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Abstract: Creation of head 3D models from videos or pictures of the head by using close-range
photogrammetry techniques has many applications in clinical, commercial, industrial, artistic, and
entertainment areas. This work aims to create a methodology for improving 3D head reconstruction,
with a focus on using selfie videos as the data source. Then, using this methodology, we seek to pro-
pose changes for the general-purpose 3D reconstruction algorithm to improve the head reconstruction
process. We define the improvement of the 3D head reconstruction as an increase of reconstruction
quality (which is lowering reconstruction errors of the head and amount of semantic noise) and
reduction of computational load. We proposed algorithm improvements that increase reconstruction
quality by removing image backgrounds and by selecting diverse and high-quality frames. Algorithm
modifications were evaluated on videos of the mannequin head. Evaluation results show that baseline
reconstruction is improved 12 times due to the reduction of semantic noise and reconstruction errors
of the head. The reduction of computational demand was achieved by reducing the frame number
needed to process, reducing the number of image matches required to perform, reducing an average
number of feature points in images, and still being able to provide the highest precision of the head
reconstruction.

Keywords: 3D head reconstruction; close-range photogrammetry; videogrammetry; smartphone-
based photogrammetry; 3D point cloud; deep learning; structure from motion; morphometry; anthro-
pometric measurements

1. Introduction

Three-dimensional modeling of the human head has a wide range of applications.
Three-dimensional data of the head, with extension to the whole body, are widely used
in clinical, industrial, anthropological, forensic, sports, commercial, and entertainment
areas. Medical applications of 3D scanning may be divided into four groups: epidemiol-
ogy, diagnosis, treatment, and monitoring [1,2]. The 3D measurements can benefit cranial
deformation studies [3–6], diagnosis, craniofacial information analysis [7], and evaluation
of the effects of orthotic helmets [8]. Models and 3D visualizations allow measurements
to be performed for planning a surgical intervention, assess surgical outcomes, measure
changes after surgeries, forecast the result of a facial plastic/cosmetic surgery, document
clinical cases, compare pre-treatment and post-treatment models [9], perform more accu-
rate orthodontics diagnoses [10], and achieve better dental reconstruction results [11]. In
biomedical engineering, anthropometrical measurements help to design prosthesss [12]
and allow for the rapid prototyping of customized prostheses. The manufacturing of
medical products has to be based on population anthropometrical studies so that medical
equipment perfectly suits the physical characteristics of patients [13]. Head 3D modeling
may be used for the documentation of research, registering EEG electrode positions [14–16],
collection of anthropometric data [17–21], and defining normal head parameters [22]. Non-
medical fields of 3D head modeling applications include computer animation, movies
and animation, security, teleconferences, and virtual reality, forensic identification [23],
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behavior research (perceptions of attractiveness), identifying human facial expressions, and
sculpture [24]. Another large group of applications are found in industry: design of head-
wear products, such as helmets, headgear, glasses, and headphones [25,26]; optimization
of wearable product comfort and function [27–29], perform better ergonomic design of
human spaces, simulate the wearing of clothes [30,31], and create products that take into
account ergonomics [27,32], model and predict respirator size and fit [25,33,34].

There are several types of imaging techniques to create 3D models: laser line sys-
tems [35], structured light systems [36], close-range photogrammetry [37–39], and radio-
wave-based image capturing systems [40]. Image-based reconstruction and modeling of
scene [41–43], objects [44] and processes [45,46] is a widely accessible technique in terms of
price for gathering information [1,47,48]. The complexity of usage of such technologies
mostly depends on algorithms and user interface design. Three-dimensional objects may
be reconstructed by fitting mathematical models to the collected image data [49,50]. How-
ever, the model is required, and it should be adequate to represent a range of variations
the modeled object may possess. Therefore, the most popular technique for estimating
three-dimensional structures from two-dimensional image sequences is Structure from
Motion (SfM) [51–54]. The means of object modeling that is easily accessible to ordinary
users is based on handheld devices, such as smartphones [55,56]. Smartphone-based
close-range digital photogrammetry would be the desired way for modeling objects at
home. Photogrammetry using ordinary consumer-grade digital cameras can provide a
cost-effective and sufficiently accurate solution for creating 3D models of the head as new
smartphones come equipped with higher quality cameras. The most common application
of head modeling for home users could be the acquisition of head anthropometric data in
order to select the appropriate size of headwear products. The other application could be
trying out head apparel.

The construction process of the head 3D model for the home user must be fully
automatic. The software tool is only allowed to give the user simple directions to correct
their actions if they lead to a model of unsatisfactory quality. The simplest way for the
user to collect a set of their head images would be to record a selfie video covering as
many various views of their head as possible. Using a general-purpose 3D reconstruction
algorithm, automatic reconstruction of the head may suffer from the non-static scene and
various image photometric distortions.

This work proposes a methodology for the improvement of 3D head reconstruction,
primarily from selfie videos, by increasing reconstruction quality and reducing the number
of required computations.

The novelty and contributions of this work can be summarized as follows:

• Adaptation of a general-purpose 3D reconstruction algorithm to create head 3D point
clouds from selfie videos;

• Achieved an increase of 3D head reconstruction quality by removal of background
information and by selecting a subset of best quality frames from the full set of frames;

• Presented and compared methods for the selection of the highest quality frames;
• Performed comparative evaluation of feature sources (layer of convolutional neural

network (CNN)) and dimensionality-reduction (DR) techniques used to order images
by similarity in R2 and R3 with the purpose to predict the image’s relative pose;

• Presented comparative results of the 3D head reconstruction improvements using
mannequin head videos.

Overview of the general-purpose 3D reconstruction algorithm and its proposed modi-
fications to improve the 3D head reconstruction process is presented in Figure 1.

The outline of the paper is as follows. In Section 2, materials and methods are described.
In Section 3, computational experiments and their results and discussion are presented.
Finally, Section 4 gives the conclusions of this work.
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Figure 1. Overview of the generalized 3D reconstruction pipeline. Steps of the reconstruction process
are listed on the left side of the scheme; outputs of the corresponding steps (resulting data) are
listed beside on the right; arrows point the flow of the data to the upcoming steps of the pipeline.
Highlighted steps (bold dark blue font) are newly introduced steps in the presented variants of the
baseline reconstruction algorithm.

2. Materials and Methods

In this section, we describe the general-purpose 3D reconstruction algorithm and its
shortcomings in using it for head reconstruction; we create a methodology for the improve-
ment of 3D head reconstruction and use it to propose changes for the general-purpose
3D reconstruction algorithm; we present the rationale behind the proposed algorithm
improvements and their implementation solutions; we describe the experimental data
collection process, creation of head reference and test models; and outline the evaluation
process of reconstruction algorithms.
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2.1. 3D Reconstruction Algorithms
2.1.1. Requirements for 3D Reconstruction Algorithm from Usability Viewpoint

Shortcomings of the general-purpose 3D reconstruction algorithm in head modeling
arise from the specifics of how the initial data (mostly it will be a selfie video) is collected
and the kind of final reconstruction (model) we want to create. We aim to create a head
model that is without semantic noise, i.e., the reconstructed scene contains only the head
as an object and no other points that would belong to non-head objects. Such a model
would not require any automatic or manual postprocessing, which would not necessarily
be accurate and successful enough, but also, the model would be more appropriate for
making measurements and for visualization purposes. Moreover, we want to create a
model that has as few reconstruction errors as possible. Thus, we want the model to be high
quality, i.e., having a low level of semantic noise and a low level of reconstruction errors.

Semantic noise in the reconstructed scene will exist as everything will be reconstructed,
not just the object of interest. The bad thing is that the noise will interfere with measure-
ments or disturb visualization. It would be possible to edit or filter a point cloud, but this
is a complicated task and does not guarantee a quality result. The other requirement for
the data collection process in order for the general-purpose 3D reconstruction algorithm
worked properly is that the scene must be static. However, if we are capturing our own
head (most of the cases) or another person’s head, it will not be possible to ensure that
everything in the scene is fixed and does not move. Facial emotions during filming for
30–90 s could be controlled, but staying still so that there are no background changes is
practically impossible. During reconstruction, a changing background would interfere
with the reconstruction of the object, as richer textures in the background may result in a
more accurate reconstruction of the object’s environment, but not the object itself. A partial
solution could be filming in the environment with a patternless, textureless background,
but the user would need a background that spans almost entirely around them (such as a
corner between walls of the same color) such a place may be hard to locate. Therefore, an
easier solution would be to remove the background in the photos so that the background
would not have influence.

Another need for adjustment of the reconstruction algorithm is the specialization for
working with videos. It is more convenient to film one’s head than photograph it, especially
if a person wants to image their head. Making selfie videos using a smartphone is more
convenient than taking many selfie photos because, during the shooting, a user needs to
keep the face as still as possible. Moreover, a user should not move the handheld camera too
fast during filming in order to minimize image distortions, such as motion blur and rolling
shutter. Slow camera movement during filming will create many similar frames, so it is not
helpful to use all frames for the reconstruction. Due to the excessive number of repetitive
images, the volume of calculations for the reconstruction will increase significantly, but the
accuracy will practically not improve. It would be helpful to detect and remove from the
reconstruction process frames that have highly redundant information. Among the many
frames, there will also be low-quality ones, where the face is slightly outside the frame
or affected by motion blur distortions due to a shaky hand. Such frames also need to be
removed. Thus, the basic reconstruction algorithm has been supplemented with actions to
remove unnecessary frames and, as a result, lower reconstruction errors.

2.1.2. Methodology for Improvement of 3D Head Reconstruction

Here, we propose a methodology for the improvement of 3D head reconstruction. We
seek reconstruction improvement by increasing the reconstruction quality and reducing
the number of required computations. We define the model quality by the amount of
semantic noise and reconstruction errors—the higher level of noise and errors, the lower
the quality of the model. The methodology is a list of possible solutions that systematically
originated from the factors that negatively affect the reconstruction process and quality of
the head model.
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We have summarized the factors that may negatively affect the reconstruction process
and quality of the reconstructed head model (discussed in previous Section 2.1.1):

1. Changing background—due to the movement of the head in respect of the background
or existence of other moving objects in the background;

2. Motion blur and rolling shutter distortion—due to low light conditions and faster
movement of the camera, shivering of hand;

3. Defocus distortions—if the camera focuses on background objects;
4. Head out of frame limits—stumbles making selfie videos;
5. Too many frames—due to the inefficient design of camera positioning around the

head and, as a consequence, acquired long recording (excess of redundant frames
only slows down reconstruction process).

These key modifications of the general-purpose 3D reconstruction algorithm should
improve 3D head reconstruction from selfie videos by weakening factors that negatively
affect the reconstruction process and quality of the model:

1. Elimination of image background—suppresses the negative influence of the changing
background to the reconstruction process; reduces the amount of semantic noise; back-
ground elimination frees from computations in the background region of the image;

2. Selection of the highest quality frames—as a result, reconstruction errors are reduced
because images with motion blur, defocus distortions, and images, where the head
is out of frame limits, are removed; reduces the number of frames that are redun-
dant, so the computational load is reduced; removal of redundant frames enables
moving the camera slowly while capturing in order to reduce motion blur and rolling
shutter distortions.

Specifics of the implementation solutions of these modifications will be presented and
discussed in Section 2.1.4.

2.1.3. Baseline Algorithm

The default Photogrammetry Pipeline from the AliceVision Meshroom software (ver-
sion 2021.1.0) [57] with small adjustments was used as a general-purpose 3D reconstruc-
tion algorithm, and in the comparative evaluation of the algorithms it represented the
baseline algorithm.

