, 122 7 of 18

3.3. Query Processing Procedure

The communication and join costs incurred when distributed intermediate results are
combined into a single final result during query processing in the distributed stored RDF
environment. In addition, a query processing order and joining method can increase or
decrease the cost of query processing. Thus, the optimal query execution path is created
to reduce the join and data communication costs incurred during query processing in the
query processing execution path. A query execution path is created in consideration of
data parsing, communication cost between nodes, and queuing time to reduce the query
processing cost incurred during query processing, which is not taken into consideration in
existing schemes. The join and communication costs can be reduced by performing query
processing through the created query execution paths.

Figure 5 shows the overall query processing procedure. First, when a query is inputted,
the proposed scheme decomposes the query. Once the subqueries grouped from query
decomposition are entered, all possible query execution paths are generated. After all
possible query execution paths are generated, the cost of performing the query paths is
calculated through the proposed algorithm. The optimal query execution path is selected
through the cost calculation, and queries are processed through the selected query execution
path. We obtain a final result.

Figure 5. Query processing procedure.

We cannot know if it is possible to process a query using which query execution
path when processing it in the distributed stored RDF environment. Thus, we create
all possible query execution paths based on the subqueries. A large amount of the join
and communication costs can be incurred during query processing performed according
to the created query execution paths. Thus, an efficient and optimal query execution
path is selected from all possible executable query paths to process a query. The join
and communication costs can be reduced during query processing by processing a query
through the selection of the selected query execution path.

The optimal query path is selected through the cost calculation of the created query
paths. First, the query cost of the group by node is calculated via Equation (1). Parse(SQi)
refers to the cost of data parsing for the SQi in the corresponding node. The query pro-
cessing cost when the number of SQi in the corresponding node is only one is Result(SQi).
However, if the number of SQi is more than one, the query processing cost of the group by
node is calculated including join cost Join(Parse(SQi) + Result(SQi−1)) among SQi.

Result(SQi) =

{
Join(Parse(SQi) + Result(SQi−1)), i > 1

Parse(SQi), i = 1
(1)

The cost is calculated by dividing a case when the number of subqueries is one and
two or more according to the group by node. When subqueries are connected adjacently
inside the group, even if the number of subqueries is more than two, it is regarded as a
single subquery to calculate the cost.

Once the cost for each group inside each node is calculated, all possible query paths are
created through Equation (2) (ETE: Estimated Time Equation algorithm) based on the join
variables between groups by node overall. After all the query paths are determined based

Appl. Sci. 2022, 12, 122 8 of 18

on the join variables between groups, the cost of the query paths is calculated. To calculate
Equation (2), which node is used to process GQi (Groups by node) should be determined
as presented in Equation (3). If GQ1 and GQ2 can be joined, and which GQi is moved is
determined through Equation (3) to process a query. The cost is compared via Equation
(3) between GQ1 to GQ2

(
Tr

GQ1−GQ2

)
or from GQ2 to GQ1

(
Tr

GQ2−GQ1

)
, and GQ is moved

to the less-cost direction. Once the path of GQ move is determined, whether it is a join
operation

(
T j

GQ1−GQ2

)
or union operation

(
Tu

GQ1−GQ2

)
is determined according to GQ1

and GQ2. For example, if GQ1 and GQ2 are not the same SG and have a join variable called
B(X), a query path cost can be calculated through join operation. On the other hand, if GQ1
and GQ2 have the same SG, the query path cost is calculated through the union operation.

