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Abstract: As the world population is ageing rapidly and old age comes with multiple health issues,
the need for medical services is likely to increase in a couple of decades beyond the limits of the
medical systems of almost any country. In response to this trend, a variety of technologies have been
developed with the aim of helping older people live independently as long as possible and reduce
the burden on caregivers. In this paper, we propose a solution to encode the information about the
activity of the monitored person, captured by a set of binary sensors, in the form of activity maps
that reflect not only the intensity, but also the spatial distribution of the activity between a set of
behaviorally meaningful places. Then, we propose a method for automatic analysis of the activity
maps in order to detect deviations from the previously recorded routine. We have tested the method
on two public activity recognition datasets and found that the proposed solution is not only feasible,
but also has several important advantages (it is low cost, scalable, adaptable, requires little expert
knowledge for setup and protects the privacy of the monitored persons) that make it applicable on a
large scale, including for people with low socio-economic status.

Keywords: activity monitoring; activities of daily life; behaviorally meaningful places; anomaly
detection; unobtrusive sensors; activity maps; virtual pheromones; peer to peer (P2P) monitoring

1. Introduction

The world population is ageing rapidly. People aged 65 years or older are now the
fastest growing age group, and some projections [1] indicate that, in 2050, the number of
persons aged 65 and over will surpass two billion (16% of the world’s population, up from
9% in 2019). In the same time horizon, the number of persons aged 80 years or over is
expected to triple (426 million in 2050, up from 143 million in 2019). As old age comes with
a variety of health issues (cardiovascular diseases, dementia, frailty, and many others) this
demographic shift is likely to increase the need of medical services beyond the limits of the
medical systems of almost any country. Most elderly prefer to age in place [2], i.e., to spend
their last years in their own homes retaining a certain level of independence, rather than go
to nursing homes, or other residential care centers. This proved to be the right option, as a
large share of the total COVID-19 deaths occurred in nursing homes (as much as 40% in
New York City [3]).

On the other hand, the exponential advances witnessed in the past decades in all
technological fields fueled the hope that new assistive technologies will lead to the devel-
opment of effective solutions to help elderly people live independently in their homes. The
term assistive technology designates

“any device or system that allows individuals to perform tasks they would otherwise be
unable to do or increases the ease and safety with which tasks can be performed”. [4]

The simplest setup that allows the patients to receive medical consultations using
standard videoconference equipment, remote monitoring of certain medical devices (e.g.,
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pacemakers, implantable loop recorders, etc.), and other medical services without the
need to go to a medical clinic is telemedicine (see Ref. [5] for a discussion on the formal
definitions of telemedicine and related terms telehealth and telecare). This setup allows the
medical staff to increase the number of patients served, and the patients to access with ease
the services of multiple medical specialists directly from home.

On another level of complexity of the assistive technology, when “a home or dwelling
[is equipped] with a set of networked sensors and devices that extend the functionality
of the home by adding [artificial] intelligence, automation, control, contextual awareness,
adaptability, and functionality both remotely and locally, in the pursuit of improving the
health and wellbeing of its occupants and assisting in the delivery of healthcare services” [6],
it is called a smart home.

We should note that the definition of smart home cited above (from Ref. [6]) is not
complete. Some smart homes are designed for optimizing the energy consumption (as
in Ref. [7]), while others are designed with a focus on environmental sustainability [8].
Comprehensive reviews of the literature on smart homes and their applications are available
in Refs. [9–11].

The concept of Ambient Assisted Living (AAL) is wider than that of smart home at
least from the perspective of the place where the assistance occurs: while in smart homes
the assistive technology is specific for indoor use and its deployment is limited to the
residential space, AAL applications go beyond the home or dwelling of the users and
seek to provide assistance and monitoring also in public spaces, shopping centers, public
transportation, in the work environments, and in outdoor spaces (see Refs. [12,13] for a
review of the state of the art in AAL).

In what concerns the specific functions and actions of the assistive technology, Demiris
& Hensel in Ref. [14] identified the following categories:

- Physiological monitoring, by collecting and analyzing data about certain physiological
parameters like pulse rate, blood pressure, respiration, level of oxygen in the blood-
stream, temperature, blood sugar level, etc. This type of application typically relies on
wearable or implantable sensors (see Refs. [15,16]).

- Monitoring potential environmental hazards using dedicated equipment (e.g., gas
leaks or fire).

- Intrusion detection. Special intrusion detection systems are commercially available,
equipped with passive infrared (PIR) motion detectors, glass break detectors, magnetic
door contacts, and video surveillance cameras.

- Sensory and cognitive assistance. This type of technology aims to compensate the
sensory or memory loss, e.g., by using hearing aids and reminders about taking the
medication. Some of these systems are also capable to provide verbal instructions
on performing certain tasks, or orientation suggestions (see Ref. [17] for an extensive
review on reminder systems).