The reasons that led to the choice of the Meshroom were its functionality (features),
popularity among users, acceptable reconstruction quality, being open-source, active de-
velopment, the possibility to access and modify intermediate data, modular structure,
and command-line interface. In order to evaluate the proposed modifications of the 3D
reconstruction pipeline, a flexible environment for experimentation was needed. Mesh-
room provides a means to adapt the pipeline through its customizable workflow and/or
by accessing intermediate data. It is easy to intervene in the workflow with custom data
processing steps. It is worth mentioning that there exist a number of other photogrammetry
software as free/open-source and commercial packages. Free/open-source applications
for SfM [58]: COLMAP [59,60], OpenMVG [61], VisualSFM [62], Regard3D [63], Open-
DroneMap (ODM) [64], MultiViewEnvironment (MVE) [65], MicMac [66]. Commercial
solutions [67]: 3Dflow 3DF Zephyr [68], Agisoft Metashape [69], Autodesk ReCap [70],
Bentley ContextCapture [71], CapturingReality RealityCapture [72], PIX4Dmapper [73],
PhotoModeler [74], DroneDeploy [75], OpenDroneMap WebODM [76], Trimble Inpho [77],
and Elcovision 10 [78].

The adjustments and their justification are following:

• Describer Types in FeatureExtraction node were changed from sift to a combination of
sift_upright and akaze_ocv—the first change because the camera is not rotated during
the capture and hence the feature orientation may be fixed; the second change adds
more diverse features to increase matching robustness;

• In FeatureMatching node parameters, Cross Matching and Guided Matching, were
enabled—to increase matching robustness;
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• The default single StructureFromMotion node was changed to a sequence of two
StructureFromMotion nodes with the following different settings—in the first Struc-
tureFromMotion node, the value of parameter Min Input Track Length was changed
from 2 to 3, and the value of parameter Min Observation For Triangulation was
changed from 2 to 4. In the second StructureFromMotion node, the parameter Lock
Scene Previously Reconstructed was enabled, and the value of parameter Min Obser-
vation For Triangulation was changed from 2 to 3. Such setup increases the number of
reconstructed cameras and reduces the noise in the point cloud;

• Only the sparse reconstruction part of the whole reconstruction pipeline was used, so
the sparse point cloud from the last StructureFromMotion node was used as the test
model in the evaluation.

This baseline algorithm in the context of the generalized 3D reconstruction pipeline
(Figure 1) consists of the steps: 1. Frame extraction from video; 2. Camera initialization; 6. Feature
point detection; 8. Feature description; 9. Image matching; 10. Feature (descriptor) matching;
11. Structure from motion (sparse reconstruction). Formally, 5. Frame selection step was also
performed in a simple way because a large amount of extracted frames from the video was
reduced 3 to 4 times, depending on the initial frame count, so that the remaining frame
count was near 400. The set of frames was reduced by taking every third or fourth frame.
All selected frames from the videos were sent to the 3D reconstruction algorithm without
any preprocessing. Any geometric distortions, for instance, due to camera optics, were
corrected during the bundle adjustment process of 11. Structure from motion step when the
extrinsic and intrinsic parameters of all cameras, together with the position of all 3D points,
are being refined.

The following are the essential steps of the Meshroom’s StructureFromMotion
node [57,79], which is an incremental algorithm, and are concealed under the 11. Structure
from motion step (Figure 1): 1. Fusion of all feature matches between image pairs into tracks;
2. Selection of the initial image pair and estimation of the fundamental matrix between
these two images; 3. Triangulation of the feature points from the image pair; 4. Next best
view selection; 5. Estimation of a new camera pose (robust RANSAC framework is used
to find the pose of the new camera, and nonlinear optimization is performed to refine the
pose); 6. Triangulation of the new points; 7. Performing Bundle Adjustment to refine the
positions of 3D points, extrinsic and intrinsic parameters of the reconstructed cameras;
8. Looping from the fourth to eighth step until no new views are localized.

When introducing algorithm improvements according to the presented methodology
(Section 2.1.2), adjustments presented here are kept.

2.1.4. Algorithms with Proposed Modifications

In the previous sections, we discussed the requirements for 3D head reconstruction
algorithms from selfie videos from the usability viewpoint (Section 2.1.1). Later, the
methodology for the improvement of 3D head reconstruction was proposed (Section 2.1.2).
The methodology consists of key modifications of the general-purpose 3D reconstruction
algorithm to improve 3D head reconstruction from selfie videos. Here, we introduce
implementations of algorithm improvements according to the presented methodology.

All modifications are introduced gradually in order to be able to compare their in-
fluences on the reconstruction process. It resulted in three major branches of modified
reconstruction algorithms and a total of six minor branches. The summary of the 3D head
reconstruction algorithms, which will be explored in this work, is presented in Table 1.
The main modifications followed from the proposed methodology in Section 2.1.2, which
specifies that the elimination of the image background and selection of the highest quality
frames should be performed.
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Table 1. Summary of 3D reconstruction algorithms tested: baseline 3D reconstruction algorithm (1)
and its variants (2a, 2b, 3a, 3b, 4a, 4b). All variants introduce head detection and discarding of feature
points outside the bounding box of the head. Variants 3a, 3b, 4a, and 4b additionally utilize image
quality during the frame number reduction but differ in the applied reduction strategy.

Reconstruction Step 1
Variant of 3D Reconstruction Pipeline

1 2 3 4

(Baseline) a b a b a b

1. Load frames + + + +
2. Camera initialization + + + +
3. Head detection – + + +
4. Image quality estimation – – + +
5. Frame selection 2 N-th N-th Best from N Best from all
6. Feature point detection 3

(Normal–n; High–h)
n n h n h n h

7. Feature point selection
(remove KPs outside BBox) – + + + + + +

8. Feature description + + + + + + +
9. Image matching + + + + + + +
10. Feature (descriptor) matching + + + + + + +
11. SfM (sparse reconstruction) + + + + + + +
1 reconstruction steps correspond to the order of the generalized 3D reconstruction pipeline in Figure 1; 2 frame
selection strategies: “N-th”, selects every N-th frame; “Best from N”, selects the frame with the highest quality
from consecutive N frames; “Best from all”, selects a certain number of frames from the full set of frames
exploiting image quality and image similarity information; 3 Describer Density preset in Meshroom’s Feature
Extraction node.

Background Elimination

The first branch of the baseline algorithm is created by adding image background
elimination and is labeled as Pipeline 2 with sub-branches {a|b} (Figure 1). The sub-branches
differ in one change of a parameter value: the value of Describer Density parameter in
the FeatureExtraction node in the case of variant (a) is normal, and in case of variant (b) is
high. Background elimination is implemented as 7. Initial feature point selection following
the 6. Feature point detection step of the generalized 3D reconstruction pipeline. The initial
feature point selection (or elimination of unnecessary points) process requires information
about the bounds of the main object, i.e., the head. This information is provided by the
3. Head detection step of the generalized 3D reconstruction pipeline. The background
elimination is implemented through feature point selection—it was a more reasonable way
to integrate this step with the Meshroom pipeline. Simple masking of the background in
the initial images would lead to spurious feature points on the edge of the background
cutting.

Head Detection

A convolutional neural network (CNN) single-shot detector (SSD) [80] is used for head
detection [81] in the images (Figure 2). The model adopted in this research was developed
by the authors of LAEO-Net [82]. The model’s suitability for the task was evaluated by
manually revising the head detection results on the collected dataset of 19 videos. The
bounding box (BBox) that indicates the boundaries of the head in the image will be used
to remove those feature points that are behind the boundary of the head. During the
head detection, not only data on the location of the head in the image are collected, but
additionally intermediate results from the intermediate convolutional layers of the CNN
(Figure 3). Data from the feature layers are used as features to describe the image patch
containing the head. By using these features, the frames can be grouped according to
similarity. This grouping will be exploited later in redundant frame dropping.
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Figure 2. Diagram of the convolutional neural network (CNN) model that was used for human head
detection showing the main convolutional layers. The model is composed of a Single-Shot Detector
(SSD) head and a VGG-16 backbone. Features from the last 15 convolutional layers were investigated
for suitability to sort images by similarity in order to predict the relative location of the frames in the
3D space. Layer names and filter shapes are presented above the boxes (notations of convolutional
layers). The numbers on the boxes specify the shape of the feature layers. The model adopted in this
research is developed by the authors of LAEO-Net [82].

Frames Selection Methods

Two goals may be achieved simultaneously by performing frame selection—removing
redundant data from the dataset to reduce the dataset and, as a result, reduce the computa-
tional load, and removing images that are low quality due to motion and defocus blur. We
implemented and tested two different methods for frame selection.

The first method is a straightforward extension of the simplest frame reduction strategy
where every N-th frame is selected. The modification is made by integrating image quality
estimates into the frame selection process. Image quality is estimated for every frame,
and instead of selecting every N-th frame, the frame with the highest quality from N
consecutive frames is selected. The image quality estimation method is presented below.
The second branch of the baseline algorithm is created by adding the simplest frame
reduction strategy together with the previously added image background elimination and
is labeled as Pipeline 3 with sub-branches {a|b} (Table 1). This frame reduction strategy is
implemented as 4. Image quality estimation and 5. Frame selection steps of the generalized 3D
reconstruction pipeline (Figure 1).

The second frame selection method is more universal. It selects a predefined number
of frames from a full set of frames, so the images may have come from an unordered image
set—from a video with chaotic camera trajectories, from different videos, or collected as
photographs. To achieve a satisfactory object 3D reconstruction result, we need images that
are evenly spaced and cover a wide area around the object, and we need to additionally
include a spacing term in the image quality estimate. The image quality estimation method
in combination with spatial image ordering is presented below. The third branch of the
baseline algorithm is created by adding the frame reduction strategy, which performs image
ordering by similarity and later selects the best quality images in image groups, and is
labeled as Pipeline 4 with sub-branches {a|b} (Table 1). This frame reduction strategy is
implemented as 4. Image quality estimation and 5. Frame selection steps of the generalized 3D
reconstruction pipeline (Figure 1).

Image Quality Estimation

The image sharpness metric was used as an estimate of image quality for the frame
selection. This algorithm implements the 4. Image quality estimation step of the generalized
3D reconstruction pipeline (Figure 1) when Pipeline 3{a|b} is selected (Table 1).

Key algorithm steps for image sharpness estimation:
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1. Detect the head region defined by BBox (it is already detected in the background
removal step);

2. Calculate Region of Interest (RoI) parameters: define the size of square as the largest
edge of head BBox;

3. Crop RoI part and resize to 256 × 256 px image patch;
4. Filter patch using Laplacian of Gaussian (LoG) filter (3 × 3 filter size, σ = 0.5);
5. Calculate the variance of filtered patch;
6. A larger variance represents a higher image sharpness.

Frame Pose Prediction by Image Similarity Ordering

Frame pose prediction by ordering images according to similarity is a crucial step to
create a subset of images that covers a wide area around the object and contains evenly
spaced images. Here, we define image similarity in terms of camera pose in 3D space.
Pictures or frames having similar poses will likely be similar if the scene is static. Image
ordering by similarity is a proxy task to predict the relative poses of the frames. Having
relative poses, we could select the best quality image from the image group corresponding
to a predefined region of the surrounding space. To imitate image ordering in 3D space or
in 2D space, if we assume that the camera keeps an approximately constant distance from
the head, we would like to get 3D or 2D embeddings of the images.

