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Abstract: The article presents a method of designing a selected unmanned aerial platform flight
scenario based on the principles of designing a reliable (Unmanned Aerial Vehicle) UAV architecture
operating in an environment in which other platforms operate. The models and results presented
relate to the medium-range aerial platform, subject to certification under the principles set out in
aviation regulations. These platforms are subject to the certification process requirements, but their
restrictions are not as restrictive as in the case of manned platforms. Issues related to modeling
scenarios implemented by the platform in flight are discussed. The article describes the importance
of Functional Hazard Analysis (FHA) and Fault Trees Analysis (FTA) of elements included in the
hardware and software architecture of the system. The models in Unified Modeling Language (UML)
used by the authors in the project are described, supporting the design of a reliable architecture of
flying platforms. Examples of the transformations from user requirements modeled in the form of
Use Cases to platform operation models based on State Machines and then to the final UAV operation
algorithms are shown. Principles of designing system test plans and designing individual test cases
to verify the system’s operation in emergencies in flight are discussed. Methods of integrating
flight simulators with elements of the air platform in the form of Software-in-the-Loop (SIL) models
based on selected algorithms for avoiding dangerous situations have been described. The presented
results are based on a practical example of an algorithm for detecting an air collision situation of
two platforms.

Keywords: Unmanned Aerial Vehicle (UAV); collision avoidance; safety procedures; reliable architec-
ture; Unified Modeling Language (UML)

1. Introduction

Unmanned aerial platforms for special tasks often move in an environment with an
increasing number of other threatening objects, including aerial platforms. That can be a
source of potential danger for UAVs. It should also be assumed that the air platform, pri-
marily used in rescue operations, will move in a hostile environment. Such an environment
can be understood as flight in conditions of GPS signal interference or flight in unfavorable
weather conditions. Such environments may include operations where the platform might
be destroyed due to intentional human activity (i.e., mainly due to military actions, etc.).

Designing a reliable UAV architecture operating in such an environment requires
compliance with modern standards for the safety of the flying systems. It is insufficient
to meet the requirements of a user who describes only his/her operational needs. Flight
safety is the responsibility of the system builders, who must consider the guidelines for the
safety of air systems that are in force in given countries.

Preparing a reliable and safe system is a comprehensive activity on many levels:

1. The development of hardware and software architecture that has the required reli-
ability determined based on the so-called Fault Tree Analysis (FTA), in particular
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designing the physical architecture of the system that ensures redundancy of the most
critical subsystems,

2. Meeting the functional requirements in the context of ensuring an appropriate level of
security, usually specified in the Functional Hazard Analysis (FHA) documentation,
which presents the decomposition of critical functions in the system,

3. Designing algorithms for the operation of the air platform per the principles of Model-
Based Systems Engineering (MBSE), which are verifiable with the use of selected
formal techniques,

4. Designing and describing algorithms that support the occurrence of emergency situa-
tions during flight, such as loss of radio link with the Ground Control Station (GCS),
loss of GPS signal, avoidance of platform collisions in the air,

5. Describing and proving the correctness of specific numerical algorithms that are used
during the implementation of the mission (e.g., algorithms determining the change
of the platform’s course after detecting the possibility of a collision in air-collision
avoidance algorithms),

6. Designing system testing procedures based on mission simulators and flight tests,
7. Developing documentation rules for the most critical procedures affecting flight safety

and documentation of the tests performed.

The hardware architecture is first determined in designing an unmanned platform.
The probability of damage to the elements is checked following the Fault Tree Analysis
methodology for the developed architecture. The probability of damage to the elements
is checked following the Fault Tree Analysis methodology for the developed architecture.
The purpose of the activity is to check which of the elements involved in implementing a
specific flight scenario is prone to failure and may lead to a potential system crash. The FTA
methodology is described in literature in [1]. The general principle of proceeding in the
construction of FTA trees is to arrange a series of devices that implement a given function.
Then, for each of such devices, Mean Time Between Failures (MTBF) is determined, based
on which the probability of failure of the entire system is verified. If the probability is
above the acceptable threshold, then the system must not be allowed to operate. It is a
fundamental step taken in designing an unmanned system. In a situation where the FHA
shows that some system elements are too unreliable, these elements must be replaced
before further design work because the platform will not meet the safety requirements.

After verifying the hardware architecture to be used in the designed unmanned
system, the decomposition of key processes directly impacts the platform’s safety in flight
should be made. Based on pre-defined scenarios of platform operation (scenarios can be
provided by the system contracting authority), a function decomposition called Functional
Hazard Analysis [2] is prepared in the literature. It concerns the fulfilment of functional
requirements in the context of ensuring an appropriate safety level, denoted in the ARP4754
methodology as Design Assurance Level (DAL) [3]. Each primary process (scenarios) is
decomposed into a set of component subprocesses (scenarios) up to the point where atomic
functions are defined (functions that are not worth decomposing because they describe a
specific single operation of the system assigned to one of the components).