- Monitoring the level of social interactions by collecting data about the frequency and
duration of the phone calls, the number of visitors received, and participation of the
users in social activities ([18]). The assistive technology can go beyond the simple
monitoring and, in certain applications, aims to facilitate social interactions of the
monitored persons by including equipment that mediate the virtual meetings with
friends or family, or the participation in group activities (e.g., through games, as in
Ref. [19]).

- Detection of emergencies (e.g., falls). A comprehensive review of the existing solutions
for fall detection is available in Ref. [20].

- Functional monitoring. This research direction includes a wide variety of applications
for monitoring the activities of daily life (ADL) and detection of behavior changes or
abnormal activity patterns. Some of these applications are reviewed in Refs [21–23].

From the above list, of particular interest are the applications for ADL (long term)
monitoring and detection of behavior changes, because many of the age-related pathologies
have an insidious evolution over extended periods of time. Behavior changes, especially



Appl. Sci. 2022, 12, 235 3 of 19

when they impact the daily activities of the elderly, usually indicate health issues, and may
serve as clues for the early detection of a silent pathology. This is one of the reasons that
explain the substantial number of articles published on this topic–for example, a simple
search in the Web of Science for papers having the keyword “behavior changes” in the
topic returns over 625,000 results (216,000 in the last 5 years).

Despite this wealth of literature, it seems that there is still work to do until the results
of the research in ADL recognition will be included in a practical solution applicable on a
large scale ([24]).

More specifically, Pavel et al. in Ref. [25] formulate a series of requirements for ADL
monitoring systems, among which:

- Economic Feasibility. These systems should be affordable for persons with lower
socioeconomic status (SES).

- Scalability. Monitoring systems should be designed so that they can be easily replicated
in large series.

- Unobtrusiveness. Ideally, the monitoring systems should be totally transparent for the
users.

- Continuity of sensing. The systems should be capable to collect and process data
continuously over extended periods of time.

- Usability. Such systems should be easy to install and require minimum maintenance
to operate.

- Adaptability. The monitoring systems should be easily adaptable to any individual
regardless of her/his living environment.

- A good trade-off between high sensitivity and a small number of false alarms.
- Privacy and security. These systems should protect the privacy of the users and

caregivers and have a clear and transparent policy regarding the usage of personal
data.

Another study ([26]) found that, from the perspective of the users’ acceptance of the
monitoring systems, the most principal factors that tend to hinder the adoption of the
assistive technologies are the concerns about the loss of privacy and autonomy, along with
the feelings of social isolation and stigma.

Considering the above requirements and constraints, it appears that the sensors most
suitable for ADL monitoring are the binary sensors (e.g., Passive Infrared–PIR motion
detectors, magnetic contacts, water flow sensors, etc.). They are inexpensive, easy to
install and replace, low-maintenance, do not pose privacy concerns, and require minimal
computation (see Ref. [9] for a comparison with other sensors). On the negative side, they
provide very simple and limited information, and the data processing algorithms must
compensate this drawback.

In this context, the objective of the present study is to propose a solution for long term
ADL monitoring and detection of behavior changes, based exclusively on binary sensors,
which is low cost, scalable, adaptable, and protects the privacy of the users.

The contributions of this research can be summarized as follows:

1. We propose an abstracted model of the residential living space, reduced to a collection
of Behaviorally Meaningful Places (BMPs), represented as points located symmetri-
cally in a generic Cartesian space. By eliminating all the details regarding the surface
of the living space, the type and position of the furniture and appliances, and the
specific locations of the sensors, this model creates a common ground for monitoring
the ADL in almost any residential environment.

2. We describe a method to encode the sensor data in the form of a series of activity
maps that embed information about the intensity and the spatial distribution of the
activities.

3. We show that the respective activity maps can be automatically analyzed to detect
changes in the behavior of the monitored persons, by comparing the activity map of
the current time slice with the data previously recorded in a reference time interval.

4. We propose a method to reduce the number of false alerts based on fuzzy logic.
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The next section is a brief review of the closely related work found in the literature
with a focus on the solutions based on binary sensors. Section 3 contains the detailed
description of the method, and Section 4 presents the results obtained by applying the
proposed method on two public datasets. Finally, Section 5 is reserved for discussion, and
Section 6 presents the conclusions.

2. Related Work

Automatic detection of anomalies in human behavior is a challenging task because the
behavior of every individual is influenced by age, gender, education, cultural habits, etc.,
and characterized by a unique spatio-temporal distribution of activities. Further challenges
in detecting activity patterns are posed by contingent factors like:

- Parallel or interleaved execution of certain activities (e.g., a person may cook dinner,
watch TV, and answer the phone at the same time).

- Periodic variations. The structure of the ADLs may be subject to weekly, monthly, or
seasonal variations (e.g., sleep hours may be different during winter and summer).