To get image embeddings in 2D or 3D, a possible solution would be to collect multidi-
mensional feature vectors that describe images containing a head from the CNN that were
used to detect heads in the images and later to reduce dimensionality. The CNN model
is trained to detect heads, so the features extracted by the network should serve as good
descriptors of the head image patch. Additionally, it would be the third task where the
same CNN model serves, i.e., head detection for initial feature point selection, for image
quality evaluation as the RoI provider, and here, as a feature extractor for image description.
Feature vectors can be taken from any feature layer at any (row, column) position. The
position (row, column) is determined from the results of the same network—the center
of the detected BBox of the head (Figure 3). A suitable feature layer may be suggested
according to the size of the receptive fields of the units and from the units that the feature
layer has. The further the feature layer starts from the input, the larger the receptive fields
of the units of that layer are. The size of the receptive field will determine what part of the
image the extracted feature vector describes. We want to compare, by similarity only, the
image regions that semantically represent the head. Intuitively, the size of the receptive
field should be such that it spans the region of the head in the image. However, we will
perform experiments to select the feature layer that is most helpful to provide feature
vectors (Table 2).
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frames’ relative location in the scene’s space. The spatial position of the feature vector in the feature
layer is relatively the same (proportional) as the position of the center of the head’s bounding box
(BBox) in the image.

Table 2. Summary of the CNN’s last 15 feature layers that were investigated for suitability to provide
useful information for sorting images by similarity in order to predict the relative location of the
frames in the space at the time of imaging.

Layer No. Layer Name
Feature Layer Size RF Size

[N × M × K] 1 [px] 2 [%] 3

11 Conv 5-1 32 × 32 × 512 51 10
12 Conv 5-2 32 × 32 × 512 59 12
13 Conv 5-3 32 × 32 × 512 67 13
14 Conv 6 (fc6) 32 × 32 × 1024 287 56
15 Conv 7 (fc7) 32 × 32 × 1024 287 56
16 Conv 8-1 32 × 32 × 256 287 56
17 Conv 8-2 16 × 16 × 512 287 56
18 Conv 9-1 16 × 16 × 128 287 56
19 Conv 9-2 8 × 8 × 256 287 56
20 Conv 10-1 8 × 8 × 128 287 56
21 Conv 10-2 4 × 4 × 256 289 56
22 Conv 11-1 4 × 4 × 128 289 56
23 Conv 11-2 2 × 2 × 256 511 100
24 Conv 12-1 2 × 2 × 128 511 100
25 Conv 12-2 1 × 1 × 256 511 100

1 (rows × columns × channels); 2 size of the layer unit’s receptive field in pixels; 3 size of the layer unit’s receptive
field relative to the size of the input image, in percent.

Particular feature vector (from a specific layer, certain (row, column) location) will
mostly be shift invariant, but not scale or rotation invariant. Shift invariance was achieved
by using information about the detected center of the head BBox to determine the (row, col-
umn) location of the feature vector. Rotation invariance is not as important because during
the short video capture, the camera may be used without large tilt rotations. Scale invari-
ance probably would be slightly needed if we made a selfie video using an outstretched
hand. If the video was made with a strongly changing distance from the camera to the
head, or if we use frames from different videos, the scale of the head in separate frames
may differ. This can lead to the situation where feature vectors differently describe the
same object due to the change of the object’s size. Scale invariance may be achieved by
performing double-pass head detection—after the first run, the detected BBox is used to
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crop the image region with the head, and the cropped image is passed to the model for
the second detection. We will perform experiments to check what changes in the results of
image similarity order may be achieved by adding a second pass.

The extracted feature vectors are multidimensional. The dimensionality of the feature
vector is equal to the number of channels in the feature layer. In order to get image
embeddings in 2D or 3D, we must reduce the dimensionality of the feature vectors. A set
of dimensionality techniques will be compared in order to select the one that, combined
with the selected type of feature vector, will provide the best-ordered images by similarity.
The goodness of the image order will be measured by the percentage overlap of the two
sets that contain the closest images to the target image. It means that for each image, we
find the closest group of images in space (according to known image poses), and we find
the closest (most similar) images according to the extracted feature vectors. The percentage
overlap of these sets gives the estimate of the goodness of the image order. As the ground
truth poses the images, we use the reconstructed poses using Pipeline 2b (Table 1).

The following dimensionality-reduction techniques will be experimentally compared
for suitability for image ordering by similarity.

• t-Distributed Stochastic Neighbor Embedding (t-SNE);
• Stochastic Neighbor Embedding (SNE);
• Classical multidimensional scaling (MDS);
• Principal Component Analysis (PCA);
• Probabilistic PCA;
• Kernel PCA;
• Linear Discriminant Analysis (LDA);
• Factor Analysis (FA);
• Sammon mapping;
• Diffusion maps;
• Stochastic Proximity Embedding (SPE);
• Gaussian Process Latent Variable Model (GPLVM);
• Neighborhood Components Analysis (NCA);
• Large-Margin Nearest Neighbor (LMNN).

Implementations of the techniques were used from the Matlab Toolbox for Dimensionality
Reduction (https://lvdmaaten.github.io/drtoolbox accessed on 9 August 2021) [83,84].

The best performing combination of the feature type and dimensionality-reduction
technique will be used for frame selection in Pipeline 4.

Key algorithm steps for frame selection in Pipeline 4:

1. Extract feature vectors describing the regions of images that contain the head;
2. Perform dimensionality reduction using the selected technique;
3. Define a grid in the low-dimensional feature space that divides the space into uniform

cells. A step size of the grid depends on the total frame number we want to select (in
this research, the target was 200 frames);

4. In each cell, if several frames get into the same cell, only the image with the largest
sharpness gets kept.

Visualization of the frame selection process using gridding is presented in Figure 4.
Results of experimental comparison of feature types, dimensionality-reduction techniques,
single-pass vs. double-pass, and image embedding in 2D vs. 3D, are presented in Section 3.

https://lvdmaaten.github.io/drtoolbox
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Figure 4. Method for selecting frames of the highest quality: in (a) frames are ordered by their
similarity in 2D (for visualization purposes) using the t-SNE dimensionality-reduction technique, and
the spanned area is subdivided into equal parts where only one image with the highest sharpness
(quality metric) in each grid cell is kept, resulting in a set of diverse images of the highest quality (b).

2.2. Creation of the Head Models

Getting the evaluation results of reconstruction algorithms is based on the comparison
of test and reference models. For objective evaluation, it is crucial to create a high-quality
reference model. The creation of test models is directed by the algorithms we seek to com-
pare. Therefore, the construction processes of reference and test models have differences.
The reference and test models were constructed using the specifically collected data. The
collection process of the video and photo data is described in Section 2.5.

2.2.1. Reference Model Creation

The goal of the reference model creation task is to reconstruct the mannequin’s head
with the highest precision. This 3D model should have the lowest level of semantic noise
and the lowest level of reconstruction errors. Semantic noise (any points belonging to the
non-head class) may be reduced by removing background information from the images.
Possible reconstruction errors may be reduced by making and selecting the highest quality
images. The creation of the reference head model does not have time or tool selection
constraints or any manual work quota. After the photos were taken, they were manually
edited to remove the background. The background is removed approximately by trying
to select as much as possible of it without damaging parts of the head. The photos were
also reviewed to avoid poor-quality photos with poor focus and motion blur distortions. A
total of 187 photos were selected for reference model reconstruction. Three-dimensional
photomodeling was performed using Meshroom software (version 2021.1.0) [57]. The
default pipeline of Meshroom photogrammetry with the default parameters was used,
except the Describer Density preset from Feature Extraction node was changed from normal
to high, and the Describer Type was changed from sift to sift_upright, forcing orientation
of all features the same. The reconstructed reference head model with camera positions is
shown in Figure 5. In the evaluation of the automatic reconstruction algorithms, the result
of the final reconstruction step, i.e., the mesh (refer to Figure 1, step 17. Texturing of the
reconstruction pipeline), is used.
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Figure 5. Construction of the mannequin’s reference 3D head model. (a) Visualized reconstructed
point cloud with camera poses. Some pictures that correspond to various camera poses are shown
alongside. (b) Is the final rendered result of the reconstruction.

2.2.2. Creation of Test Models

The creation of test models is made according to the reconstruction algorithms we seek
to compare. Here we use video data simulating selfie video scenarios. All frames from the
videos without any preprocessing are fed to the 3D reconstruction algorithms previously
described. Three-dimensional photomodeling was performed using Meshroom software in
tandem with Matlab, which was used for the implementation of algorithm modifications.
The settings of the Meshroom and algorithm modifications are described in Section 2.1. In
the evaluation of the automatic reconstruction algorithms, the result of the Structure from
Motion reconstruction step, i.e., the sparse point cloud (refer to Figure 1, step 11. Structure
from Motion of the reconstruction pipeline), is used.

2.3. Reconstruction Quality Evaluation

Three-dimensional head reconstruction algorithms were evaluated and compared
by several tests. The most important results were gathered by comparing the created
test models (sparse point clouds) to the reference model (mesh). Details on the model
construction procedures can be found in Section 2.2. The comparison of the models
was organized in two different setups: by comparing the distances between all closest
points of the aligned models and by comparing the distances between the closest points
of aligned models only in the facial area of the head. The rationale of comparing all
points—it evaluates the overall quality of the model (incorporates the influence of the
non-model parts to the model’s evaluation results)—includes semantic noise (objects from
the background) and assesses the need for additional processing of the model in order
to clean it. The rationale of comparing only the facial points of the models shows the
algorithm’s ability to reconstruct fine details of the head that are relatively stable, i.e.,
excluding parts that may be changing during separate imaging runs. The hair region
shape can be easily distorted (distortions may be larger than face details but smaller than
variations in the whole reconstructed scene), so only model points from the facial region
are used in the model comparison. Additionally, head shape, not necessarily including
hair, will be the right source of head size information for applications, such as for size
selection of hat, helmet, glasses, or similar wearables. Points of the reference model were
manually classified into facial and non-facial regions. During the model comparison, when
the distances between the closest points of two models are computed, non-facial points of
the reference model and the closest points of the test model are discarded.
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In this research, the absolute scale of the models was not calculated. This is the
consequence of using uncalibrated 2D images. Additional information is needed in order
to estimate absolute scale [85]. Scale differences are eliminated during the alignment of
test models to the reference model; therefore, comparative evaluation of the automatic
reconstruction algorithms does not require scale information.

The comparison procedure of the test and reference models when all closest points of
both models are used (Evaluation Case 1) and only points in the facial area of the head are
used (Evaluation Case 2) (all steps are common for both cases unless otherwise noted) is as
follows:

1. Three-dimensional facial feature points are detected in the test and reference models
(explained below in this Section and in Figure 6):

(a) detection of facial feature points in individual frames;
(b) transfer of points from images to the 3D model;

2. Estimation of parameters of the 3D geometric transformation between two sets of 3D
facial feature points. Applying the geometric transform to the test model to align it to
the reference model;

3. Finding of the closest test and reference model points and distances between them
using the k-nearest neighbors algorithm;

4. (Only in Evaluation Case 2) Remove distances that include points from the facial
region of the reference head;

5. Evaluate the distances (as residual errors of model alignment) by applying statistical
methods to find the mean and confidence intervals.

Facial Feature Point Detection

Anatomical landmarks, in this research, facial feature points, provide the means to
perform various manipulations with the target object [21,86–89]. In this research, facial
feature points were used to align the test and reference 3D models. The approach to
use facial feature points for model alignment is selected due to the variety of the created
test models. In cases when the test point cloud contains a large number of spurious
points and reconstructed points from background objects, point cloud alignment using the
traditional iterative closest point algorithm will likely fail. Facial feature points may be
detected in 2D images with high confidence. Additionally, faces will be detected in multiple
images, and this will lead to higher localization precision of facial landmarks. Knowing
the parameters of the reconstructed cameras, feature points may be transferred from 2D
images to the reconstructed 3D model. After transferring landmarks to the 3D model,
multiple coordinates representing the same facial landmark are averaged after removing
outliers. Facial feature points were detected in the images using the FaceLandmarkImg.exe
tool from the facial behavior analysis toolkit in OpenFace (version 2.2.0) (https://github.
com/TadasBaltrusaitis/OpenFace accessed on 9 August 2021). The description of the
landmark detection algorithm may be found in [90,91]. The detection of landmarks was not
performed in the highly off-angle (profile) images. An example of the detected facial feature
point locations on a 2D face and their locations on the 3D model is shown in Figure 6.