Ttotal
GQ1−GQ2 =

{
Twait

GQ1−GQ2 + T j
GQ1−GQ2

Twait
GQ1−GQ2 + Tu

GQ1−GQ2
(2)

Twait
GQ1−GQ2 = max

{(
Tl

GQ2 + Tr
GQ2−GQ1

)
, Tl

GQ1

}
(3)

Once the join and union costs between groups by each node are calculated, the
calculated costs are stored in the table in ascending order. The least cost of the query path
stored in the table is selected first. When all the groups by all nodes are selected, the cost is
calculated again through Equation (2) using the selected query path. Finally, this calculation
is iterated until all groups by all nodes generate a single query path. Once the iterations are
complete, the query paths determined through Equation (2) are sorted out sequentially to
create a query execution path. Figure 6 shows the operation of the ETE algorithm. The cost
is calculated through the ETE algorithm for the groups in each node according to whether
the join operation can be performed. The least GQ1 ∪ GQ2 is selected after comparing the
calculated costs, and GQ3 ./ GQ4 is selected, which is the least cost calculated with groups
other than the selected groups by node. Step 1 in Figure 6a shows the first iteration of the
ETE algorithm, which is iterated until the order is determined after all groups are selected.
Figure 6b shows the query processing order based on the groups by node.

Once the query processing execution path is determined, the master sends the query
processing execution path to each node and RDDs to the slave. The slaves that receive the
RDDs perform query processing tasks according to the query processing execution path.
The node that has the final result sends it to the master again to finish the query processing.

Appl. Sci. 2022, 12, 122 9 of 18

Figure 6. ETE algorithm operation: (a) step to select the optimal query path; (b) query processing
order for each node.

4. Performance Evaluation

The performance evaluation compares the execution results between the master–
slave system structure proposed in this paper and an existing scheme. The compared
existing scheme was a distributed SPARQL query processing-related scheme over the
Spark environment. The existing scheme considered distributed storage of a large amount
of RDF data, but it did not consider data communication and join costs. Table 1 shows
an experimental environment for the performance evaluation. Four virtual nodes were
built. One was used as a master, and the other three nodes were used as slaves. The
performance was compared between the SPARQL query processing scheme [43] over the
Spark environment, which is an in-memory environment, and the existing scheme.

Appl. Sci. 2022, 12, 122 10 of 18

Table 1. Experimental environment.

Parameter Value

Processor Intel(R) Core(TM) i5
Memory 64 GB

No. of nodes Master 1, Slave 3
Engine used Spark 2.4.5

For the performance evaluation, LUBM dataset [49] and DBpedia dataset [50] were
used. Approximately 230,000, 430,000, and 910,000 records of RDF graph from the LUBM
dataset and 300,000 records of RDF graph from the DBpedia dataset were used, which were
distributed and stored in the three slave nodes. For SPARQL queries, four queries from the
LUBM dataset and three queries from the DBpedia dataset were used in accordance with
the dataset used in this performance evaluation. Q1 and Q2 in the LUBM dataset had a very
small number of intermediate results from the nodes, entailing that data transfer between
nodes was small. Q3 was only considered when query processing was performed in nodes
whose number of necessary data for query processing was two. Q4 had a large number of
intermediate results from the nodes, and a large amount of data were transferred during
data transfer. In addition, Q1, Q2, and Q3 from DBpedia had a different size of data used
during query processing.

Figure 7 shows the comparison results of performances of the proposed scheme and
when grouping of subqueries is not considered during query decomposition (group) and
when optimal query execution path is not considered in the query execution path (optimal
query execution). The performance was also compared with four different queries at the
same data size. The query processing time was compared according to queries without
considering query decomposition and query execution path in the proposed scheme. The
performance evaluation results showed that Q1 and Q2 had a relatively small size of
intermediate data, resulting in a similar query processing time with that of the proposed
scheme was revealed, while Q3 and Q4 exhibited a performance difference between the
proposed and existing schemes according to the intermediate data size and the number of
subqueries. When grouping was not considered in query decomposition, the intermediate
data size and join cost was increased in the existing scheme compared to that of the
proposed scheme. Similarly, when the optimal query execution path was not considered in
the query execution path, the communication cost was increased in the existing scheme
compared to that of the proposed scheme.

Figure 7. Performance difference by considering query decomposition and query execution path.