- False starts. Sometimes people start an activity and suddenly abandon it for unex-
pected reasons.

Moreover, the environment where people live is also extremely diverse, which leads
to a great diversity in what concerns the type and number of sensors used for monitoring,
and their spatial distribution. Therefore, we believe that the main challenge for the research
on this topic is not to find solutions with high accuracy of the detection (such solutions
already exist), but to design monitoring systems easily adaptable for any individual and
for any living environment. The present work is an attempt to contribute to the progress of
the research in this particular direction.

As shown in Refs. [27,28], three main strategies have been described in the literature
to solve the problem of detecting anomalies of the human behavior (see Figure 1):
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Figure 1. An overview of the existing strategies for detecting abnormal behavior (based on Refs. [27,28]).

In the Activity Recognition Strategy, depending on the granularity of the desired
output, we find solutions focused on: point anomalies (where each activity is recognized
and evaluated individually, then classified as normal or abnormal), collective anomalies
(where groups of activities are evaluated together, e.g., the morning routine), and contextual
anomalies (where the individual activities are evaluated under a particular context, e.g., a
certain medical condition of the monitored person). The typical structure of a system for
detecting abnormal behavior according to the Activity Recognition Strategy is shown in
Figure 2.
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Figure 2. Typical structure of a system for detecting abnormal behavior based on the Activity
Recognition Strategy.

In this approach, the normal behavior is defined as patterns of activities (identified,
for example, by clustering, as in Ref. [29]), and the deviations from these patterns are
reported as abnormalities. An intuitive example, illustrating the detection of abnormal
eating behavior by finding clusters in a bidimensional dataset is shown in Figure 3.
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Figure 3. An example of defining normal eating habits and finding deviating behaviors by clustering
a bidimensional dataset (start time and duration of meals). Abnormal activities A1, A2, A3 are
outliers with respect to the clusters.

In the Discriminating Strategy it is assumed that the training set contains data about
abnormal events previously recorded, and the detection of abnormalities can be reduced to a
binary classification problem. Since annotated datasets that capture abnormal behavior are
seldom available, the training for the abnormal class is done with synthetically generated
data, as in Ref. [30].

Finally, the Profiling Strategy consists in comparing the observed data with a previ-
ously created model of normality. This approach is used in Ref [31], where the normal
behavior is modelled in a Bayesian formulation using concepts like ‘sensor activation
likelihood’, ‘sensor sequence likelihood’, and ‘sensor event duration likelihood’.
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Another taxonomy of the existing approaches for detecting abnormal human activities
is proposed in Ref. [32], as follows:

- Score-based approaches. These solutions involve periodic assessment of the monitored
persons from the perspective of possible health conditions that may affect their ADL
routine. The clinical expert that conducts the assessment assigns scores for the mobility,
cognitive status and other health aspects. The assistive technology is then programmed
to map these scores to the data collected from the sensors during the respective period
of assessment, with the aim to predict future health scores starting from the sensors
data. This strategy is used in Ref. [33].

- Classification approaches. These are entirely similar to the discriminating strategy
described above.

- Outlier detection approaches assume that the training data define the normal behavior
and compare subsequent ADL data with the baseline defined in the training phase.
Significant deviations from this baseline (outliers) are considered abnormal behavior.
This approach is used in Ref. [34].

Though the solution proposed in the present study does not fit exactly into any of the
categories described above, there are multiple similarities with previously published works.
For example, the concept of activity map was used in Ref. [35] as a visual representation
of the intensity of ADLs over time, for the use of a human expert. The solutions based
on this type of activity maps use exclusively the temporal features of the sensor data and
search for patterns in the frequency and the sequential order of sensor firings, thus missing
important behavioral clues that derive from the spatial context of the activities.

This limitation is eliminated in Ref. [36], where the activity maps are visual images
indicating the time spent in certain locations. Though the resulting maps are richer in
information about the users’ behavior, this work does not propose a method to process this
information for automatic anomaly detection.

A different approach is proposed in Refs. [37,38], where indoor localization systems
and digital pheromones are used to create a visual map of the living environment. These
maps embed traces that reflect the motion of the monitored persons, and it is assumed that
the normal behavior is encoded in a set of preferred motion routes.

The work described in Ref. [39] also use virtual pheromones to create activity maps,
with the difference that the pheromone sources are attached to the sensors in known
locations. Every time a sensor is triggered by the activity of the user, the pheromone
source releases a fixed amount of pheromones, which diffuse in space and evaporate with
time. Thus, the images reflecting the distribution of the pheromones over the living space
contain both information about the intensity of the activity of the inhabitant and about the
place where the activity occurred. Behavior patterns are then identified by comparing the
pheromone-based activity maps using a similarity measure.

