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Abstract: Recently, a majority of security operations centers (SOCs) have been facing a critical
issue of increased adoption of transport layer security (TLS) encryption on the Internet, in network
traffic analysis (NTA). To this end, in this survey article, we present existing research on NTA and
related areas, primarily focusing on TLS-encrypted traffic to detect and classify malicious traffic with
deployment scenarios for SOCs. Security experts in SOCs and researchers in academia can obtain
useful information from our survey, as the main focus of our survey is NTA methods applicable to
malware detection and family classification. Especially, we have discussed pros and cons of three
main deployment models for encrypted NTA: TLS interception, inspection using cryptographic
functions, and passive inspection without decryption. In addition, we have discussed the state-of-
the-art methods in TLS-encrypted NTA for each component of a machine learning pipeline, typically
used in the state-of-the-art methods.

Keywords: network traffic analysis; traffic classification; security operations center; transport layer
security; malware

1. Introduction

Since the last two decades, security operations centers (SOCs) can be found in multiple
organizations (for example, enterprises, government, and universities), which are frequent
targets of cybersecurity attacks by adversaries. As the focal point for various security
operations and computer network-based defense, an SOC is typically a group comprising
security experts, which conducts various security operations including detection, analysis,
response, reporting, and prevention of cybersecurity incidents [1]. Despite their practical
importance to organizations, especially in the last few years, there is only a fragmented
and widespread literature focusing on various issues in SOCs [2,3].

Amongst a large set of services provided by SOCs, network intrusion monitoring,
detection, and analysis (or network security monitoring [4,5]) are highly relevant to NTA.
From an academic perspective, NTA is a branch that constitutes inferential methods to
obtain traffic-related information of end hosts, users, application processes, and protocols
from network traces (e.g., captured packets (in pcap format [6]), flow records (in NetFlow or
IPFIX format [7,8]), and more). With the rapid growth of the Internet, various approaches
in NTA have been investigated in different contexts, such as traffic engineering, network
security, accounting, and advertising. Security experts in SOCs can achieve their goals, such
as intrusion (or malware traffic) detection and traffic classification, using these methods.
According to a survey conducted by ENEA Qosmos Division [9], 87% of security expert
participants are familiar with NTA, and majority of their organizations already use NTA.

Recently, however, the majority of SOCs have been facing a critical issue with NTA:
increasing adoption of traffic encryption on the Internet [10,11]. While the secure sockets
layer (SSL), the predecessor to transport layer security (TLS), appeared in the middle of
the 1990s to provide end-to-end communication privacy over the Internet, only 44.3%
of web connections of European residential customers used HTTPS (a secure version
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of the HyperText Transfer Protocol using SSL/TLS) in September 2014 [12]. However,
in October 2021, Google [13] and Let’s Encrypt [14] reported that more than 80% of the web
pages loaded in Chrome and FireFox browsers (which allows to sharing of usage statistics)
used HTTPS, primarily owing to the push by major web browsers and community efforts
such as Let’s Encrypt [15] and HTTPS Everywhere [16]. Through these trends, existing
NTA methods, relying primarily on application layer payload processing (for example,
rule-based or signature-based intrusion detection, and deep packet inspection), lose their
utility for encrypted traffic [17].

In this survey article, we present existing research on NTA and related areas primarily
focusing on TLS-encrypted malware traffic, which can be utilized by security experts
in SOCs. While there are multiple related surveys [18–27] available on NTA and traffic
classification areas, our approach has the following distinguished contributions:

• TLS is a widely used end-to-end encryption protocol with a wide variety of applica-
tions in diverse configurations [28]. Additionally, various malware families (especially
Trickbot and Dridex) abuse TLS encryption [29,30], which is one of the biggest chal-
lenges faced by SOCs in recent years. Furthermore, the fraction of TLS-encryption that
flows among malware flows is dramatically increasing: there were industrial reports
in April 2021 stating that nearly a half of the malware uses TLS [31], and further in the
second quarter of 2021, it stated that 91.5% of malware arrives over TLS-encrypted
traffic [32]. As we have primarily discussed NTA methods applicable to malware de-
tection and family classification, security experts in SOCs and researchers in academia
can obtain useful information from our survey.

• While various surveys only focus on comparison between existing methods, we also
cover industrial and community efforts on the so-called TLS fingerprinting techniques.
Similar to multiple data-driven approaches, the performance of NTA is directly related
to the quality of the dataset. Fortunately, several open source threat intelligence (OSINT)
feeds [33,34] now provide TLS fingerprint information. Therefore, through our discus-
sion, better traffic analysis results can be achieved by integrating such information.