Appl. Sci. 2022, 12, 122 11 of 18

Figure 8 shows the comparison results of query processing time between the existing
and proposed schemes. Performances were compared through different queries while
changing a data size through various datasets. The proposed scheme showed better
performance results than the existing scheme as queries became more complex and more
intermediate results were obtained through corresponding queries. In addition, as the
number of nodes during query processing increased, performance improved. However, as
the number of used nodes decreased, no significant difference in performance was found.
The query processing time was increased in the existing scheme as a query became more
complex since the communication and join costs were taken into consideration during query
processing. The proposed scheme removed this problem thus that it achieved performance
improvements of around 15% on average through the query processing scheme considering
the communication and join costs.

Table 2 presents the comparison results of query processing time incurred per node
between the existing and proposed schemes through the LUBM dataset. Data parsing
time was measured in a node that executed the query the first time according to the query
processing path while processing time of data received from other nodes and parsed data
from the current node was measured in other nodes and compared. The performance eval-
uation was conducted based on four different queries, the same as in the first performance
evaluation. For Q3, query processing was conducted based on two nodes, in which query
processing time was compared between N1 and N2. The performance evaluation results
showed that processing time was calculated differently by the node according to the query
execution path between the existing and proposed schemes, and query processing time
was increased according to the data size used in join operation in all nodes.

Table 2. Query processing time per node.

(s)
N1 N2 N3

Existing
Scheme

Proposed
Scheme

Existing
Scheme

Proposed
Scheme

Existing
Scheme

Proposed
Scheme

Q1 2.578 2.557 2.532 2.542 3.421 3.411
Q2 2.571 2.671 2.515 2.424 2.997 2.987
Q3 3.784 3.532 3.564 3.487 X X
Q4 7.601 7.710 7.331 6.109 1.927 1.887

Figure 8. Cont.

Appl. Sci. 2022, 12, 122 12 of 18

Figure 8. Query processing time: (a) LUBM 230,000 dataset; (b) LUBM 430,000 dataset; (c) LUBM
910,000 dataset; (d) DBpedia 300,000 dataset.

Appl. Sci. 2022, 12, 122 13 of 18

Figure 9 shows the comparison results of data transfer time incurred during query
processing between the existing and proposed schemes. Performances were compared
through different queries while changing data size through various datasets. Time to
transfer the intermediate result data and final result data between nodes to slaves and
master was considered. The performance evaluation results showed that data transfer time
was increased in the existing scheme as the amount of intermediate data was larger since
the query processing order according to the communication cost during query processing
was not considered. However, the proposed scheme overcame this problem through the
query processing execution path considering the data communication amount and join cost.
The proposed scheme thereby reduced a transfer time during query processing on average
by about 10% compared to the existing scheme.

Figure 10 shows the comparison results of query processing time according to dataset
size between the existing and proposed schemes. In addition to the datasets used pre-
viously, approximately 430,000 and 910,000 RDF datasets were used. The performance
evaluation was also conducted through two different queries. Figure 10a shows the small
communication and join costs due to fewer intermediate results than other queries, whereas
Figure 10b shows the large communication and join costs incurred due to larger intermedi-
ate results. The performance evaluation results showed that the proposed scheme improved
performance considering the communication and join costs during query processing, which
were not considered in existing schemes. In particular, the proposed scheme showed a
better performance than the existing scheme when the dataset size became larger.

Figure 9. Cont.

Appl. Sci. 2022, 12, 122 14 of 18

Figure 9. Data transfer time: (a) LUBM 230,000 dataset; (b) LUBM 430,000 dataset; (c) LUBM 910,000
dataset; (d) DBpedia 300,000 dataset.

Appl. Sci. 2022, 12, 122 15 of 18

Figure 10. Query processing time by data size: (a) comparison through query whose intermediate
result is small; (b) comparison through query whose intermediate result is large.