The idea of an abstraction layer to overcome the variability of the spatial distribution
of the sensors is introduced in Ref. [40] in the form of “labels” indicating the location,
attached to the sensor events.

Finally, the idea of using fuzzy reasoning to estimate the deviations from the ADLs
routine appears in Ref. [41]. Here, the monitored person’s daily routine is extracted from
data about the usage of household appliances and deviations from this routine are detected
by means of a set of fuzzy rules.

Unlike most of the existing studies on detecting behavior changes, the solution pro-
posed in the present work does not use machine learning. We start by creating an abstraction
of the living environment in the form of a set of behaviorally meaningful places, located
symmetrically in a generic Cartesian space. Then, we use the data provided by a set of
binary sensors to create activity maps that embed information about the intensity and the
spatial distribution of the activities of the monitored person. Finally, we use the information
about the relative weights of the BMPs in the structure of the activities to detect deviations
from the activity routine, following a method described in the next section.
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3. Method and Datasets
3.1. Assumptions

To improve the acceptance of the technology and to guarantee the privacy of the
monitored persons we assumed that all the sensors used for monitoring are PIR motion
detectors, magnetic door contacts, or any other sensors with binary output (e.g., pressure
sensors, water flow sensors etc.). This type of sensors are already present in many residential
spaces as components of the widely used intrusion detection systems, thus they are known
as unobtrusive and are easier to accept by the users.

We also assumed that the monitored person lives alone, so that most of the time there
is only one inhabitant in the home.

3.2. Description of the Proposed Method
3.2.1. An Abstraction of the Living Space

In Ref. [42] it is argued that, with respect to human activity, we should make a
distinction between locations and places: “places are locations that carry some meaning to
user and to which the user can potentially attach some (meaningful) semantics”. People
do not just happen to be in certain places—their presence in the respective place and the
amount of time they spend there are the result of decisions, based on needs, preferences,
habits, or values. Normally, the meaning people attach to certain places has nothing to
do with details like the surface of the room, the position of the furniture, the existence
and location of certain appliances, etc. Hence, from the perspective of an observer of
the behavior of a person in his/her living environment, all these details are unimportant.
Starting from this idea, in our previous work ([43]), we proposed an abstraction of the
residential living space as a collection of Behaviorally Meaningful Places (BMPs): living
room, bedroom, kitchen, and bathroom represented as points located symmetrically in a
generic 2D Cartesian space.

Figure 4 shows an example of the result of abstraction of a particular residential space.
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Assuming that all the sensors have binary output, for the sensor deployment depicted
in Figure 4a it is possible to associate the sensor events with the BMPs as follows:

{P1} = {M010} ∪ {M011} ∪ {M013}
{P2} = {M003} ∪ {M004} ∪ {M005} ∪ {M015}
{P3} = {M012} ∪ {M014}
{P4} = {M001} ∪ {M002} ∪ {M006} ∪ {M007} ∪ {M008} ∪ {M009}

(1)

where {Pi} is the set of sensor events describing the activity in the place Pi and {Mj} is the
set of events generated by the motion detector Mj.

3.2.2. Creating Activity Maps Starting from the Sensor Data

In one of our previous works ([44]), we defined the concept of virtual pheromones as
“traces created by the agents not in the environment, but in a representation thereof—A map”. Just
like natural pheromones, virtual pheromones diffuse in space (see Figure 5a):

p(x) =
{

P
(
1− x

σ

)
f or x ≤ σ

0 f or x > σ
(2)

where p(x) is the intensity of the pheromones sensed at the distance x from the source, P is a
scalar describing the intensity of the pheromones at the source, and σ is a positive constant
that defines the maximum diffusion distance.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 23 
 

 
Figure 5. (a) Grayscale image (128 × 128 pixels) illustrating the process of spatial diffusion from a 
single pheromone source placed in P4. (b) A similar image illustrating the superposition of the ef-
fects of two pheromone sources placed in P1 and P4. The intensity of the pheromone is encoded in 
shades of gray, where black corresponds to locations with no pheromone at all, and white corre-
sponds to locations with maximum intensity of pheromones. 

If multiple sources of pheromone are active (see Figure 5b), their aggregated effect 
due to the superposition is: 


=







 −=

N

k

k
kR

dPP
1

1
σ

 (3)

where Pk is the intensity of the source Sk and dk is the distance from the current point to 
the source Sk. 

Finally, the virtual pheromones evaporate, i.e., the intensity of the pheromone traces 
diminishes with time, so that old traces eventually disappear. 

By placing in each of the BMPs, P1–P4, pheromone sources that release a fixed 
amount of virtual pheromone whenever a sensor event is reported in the respective place, 
and integrating the intensities of virtual pheromones over a certain time interval (e.g., one 
hour), we obtained activity maps for the respective time slices, as shown in Figure 6. 