Table 1 shows a comparison of this survey with other related surveys concerning
encrypted NTA in terms of protocols, problem domains, and methods. Papadogian-
naki et al. [18] has a comprehensive and up-to-date survey on encrypted NTA methods
and their countermeasures, but it is considerably less detailed especially in the security
domain. Pacheco et al. [19] surveyed machine learning-based (encrypted and unencrypted)
traffic classification methods. However, it does not include the methods for encrypted
malware traffic in recent years. To the best of our knowledge, Velan et al. [20] presented the
first survey in encrypted NTA in 2015; however, considerable significant research has been
executed in this area since. Aceto et al. [21] evaluated several existing deep learning-based
methods using experiments focused on mobile applications. Conti et al. [22] provided
a comprehensive survey on NTA methods for mobile devices where a majority of the
methods capture the mobile traffic at mobile devices or at Wi-Fi access points. While some
enterprise SOCs with wireless networks can utilize the methods discussed in [22], mobile
device-specific and wireless link-specific features are not available in many SOCs which
protect servers in wired networks. In this context, we focus on the NTA methods without
link-specific features. Poh et al. [23] presented a survey on privacy-preserving inspection in
middleboxes with only a slight coverage on machine learning techniques. Rezaei et al. [24]
briefly overviewed deep learning-based methods for encrypted traffic classification. Addi-
tionally, Shen et al. [25] provided a brief overview of machine learning-based encrypted
traffic classification; however, the primary topic of this article is feature selection and opti-
mization for a website fingerprinting dataset. These surveys [24,25] address either machine
learning-based or deep learning-based methods. While we have included comprehensive
approaches with consideration of the security domain. Shbair et al. [26] described research
efforts on services identification inside HTTPS, while de Carnavalet et al. [27] extensively
introduced industry practices on TLS interception. In this paper, we have discussed the
state-of-the-art methods applied in TLS-encrypted NTA, especially applicable to malware
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detection and family classification for SOCs. We believe that security experts in SOCs
can understand both the industrial and academic trends on TLS-encrypted malware NTA
from [27] and this article, respectively.

Table 1. A comparison of this paper with other related surveys, where ML refers machine learning
and DL refers deep learning.

Survey Protocols Problem Domains Methods Notes

[18] Various Various Various
• Comprehensive and up-to-date survey on encrypted
NTA methods
• Insufficient detail for the security domain

[19] Various Various ML-based only • Comprehensive survey on ML-based methods
• Omits recent works for encrypted malware traffic

[20] Various Various Various • The first in encrypted traffic analysis area
• Published in 2015 so that lacks the state-of-the-art

[21] Various Mobile Apps DL-based only • Experimental evaluation among existing DL-based methods

[22] Various Mobile Apps Various • The most comprehensive for mobile traffic
• May not suitable for many SOCs protecting servers

[23] Various Detection Various
• Comprehensive survey on privacy preserving inspection
in middleboxes
• Too little coverage on ML-based methods

[24] Various Traffic
Classification

DL-based only • Brief overview on DL-based methods

[25] Various Website
fingerprinting

Feature
selection only

• Brief overview on ML-based methods
• Focus on website finterprinting dataset

[26] HTTPS Web Apps Various • Services identification inside HTTPS

[27] TLS Various Interception-based only • Industry practices analysis of TLS interception

This Paper TLS Malware Traffic Various, focusing
on ML-based

• The state-of-the-art for ML-based malware
detection and family classification

The remainder of this paper is organized as follows. In Section 2, we provide several
backgrounds, such as the goals of NTA for SOCs and the basics of SSL/TLS. Section 3
presents the three deployment models of NTA solutions: TLS interception without a
private key, passive inspection using cryptographic functions, and inspection without
decryption. Among the scenarios, we introduce several approaches in inspection without
decryption in detail, considering the recent advances in the area. In Section 4, using an
entire pipeline of machine learning-based analysis, we discuss the state-of-the-art methods
in each component of the pipeline. Conclusions of this survey and future directions in
TLS-encrypted NTA are drawn in Section 5.

2. Background

In this section, we introduce the background information.

2.1. Basics of SSL/TLS

SSL is the de facto standard Internet protocol used to establish secure end-to-end
sessions over transmission control protocol (TCP) for providing communications privacy.
According to the final draft of SSL 3.0 [35], SSL was designed to prevent several security
attacks, such as eavesdropping, tampering, and message forgery. However, SSL 3.0 was
deprecated in June 2015 [36].