2.4. Software Used

The software tools and programming languages we used in this research are:

• MATLAB programming and numeric computing platform (version R2021a, The Math-
works Inc., Natick, MA, USA) for the implementation of introduced improvements to
the baseline reconstruction algorithm by integrating with AliceVision/Meshroom; for
data analysis and visualization;

• Meshroom (version 2021.1.0) (https://alicevision.org accessed on 9 August 2021) [57],
3D reconstruction software based on the AliceVision photogrammetric computer
vision framework. Used for the execution of the baseline reconstruction algorithm
and as a frame for the improved algorithms;

https://github.com/TadasBaltrusaitis/OpenFace
https://github.com/TadasBaltrusaitis/OpenFace
https://alicevision.org
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• MeshLab (version 2020.07) (https://www.meshlab.net accessed on 9 August 2021) [92]
for the editing of reference head mesh;

• SSD-based upper-body and head detector (https://github.com/AVAuco/ssd_people
accessed on 9 August 2021) [82], for the detection of heads and as a source of features
for image similarity sorting;

• OpenFace (version 2.2.0) (https://github.com/TadasBaltrusaitis/OpenFace accessed on
9 August 2021) [90,91], a facial behavior analysis toolkit for facial landmark detection.

• Matlab Toolbox for Dimensionality Reduction (https://lvdmaaten.github.io/drtoolbox
accessed on 9 August 2021) [83,84].

Figure 6. Facial feature points detected in one of the images (plotted as red dots) (a) and projected
onto the reconstructed 3D model of the mannequins head (sparse point cloud) (b). For the alignment
of the experimental models (sparse point cloud) to the reference model (dense point cloud), only
facial feature points presented in (b) are used.

2.5. Setup and Data Collection

The performance of the 3D head reconstruction improvements was tested on the
mannequin head. Comparative evaluation of the algorithms requires a reference head
model and test models. The capturing of the head was performed differently for the
creation of the reference model and for the test models. Imaging of the mannequin head for
the reference model was performed in such a setup that it would allow for the creation of a
high-quality 3D model. Imaging setup for the test models was determined by the need to
compare the performance and expose the properties of the 3D reconstruction algorithms
while applying the algorithms in real-world scenarios.

Firstly, the mannequin head was prepared for capturing and photogrammetry by
giving it a faint texture; because the mannequin’s skin was very smooth and even, without
any pattern compared to a real face’s skin, which has a texture, the face of the mannequin
was covered with faint glitter makeup. The presence of the texture is necessary for the
successful matching of image patches during the reconstruction. The given makeup can be
observed in the images of Figure 5a.

The pictures of the mannequin for the construction of the 3D reference head model
were taken using a Nikon D3200 Digital SLR camera. The photographs were taken in
an environment where the lighting of the dummy was uniform and adequate. Shooting
settings: image resolution was set to the maximal 6016 × 4000 pixels, the photo quality was
set to maximal, flash was turned off, focal length was kept fixed (focal length 18 mm), focal
ratio f/3.5, exposure time 1/500 s. During all shooting, the mannequin’s head was kept
steady, without turning on the base, keeping the background neutral and without changes.

The videos for the creation of the test models were acquired using the smartphone
Samsung Galaxy S10+ standard Camera App. For the comparative evaluation of the algo-

https://www.meshlab.net
https://github.com/AVAuco/ssd_people
https://github.com/TadasBaltrusaitis/OpenFace
https://lvdmaaten.github.io/drtoolbox
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rithms, 19 videos were taken. Acquisition conditions were varied while taking individual
video footages: changing the orientation of the smartphone, changing lighting conditions,
stationary or varying background, frame rates of 30 or 24 frames/second, frame size
3840 × 2160 pixels, and changing mannequin makeup for more or less glitter. The average
length of the videos was 51.5 ± 16.7 s. The movement pattern of the phone while capturing
was the same for all videos—a zigzagging sideways movement while moving slowly from
top to bottom, trying to imitate an effort to make a selfie video that captures one’s head
from all sides as wide as possible from reaching with a hand.

3. Results and Discussion

This work presents and evaluates a methodology for the improvement of the 3D head
reconstruction process. The methodology is created keeping in mind that 3D reconstruction
algorithms are intended for use in creating head models from selfie videos, and the models
will most likely be used to make head measurements in order to select a suitable size of
head wearables (hats, helmets, eyeglasses, etc.). This application of the algorithm forces the
exploitation and respect of the properties and constraints of such data. The adaptation of
algorithms to process this kind of data was the scope of this research.

Identified factors that may negatively affect the reconstruction process and quality
of the reconstructed head model are as follows: changing background (non-static scene),
motion blur, defocus and rolling shutter distortions, head out of frame limits, and excess of
redundant frames, which only slows down the reconstruction process.

The primary sources of 3D head reconstruction improvements are—increase the re-
construction quality and reducing the number of required computations. The quality of
reconstruction is defined by two components—reconstruction errors of the head and the
amount of semantic noise. Thus, the approaches of quality improvement are to reduce
both of the mentioned components. Semantic noise is reduced by minimizing non-head
points in the reconstructed model, so the reconstructed scene includes only head points
(this is mainly reflected by the results of Evaluation Case 1). Reconstruction errors of the
head are reduced by suppressing factors that deteriorate the reconstruction precision (this
is reflected by the results of Evaluation Case 2). The reduction of semantic noise leads
to an easier localization of the head feature points, where anchors may be attached for
measurements; reduced reconstruction errors provide a more precise head model and thus
more accurate and reliable measurements.

Semantic noise reduction is achieved by removing other objects (background infor-
mation) from the initial head images. Reduction of reconstruction errors is achieved by
increasing the image quality used for reconstruction, i.e., by selecting and using images
of the highest quality. Images with higher quality (here, quality is mainly defined by the
amount of motion blur and defocus) allow for more precise reconstruction of the head.

Reduction of computational demand is achieved by these solutions: reducing the
image number used to reconstruct the model by discarding redundant frames and reducing
the feature number in images (leaving only features related to the head).

In summary, the required key modifications of the general-purpose 3D reconstruction
algorithm in order to improve 3D head reconstruction from selfie videos are the elimination
of image background and selection of the highest quality frames.

The proposed modifications to the general-purpose 3D reconstruction algorithm were
introduced gradually, and their influence on the reconstruction process was evaluated in
the reconstruction experiments. The gradual introduction resulted in three major branches
of modified reconstruction algorithms and a total of six minor branches of algorithms:
Pipeline 2 {a|b}, Pipeline 3 {a|b}, and Pipeline 4 {a|b}.

Two basic experiments were designed and used to perform a comparative evaluation
of the algorithms. One experiment was for the evaluation of the core part components
of Pipeline 4 (results in Tables 3 and 4). The second experiment evaluated the general-
purpose 3D reconstruction algorithm and its three major modifications we proposed in the
reconstruction of the head from selfie videos (results in Table 5).
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For evaluation, experimental data were collected. The dataset consists of 19 test videos
of the mannequin head and the reference head model. The reference head model was
constructed from high-quality photographs with some manual input of the operator to
increase the quality of the head model. For the test data, the head was captured in such a
way that imitates selfie videos. The details of data collection are presented in Section 2.5.
A summary of the common statistics about processed experimental data is presented in
Table 6. Sparse point clouds of reconstructed heads by using all reconstruction pipelines
discussed in the article are presented in supplementary Figure S1.

Comparative results of Pipeline 1 and 2 reveal the influence of image background
elimination on 3D head reconstruction. The evaluation of Pipeline 3 shows the cumulative
influence of an additional minor change—the selection of the best quality frames from
several consecutive frames. The results of Pipeline 4 reveal a larger influence of selection of
the highest quality frames from the full set of frames. The construction of Pipeline 4 required
the selection of a combination of the feature sources (layer of CNN) and dimensionality-
reduction (DR) technique used to order images by similarity. The latter comparison is
performed in a separate experiment.

Pipeline 4 uses a more universal method to select images of the highest quality. If we
have ordered images (i.e., frames with known poses in space), we could simply select the
best image from the group of the closest images—this approach is implemented in Pipeline 3.
If the image pose is unknown, we first have to predict some probable relative pose, which
can be done by ordering images according to similarity. For the image similarity assessment,
we used features from CNN that were used to detect the head. The extracted feature vectors
were used as descriptors of the image patch that holds the head. For image embedding in 2D
or 3D (needed for frame selection method), dimensionality reduction is required, as image
descriptors are multidimensional vectors. Dimensionality techniques were compared in
combination with feature type (source layer of CNN). The results of the discussed methods
for image ordering potency by similarity are presented in Table 3 (embedding in 2D case)
and Table 4 (embedding in 3D case). The results in the tables represent the portion of
correctly predicted images being the most similar to the reference image. A score of 100
would show that the method correctly predicts the full image group that is closest to the
reference image when the reference closeness is calculated from the known image poses.
The best performing combination of feature type and dimensionality-reduction technique is
taking features from the 14th convolutional layer Conv 6 (fc6) and the t-SNE DR technique.
This is valid in both 2D and 3D cases and in both head detection cases—single pass and
a double pass. Comparing feature types and DR techniques separately, the findings are
the same—features from the 14th convolutional layer and t-SNE DR technique perform
the best. From the DR techniques comparison, the second-best result is performing no
dimensionality reduction. The second best feature source depends on the head detection
strategy (one pass or two passes). Comparing the head detection strategies, the results
show that the two-pass strategy helps increase the usefulness of features from further
convolutional layers (starting from 17th). The receptive fields of units from these layers are
larger, the feature layers themselves are smaller, so the variations of head positioning within
the receptive field are corrected more by head detection than selecting a feature vector from
a suitable (row, column) location. If averaged over all feature layers, the two-pass strategy
systematically increases the scores. Image embedding in 3D provides slightly better scores
than that in 2D.
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Table 3. Comparison of feature sources (convolutional layer number) and dimensionality-reduction techniques used to order images by similarity (closeness) in R2.
The values in the table are scores (mean ± SD), which represent the number of correctly predicted images (in percent) being the most similar to the reference image.
The best performance was highlighted in red.