This type of activity map has the advantage that it reflects not just the intensity but 
also the spatial distribution of the activities, and the relative weights of the behaviorally 
meaningful places in the general structure of the ADL. 

  

Figure 5. (a) Grayscale image (128 × 128 pixels) illustrating the process of spatial diffusion from a
single pheromone source placed in P4. (b) A similar image illustrating the superposition of the effects
of two pheromone sources placed in P1 and P4. The intensity of the pheromone is encoded in shades
of gray, where black corresponds to locations with no pheromone at all, and white corresponds to
locations with maximum intensity of pheromones.

If multiple sources of pheromone are active (see Figure 5b), their aggregated effect due
to the superposition is:

PR =
N

∑
k=1

Pk

(
1− dk

σ

)
(3)

where Pk is the intensity of the source Sk and dk is the distance from the current point to the
source Sk.

Finally, the virtual pheromones evaporate, i.e., the intensity of the pheromone traces
diminishes with time, so that old traces eventually disappear.

By placing in each of the BMPs, P1–P4, pheromone sources that release a fixed amount
of virtual pheromone whenever a sensor event is reported in the respective place, and
integrating the intensities of virtual pheromones over a certain time interval (e.g., one hour),
we obtained activity maps for the respective time slices, as shown in Figure 6.
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This type of activity map has the advantage that it reflects not just the intensity but
also the spatial distribution of the activities, and the relative weights of the behaviorally
meaningful places in the general structure of the ADL.

3.2.3. Detection of Abnormal Behavior

Due to the symmetrical placement of P1-P4 in the abstracted space, the information
about the relative weights of the BMPs in the general structure of activities is encoded in
the position of the centroid of the image representing the activity map.

Starting from this observation, we propose the following method to detect time inter-
vals with unusual/atypical activity (see Figure 7):

Step 1: Manually select an interval (e.g., a week) from the past, with known normal
activity. Using the sensor data, build activity maps for each one hour time slice, for all the
days in the reference interval. The total number of activity maps for the reference interval
will be: Number_of_time_slices_per_day × Number_of_days.

Step 2: Compute and plot the centroids of the images containing the activity maps for
each time slice, across the entire reference interval.

Step 3: Find the smallest bounding circle (SBC) C(xc,yc,R) that encompasses the cen-
troid points of the activity maps for the reference interval, where (xc,yc) are the coordinates
of the center, and R is the radius. (There are 24 such circles for the reference interval, one for
each one hour time slice.) In this study, we have used the algorithm described in Ref. [45]
to determine the SBC.

Step 4: Build activity maps starting from the sensor data recorded in the past hour. For
each new activity map, compute the centroid (xi,yi) of the respective image, along with two
additional parameters, as follows:

The overall activity level for the respective time slice:

AL =
4

∑
i=1
|{Pi}| (4)

where {Pi} is the set of events reported by the sensors, associated with the place Pi, and
|{Pi}| is the cardinal of this set.
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Figure 7. The proposed method to detect deviations from the previously recorded activity patterns:
(a) Choose a reference interval (e.g., 7–12 days) with normal activity and create activity maps for
each one hour time slice; (b) Plot the centroid points of the activity maps for each time slice across
the reference interval; (c) Find the smallest circle that bounds the centroid points for the reference
interval. The area delimited by this circle defines normal or typical activity patterns; (d) Check if the
centroid of the current activity maps falls inside the normal activity area.

The measure of the activity deviation (AD) is a function of the Euclidean distance
between the current centroid (xi,yi) and center of the reference SBC (xc,yc).

AD =
√(

x2
i − x2

c
)
+
(
y2

i − y2
c
)
− R (5)

With this measure, activity maps with AD ≤ 0 are considered to reflect normal activity,
while those with AD > 0 are reported as unusual or deviant activity (see Figure 7d), after
an additional validity check described in the next subsection.

3.3. Filtering False Alerts

In real life, there are situations when quite normal activities (e.g., cleaning the house,
spending more time in the kitchen to cook a special dinner, receiving visitors, etc.) are
reflected by the sensors as deviations from the long term activity patterns. To prevent
the system from generating false alerts in these situations, we have used a method to
estimate the probability of the alert, based on fuzzy logic, starting from the values of AL
and AD, computed with (1) and (2). Since false alerts are usually associated with higher
activity levels, while health issues are reflected by a decrease of the activity level, we have
considered a set of rules of the following type:

IF (the activity level (AL) is HIGH) AND (the activity deviation (AD) is HIGH), THEN (the
probability of a false alert (PFA) is HIGH).

The entire rule-base is shown in Table 1.
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Table 1. The rule base of the fuzzy inference system for filtering false alerts.