TLS is the successor of SSL with backward compatibility with SSL, which was firstly
published in RFC 2246 [37] in 1999. The current up-to-date version of TLS is TLS 1.3,
defined in RFC 8446 [38]. However, a few of its previous versions (i.e., TLS 1.0 and TLS 1.1)
were deprecated in March 2021 [39]. According to a report by Qualys SSL Labs [40] in
October 2021, 99.6% of the surveyed websites support TLS 1.2 [41], and approximately half
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(49.7%) of the websites support TLS 1.3, while less than a half support TLS 1.0 and TLS 1.1.
Therefore, unless explicitly specified, we have primarily focused on TLS 1.2 in this survey.

Following the TCP connection establishment procedure performed between two end-
points, a TLS session is initiated by one endpoint by sending a ClientHello message,
and such endpoint is referred to as the client of the TLS session. The ClientHello message
contains the client’s TLS version, a list of supported ciphersuites (i.e., cryptographic op-
tions) ordered by preference of the client, and a list of requested extensions (i.e., extended
functionality from servers), such as server name indication (SNI) extension defined in
RFC 6066 [42]. Note that the HostName field in the SNI extension includes the fully qual-
ified domain name system (DNS) hostname of the server (i.e., another endpoint), which
can primarily be used for hosting multiple virtual servers, also known as virtual hosts,
in an end host (for example, to enable request direction to an appropriate virtual server
without decryption).

Next, the server responds with a ServerHello message containing the server’s chosen
ciphersuite among the client-offered ciphersuites, the server’s chosen extensions among
the client-requested extensions, a Certificate message containing a sequence (chain)
of certificates for proving the identity of the server, and finally a ServerHelloDone mes-
sage to indicate the end of the response. The client then verifies the authenticity of the
given certificate chain. Once the ClientKeyExchange message is sent from the client, and
ChangeCipherSpec and Finished messages are sent from both endpoints, the endpoints
can exchange encrypted application data.

2.2. The Goals of Network Traffic Analysis for SOCs

While there are various types and sizes of SOCs, NTA is performed to achieve different
purposes by security experts in SOCs whose role includes preliminary threat detection,
triage of events, and incident response [43]. While in this paper we focus on malware
detection and malware family classification only, we have listed three main goals of security
experts in SOCs associated with network security monitoring as follows:

• Malware detection: In malware (traffic) detection, NTA is used to detect network traffic
containing various types of malicious content, or contributing to malicious applications.
Traditionally, detection of malicious traffic is analyzed according to pre-configured
rules for known attacks, but machine learning-based detection has been proposed as a
complement of the signature-based network intrusion detection systems [44]. Malware
detection methods typically utilize accumulated attack knowledge so that collecting
and regularly updating the knowledge base is important in SOCs [2].

• (Network) Anomaly Detection: Network anomaly detection, or anomaly based intrusion
detection is the problem to detect exceptional patterns in network traffic which can be
distinguished from the expected normal network traffic pattern [45]. A broad range
of anomaly detection techniques such as statistical, unsupervised, and rule-based
techniques have been proposed in literature [46]. Furthermore, deep learning-based
anomaly detection systems are actively discussed [47]. However, in real-world SOCs,
the potential of human security experts may be more trusted than the automated
methods so that some SOCs utilize or develop practical machine learning-based
anomaly detection solutions combined with information visualization [48,49], which
is out of our scope.

• Application identification: NTAs for application identification identify the network
traffic from particular applications, including unauthorized applications. This can
be used for specific policy enforcement in SOCs (e.g., block Amazon traffic during
work hours). Recently, especially for mobile traffic, there are several machine learning-
based solutions where mobile application identification and even user actions can
be identified [21,22], which is sometimes called user behavior analytics (UBA) in the
context of SOCs [50]. While malware family classification can be seen as a variant of the
conventional application identification problem, to the best of our knowledge, there is
no NTA method to identify fine-grained behavior of malware from encrypted traffic.
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3. The Deployment Models

To analyze encrypted traffic, including TLS-encrypted traffic, deployment models are
widely used to deploy either, middleboxes for traffic interception, or traffic sensors for
passive inspection in practice. We discuss three main deployment models for encrypted
NTA: TLS interception, inspection using cryptographic functions, and passive inspection
without decryption.

3.1. TLS Interception without Private Key

As described in Section 2.1, TLS was primarily designed to establish an encrypted end-
to-end session between the client and the server. However, in TLS interception, the client
establishes an end-to-end TLS session with a middlebox (typically a TLS proxy in this
context, but it may consist of more inspection-related functionalities, such as router, firewall,
intrusion detection system (IDS)/intrusion prevention system (IPS), and content filter). As
the middlebox is an endpoint of the TLS session, there is no hurdle to decrypt the application
layer data. Hence, TLS interception transforms encrypted NTA into payload-based traffic
analysis (also known as deep-packet inspection (DPI)), which is well established in the
literature [51]. Thus, for TLS interception, TLS proxies and HTTPS proxies, which can be
considered as a combination of TLS proxy and HTTP proxy, are widely deployed, especially
in enterprise SOCs [27,52].