F 1 D 2 NoMap 3 tSNE 4 SNE 5 MDS 6 PCA 7 ProbPCA 8 KPCA 9 LDA 10 FA 11 Sammon 12 DM 13 SPE 14 GPLVM 15 NCA 16 LMNN 17 ΣM
18

1 59.9 ± 18 62.7 ± 20 4.82 ± 4.7 31.7 ± 19 31.7 ± 19 31.7 ± 19 6.74 ± 6.7 16.7 ± 13 31.1 ± 18 39.4 ± 19 26.7 ± 17 19.7 ± 15 31.7 ± 19 21.7 ± 16 59.9 ± 18 30.0 ± 2311 2 44.1 ± 20 48.1 ± 22 4.92 ± 4.8 24.5 ± 17 24.5 ± 17 24.7 ± 17 6.85 ± 6.8 14.8 ± 12 23.9 ± 17 30.1 ± 19 20.0 ± 15 15.1 ± 13 24.5 ± 17 18.1 ± 14 44.1 ± 20 23.2 ± 20
1 63.6 ± 17 66.5 ± 19 4.90 ± 4.9 34.7 ± 19 34.7 ± 19 34.7 ± 19 6.80 ± 6.7 17.6 ± 14 34.2 ± 19 42.7 ± 19 31.4 ± 19 24.9 ± 16 34.7 ± 19 24.2 ± 17 63.6 ± 17 33.0 ± 2412 2 48.1 ± 19 52.7 ± 22 4.96 ± 5.4 25.2 ± 17 25.2 ± 17 24.8 ± 17 6.87 ± 6.9 15.5 ± 12 25.2 ± 17 32.8 ± 20 20.1 ± 15 16.4 ± 13 25.2 ± 17 20.4 ± 15 48.1 ± 19 24.7 ± 21
1 65.9 ± 16 67.8 ± 19 4.86 ± 4.7 37.0 ± 19 37.0 ± 19 37.8 ± 19 6.56 ± 6.9 21.5 ± 15 35.9 ± 18 43.4 ± 19 29.6 ± 18 28.3 ± 17 37.0 ± 19 26.5 ± 18 65.9 ± 16 34.8 ± 2513 2 51.7 ± 19 55.0 ± 21 5.35 ± 6.5 27.1 ± 17 27.1 ± 17 27.2 ± 18 6.39 ± 6.4 15.5 ± 13 26.6 ± 17 32.4 ± 19 20.3 ± 16 19.8 ± 15 27.1 ± 17 20.2 ± 15 51.7 ± 19 26.3 ± 21
1 71.6 ± 14 74.1 ± 16 46.1 ± 23 41.5 ± 20 41.5 ± 20 40.7 ± 19 12.0 ± 14 18.1 ± 14 40.5 ± 20 45.5 ± 19 43.2 ± 20 25.7 ± 17 41.5 ± 20 24.0 ± 17 69.0 ± 15 40.0 ± 2514 2 70.1 ± 15 72.8 ± 18 45.6 ± 25 40.5 ± 18 40.5 ± 18 41.3 ± 18 10.9 ± 12 14.4 ± 12 39.3 ± 18 44.1 ± 19 34.0 ± 19 22.7 ± 16 40.5 ± 18 23.6 ± 17 67.5 ± 16 38.2 ± 25
1 59.8 ± 17 61.8 ± 19 52.6 ± 21 34.7 ± 18 34.7 ± 18 33.0 ± 18 8.42 ± 6.9 16.1 ± 13 32.1 ± 18 38.1 ± 19 35.0 ± 18 29.3 ± 18 34.7 ± 18 24.6 ± 17 60.2 ± 17 35.3 ± 2315 2 60.5 ± 17 62.3 ± 20 50.6 ± 20 32.3 ± 19 32.3 ± 19 28.0 ± 17 10.4 ± 10 14.1 ± 13 30.3 ± 18 35.7 ± 19 32.8 ± 19 26.0 ± 17 32.3 ± 19 22.9 ± 17 60.6 ± 17 33.8 ± 23
1 53.7 ± 18 55.0 ± 21 47.1 ± 21 34.1 ± 19 34.1 ± 19 29.0 ± 17 15.4 ± 16 24.8 ± 16 27.9 ± 17 36.9 ± 19 33.9 ± 19 30.0 ± 18 34.1 ± 19 24.3 ± 16 53.1 ± 18 34.5 ± 2116 2 55.2 ± 18 56.7 ± 20 46.8 ± 20 31.7 ± 18 31.7 ± 18 26.2 ± 16 24.6 ± 21 21.1 ± 15 23.5 ± 15 34.6 ± 19 32.5 ± 18 28.0 ± 18 31.7 ± 18 22.7 ± 16 55.1 ± 18 33.8 ± 21
1 43.6 ± 18 43.4 ± 20 36.0 ± 19 25.6 ± 17 25.6 ± 17 19.7 ± 14 8.68 ± 7.9 14.6 ± 11 22.5 ± 16 27.8 ± 17 26.0 ± 17 21.7 ± 15 25.6 ± 17 20.3 ± 15 42.7 ± 18 26.3 ± 1917 2 55.3 ± 18 56.6 ± 20 47.6 ± 20 33.1 ± 18 33.1 ± 18 27.7 ± 16 15.9 ± 18 19.4 ± 14 22.5 ± 15 35.7 ± 19 33.3 ± 18 29.6 ± 18 33.1 ± 18 21.9 ± 16 54.5 ± 18 33.6 ± 22
1 40.0 ± 18 39.2 ± 20 34.2 ± 19 26.8 ± 17 26.8 ± 17 23.9 ± 16 16.4 ± 15 17.2 ± 13 23.9 ± 16 29.3 ± 17 26.5 ± 17 24.3 ± 16 26.8 ± 17 20.6 ± 15 39.7 ± 18 27.0 ± 1818 2 48.7 ± 18 48.1 ± 20 40.7 ± 20 29.3 ± 17 29.3 ± 17 25.9 ± 17 27.4 ± 19 20.3 ± 14 25.3 ± 16 31.7 ± 18 29.3 ± 17 28.4 ± 18 29.3 ± 17 24.3 ± 17 49.3 ± 18 31.7 ± 20
1 36.4 ± 17 35.1 ± 19 29.2 ± 18 21.8 ± 15 21.8 ± 15 21.2 ± 14 10.4 ± 11 22.4 ± 16 15.3 ± 12 24.0 ± 15 22.9 ± 15 19.1 ± 13 21.8 ± 15 19.6 ± 14 36.6 ± 17 23.1 ± 1719 2 53.7 ± 18 53.8 ± 21 45.5 ± 20 32.5 ± 19 32.5 ± 19 28.3 ± 17 18.6 ± 19 23.0 ± 17 29.5 ± 18 34.9 ± 19 32.4 ± 19 30.8 ± 18 32.5 ± 19 23.4 ± 16 53.7 ± 18 34.3 ± 21
1 32.8 ± 17 31.1 ± 18 26.2 ± 17 20.0 ± 14 20.0 ± 14 19.7 ± 14 13.8 ± 14 16.9 ± 13 13.1 ± 11 22.2 ± 15 21.5 ± 14 19.3 ± 14 20.0 ± 14 19.3 ± 14 32.3 ± 17 21.2 ± 1620 2 49.6 ± 18 49.0 ± 21 41.8 ± 20 31.2 ± 18 31.2 ± 18 28.5 ± 18 26.2 ± 18 21.3 ± 15 28.4 ± 17 33.2 ± 19 31.1 ± 18 30.3 ± 18 31.2 ± 18 22.8 ± 16 48.6 ± 18 32.7 ± 20
1 42.3 ± 19 41.4 ± 21 34.3 ± 19 25.3 ± 16 25.3 ± 16 21.1 ± 15 11.8 ± 13 18.9 ± 14 22.1 ± 15 27.3 ± 17 25.3 ± 16 21.6 ± 16 25.3 ± 16 23.5 ± 16 42.9 ± 19 26.5 ± 1921 2 58.2 ± 18 59.1 ± 20 50.0 ± 20 33.0 ± 18 33.0 ± 18 30.8 ± 18 17.2 ± 19 20.9 ± 15 29.1 ± 17 36.7 ± 19 33.2 ± 18 30.0 ± 18 33.0 ± 18 25.1 ± 17 57.6 ± 18 35.5 ± 22
1 40.3 ± 19 39.1 ± 20 33.5 ± 19 25.6 ± 17 25.6 ± 17 21.1 ± 15 18.3 ± 16 21.5 ± 16 20.4 ± 15 27.4 ± 17 26.0 ± 17 23.6 ± 17 25.6 ± 17 24.2 ± 17 40.3 ± 19 26.9 ± 1822 2 53.5 ± 18 53.5 ± 20 44.9 ± 20 31.9 ± 18 31.9 ± 18 28.3 ± 17 27.7 ± 19 25.4 ± 17 27.4 ± 17 35.0 ± 19 32.1 ± 18 31.4 ± 18 31.9 ± 18 25.6 ± 17 53.0 ± 18 34.6 ± 21
1 46.4 ± 20 45.8 ± 22 40.5 ± 21 32.4 ± 19 32.4 ± 19 24.6 ± 17 16.5 ± 18 24.8 ± 17 24.8 ± 17 34.9 ± 19 32.3 ± 19 30.5 ± 19 32.4 ± 19 27.3 ± 18 45.7 ± 20 31.9 ± 2123 2 55.5 ± 18 56.1 ± 20 47.3 ± 21 31.6 ± 18 31.6 ± 18 26.8 ± 16 21.7 ± 20 25.0 ± 17 23.9 ± 15 35.7 ± 19 31.8 ± 18 30.2 ± 18 31.6 ± 18 25.5 ± 17 55.7 ± 18 34.4 ± 21
1 44.4 ± 20 43.6 ± 22 38.7 ± 21 31.9 ± 19 31.9 ± 19 28.4 ± 18 25.3 ± 19 24.8 ± 17 25.3 ± 17 34.1 ± 20 32.6 ± 19 31.4 ± 19 31.9 ± 19 27.6 ± 17 44.1 ± 20 32.3 ± 2024 2 51.1 ± 18 50.1 ± 21 42.9 ± 20 30.2 ± 17 30.2 ± 17 28.6 ± 17 29.2 ± 18 25.6 ± 17 24.6 ± 16 34.0 ± 18 31.0 ± 18 29.5 ± 17 30.2 ± 17 26.2 ± 17 51.0 ± 18 33.2 ± 20
1 45.7 ± 21 44.6 ± 22 42.1 ± 22 31.4 ± 20 31.4 ± 20 29.2 ± 19 25.4 ± 19 30.0 ± 20 29.2 ± 19 39.2 ± 21 31.0 ± 20 29.1 ± 18 31.4 ± 20 33.0 ± 19 45.6 ± 21 34.0 ± 2125 2 55.5 ± 18 55.9 ± 21 48.8 ± 21 31.7 ± 19 31.7 ± 19 26.6 ± 16 27.8 ± 20 22.6 ± 17 22.9 ± 15 36.4 ± 20 32.1 ± 19 30.1 ± 19 31.7 ± 19 26.3 ± 17 55.1 ± 18 34.7 ± 22
1 49.8 ± 21 50.1 ± 24 31.7 ± 23 30.3 ± 19 30.3 ± 19 27.7 ± 18 13.5 ± 15 20.4 ± 16 26.6 ± 18 34.1 ± 20 29.6 ± 19 25.2 ± 17 30.3 ± 19 24.0 ± 17 49.4 ± 21

ΣF
19

2 54.1 ± 19 55.3 ± 21 37.8 ± 25 31.1 ± 18 31.1 ± 18 28.3 ± 18 18.5 ± 18 19.9 ± 15 26.8 ± 17 34.9 ± 19 29.7 ± 18 26.6 ± 18 31.1 ± 18 23.3 ± 16 53.7 ± 19
1 feature layer number corresponding to the Table 2; 2 iteration of head detection in image; 3 evaluation results of image similarity without dimensionality reduction of the feature vector;
dimensionality-reduction techniques: 4 t-Distributed Stochastic Neighbor Embedding (t-SNE), 5 Stochastic Neighbor Embedding (SNE), 6 Classical multidimensional scaling (MDS),
7 Principal Component Analysis (PCA), 8 Probabilistic PCA, 9 Kernel PCA, 10 Linear Discriminant Analysis (LDA), 11 Factor Analysis (FA), 12 Sammon mapping, 13 Diffusion maps,
14 Stochastic Proximity Embedding (SPE), 15 Gaussian Process Latent Variable Model (GPLVM), 16 Neighborhood Components Analysis (NCA), 17 Large-Margin Nearest Neighbor
(LMNN); 18 score (mean ± SD) of all dimensionality-reduction techniques for different feature layers, 19 score (mean ± SD) of all feature layers for different dimensionality-reduction
techniques.
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Table 4. Comparison of feature sources (convolutional layer number) and dimensionality-reduction techniques used to order images by similarity (closeness) in R3.
The values in the table are scores (mean ± SD), which represent the number of correctly predicted images (in percent) being the most similar to the reference image.
The best performance was highlighted in red.