Activity Level (AL) Activity Deviation (AD) Probability of False Alerts
(PFA)

LOW LOW MEDIUM
LOW MEDIUM LOW
LOW HIGH LOW

MEDIUM LOW MEDIUM
MEDIUM MEDIUM MEDIUM
MEDIUM HIGH LOW

HIGH LOW HIGH
HIGH MEDIUM HIGH
HIGH HIGH HIGH

We have used the Sugeno fuzzy inference method, described in Ref. [46], with three
fuzzy domains: LOW (L), MEDIUM (M), and HIGH (H), and triangular membership
functions, as shown in Figure 8.
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Figure 8. Fuzzy domains (LOW, MEDIUM, HIGH) and membership functions (µ) for AL and AD,
used to compute the probability of false alerts (PFA).

For each rule in Table 1, the truth value of the antecedent is:

Zi = min(µAL, µAD) (6)

Since PFA is a probability, the output domain is the interval [0,1], so we can choose
the constant values, called singletons (Si), for the output fuzzy domains in this range, e.g.,
SLOW = 0, SMEDIUM = 0.5, SHIGH = 1.

With these notations, the crisp value of the PFA is computed with (7):

PFA =
∑9

i=1 Zi ∗ Si

∑9
i=1 Zi

(7)

The value of PFA computed this way is compared with an empirically determined
threshold and the alert is only reported if the PFA is lower than the threshold. To minimize
the number of false alerts, the value of this threshold should be tunable for each participant.
The process of tuning starts by choosing a relatively high value for the threshold (e.g., 70%),
then iteratively decrement this value until the number of false alerts drops to a value close
to zero.

3.4. Datasets

To verify the validity of the proposed method, we have used two publicly available
activity recognition datasets, namely CASAS HH126 (Center for Advanced Studies in
Adaptive Systems [47]) and Kasteren House C ([48]). Both these testbeds are equipped
exclusively with binary sensors.
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The HH126 testbed has only passive infrared (PIR) motion detectors, with binary
output. The locations of sensors are marked as M001-M015 on the floor plan of this house,
shown in Figure 5a.

For this spatial distribution of the sensors the correspondence between the BMPs and
the sensors for HH126 is described by (1).

For Kasteren House C, the correspondence between BMPs and sensors is defined by
the following equations:

{P1} = {S05} ∪ {S29} ∪ {S39}
{P2} = {S07} ∪ {S13} ∪ {S18} ∪ {S20} ∪ {S21} ∪ {S22} ∪ {S23} ∪ {S27} ∪ {S30}
{P3} = {S08} ∪ {S10} ∪ {S11} ∪ {S16} ∪ {S25} ∪ {S35} ∪ {S38}
{P4} = {S06} ∪ {S15} ∪ {S28} ∪ {S36}

(8)

where {Sk} is the set of events generated by the sensor Sk.
After some simple preprocessing on the raw sensor data (details in Ref. [43]), we have

organized the sensor data into arrays sized 24 × 4–one array for each day of monitoring.
The 24 rows of these arrays contained the cumulative data for one hour intervals in the
format:

[|{P1}|, |{P2}|, |{P3}|, |{P4}|] (9)

where |{Pi}| is the cardinal of the set {Pi}.
The dataset for CASAS HH126 is not annotated, but it has an interesting feature that

proved to be useful for this study: a number of 6 sensors from the total of 15 (namely:
M002, M005, M006, M008, M014, M015) were added on 18 April 2014, after the recording
started. Since all the sensors have equal importance, the increase of the number of sensors
is equivalent—from the perspective of the activity monitoring system—to an increase of
the general level of activity. This variation should be easily detected with the proposed
method.

The Kasteren House C dataset is much shorter (only 18 days from 20 November 2008
to 7 December 2008), but it is fully annotated. This allows a better selection of the reference
interval, and also allowed us to manually select moments with unusual activities (e.g.,
getting a snack in the middle of the night) in order to verify the algorithm. A drawback of
the Kasteren House C testbed is that, unlike CASAS HH126, which contains only motion
detectors, it contains three pressure sensors installed under the bedroom beds and the living
room couch. These sensors are triggered at the slightest motion and produce long series of
events that can be wrongfully interpreted as high levels of activity during the night sleep
or resting times. We tried to mitigate the influence of these sensors in the preprocessing
phase by counting only the first event reported in a series and ignoring all the other events
from the respective sensors for the next 10 min, but even with this adjustment they still
produced a number of false alerts.

4. Results
4.1. Results with the CASAS HH126 Dataset

In order to capture the moment when new sensors were added to the testbed (18 April
2014), we have selected as reference interval for comparison ten days between 1.04.2014 and
10.04.2014. Then, we compared the activity maps for 5 days before 18.04.2014 (12, 13, 14, 15,
and 16 April 2014) with the reference interval, expecting to find that the activity recorded
in these days was entirely consistent with the reference interval. Similarly, for another 5
days interval after 18.04.2014 (21, 22, 23, 24, and 25 April), we expected the comparison to
indicate a clear deviation from the pattern of activity defined by the reference interval. The
results of these comparisons for the time slice [7.00 am–7.59 am] are shown in Figure 9.