Notably, as shown in Figure 1 following the inspection and analysis, the middlebox
forwards the data to the server via another end-to-end TLS session (i.e., with re-encryption)
between the middlebox (on behalf of the client) and the server, where security policies
can be enforced for the TLS traffic. This implies that although TLS is derived from a
design motivated by the end-to-end argument [53], TLS interception breaks the end-to-
end security property of TLS, which incurs concerns about man-in-the-middle (MITM)
attacks on TLS. Furthermore, both the client and server should trust the middlebox, or the
middlebox should impersonate the server (e.g., with certificate delegation [54], or forged cer-
tificates [55]). As such, TLS interception has drawn attention in various debates [27,56,57].

Client Server

TLS Session

TLS Session

Middlebox

Re-encryption

Inspection Application

Decryption

Figure 1. TLS interception.

3.2. Inspection Using Cryptographic Functions

The second category of the deployment models is inspection using cryptographic
functions. We can further classify it into two sub-categories: TLS inspection with a private
session key, and TLS inspection with searchable encryption [58–60].

3.2.1. TLS Inspection with a Private Key

In certain configurations of TLS, such as TLS 1.2 with Rivest–Shamir–Adleman (RSA)-
based ciphersuite, when the server shares the certificate private key with the middlebox
as shown in Figure 2, TLS-encrypted traffic can be decrypted [27]. Similarly, Wireshark,
a well-known network protocol analyzer, has a feature to decrypt TLS-encrypted traffic
in the aforementioned configurations. Therefore, out-of-band (passive) TLS inspection is
possible using a private key and appropriate configurations. However, this approach cannot
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be applied in other ciphersuites in TLS 1.2, such as Diffie–Hellman-based ciphersuites.
In addition, TLS 1.3 does not support ciphers without forward secrecy, such as RSA-
based ciphersuites. Additionally, de Carnavalet and van Oorschot [27] discussed static
Diffie–Hellman key sharing use cases and issues in detail.

Certificate 

Private Key

Client Server
TLS 1.2 Session

Middlebox

Inspection Application

Router

Figure 2. TLS inspection with a private key.

3.2.2. Privacy-Preserving Inspection through Searchable Encryption

While the previous deployment models have been popularized by the industry,
the models are based on trusting middleboxes. However, the middleboxes with vul-
nerabilities can also be used by adversaries to compromise the privacy of the client and
server [61]. According to Waked et al. [62], while the levels vary, all tested enterprise-grade
TLS interception middleboxes are vulnerable.

Several studies have been conducted to enable privacy-preserving inspection with the
help of searchable encryption techniques (e.g., [58]). For example, BlindBox [63] as shown
in Figure 3 is a pioneering work on privacy-preserving deep packet inspection, based on a
searchable encryption technique. While two privacy models are implemented, the common
idea is for the client to transmit encrypted tokens generated from plaintext of a (unidirec-
tional for simplicity) TLS session, to the middlebox through an out-of-band channel. Next,
the middlebox attempts to perform deep packet inspection rule matching for the encrypted
tokens, which is enabled by the searchable encryption technique. In addition, as the en-
crypted tokens could be different from the TLS-encrypted traffic, the receiver (which has
the valid decryption key for the TLS session) cooperates with the middlebox (which should
not have the key) by checking whether the receiver-decrypted tokens (forwarded from the
middlebox) and the recovered plaintext from the TLS session are the same. The authors
of BlindBox extend their system to support a wide range of middlebox services such as
firewall, network address translation (NAT), HTTP proxy, and deep packet inspection [64].
Yuan et al. [65] proposed an architecture to perform private preserving deep packet inspec-
tion with a novel rule filter for achieving better performance than BlindBox. Ning et al. [66]
utilize a reusable obfuscation mechanism for faster encrypted rule generation.

Although the idea of privacy-preserving inspection through searchable encryption is
interesting and innovative, unfortunately, such approaches are less promising in the current
generation of SOCs. At first, as compared with other deployment solutions, BlindBox and
the following studies (e.g., [65,66]) exhibit poor performance. For instance, in BlindBox,
given an IDS with typically 3000 rules, the required client-side time is 97 s. Furthermore,
BlindBox requires an out-of-band channel with its own protocol in conjunction with TLS,
which is an implausible assumption for malware; malware may use other encrypted
channels to hide its malicious network behavior. Note that similar weakness can be
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found in recent inspection methods using cryptographic functions such as BlindIDS [67],
IA2-TLS [68], P2DPI [69], etc., and other methods [70,71] relying on trusted execution
environments, such as Intel SGX [72] in the middlebox, they are beyond the scope of
this survey.