F 1 D 2 NoMap 3 tSNE 4 SNE 5 MDS 6 PCA 7 ProbPCA 8 KPCA 9 LDA 10 FA 11 Sammon 12 DM 13 SPE 14 GPLVM 15 NCA 16 LMNN 17 ΣM
18

1 59.9 ± 18 64.4 ± 19 4.89 ± 4.7 41.2 ± 19 41.2 ± 19 41.1 ± 19 6.83 ± 6.9 23.3 ± 16 39.4 ± 19 47.7 ± 19 31.6 ± 18 35.9 ± 18 41.2 ± 19 30.0 ± 18 59.9 ± 18 36.3 ± 2411 2 44.1 ± 20 50.6 ± 22 4.88 ± 4.7 29.9 ± 18 29.9 ± 18 30.1 ± 18 6.89 ± 7.1 20.7 ± 15 28.2 ± 18 35.8 ± 19 21.3 ± 16 26.3 ± 17 29.9 ± 18 22.8 ± 16 44.1 ± 20 27.2 ± 21
1 63.6 ± 17 67.5 ± 19 4.93 ± 4.8 44.0 ± 19 44.0 ± 19 44.2 ± 20 6.91 ± 6.9 24.0 ± 17 41.9 ± 19 52.1 ± 19 35.2 ± 20 42.1 ± 19 44.0 ± 19 31.9 ± 18 63.6 ± 17 39.1 ± 2512 2 48.1 ± 19 55.4 ± 21 4.92 ± 5.3 31.8 ± 19 31.8 ± 19 31.2 ± 19 7.01 ± 7.2 22.0 ± 15 31.8 ± 19 38.7 ± 20 22.0 ± 15 28.4 ± 17 31.8 ± 19 25.6 ± 17 48.1 ± 19 29.5 ± 22
1 65.9 ± 16 69.0 ± 18 4.80 ± 4.7 45.2 ± 19 45.2 ± 19 45.9 ± 19 6.60 ± 7.0 32.3 ± 19 43.5 ± 19 54.2 ± 19 35.1 ± 20 45.5 ± 19 45.2 ± 19 34.3 ± 18 65.9 ± 16 40.7 ± 2513 2 51.7 ± 19 57.5 ± 21 5.43 ± 6.2 33.3 ± 18 33.3 ± 18 33.7 ± 19 6.57 ± 6.6 19.7 ± 14 32.2 ± 18 40.6 ± 20 22.6 ± 16 32.6 ± 19 33.3 ± 18 26.7 ± 18 51.7 ± 19 30.9 ± 22
1 71.6 ± 14 74.8 ± 16 42.6 ± 23 53.6 ± 19 53.6 ± 19 52.7 ± 19 11.0 ± 12 25.8 ± 16 51.7 ± 19 58.3 ± 18 51.6 ± 19 49.1 ± 19 53.4 ± 19 33.6 ± 18 69.0 ± 15 47.7 ± 2514 2 70.1 ± 15 74.4 ± 17 44.4 ± 25 53.0 ± 19 53.0 ± 19 54.7 ± 20 11.2 ± 12 20.2 ± 15 48.8 ± 19 58.7 ± 18 41.0 ± 19 47.8 ± 19 52.5 ± 19 30.8 ± 18 67.5 ± 16 46.5 ± 25
1 59.8 ± 17 62.8 ± 19 57.6 ± 18 45.4 ± 18 45.4 ± 18 41.0 ± 19 8.49 ± 6.9 27.1 ± 17 43.2 ± 18 49.1 ± 19 44.7 ± 19 45.7 ± 19 36.7 ± 19 32.8 ± 18 60.2 ± 17 41.8 ± 2315 2 60.5 ± 17 64.4 ± 19 56.7 ± 19 39.8 ± 19 39.8 ± 19 33.7 ± 18 10.5 ± 10 21.9 ± 16 36.5 ± 18 45.3 ± 19 38.5 ± 19 40.5 ± 19 37.7 ± 20 29.1 ± 18 60.6 ± 17 39.0 ± 23
1 53.7 ± 18 55.9 ± 20 52.0 ± 19 43.7 ± 19 43.7 ± 19 34.7 ± 18 17.1 ± 17 29.4 ± 17 29.6 ± 17 46.1 ± 19 42.9 ± 19 44.1 ± 19 43.7 ± 19 30.3 ± 17 53.1 ± 18 39.8 ± 2116 2 55.2 ± 18 58.1 ± 20 51.8 ± 19 38.9 ± 19 38.9 ± 19 30.7 ± 19 27.1 ± 22 29.2 ± 17 23.2 ± 15 42.6 ± 19 39.1 ± 19 39.4 ± 19 38.9 ± 19 29.6 ± 18 55.1 ± 18 38.3 ± 21
1 43.6 ± 18 44.6 ± 20 40.0 ± 19 34.4 ± 17 34.4 ± 17 26.0 ± 16 9.00 ± 8.2 20.2 ± 14 24.7 ± 16 35.6 ± 18 32.7 ± 17 33.8 ± 17 33.3 ± 17 25.9 ± 16 42.7 ± 18 31.1 ± 1917 2 55.3 ± 18 57.8 ± 20 52.1 ± 19 40.3 ± 18 40.3 ± 18 30.5 ± 18 17.7 ± 20 27.8 ± 17 23.3 ± 15 44.1 ± 19 38.9 ± 18 41.2 ± 19 40.3 ± 18 30.1 ± 18 54.5 ± 18 37.9 ± 22
1 40.0 ± 18 40.1 ± 20 37.5 ± 18 34.3 ± 17 34.3 ± 17 27.4 ± 16 18.6 ± 16 20.0 ± 14 26.4 ± 16 35.3 ± 17 34.0 ± 17 34.1 ± 17 34.3 ± 17 25.6 ± 16 39.7 ± 18 31.2 ± 1818 2 48.7 ± 18 49.5 ± 20 45.7 ± 19 36.3 ± 18 36.3 ± 18 29.8 ± 18 31.0 ± 19 26.6 ± 16 25.8 ± 16 39.9 ± 19 37.1 ± 19 38.2 ± 19 36.2 ± 18 29.9 ± 17 49.3 ± 18 36.5 ± 20
1 36.4 ± 17 36.3 ± 19 33.4 ± 18 27.8 ± 16 27.8 ± 16 26.3 ± 16 11.0 ± 11 26.1 ± 16 16.0 ± 12 29.9 ± 16 29.0 ± 17 28.6 ± 16 27.2 ± 16 25.4 ± 16 36.6 ± 17 26.8 ± 1719 2 53.7 ± 18 55.3 ± 20 50.7 ± 19 39.7 ± 19 39.7 ± 19 31.3 ± 18 21.5 ± 20 29.6 ± 19 30.4 ± 18 43.5 ± 19 39.7 ± 19 41.4 ± 19 39.7 ± 19 31.8 ± 18 53.7 ± 18 38.7 ± 21
1 32.8 ± 17 31.9 ± 18 30.0 ± 17 25.8 ± 15 25.8 ± 15 25.9 ± 16 15.0 ± 15 20.7 ± 14 13.3 ± 11 28.0 ± 16 26.3 ± 16 26.9 ± 16 25.8 ± 15 24.3 ± 15 32.3 ± 17 24.4 ± 1620 2 49.6 ± 18 50.1 ± 20 46.8 ± 19 37.9 ± 19 37.9 ± 19 31.3 ± 18 29.9 ± 19 29.1 ± 17 28.4 ± 17 41.2 ± 19 39.0 ± 19 39.8 ± 19 37.9 ± 19 30.6 ± 18 48.6 ± 18 36.9 ± 20
1 42.3 ± 19 42.7 ± 21 38.5 ± 19 31.0 ± 17 31.0 ± 17 24.4 ± 16 13.0 ± 14 25.3 ± 15 23.5 ± 16 33.4 ± 18 31.1 ± 18 31.4 ± 18 31.0 ± 17 28.3 ± 17 42.9 ± 19 30.5 ± 1921 2 58.2 ± 18 60.5 ± 20 55.5 ± 19 42.9 ± 19 42.9 ± 19 36.6 ± 19 19.6 ± 20 27.5 ± 17 31.9 ± 17 46.6 ± 19 44.1 ± 19 43.8 ± 19 42.9 ± 19 33.0 ± 18 57.6 ± 18 41.8 ± 22
1 40.3 ± 19 40.1 ± 20 36.9 ± 19 31.2 ± 18 31.2 ± 18 25.5 ± 17 20.8 ± 18 26.7 ± 17 21.1 ± 15 33.1 ± 18 31.8 ± 18 32.1 ± 18 31.2 ± 18 29.0 ± 17 40.3 ± 19 30.5 ± 1922 2 53.5 ± 18 54.4 ± 20 50.9 ± 19 40.7 ± 19 40.7 ± 19 34.8 ± 19 30.2 ± 20 31.3 ± 18 27.3 ± 16 44.3 ± 19 42.5 ± 19 42.7 ± 19 40.7 ± 19 33.4 ± 19 53.0 ± 18 39.8 ± 21
1 46.4 ± 20 46.2 ± 22 43.7 ± 21 37.0 ± 19 37.0 ± 19 28.2 ± 18 18.3 ± 19 31.0 ± 18 24.7 ± 17 40.1 ± 20 36.6 ± 19 38.4 ± 20 37.0 ± 19 32.8 ± 18 45.7 ± 20 35.0 ± 2123 2 55.5 ± 18 56.8 ± 20 52.6 ± 20 39.7 ± 19 39.7 ± 19 30.5 ± 18 23.8 ± 21 31.9 ± 18 24.9 ± 15 44.6 ± 19 39.3 ± 19 42.0 ± 19 39.7 ± 19 33.6 ± 18 55.7 ± 18 39.3 ± 21
1 44.4 ± 20 44.1 ± 22 42.0 ± 20 36.2 ± 19 36.2 ± 19 33.4 ± 19 29.0 ± 21 32.4 ± 19 25.5 ± 17 38.9 ± 20 37.5 ± 19 37.8 ± 20 36.2 ± 19 32.9 ± 18 44.1 ± 20 35.3 ± 2024 2 51.1 ± 18 51.6 ± 20 47.9 ± 19 37.6 ± 19 37.6 ± 19 34.3 ± 20 32.5 ± 19 33.4 ± 18 24.9 ± 16 42.0 ± 19 39.0 ± 19 40.2 ± 19 37.6 ± 19 32.9 ± 18 51.0 ± 18 37.8 ± 20
1 45.7 ± 21 45.1 ± 22 45.0 ± 21 32.2 ± 20 32.2 ± 20 31.3 ± 20 28.5 ± 20 35.5 ± 20 29.9 ± 19 42.2 ± 21 31.6 ± 20 37.9 ± 21 32.2 ± 20 38.4 ± 20 45.6 ± 21 35.6 ± 2125 2 55.5 ± 18 57.1 ± 20 53.0 ± 20 41.4 ± 20 41.4 ± 20 34.0 ± 18 32.6 ± 21 31.7 ± 18 23.5 ± 15 45.3 ± 20 42.4 ± 20 42.9 ± 20 41.4 ± 20 33.3 ± 19 55.1 ± 18 40.4 ± 22
1 49.8 ± 21 51.0 ± 24 34.3 ± 24 37.5 ± 20 37.5 ± 20 33.9 ± 20 14.7 ± 16 26.7 ± 17 30.3 ± 20 41.6 ± 20 35.4 ± 20 37.6 ± 19 36.8 ± 20 30.4 ± 18 49.4 ± 21