5. Conclusions

This paper proposed a distributed SPARQL query processing scheme considering
communication costs between nodes in Spark environments. In the proposed scheme, the
disk I/O cost incurred during query processing while parsing a large amount of RDF data,
which was a problem in existing schemes, was reduced as the disk I/O was processed in
the Spark environment (an in-memory environment). In addition, the proposed scheme
performed query processing through the query execution path created considering data
parsing cost, data communication cost, join cost, and queuing time. The performance
evaluation results showed that the proposed scheme improved the performance of query
processing time, transfer time, and query processing time in each node by around 15%
compared to an existing scheme, which was a distributed SPARQL query processing-related
scheme in the Spark environment. In addition, no or large difference in performance was
revealed between them, according to the query used. If a query was simple, thus that
the number of nodes used during query processing was small, or if the number of query
results was smaller, no significant difference in performance was exhibited between the
existing and proposed schemes. However, when a query was complex, or the size of query
results was large, a performance difference was large. In the near future, a study on load
management between nodes during query processing will be conducted.

Appl. Sci. 2022, 12, 122 16 of 18

Author Contributions: Conceptualization, J.L., B.K., H.L., D.C., K.B. and J.Y.; methodology, J.L., B.K.,
H.L., D.C., K.B. and J.Y.; validation, J.L., B.K., H.L., D.C. and K.B.; formal analysis, J.L., B.K., H.L.,
D.C. and K.B.; writing—original draft preparation, J.L., B.K., H.L., D.C. and K.B.; writing—review
and editing, J.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Cooperative Research Program for Agriculture Science
and Technology Development (Project No. PJ01624701) Rural Development Administration, Republic
of Korea, the MSIT(Ministry of Science and ICT), Korea, under the Grand Information Technol-
ogy Research Center support program (IITP-2021-2020-0-01462) supervised by the IITP (Institute
for Information and communications Technology Planning and Evaluation), Institute of Informa-
tion and Communications Technology Planning and Evaluation (IITP) grant funded by the Korea
government(MSIT) (No.2014-3-00123, Development of High-Performance Visual Big Data Discov-
ery Platform for Large-Scale Realtime Data Analysis), and Korea Institute for Advancement of
Technology(KIAT) grant funded by the Korea Government(MOTIE) (P0008421, The Competency
Development Program for Industry Specialist).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Antoniou, G.; Harmelen, F.V. A Semantic Web Primer; MIT Press: Cambridge, MA, USA, 2004.
2. Shadbolt, N.; Berners-Lee, T.; Hall, W. The Semantic Web Revisited. IEEE Intell. Syst. 2006, 21, 96–101. [CrossRef]
3. Carroll, J.; Dickinson, I.; Dollin, C.; Reynolds, D.; Seaborne, A.; Wilkinson, K. Jena: Implementing the Semantic Web Recommen-

dations. In Proceedings of the International Conference on World Wide Web—Alternate Track Papers & Posters, New York, NY,
USA, 19–21 May 2004; pp. 74–83.

4. Hassanzadeh, O.; Kementsietsidis, A.; Velegrakis, Y. Data Management Issues on the Semantic Web. In Proceedings of the
International Conference on Data Engineering, Arlington, VA, USA, 1–5 April 2012; pp. 1204–1206.

5. RDF 1.1 Concepts and Abstract Syntax. Available online: https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
(accessed on 7 December 2021).

6. Decker, S.; Melnik, S.; Harmelen, F.V.; Fensel, D.; Klein, M.C.A.; Broekstra, J.; Erdmann, M.; Horrocks, I. The Semantic Web: The
Roles of XML and RDF. IEEE Internet Comput. 2000, 4, 63–74. [CrossRef]

7. Broekstra, J.; Kampman, A.; Harmelen, F.V. Sesame: A Generic Architecture for Storing and Querying RDF and RDF Schema. In
Proceedings of the International Semantic Web Conference, Sardinia, Italy, 9–12 June 2002; pp. 54–68.

8. Picalausa, F.; Luo, Y.; Fletcher, G.H.L.; Hidders, J.; Vansummeren, S. A Structural Approach to Indexing Triples. In Proceedings of
the Extended Semantic Web Conference, Heraklion, Greece, 27–31 May 2012; pp. 406–421.