Client Server

Encrypted Token

Middlebox

Detection on encrypted tokens

TLS

Tokenize Encrypt

Matching

Deep Packet 

Inspection Rule

Validate 

tokens
TLS

TLS-encrypted traffic

Figure 3. BlindBox system architecture as a representative example of inspection through search-
able encryption.

3.3. Inspection without Decryption

The main motivation of this approach is that TLS-encrypted traffic itself exposes
unencrypted metadata, and is equipped with other measurable properties (for example,
packet length sequence and inter-arrival time sequence of a flow) that can be used to infer
certain information related to the encrypted content.

While Papadogiannaki and Ioannidis [73] propose that the packet length sequence can
be used in exact signature matching for encrypted traffic, and a few exact pattern matching-
based NTA methods can be found especially in TLS fingerprinting (Section 4.4), a majority
of the solutions in this category adopt graphical, statistical, or machine learning algorithms.

A representative example in graphical methods is graphlet in BLINC [74]. Graphlet
is a transport layer interaction pattern between hosts represented by a graph with the
intent to identify the network application. In BLINC, heuristics are used for application
classification with graphlet. Statistical methods have been discussed in the context of
application protocol classification. For example, Velan et al. [75] compared flow-based,
packet-based, and byte-based statistics and observes that flow-based statistics are more
stable than others. While statistical methods have established a wide range of literature,
the majority of the recent works discussed in malware detection and family classification
employ machine learning techniques. For the machine learning-based methods, we have
discussed their solutions in Section 4.

To avoid potential network performance degradation due to the on-the-path inspec-
tion using complex machine learning-based algorithms, various studies in this category
implicitly assume that encrypted traffic is inspected off-the-path (for example, by traffic
sniffing with switch port mirroring [76] or network taps, or flow record collection through
NetFlow sensors [8,77]).

However, we should note that in general, the lightweight inspection without de-
cryption can be deployed on-the-path, as shown in Figure 1. For instance, there are near
real-time protocol identification solutions without decryption, such as iPoque’s (acquired
by Rohde and Schwarz) protocol and application classification engine (PACE) [78] and
nDPI [79]. Similarly, there are several studies that identify application layer protocol with
the first few packets only [80,81], even with encrypted traffic [82]. Nevertheless, such
solutions primarily focus on protocol identification in the middlebox to forward network
traffic to a protocol-specific proxy (e.g., TLS proxy in Section 3.1) for interception.

4. Machine Learning Pipeline for Passive Inspection of TLS-Encrypted Traffic

In passive inspection and analysis of TLS-encrypted traffic, it is more effective to
describe a machine learning pipeline in advance, typically used in the state-of-the-art
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models. Figure 4 shows a visual representation of our summary for such a pipeline. Based
on this pipeline, in this section, we have discussed the state-of-the-art methods in TLS-
encrypted NTA for each component of the pipeline.

Figure 4. Machine learning pipeline for passive inspection of TLS-encrypted traffic.

4.1. Traffic Sniffing

Packet sniffers such as tcpdump can be used to collect TLS-encrypted traffic. Given fea-
tures used in the machine learning pipeline, using packet sniffers with appropriate packet
filters is desirable to reduce unnecessary packets dramatically, which further improves the
performance of traffic analysis (e.g., throughput). For example, assuming a TCP segment
contains a TLS message in its payload when the first byte of the TCP payload is 22, while
the sixth byte is 1, the TLS message is a ClientHello message. Using this information,
a security expert can manually extract the HostName field in the SNI extension contained in
the ClientHello message.

4.2. Collecting Flow Records

Once the TLS-encrypted traffic is sniffed, collection of flow records should be con-
ducted, as various machine-learning based methods assume that the raw input is a uni-
directional/bidirectional TLS flow. A flow record may have various raw data for the
corresponding flow and packets.

In practice, conventional flow records can be collected from the middleboxes (e.g., routers,
switches), or software-based traffic sensors (e.g., nProbe), which can export NetFlow/IPFIX.
While conventional NetFlow records have miniscule information for TLS, McGrew, and
Anderson [83] proposed enhanced TLS flow records, which contain the sequence of packet
lengths and (interarrival) times (SPLT), the byte distribution (BD) in the TLS flow data
(an array keeping a count for each byte value in the packet payloads for the TLS flow),
and TLS handshake metadata (features that can be collected in the TLS handshaking procedure
described in Section 2.1). The enhanced flow records can be collected using Cisco joy [84],
which is an open-source prototype of Cisco’s encrypted traffic analytics (ETA) [11] and a
precursor of Cisco mercury, while the current version of Cisco mercury does not support to
collect some fields in the enhanced flow records.