ΣF
19

2 54.1 ± 19 56.9 ± 21 41.6 ± 26 38.9 ± 19 38.9 ± 19 33.8 ± 19 20.5 ± 20 26.8 ± 17 29.4 ± 18 43.5 ± 20 36.4 ± 20 39.2 ± 20 38.7 ± 19 30.2 ± 18 53.7 ± 19
1 feature layer number corresponding to the Table 2; 2 iteration of head detection in image; 3 evaluation results of image similarity without dimensionality reduction of the feature vector;
dimensionality-reduction techniques: 4 t-Distributed Stochastic Neighbor Embedding (t-SNE), 5 Stochastic Neighbor Embedding (SNE), 6 Classical multidimensional scaling (MDS),
7 Principal Component Analysis (PCA), 8 Probabilistic PCA, 9 Kernel PCA, 10 Linear Discriminant Analysis (LDA), 11 Factor Analysis (FA), 12 Sammon mapping, 13 Diffusion maps,
14 Stochastic Proximity Embedding (SPE), 15 Gaussian Process Latent Variable Model (GPLVM), 16 Neighborhood Components Analysis (NCA), 17 Large-Margin Nearest Neighbor
(LMNN); 18 score (mean ± SD) of all dimensionality-reduction techniques for different feature layers, 19 score (mean ± SD) of all feature layers for different dimensionality-reduction
techniques.
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Table 5. Comparative results of 3D head reconstruction algorithms expressed as the residual errors
(in arbitrary units, ×10−3) of alignment of the test models to the reference model when the residuals
are calculated in the full region of the head (Evaluation Case 1) and when the residuals are calculated
only in the facial region of the head (Evaluation Case 2). The values in the table are the averages of
reconstruction residuals (±95% confidence). The best result in each row is highlighted in red.

Variant of 3D Reconstruction Pipeline 1

Video 1 (Baseline) 2a 2b 3a 3b 4a 4b

Evaluation case 1 (full region of the head)

1 327 ± 3.5 15.7 ± 0.20 14.4 ± 0.16 17.0 ± 0.20 16.2 ± 0.16 13.7 ± 0.20 14.6 ± 0.19
2 220 ± 2.1 14.2 ± 0.17 13.4 ± 0.13 13.2 ± 0.14 12.4 ± 0.11 9.38 ± 0.16 8.75 ± 0.13
3 135 ± 2.2 18.3 ± 0.30 17.8 ± 0.28 17.7 ± 0.29 16.5 ± 0.26 11.6 ± 0.28 10.9 ± 0.26
4 150 ± 1.6 17.0 ± 0.15 15.2 ± 0.11 15.7 ± 0.13 11.5 ± 0.079 9.82 ± 0.13 8.58 ± 0.10
5 125 ± 1.2 22.9 ± 0.22 16.9 ± 0.14 21.7 ± 0.19 19.9 ± 0.15 19.2 ± 0.25 24.8 ± 0.30
6 491 ± 5.9 21.0 ± 0.20 16.1 ± 0.13 20.1 ± 0.18 17.6 ± 0.13 26.8 ± 0.34 25.0 ± 0.28
7 513 ± 6.0 17.9 ± 0.27 17.1 ± 0.24 17.8 ± 0.24 16.7 ± 0.21 14.2 ± 0.28 14.5 ± 0.25
8 75.4 ± 0.78 11.9 ± 0.14 10.4 ± 0.11 13.3 ± 0.14 10.8 ± 0.096 10.1 ± 0.13 8.80 ± 0.093
9 72.4 ± 0.77 13.5 ± 0.16 12.5 ± 0.13 12.5 ± 0.14 11.7 ± 0.11 11.5 ± 0.18 9.73 ± 0.14
10 n/a 2 24.1 ± 0.31 28.0 ± 0.31 35.5 ± 0.42 27.9 ± 0.28 20.1 ± 0.49 19.5 ± 0.44
11 45.2 ± 0.42 13.5 ± 0.14 13.8 ± 0.12 14.4 ± 0.14 14.3 ± 0.12 13.0 ± 0.20 11.3 ± 0.16
12 46.1 ± 0.41 13.2 ± 0.13 11.8 ± 0.10 12.6 ± 0.12 12.4 ± 0.11 10.2 ± 0.18 8.95 ± 0.14
13 54.5 ± 0.59 14.4 ± 0.18 12.6 ± 0.14 16.1 ± 0.19 14.1 ± 0.16 12.0 ± 0.22 10.6 ± 0.20
14 166 ± 2.0 23.5 ± 0.34 21.3 ± 0.28 22.7 ± 0.27 18.8 ± 0.19 15.2 ± 0.30 11.6 ± 0.21
15 82.4 ± 0.72 21.1 ± 0.22 17.6 ± 0.16 16.2 ± 0.15 14.0 ± 0.11 10.2 ± 0.21 9.94 ± 0.18
16 77.2 ± 0.84 11.1 ± 0.15 10.6 ± 0.124 14.1 ± 0.16 10.6 ± 0.10 11.5 ± 0.19 11.3 ± 0.16
17 44.4 ± 0.39 13.8 ± 0.13 12.8 ± 0.11 12.9 ± 0.11 11.9 ± 0.090 10.8 ± 0.19 10.7 ± 0.16
18 45.4 ± 0.62 16.9 ± 0.25 14.3 ± 0.20 15.4 ± 0.20 13.8 ± 0.16 13.9 ± 0.35 12.1 ± 0.28
19 666 ± 9.2 17.0 ± 0.24 13.3 ± 0.23 14.2 ± 0.20 13.0 ± 0.17 12.9 ± 0.34 13.1 ± 0.34

Σ 3 160 ± 0.40 16.9 ± 0.044 15.1 ± 0.035 16.8 ± 0.041 14.7 ± 0.031 13.9 ± 0.053 13.3 ± 0.046
Evaluation case 2 (facial region of the head)

1 122 ± 1.9 9.93 ± 0.16 9.52 ± 0.14 11.4 ± 0.17 11.0 ± 0.14 9.85 ± 0.18 10.5 ± 0.18
2 53.7 ± 0.72 8.50 ± 0.13 8.59 ± 0.11 7.62 ± 0.10 7.22 ± 0.080 7.02 ± 0.14 5.93 ± 0.10
3 12.1 ± 0.27 12.1 ± 0.25 11.5 ± 0.23 11.9 ± 0.25 10.7 ± 0.21 9.92 ± 0.29 9.12 ± 0.26
4 7.46 ± 0.10 7.55 ± 0.081 6.93 ± 0.064 6.99 ± 0.070 6.82 ± 0.056 5.75 ± 0.093 5.88 ± 0.084
5 8.29 ± 0.11 6.92 ± 0.085 5.79 ± 0.062 6.51 ± 0.073 6.69 ± 0.064 5.89 ± 0.096 6.05 ± 0.090
6 66.4 ± 1.5 9.41 ± 0.11 8.36 ± 0.082 8.39 ± 0.089 7.74 ± 0.070 7.83 ± 0.12 7.88 ± 0.11
7 1060 ± 25 12.5 ± 0.35 11.1 ± 0.26 10.7 ± 0.27 11.3 ± 0.24 11.0 ± 0.33 12.2 ± 0.29
8 6.87 ± 0.11 6.63 ± 0.11 6.14 ± 0.089 7.59 ± 0.11 6.41 ± 0.077 6.76 ± 0.11 6.02 ± 0.078
9 8.81 ± 0.15 8.06 ± 0.14 7.87 ± 0.12 8.04 ± 0.13 7.22 ± 0.096 8.46 ± 0.18 6.67 ± 0.13
10 n/a 2 11.2 ± 0.23 13.1 ± 0.23 14.6 ± 0.28 12.1 ± 0.19 10.5 ± 0.36 10.8 ± 0.33
11 14.0 ± 0.20 9.01 ± 0.13 9.34 ± 0.12 9.79 ± 0.14 9.79 ± 0.12 9.20 ± 0.18 8.07 ± 0.14
12 9.03 ± 0.13 8.88 ± 0.13 8.54 ± 0.11 8.19 ± 0.12 8.85 ± 0.11 7.57 ± 0.17 7.48 ± 0.15
13 9.30 ± 0.17 9.53 ± 0.18 8.53 ± 0.14 10.3 ± 0.19 9.90 ± 0.16 8.85 ± 0.24 8.36 ± 0.21
14 9.46 ± 0.22 8.51 ± 0.20 8.61 ± 0.17 8.32 ± 0.14 7.55 ± 0.11 8.24 ± 0.21 6.56 ± 0.15
15 13.1 ± 0.20 9.58 ± 0.15 8.53 ± 0.11 8.68 ± 0.12 8.04 ± 0.089 7.71 ± 0.20 7.77 ± 0.18
16 8.00 ± 0.14 7.29 ± 0.14 7.35 ± 0.12 8.34 ± 0.14 6.85 ± 0.091 7.34 ± 0.16 7.68 ± 0.15
17 9.14 ± 0.13 8.91 ± 0.13 8.55 ± 0.11 7.98 ± 0.10 7.94 ± 0.085 7.40 ± 0.17 7.63 ± 0.15
18 12.1 ± 0.29 11.7 ± 0.27 10.8 ± 0.22 10.3 ± 0.20 9.41 ± 0.16 9.86 ± 0.32 9.19 ± 0.27
19 17.0 ± 0.46 13.6 ± 0.31 11.1 ± 0.28 10.7 ± 0.24 10.1 ± 0.19 10.6 ± 0.38 10.2 ± 0.34

Σ 3 51.3 ± 0.20 8.94 ± 0.033 8.37 ± 0.027 8.66 ± 0.029 8.15 ± 0.023 7.86 ± 0.038 7.55 ± 0.032
1 3D reconstruction algorithms are explained in Table 1; 2 head reconstruction did not provide a consistent model;
3 average of reconstruction residuals (±95% confidence) of all head models.

The results of the main comparative evaluation of the general-purpose 3D recon-
struction (as a baseline, Pipeline 1), and its modifications (Pipeline 2–4) we propose, are
presented in Table 5. There are two evaluation cases: Evaluation Case 1 measures 3D
head reconstruction residual errors in the entire region of the head, and in Evaluation
Case 2 residuals are calculated only in the facial region of the head. The results show that
the lowest averages of residuals of all videos are provided by Pipeline 4 (12 times smaller
in Evaluation Case 1 and 7 times smaller in Evaluation Case 2, compared to Pipeline 1).
Comparing the submodifications a and b of the algorithms, in case b, when more features
in the images are detected, the residuals are slightly lower. The influence of the semantic
noise on the quality of the reconstructed head model is mainly reflected by the results
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of Evaluation Case 1 where residuals are calculated in the full area of the reference head.
Evaluation Case 2 tells more about the model reconstruction errors (precision of the head
reconstruction) that may be influenced by the quality of the images. Tendencies of the
residual changes provided by different algorithms are consistent between these cases. If
the scene we are trying to reconstruct was not static, the baseline reconstruction process
might fail, as happened with the Video 10 case, because a moving background existed.

Table 6. Descriptive statistics of experimental data.