9. Neumann, T.; Weikum, G. The RDF-3X engine for scalable management of RDF data. VLDB J. 2010, 19, 91–113. [CrossRef]
10. Kang, S.; Shim, J.; Lee, S. Tridex: A lightweight triple index for relational database-based Semantic Web data management. Expert

Syst. Appl. 2013, 40, 3421–3431. [CrossRef]
11. SPARQL 1.1 Overview. Available online: https://www.w3.org/TR/sparql11-overview/ (accessed on 16 December 2021).
12. Kim, K.; Moon, B.; Kim, H. R3F: RDF triple filtering method for efficient SPARQL query processing. World Wide Web 2015, 18,

317–357. [CrossRef]
13. Hassan, M.; Bansal, K.S. RDF Data Storage Techniques for Efficient SPARQL Query Processing Using Distributed Computation

Engines. In Proceedings of the International Conference on Information Reuse and Integration, Salt Lake City, UT, USA, 6–9 July
2018; pp. 323–330.

14. Bonifati, A.; Martens, W.; Timm, T. An analytical study of large SPARQL query logs. VLDB J. 2020, 29, 655–679. [CrossRef]
15. Kim, K.; Moon, B.; Kim, H. RG-index: An RDF graph index for efficient SPARQL query processing. Expert Syst. Appl. 2014, 41,

4596–4607. [CrossRef]
16. Huang, J.; Abadi, D.J.; Ren, K. Scalable SPARQL Querying of Large RDF Graphs. VLDB Endow. 2011, 4, 1123–1134. [CrossRef]
17. Kharrat, M.; Jedidi, A.; Gargouri, F. SPARQL Query Generation Based on RDF Graph. In Proceedings of the International Joint

Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, Porto, Portugal, 9–11 November
2016; pp. 450–455.

18. Wu, B.; Zhou, Y.; Yuan, P. Scalable SPARQL Querying Using Path Partitioning. In Proceedings of the International Conference on
Data Engineering, Seoul, Korea, 13–17 April 2015; pp. 795–806.

19. Hu, C.; Wang, X.; Yang, R.; Wo, T. ScalaRDF: A Distributed, Elastic and Scalable In-Memory RDF Triple Store. In Proceedings of
the International Conference on Parallel and Distributed Systems, Wuhan, China, 13–16 December 2016; pp. 593–601.

http://doi.org/10.1109/MIS.2006.62
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://doi.org/10.1109/4236.877487
http://doi.org/10.1007/s00778-009-0165-y
http://doi.org/10.1016/j.eswa.2012.12.050
https://www.w3.org/TR/sparql11-overview/
http://doi.org/10.1007/s11280-013-0253-1
http://doi.org/10.1007/s00778-019-00558-9
http://doi.org/10.1016/j.eswa.2014.01.027
http://doi.org/10.14778/3402707.3402747

Appl. Sci. 2022, 12, 122 17 of 18

20. Wang, X.; Yang, T.; Chen, J.; He, L.; Du, X. RDF partitioning for scalable SPARQL query processing. Front. Comput. Sci. 2015, 9,
919–933. [CrossRef]

21. Galárraga, L.; Hose, K.; Schenkel, R. Partout: A distributed engine for efficient RDF processing. In Proceedings of the International
World Wide Web Conference, Seoul, Korea, 7–11 April 2014; pp. 267–268.

22. Guo, X.; Gao, H.; Zou, Z. Leon: A Distributed RDF Engine for Multi-query Processing. In Proceedings of the International
Conference on Database Systems for Advanced Applications, Chiang Mai, Thailand, 22–25 April 2019; pp. 742–759.

23. Potter, A.; Motik, B.; Nenov, Y.; Horrocks, I. Dynamic Data Exchange in Distributed RDF Stores. IEEE Trans. Knowl. Data Eng.
2018, 30, 2312–2325. [CrossRef]

24. Naacke, H.; Curé, O. On distributed SPARQL query processing using triangles of RDF triples. Open J. Semant. Web 2020, 7, 17–32.
25. Jabeen, H.; Haziiev, E.; Sejdiu, G.; Lehmann, J. Dise: A Distributed in-Memory Sparql Processing Engine over Tensor Data. In

Proceedings of the IEEE 14th International Conference on Semantic Computing (ICSC), San Diego, CA, USA, 3–5 February 2020;
pp. 400–407.