Note, that while multiple TLS-encrypted NTA techniques utilize a subset of the enhanced
TLS flow records in [83], there are several approaches to utilize high-level connection logs as
flow records in bot detection [85,86] and malware family classification [87]. These approaches
can be effective solutions for SOCs, because such information can be readily collected using
conventional network security monitoring systems, such as Zeek (formerly known as Bro [88]).
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However, it is unclear whether these researches [85–87] are applicable in TLS-encrypted traffic,
as there has been no performance evaluation for TLS-encrypted traffic dataset.

4.3. Feature Extraction

While a flow record consists of detailed, but important information (i.e., features) on
the corresponding flow, there can be less significant features compared to the other models.
In some cases, it is better to represent, or summarize some features into a transformed
feature to achieve certain goals (for example, interpretability of machine learning, and
compact fingerprinting). Different naming, or division into several steps (e.g., feature
extraction and feature selection) can be identified in the literature, but we refer to this
procedure as feature extraction. Shen et al. [25] provides an appealing tutorial on feature
extraction for encrypted traffic classification.

A flow record consists of raw data for the corresponding flow and packets. Such raw
data may include the following types of features:

• Variable-size sequential data type: TLS message type sequence, packet length sequence,
interarrival time sequence, and time-slotted Zeek connection state log [86] have variable
sizes, which is not suitable as an input for certain machine learning algorithms. There
are several studies to transform variable-size data into statistical representative values
(e.g., max, min, median, standard deviation, etc.) or a specific probabilistic/statistical
object, such as a histogram and its self-similarity matrix [89], a first-order Markov
chain [90], a second-order Markov chain [91], a hidden-Markov model [92], each of
which can be represented as a finite-dimensional vector, while only statistical informa-
tion remains in such models. Among these, Markov chain transformation has been
widely used in TLS-encrypted traffic classification. Note that the approach in [89] has
only been validated for unencrypted traffic; hence, we consider the adoption of the
proposed approach into encrypted traffic under prospects for future work.
In contrast, there are several approaches to utilize machine learning algorithms, which
allows variable-size input. FS-Net [93] proposes an end-to-end traffic classification
model as a variant of the recurrent neural network (RNN), which allows the packet
length sequence of a flow record to be an input. According to [93], FS-Net outperforms
several Markov-chain based approaches in the true positive rate and the false positive
rate. Shen et al. [94] proposed a novel graph-based representation of packet length
sequences (with the direction of each packet between the client and the server), known
as traffic interaction graph (TIG). This research also proposes a graph neural network,
which can classify decentralized applications on Ethereum from TLS encrypted traffic.

• Categorical data type: Each element of TLS client-offered ciphersuite list and TLS
client-advertised extension list has a unique value with a finite number of cases,
namely n, to allow better representation of a n bit vector using one-hot encoding,
although the order information of the list would be lost. For example, Anderson
and McGrew [17] observed that there are only 176 cases for each element in TLS
client-offered ciphersuite list in their dataset. They also reported that applying order-
preserving representation on the list did not increase the performance significantly.

• Numeric data type: There are several numeric data type fields in TCP header and TLS
message header of each packet, and it is not necessary for such data to be transformed
into other data types.

• String data type: the HostName field in the SNI extension, the Certificate message
in TLS handshaking, the subjectAltName field in the Certificate message and TLS
flow data can be considered as string data. As each character has a unique value and
a string has variable length, these data can be considered as variable-size sequential
data types. In this context, the byte distribution in [83] can be observed as a histogram
of TLS flow data. However, in various approaches such as [91], only the string length
is extracted as a feature. In addition, ref. [17] reports that the mismatch between the
subjectAltName field and the HostName field, if available, can be an effective feature
for malware detection.
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4.4. TLS Flow Fingerprinting

In practice, TLS fingerprint is an indicator of compromise (IoC) [95], which summarizes
one or more TLS flow records with the same label, where the label has a dependency on
its problem domain (e.g., malware/benign in malware detection [96], a specific malware
family in malware family classification [29], mobile app in mobile traffic classification [21],
and user agent string in browser fingerprinting [97,98]). Therefore, a TLS fingerprint can
be used as a clarified input for machine learning algorithms in training/testing, as well as
a model representation for a class (i.e., a specific label).

A widely used and active TLS fingerprinting method is JA3 [99]. This MD5 hash-
based TLS client fingerprinting technique was proposed by John B. Althouse, Jeff Atkinson,
and Josh Atkins of Salesforce in 2017 and named after its three authors with the same initials.
A JA3 fingerprint summarizes SSL version, offering ciphersuite list, TLS extension list,
and elliptic curve-related information in TLS ClientHello message of a TLS session with
the MD5 hash function, while ignoring Google’s GREASE (Generate Random Extensions
And Sustain Extensibility) [100].