Moreover, since the newly added sensors were unevenly distributed between the
BMPs (3 in the living room, 2 in the kitchen and 1 in the bathroom—the bedroom did not
receive any new sensor) we expected the deviations from the reference interval to be clearly
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visible in the morning and afternoon hours, and less visible during the evening and night
hours. The results for the time slice (17.00–17.59) are shown in Figure 10.
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4.2. Results with the Kasteren House C Dataset

Since this dataset is annotated, we could select the reference interval according to an
objective criterion: we searched for seven consecutive days having the lowest standard
deviation of the duration of sleep, and this way we set the week from 24 to 30 November as
reference for comparisons. Then, we manually picked from the annotated list of activities
several time slices with obviously atypical activities, like getting a snack past midnight,
or having breakfast at 11.00 am, and compared the respective activity maps with the
corresponding time slice from the reference interval. The algorithm correctly identified
all the unusual activities. Figure 11 shows how the system identified the time slice (00.00
am–00.59 am) from 6 December 2008, as an unusual moment for a snack.
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Figure 11. Kasteren House C dataset: An illustration of how the system identified the time slice
[00.00 a.m.–00.59 a.m.] from 6 December 2008, as an unusual moment for a snack. (a) the activity map
for the respective time slice (b) plot of the centroid of the activity map vs. the SBC of the centroids for
the corresponding time slices of the reference interval.

Figure 12 shows a situation when the system reported a false alert due to the pressure
sensor located under the couch in the living room.
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5. Discussion

The present study is a continuation of our previous work presented in Ref. [43].
Compared to the previous version, the current solution eliminates the need of a similarity
measure to detect deviations from the ADL routine. This reduces the computational load
and no longer requires expert knowledge to read the output of the behavior deviation
detector. In fact, the entire system requires truly little expert knowledge only for defining
the reference interval and assigning the sensors to BMPs. With a proper design of the
software user interface, even these tasks can be executed by middle skilled workers, or—in
many cases—by the users themselves.

We compared the proposed solution with those described in three other studies from
the perspective of the criteria defined in Ref. [25]. The evaluation was made by considering
the following factors;

- The complexity of the solution;
- The amount and level of the expert knowledge needed for the implementation and

installation;
- The type of sensors used;
- The vulnerability to sensor faults;



Appl. Sci. 2022, 12, 235 15 of 19

- The availability of training datasets.

The results are presented in Table 2.

Table 2. Comparison of the proposed solution with other related work.

Criterion\Study Zekri et al.
Ref. [28]

Aran et al.
Ref [40]

Pazhoumand et al.
Ref. [41] This Work

Complexity/Cost High High High Low
Scalability Low Low Low High

Unobtrusivenes High High High High
Usability Low Medium Medium High

Adaptability Low Medium Medium High

Unlike most other solutions for detecting behavior deviations in smart homes, the
proposed method is much simpler because it does not use machine learning, and it does
not attempt to recognize and classify specific ADLs. This greatly reduces the complexity
of the entire system, requiring lower processing power and, by eliminating the need of
annotated datasets for the initial training it reduces the effort for installation and setup.

The abstraction of the living space makes the proposed solution easily adaptable to
almost any dwelling and sensor deployment.

The problem of faulty sensors is not trivial in ADL monitoring and can be a major issue
for the systems based on machine learning. In our previous work ([43]) we demonstrated
that, assuming a certain redundancy in the distribution of sensors, which is quite feasible
with low-cost sensors, a system based on this type of activity map can still operate with
one or two sensors completely deactivated. This is important because most of the existing
solutions are vulnerable to sensor faults.

The presence of a mechanism to reduce the number of false alerts is another useful
feature that can improve the overall performance of the proposed system.

Finally, we have considered the feasibility of the idea of implementing a peer-to-peer
(P2P) monitoring system, consisting of a network of smart homes, each equipped with a
local monitoring system designed according to the method described in this work. Synthetic
information about the activity of the monitored persons is shared in a simple format with
the network peers, along with alerts about unusual activity, when detected. If all the peers
share information about their behavior patterns, the system allows them to monitor each
other’s activity and ask for assistance if deviations from the routine are detected. Details
on the structure of such a system are presented in Appendix A.

Of course, it can be argued that, since the local monitoring system can be designed
to work entirely automatically, there is no need to involve the peers in monitoring. It
is true. The presence of some peers with limited skills at operating digital equipment
does not improve the performance of the system in detecting deviations of the ADL.
However, knowing that there are human observers in the system might bring the users
a valuable psychological benefit, and might mitigate the feelings of abandon, loneliness,
and depression that are frequent among the elderly people living alone ([49]). It is likely
that, after some time of mutual monitoring, some of the participants will want to meet
each other and extend the area of mutual support. Moreover, if the members of a P2P
monitoring group are acquaintances, or live in the same neighborhood, they can take direct
actions to support a peer who needs assistance.