26. Hassan, M.; Bansal, S.K. S3QLRDF: Property Table Partitioning Scheme for Distributed SPARQL Querying of Large-Scale RDF
data. In Proceedings of the IEEE International Conference on Smart Data Services (SMDS), Online, 18–24 October 2020; pp.
133–140.

27. Lu, J.; Yang, C.; Wang, B.; Feng, J. FP-ExtVP: Accelerating Distributed SPARQL Queries by Exploiting Load-Adaptive Partitioning.
In Proceedings of the IEEE International Conference on Big Data (Big Data), Online, 10–13 December, 2020; pp. 543–550.

28. Ragab, M.; Eyvazov, S.; Tommasini, R.; Sakr, S. Systematic Performance Analysis of Distributed SPARQL Query Answering Using
Spark-SQL; IOP Press: Bristol, UK, 2020; pp. 1–21.

29. Kang, X.; Zhao, Y.; Yuan, P.; Jin, H. Grace: An Efficient Parallel SPARQL Query System over Large-Scale RDF Data. In Proceedings
of the IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD), Dalian, China, 5–7
May 2021; pp. 769–774.

30. Leng, Y.; Chen, Z.; Zhong, F.; Li, X.; Hu, Y.; Yang, C. BRGP: A balanced RDF graph partitioning algorithm for cloud storage.
Concurr. Comput. Pract. Exp. 2017, 29, e3896. [CrossRef]

31. Padiya, T.; Bhise, M. DWAHP: Workload Aware Hybrid Partitioning and Distribution of RDF Data. In Proceedings of the
International Database Engineering & Applications Symposium, Bristol, UK, 12–14 July 2017; pp. 235–241.

32. Zeng, K.; Yang, J.; Wang, H.; Shao, B.; Wang, Z. A distributed graph engine for web scale RDF data. VLDB Endow. 2013, 6, 265–276.
[CrossRef]

33. Ravindra, P.; Anyanwu, K. Nesting Strategies for Enabling Nimble MapReduce Dataflows for Large RDF Data. Proc. Int. J. Semant.
Web Inf. Syst. 2014, 10, 1–26. [CrossRef]

34. Elzein, N.M.; Majid, M.A.; Hashem, I.A.T.; Yaqoob, I.; Alaba, F.A.; Imran, M. Managing big RDF data in clouds: Challenges,
opportunities, and solutions. Sustain. Cities Soc. 2018, 39, 375–386. [CrossRef]

35. Quilitz, B.; Leser, U. Querying Distributed RDF Data Source with SPARQL. In Proceedings of the European Semantic Web
Conferences, Tenerife, Spain, 1–5 June 2008; pp. 524–538.

36. Feng, J.; Meng, C.; Song, J.; Zhang, X.; Feng, Z.; Zou, L. SPARQL Query Parallel Processing: A Survey. In Proceedings of the
International Congress on Big Data, Honolulu, HI, USA, 25–30 June 2017; pp. 444–451.

37. Papailiou, N.; Konstantinou, I.; Tsoumakos, D.; Karras, P.; Koziris, N. H2RDF+: High-Performance Distributed Joins over
Large-Scale RDF Graphs. In Proceedings of the IEEE International Conference on Big Data, Silicon Valley, CA, USA, 6–9 October
2013; pp. 255–263.

38. Wylot, M.; Hauswirth, M.; Cudré-Mauroux, P.; Sakr, S. RDF Data Storage and Query Processing Schemes: A Survey. ACM Comput.
Surv. 2018, 51, 84. [CrossRef]

39. Leida, M.; Chu, A. Distributed SPARQL Query Answering over RDF Data Streams. In Proceedings of the International Congress
on Big Data, Santa Clara, CA, USA, 27 June–2 July 2013; pp. 369–378.