As an example, when we have a ClientHello message where the version field has
value 0x0303 = 771 (i.e., TLS 1.2), the list of supported ciphersuites contains the follow-
ing hyphen-separated values 4-5-10-9-100-98-3-6-19-18-99, and there is no TLS ex-
tension list and elliptic curve-related information, then the comma-concatenated string
771,4-5-10-9-100-98-3-6-19-18-99„, is the input of the MD5 hash function. The result-
ing JA3 fingerprint is 07571e689c94dd5474350e204a2f3ade. Note that for better visibility
of malicious client-server combination (e.g., Tor client and Tor server), JA3S, a server-side
version of JA3, was also proposed.

Currently, various practical TLS fingerprinting databases, such as mod_sslhaf [101]
from Qualys SSL Labs, p0f [102] of Marek Majkowski, FingerPrinTLS [103] of Lee Brother-
ston, and JA3-based OSINT feeds [33,34] accumulate labeled TLS fingerprints in different
goals (i.e., different types of labels), while all the databases are built for exact matching
scenarios and tools. For example, ref. [99] recommends using JA3 for blacklist-based access
control of TLS-encrypted malware traffic, and whitelist-based access control of legitimate
applications in locked-down environments. However, despite its popularity, it is unclear
whether JA3 is a reliable fingerprint for such scenarios, owing to the lack of evaluation
results. To the best of our knowledge, ref. [104] is the only research on JA3’s reliability.
The authors insist that JA3 is not sufficient for mobile app identifications; however, a
combination of JA3, JA3S, and SNI can improve reliability. Note that Kotzias et al. [105]
reported 7.3% fingerprint collision in their longitudinal passive dataset while applying a
client fingerprinting technique similar to JA3.

Meanwhile, in the literature, there are several proposals to adopt approximate, ma-
chine learning-based matching for TLS fingerprinting. Korczynski and Duda [90] propose
using stochastic fingerprints for TLS-encrypted traffic in application classification. In this
study, TLS message type sequences for each application to create a first-order homogeneous
Markov chain fingerprint, and the classifier, is based on the maximum likelihood (ML)
criterion. Inspired by Frolov and Wustrow [106], Anderson and McGrew [107] utilized the
Levenshtein distance for approximate matching when exact matching failed, even though
the approach exhibits a worse performance than exact matching. Nevertheless, approx-
imate matching should be further studied, considering the evolution of TLS-encrypted
traffic for the same label.

Additionally, Cisco joy and Cisco mercury provide the largest TLS fingerprint database
labeled with potential (malicious or legitimate) application and operating system infor-
mation, collected from malware sandbox and enterprise networks. However, it is not
popularly adopted in the industry. In contrast, while there are multiple security tools and
middleboxes to support JA3/JA3S in industry (e.g., FlowMon [108]) and security communi-
ties, its community database is relatively small. Hence, JA3cury [109] proposed a technique
to translate each fingerprint record in mercury database into JA3.
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4.5. Feature Representation

While features in a flow record or a TLS fingerprint can be used as a raw input to a
machine learning algorithm, in some cases, it is better to further transform into being more
machine learning friendly. For example, Anderson and McGrew [17] proposed contextual
flows, which correlate a TLS-encrypted traffic with DNS flows and HTTP flows to enhance
the performance of the machine learning classifier (especially the accuracy at a 0.00% false
discovery rate). While [17] just combines the features of the TLS flow and the contextual
flow, better feature representation of the feature set could enhance the performance of the
machine learning classifier.

Recently, as discussed in Section 4.3, Shen et al. [94] proposed a graph-based represen-
tation called TIG to represent decentralized application flows. The representation clearly
explains packet direction, packet length, packet burst, and packet ordering information to
allow the GNN to extract such information.

Another recent advancement in this field is nPrint [110]. nPrint is a complete (i.e., every
bit of a packet header is included), inherently normalized (for machine learning models),
and aligned (i.e., each feature is always located at the same offset for every packet) packet
representation. With this representation, automated machine learning (AutoML) systems
can learn the importance of each feature without relying on manual feature engineering
(which is heavily conducted in Anderson and McGrew [17]’s model). In [110], the authors
successfully exhibited the per-bit feature importance visually, for several traffic analysis
scenarios, such as active device fingerprinting, passive OS detection, and browser and
app identifications.