The main limitation of our method is that it does not consider the intervals when the
monitored persons are away from home, and this can lead to false alerts. However, this
issue can be easily solved with a simple magnetic door contact at the main entrance and an
additional software filter for false alerts (e.g., by using the algorithm described in Ref. [40]).

Further work is needed for the adjustment of the time slices used for building the activity
maps—the one-hour intervals were arbitrarily chosen and may not be optimal. In practice, it
may be useful to consider longer time slices and uneven in length (e.g., early morning from
6.00 am to 9.00 am, morning hours from 9.00 am to 1.00 pm, afternoon from 1.00 pm to 6.00
pm, evening from 6.00 pm to 11.00 pm, and nighttime from 11.00 pm to 6.00 am).
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6. Conclusions

Though at this stage of the research it is not possible to compute a quantitative measure
of the performances in terms of accuracy, sensitivity, specificity, etc. (see Ref. [50]) we believe
that the proposed solution matches all the qualitative requirements formulated by Pavel
et al. in Ref. [25]: it is low-cost, totally unobtrusive, scalable, adaptable to almost any
residential space, and guarantees the privacy and security of the users’ data. It requires
little expert knowledge to set up, is easy to use, and requires minimum maintenance. It
appears that it is a viable candidate for large-scale replication and is one of the few existing
solutions that can be made available for people with low socio-economic status.
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Appendix A

The structure of a peer to peer monitoring system for detecting behavior changes.

Appendix A.1. Hardware

The structure of the network and the local hardware needed for the implementation of
the system are shown in Figure A1.
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Figure A1. (a) The structure of the proposed system, wherein the assistive technology deployed in a
network of smart homes is capable to unobtrusively monitor the ADL of the inhabitants in order to
detect deviations from the long term activity routine and share the monitoring information across the
network in a simple form, so that the peers could easily notice anomalies and request assistance if
necessary. (b) Hardware equipment deployed in each smart home.
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Appendix A.2. Requirements for the Software Components of the System

The software application used for monitoring should be easy to use and require only a
limited knowledge of how to operate digital equipment in general. We suggest a hybrid
approach, with the option to use either a mobile application (most elderly people possess
smartphones), or a web application that can be accessed from anywhere, using a computer
that might already be present in the household, or a more specialized piece of hardware
with a touchscreen for even simpler interaction.

The graphical user interface (GUI) would be part of a framework that would handle
the integration of the presented algorithm with the sensors and coordinate communication
between the connected households.

This framework can be designed as a traditional client-server application, where the
business logic resides on the server (backend) and the data is visualized in the frontend.

The backend would be built on top of an event-driven architecture since real-time
situational awareness is required. It consists of an event router (also known as an event
bus) and several event producers and consumers (see Figure A2). In this application, each
participating household would be an event producer and consumer at the same time.
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Figure A2. An illustration of the event producer/consumer paradigm.

We would specifically use the Publish/Subscribe model because it allows automatic
transmission of events to all (or a subset of) subscribers. Subscribing to the event stream
would require little to no interaction, as each participant can be pre-configured to join the
default event stream.

Since the data is exchanged over the network in binary format, the messages could
contain any type of information relevant for the consumers, including images, or plain text.

For security reasons, the information about the identity of the peers should be stored
on the remote server and made available only to authorized caregivers for emergency
situations.

The system should be able to define and configure smaller groups, each containing 4–5
households for easier monitoring. Ideally, all the configuration and maintenance operations
could be executed remotely. For example, a group could allow automatic subscription
based on a group identifier that could be designed to encode valuable information, such
as the identity and the address of the users, or some other arbitrary information that the
administrator of the framework uses to group households. Proximity to each other could
represent an important criterion, but other metrics could also be used, such as the age or
some medical condition of the participants.
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The system should be able to serve a large number of monitoring groups of participants.
The only limitation would be the processing power of the event router, i.e., the servers that
run the backend application. Ideally, such a system would run in a cloud provider that can
easily handle quick scaling.

The frontend application should be designed to display the relevant information for
the other peers enrolled in the system, with a focus on the simplicity of the presentation.
The main screen of the GUI would contain the profile pictures of the members of the
monitoring group, along with an image showing their current monitoring status. This
can be a simple emoticon on a color-coded background (e.g., a smiling face on a green
background if the monitoring status is normal, a neutral face on a yellow background for
alerts rejected by the alert filtering module, and a sad face on a red background to indicate
alerts) or can be an image like the one shown in Figure 7d.

It also should include the option to request assistance for either themselves or for a
peer whose monitoring unit generated an alert.
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