40. Abdelaziz, I.; Harbi, R.; Khayyat, Z.; Kalnis, P. A Survey and Experimental Comparison of Distributed SPARQL Engines for Very
Large RDF Data. VLDB Endow. 2017, 10, 2049–2060. [CrossRef]

41. Zhou, J.; Bochmann, G.V.; Shi, Z. Distributed Query Processing in an Ad-Hoc Semantic Web Data Sharing System. In Proceedings
of the International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum, Cambridge, MA, USA, 20–24
May 2013; pp. 687–695.

42. Hammoud, M.; Rabbou, D.A.; Nouri, R.; Beheshti, S.; Sakr, S. DREAM: Distributed RDF Engine with Adaptive Query Planner
and Minimal Communication. VLDB Endow. 2015, 8, 654–665. [CrossRef]

43. Chen, X.; Chen, H.; Zhang, N.; Zhang, S. SparkRDF: Elastic Discreted RDF Graph Processing Engine with Distributed Memory. In
Proceedings of the International Conference on Web Intelligence and Intelligent Agent Technology, Singapore, 6–9 December
2015; pp. 292–300.

44. Zaharia, M.; Xin, R.S.; Wendell, P.; Das, T.; Armbrust, M.; Dave, A.; Meng, X.; Rosen, J.; Venkataraman, S.; Franklin, M.J.; et al.
Apache Spark: A unified engine for big data processing. Commun. ACM 2016, 59, 56–65. [CrossRef]

45. Li, M.; Tan, J.; Wang, Y.; Zhang, L.; Salapura, V. SparkBench: A Comprehensive Benchmarking Suite for in Memory Data Analytic
Platform Spark. In Proceedings of the Conference on Computing Frontiers, Ischia, Italy, 18–21 May 2015; pp. 1–8.

http://doi.org/10.1007/s11704-015-4104-3
http://doi.org/10.1109/TKDE.2018.2818696
http://doi.org/10.1002/cpe.3896
http://doi.org/10.14778/2535570.2488333
http://doi.org/10.4018/ijswis.2014010101
http://doi.org/10.1016/j.scs.2018.02.019
http://doi.org/10.1145/3177850
http://doi.org/10.14778/3151106.3151109
http://doi.org/10.14778/2735703.2735705
http://doi.org/10.1145/2934664

Appl. Sci. 2022, 12, 122 18 of 18

46. Zaharia, M.; Chowdhury, M.; Das, T.; Dave, A.; Ma, J.; McCauly, M.; Franklin, M.J.; Shenker, S.; Stoica, I. Resilient Distributed
Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. In Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation, San Jose, CA, USA, 25–27 April 2012; pp. 15–28.

47. Zhang, M.; Chen, R.; Zhang, X.; Feng, Z.; Rao, G.; Wang, X. Intelligent RDD Management for High Performance In-Memory
Computing in Spark. In Proceedings of the International Conference on World Wide Web Companion, Perth, Australia, 3–7 April
2017; pp. 873–874.

48. Agathangelos, G.; Troullinou, G.; Kondylakis, H.; Stefanidis, K.; Plexousakis, D. RDF Query Answering Using Apache Spark:
Review and Assessment. In Proceedings of the International Conference on Data Engineering Workshops, Paris, France,
16–20 April 2018; pp. 54–59.

49. The LUBM Benchmark. Available online: http://swat.cse.lehigh.edu/projects/lubm/ (accessed on 6 December 2021).
50. DBpedia. Available online: http://wiki.dbpedia.org/ (accessed on 6 December 2021).

http://swat.cse.lehigh.edu/projects/lubm/
http://wiki.dbpedia.org/

	Introduction
	Related Work
	The Proposed Distributed SPARQL Query Processing Scheme
	Overall Architecture
	Query Decomposition
	Query Processing Procedure

	Performance Evaluation
	Conclusions
	References