4.6. Machine Learning Algorithms and Model Selection

Various machine learning algorithms are available owing to extensive studies in this
field. Once the feature representation is completed, various the algorithms are readily
applied in TLS-encrypted traffic. For example, Anderson and McGrew [96] provide a
detailed comparison for malware detection among several well-known machine learning
models: linear regression, logistic regression, support vector machine (SVM), decision
tree, random forest, and multilayer perceptron (MLP), given a set of extensive dataset
engineered by security experts. Furthermore, the researchers also considered the possibility
of noisy labels. According to their work, random forest is the most robust machine learning
classifier for malware detection.

When several machine learning algorithms are required to be evaluated, along with a
comparison for model selection, we are required to employ performance metrics. Accuracy,
precision, recall, and F1-score are the typically used metrics in encrypted NTA. One interest-
ing metric especially proposed for SOCs is accuracy at a 0.00% false discovery rate (FDR),
appeared in [17,83,96]. Note that FDR is defined as the expectation of a false positive/(false
positive + true positive)) [111] and performance evaluation with controlling FDR has been
widely used in statistics and genomics. In contrast, while an exception [112] can be found in
traffic classification literature, controlling FDR was rarely conducted in malware detection
literature. As we can observe in its definition, FDR highly depends on false positives.
Clearly, an incident response team in a SOC may not conduct machine learning-based
methods if too many false positives occur, and a recent research [113] conduct an online
survey to understand SOC analysts’ perspective on this issue in depth. Thus, we can
conduct feature selections for each machine learning algorithm to control the FDR. In this
context, ref. [17,83] successfully justified the necessity for combining TLS metadata, SPLT,
and BD feature sets to achieve better accuracy at a 0.00 % FDR, where the accuracy at a
0.00% FDR refers to the accuracy in the controlled trial.

In contrast, an increasing trend can be observed in the research efforts to conduct NTA
without security experts with the assistance of deep learning. Rezaei and Liu [24] introduced
a set of deep learning-based methods for traffic classification. Similarly, Aceto et al. [21]
provide an excellent systematic framework for comparison of deep learning architectures for
mobile encrypted traffic classification.
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Meanwhile, with the advance of AutoML systems, model selection can be automated.
In nPrintML [110], AutoGluon-Tabular [114] is used, which trains, optimizes, and tests over
50 machine learning models, such as tree-based methods, deep neural network models,
and neighbor-based classification models.

4.7. Hyperparameter Tuning

In machine learning, hyperparameter tuning is described as the process to determine
the right combination of hyperparameters for a machine learning algorithm. For example, in
Anderson and McGrew [96], a simple grid search over a set of standard values is performed
for a cross-validation dataset. However, as highlighted in [21], the hyperparameter tuning of
machine learning algorithms for encrypted traffic classification is substantially overlooked
in literature. As a solution, Holland et al. [110] recently proposed nPrintML, a system to
automate feature extraction and hyperparameter tuning, designed for various NTA tasks.

5. Conclusions

In this survey article, we discuss several TLS-encrypted NTA methods and their
deployment models in the context of malware detection and family classification for
security experts in SOCs. We observe that while TLS interception is widely used in industry,
the rise of privacy issues leads for researchers and some vendors to recommend inspection
without decryption. Another approach to utilize searchable encryption is promising, but the
current generation of SOCs has no incentive to deploy such solutions owing to performance
issues and an implausible assumption for malware. Thus, we discuss the state-of-the-
art methods which are suitable for SOCs which inspect TLS-encrypted traffic without
decryption, focusing on the machine learning-based methods. Especially, we emphasize
the current trend in TLS fingerprinting in industry and academia, which can be helpful for
security experts who intend to introduce machine learning-based methods in SOCs.

While a substantial number of studies have been conducted in this field, including some
groundbreaking works in recent years, there is still room for further improvement as follows:

• The existing proposals have been validated in different and small datasets. While
lack of diverse, large, and sharable datasets with labels is a persistent problem in
NTA [115], sharing TLS fingerprints in OSINT feeds seems to be relatively plausible.
Thus, designing OSINT-friendly TLS fingerprinting techniques with more features
optimized for machine learning-based NTA can be a promising research direction.

• With the fast adoption of TLS 1.3, visibility of TLS-encrypted traffic using TLS intercep-
tion is rapidly decreasing in many SOCs, even though the enhanced flow records are
collected. It is because that in TLS 1.3, many features in TLS handshake metadata are no
longer collectible due to inherent secure design. It implies that more features in TLS-
encrypted traffic should be collected with novel feature representations, well-designed
machine learning algorithms, and model optimization techniques, under the diverse
constraints of SOCs (privacy, cost, automation, scalability, etc.). Recent advances in deep
learning-based NTA can be a potential research direction.

• The current academic literature lacks consideration in real-time and online processing
for NTA. Considering the higher requirements of deep learning-based methods, we
may need to be aware of systematic and holistic approaches in NTA.
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