Variant of 3D Reconstruction Pipeline 1

Attribute 1 (Baseline) 2a 2b 3a 3b 4a 4b

Images 2 412 ± 86 412 ± 86 412 ± 86 412 ± 86 412 ± 86 202 ± 6.0 202 ± 6.0
Image matches 3 12,792 ± 2668 12,946 ± 2798 12,946 ± 2798 12,913 ± 2770 12,913 ± 2770 6207 ± 243 6207 ± 243
Feature points 4 21,108 ± 1167 6899 ± 1913 14,985 ± 4451 7046 ± 1953 15,248 ± 4507 6963 ± 1984 15,044 ± 4595
Points in PC1 5 32,996 ± 12,957 29,376 ± 10,373 37,589 ± 15,721 34,389 ± 11,972 46,220 ± 18,279 14,027 ± 5919 17,290 ± 8317
Points in PC2 6 13,322 ± 6600 15,054 ± 7809 20,207 ± 11,008 18,125 ± 9074 25,497 ± 13,100 8563 ± 4336 11,048 ± 6009

1 3D reconstruction algorithms are explained in Table 1; 2 average number of frames (±SD) selected for the
reconstruction; 3 average number of image matches (±SD) performed during reconstructions; 4 average number
of feature points (±SD) extracted in images; 5, 6 average number of points (±SD) in point clouds of the full head
and only in the face region, respectively.

Summarizing the data from Table 6, on average, Pipeline 1–3 were compared using
412 frames and required over 12,000 image pairs to compare. Pipeline 4 used on average
202 frames and required two times fewer image pairs to compare. The number of features
to match mainly depended on the submodifications of Pipelines—in case b, more than twice
the feature points in the images were detected. The baseline case used a large number of
features because features in the background region were not discarded. The evaluation
of the reduction of computational demand shows that the introduction of all proposed
improvements compared to the baseline algorithm reduced the frame number needed to
process by two times, reduced the number of image matches required to perform by six
times, reduced the average number of feature points in images by 1.4 times, while the point
count in the facial area of the head point cloud was reduced by only 1.2 times and provided
the highest precision of the head reconstruction.

The proposed photogrammetry algorithm improvements are highly adapted for head
reconstruction. To extend the usage of the algorithm for the reconstruction of other objects,
the head detector should be replaced with the detector of the target object. Object detectors
trained to recognize multiple object classes may prove useful in this case. The proposed
algorithms would be least adaptable for reconstruction applications beyond close-range
photogrammetry. Background masking would not be applicable to aerial cases.

There is still some room for additional improvements to the proposed algorithms.
The initial feature selection step could be upgraded to be able to mask the background
more precisely. The current head detector returns a bounding box that is used to select
useful feature points, but the bounding box does not follow the head contours. Face
detection and segmentation model, which provides a head segmentation mask, would
allow the removal of more feature points that belong to the background region. Another
upgradable operation is image subset selection using the regular grid after using the t-
SNE dimensionality-reduction technique for ordering images by similarity. Due to the
meaning of the distances in the case of t-SNE, the regular grid for partitioning the space
in order to group similar images may not be the optimal approach. More sophisticated
methods could better exploit the advantages of the t-SNE technique in finding the closest
images. The results of experiments of the image ordering by similarity (Tables 3 and 4)
show that the relative distances between images provided by t-SNE bear the largest amount
of information about the real distances between the poses of the views. In this research, the
absolute scale of the models was not estimated. Determination of the absolute scale can be
added in future research to create 3D models for absolute measurements.
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Some of the limitations of the presented experiment are that only the mannequin and
a single head were used for the experimental data collection. Larger testing scenarios with
more mannequins and even real people are of interest. An interesting question is how the
proposed algorithms would work in the case of real faces. Insights that were made during
the preparation and execution of the current experiment tell that there are factors that in,
the case of reconstructing real faces, would help to improve the model’s quality (lower
errors), but there are also factors that may impair the automatic reconstruction process.
Real faces could be reconstructed easier as they have various additional patterns that help
to extract more distinct features in the face area. This improves the determination of the
corresponding areas. Sources of reconstruction difficulties would reside in the capturing
of real faces using a camera. Involuntary face movements, small or large, are inevitable.
Some of them could be tolerated to a certain level. Larger movements need to be detected
and eliminated. The solution could be to automatically detect face movements that can not
be tolerated (if they have too much negative impact on the model’s quality) and exclude
a subset of the samples, or the user could be asked to recapture one’s face. Modifications
of the algorithms were designed keeping in mind that capturing one’s own head is most
convenient by making selfie videos using a smartphone. During a short filming period, the
face can be kept sufficiently still.

Another subject of improvement in further experiments could be the construction of a
reference head model. A better reference model could be created using high-accuracy 3D
scanners. This will be necessary in case absolute measurements need to be compared. In
the current research, our approach to create the reference model using the photogrammetry
pipeline without the proposed modifications that need to be tested does not prevent
relative comparison of the models and evaluation of the modifications to reveal their
relative influence. The quality of the reference model is maximized by using high-quality
manually revised images.

4. Conclusions

This work proposes a methodology for the improvement of 3D head reconstruction.
The primary application of these 3D reconstruction algorithms is to create one’s head model
using selfie video as the data source, so the improvements of the algorithms are directed
and somewhat constrained by the origin of the data. The adaptation of the algorithms to
process this type of data is the scope of this research.

The evaluation of 3D head reconstruction improvements was performed using
19 videos of a mannequin head. Reconstruction quality depends on the amount of se-
mantic noise and reconstruction errors of the head. The influence of the semantic noise on
the quality of the head model is mainly reflected by the results of Evaluation Case 1, where
residuals are calculated in the entire area of the reference head. These results show that the
baseline algorithm is improved 12 times by introducing all improvements—elimination
of the features in the background and selecting a subset of the best quality frames from
the complete set of frames. The same modifications of the algorithm presented the largest
improvement (nearly seven times) in Evaluation Case 2, where residuals are calculated only
in the face area of the reference head. The latter experimental case reflects the precision of
the head reconstruction.

The selection of a subset of best quality images is based on image ordering by similarity.
Comparative evaluation of feature sources (layer of CNN) and dimensionality-reduction
techniques used to order images by similarity showed that using t-Distributed Stochastic
Neighbor Embedding (t-SNE) in combination with features from the 14th convolutional
layer (out of 25) of CNN to order images by similarity in R3 provides the largest number
of correctly predicted images (75%), being the closest to the reference image. A compar-
ison of single-step and two-step approaches of head detection showed that in this case
(combination of 14th layer features and t-SNE), the approaches perform similarly.

The evaluation of the reduction of computational demand shows that the introduction
of all the proposed improvements compared to the baseline algorithm reduced the frame
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number needed to process by two times, reduced the number of image matches required to
perform by six times, reduced the average number of feature points in images by 1.4 times,
while the point count in the facial area of the head point cloud was reduced by only 1.2 times
and provided the highest precision of the head reconstruction.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/app12010229/s1, Figure S1: Sparse point clouds of reconstructed heads by using all recon-
struction pipelines discussed in the article.

Author Contributions: Conceptualization, D.M. and A.S.; methodology, D.M. and A.S.; software,
D.M.; validation, D.M. and A.S.; formal analysis, D.M.; investigation, D.M. and A.S.; resources, A.S.;
data curation, D.M.; writing—original draft preparation, D.M.; writing—review and editing, D.M.
and A.S.; visualization, D.M.; supervision, A.S.; project administration, A.S. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available upon reasonable request
from the corresponding author. The data are not publicly available due to privacy issues.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

LiDAR Light Detection and Raging; Laser Imaging Detection and Ranging
SfM Structure from Motion
PC Point Cloud
CNN Convolutional Neural Network
SSD Single Shot Detector
BBox Bounding Box
RoI Region of Interest
LoG Laplacian of Gaussian
DR Dimensionality Reduction

References
1. Zeraatkar, M.; Khalili, K. A Fast and Low-Cost Human Body 3D Scanner Using 100 Cameras. J. Imaging 2020, 6, 21. [CrossRef]
2. Mitchell, H. Applications of digital photogrammetry to medical investigations. ISPRS J. Photogramm. Remote. Sens. 1995, 50, 27–36.

[CrossRef]
3. Barbero-García, I.; Pierdicca, R.; Paolanti, M.; Felicetti, A.; Lerma, J.L. Combining machine learning and close-range photogram-

metry for infant’s head 3D measurement: A smartphone-based solution. Measurement 2021, 109686. [CrossRef]
4. Barbero-García, I.; Lerma, J.L.; Mora-Navarro, G. Fully automatic smartphone-based photogrammetric 3D modelling of infant’s

heads for cranial deformation analysis. ISPRS J. Photogramm. Remote Sens. 2020, 166, 268–277. [CrossRef]
5. Lerma, J.L.; Barbero-García, I.; Marqués-Mateu, Á.; Miranda, P. Smartphone-based video for 3D modelling: Application to

infant’s cranial deformation analysis. Measurement 2018, 116, 299–306. [CrossRef]
6. Barbero-García, I.; Lerma, J.L.; Marqués-Mateu, Á.; Miranda, P. Low-cost smartphone-based photogrammetry for the analysis of

cranial deformation in infants. World Neurosurg. 2017, 102, 545–554. [CrossRef]
7. Ariff, M.F.M.; Setan, H.; Ahmad, A.; Majid, Z.; Chong, A. Measurement of the human face using close-range digital photogram-

metry technique. In International Symposium and Exhibition on Geoinformation 2005; GIS Forum: Penang, Malaysia, 2005.
8. Schaaf, H.; Malik, C.Y.; Streckbein, P.; Pons-Kuehnemann, J.; Howaldt, H.P.; Wilbrand, J.F. Three-dimensional photographic

analysis of outcome after helmet treatment of a nonsynostotic cranial deformity. J. Craniofacial Surg. 2010, 21, 1677–1682.
[CrossRef]

9. Utkualp, N.; Ercan, I. Anthropometric measurements usage in medical sciences. BioMed Res. Int. 2015, 2015, 404261. [CrossRef]
10. Galantucci, L.M.; Lavecchia, F.; Percoco, G. 3D Face measurement and scanning using digital close range photogrammetry:

Evaluation of different solutions and experimental approaches. In Proceedings of the International Conference on 3D Body
Scanning Technologies, Lugano, Switzerland, 9–20 October 2010; p. 52.

https://www.mdpi.com/article/10.3390/app12010229/s1
https://www.mdpi.com/article/10.3390/app12010229/s1
http://doi.org/10.3390/jimaging6040021
http://dx.doi.org/10.1016/0924-2716(95)91288-U
http://dx.doi.org/10.1016/j.measurement.2021.109686
http://dx.doi.org/10.1016/j.isprsjprs.2020.06.013
http://dx.doi.org/10.1016/j.measurement.2017.11.019
http://dx.doi.org/10.1016/j.wneu.2017.03.015
http://dx.doi.org/10.1097/SCS.0b013e3181f3c630
http://dx.doi.org/10.1155/2015/404261


Appl. Sci. 2022, 12, 229 24 of 26

11. Galantucci, L.M.; Percoco, G.; Di Gioia, E. New 3D digitizer for human faces based on digital close range photogrammetry:
Application to face symmetry analysis. Int. J. Digit. Content Technol. Appl. 2012, 6, 703.

12. Jones, P.R.; Rioux, M. Three-dimensional surface anthropometry: Applications to the human body. Opt. Lasers Eng. 1997,
28, 89–117. [CrossRef]

13. Löffler-Wirth, H.; Willscher, E.; Ahnert, P.; Wirkner, K.; Engel, C.; Loeffler, M.; Binder, H. Novel anthropometry based on
3D-bodyscans applied to a large population based cohort. PLoS ONE 2016, 11, e0159887. [CrossRef]

14. Clausner, T.; Dalal, S.S.; Crespo-García, M. Photogrammetry-based head digitization for rapid and accurate localization of EEG
electrodes and MEG fiducial markers using a single digital SLR camera. Front. Neurosci. 2017, 11, 264. [CrossRef] [PubMed]
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