The Software Level, also known as the Design Assurance Level (DAL) as defined
in ARP4754, is determined from the safety assessment process and hazard analysis by
examining the effects of a failure condition in the system. The failure conditions are
categorized by their effects on the aircraft, crew, and passengers.

(A) Catastrophic—Failure may cause deaths, usually also includes the destruction of
the airplane.

(B) Hazardous—Failure has a sizeable negative impact on safety. It may reduce the
ability of the crew to operate the aircraft due to physical distress or causes serious
or fatal injuries among the passengers.

(C) Major—Failure significantly reduces the safety margin. It may increase crew work-
load.
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(D) Minor—Failure slightly reduces the safety margin or slightly increases crew work-
load. Examples might include causing passengers inconvenience or a routine flight
plan change.

(E) No Effect—Failure has no impact on safety, aircraft operation, or crew workload.

In practice, instead of specifying the DAL values directly, it is enough to define the
most critical failure states that may occur during the execution of this function for each
of the decomposed functions. In such a case, proving that the system is resistant to the
occurrences of these emergency states means that its reliability level can be considered
sufficient to perform specific tasks. It should be remembered that the DAL also depends on
the hardware architecture, which significantly affects this parameter.

The preparation of a reliable and safe system requires designing following Model-
Based System Engineering (MBSE) standards [4,5]. In the case of air platforms, it is required
to introduce additional mechanisms to the design process, allowing for the preparation
of a design that is easy to expand, maintain and verify. In recent years, the use of UAV
functionalities based on the System Modeling Language (SysML) [6] and Unified Modeling
Language (UML) [7] models have become widely used. UML also uses the Object Con-
straint Language (OCL), which allows for additional detailing of the system’s functionality
and defining constraints that must always be met. The OCL is a declarative language
describing rules applying to UML. The Object Constraint Language provides a constraint
on the metamodel that cannot otherwise be expressed by diagrammatic notation. OCL
provides expressions that have neither the ambiguities of natural language nor the inherent
difficulties of using complex mathematics.

However, formal system description languages such as SysML or UML alone do
not guarantee the development of a secure aircraft platform architecture integrated with
the Ground Control Station (GCS). For this purpose, dedicated metamodels should be
developed to transform user requirements and the requirements of safety standards into
technical models. In practice, this means the manufacturer needs to develop such systems.
The set of metamodels describes the mapping of user requirements to system use cases.
Use cases can be mapped to system state machines or, in simpler cases, directly to activity
sequences (system function calls).

Due to the nature of the system, which is a close-to-real-time system, UML models
primarily describe the transition from Use Case models to State Machines, the most com-
monly used system dynamics modeling mechanisms with multiple concurrent processes.
Of course, the development of complete and consistent system models (GCS and UAV)
does not guarantee that the prepared models do not contain any errors. In recent years,
intensive work has been carried out on developing formal verification mechanisms for
models prepared in SysML or UML [8].

Based on the UML-based scenario description methodology and the previous FHA
decomposition, the process of designing and describing algorithms that support the occur-
rences of emergency situations during the flight takes place. Complex numerical algorithms
are often used, the correctness of which must be proven. An example of such an algorithm
is provided in the article [9]. The article presents the design of an algorithm for avoiding col-
lisions between aerial platforms. The algorithms supporting safety also include algorithms
for checking the correctness of the operation of GPS systems, algorithms for checking the
possibility of a potential collision with terrain or other platforms, etc. Depending on the
purpose of the air platform and the areas in which it can operate, the list of algorithms
handling emergency situations can be very long. Each of these algorithms can have high
computational complexity. Hence, appropriate onboard computers are selected depending
on the class of the air platform. The article presents a description of the algorithm for
avoiding collisions with another platform in the air, which is implemented on a medium-
range UAV. Due to the size of the platform, the algorithm is implemented not only on GCS
but also in the software of the platform itself. Due to its complexity, a separate thread of
the onboard computer processor is allocated. However, it is not possible to assign one
processor core to check the occurrence of each specified emergency situation (platforms of
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this type are too small). The article presents a formal way of modeling such an emergency
situation from the stage of definition of action in the form of a Use Case in UML, through
detailed State Machine models, to formal mathematical models.

The final step in the design process is to design system testing procedures based
on mission simulators and air tests. It is also necessary to develop the principles of
documentation of the most critical procedures affecting flight safety and the documentation
of the tests performed. An example of system tests is shown in the article. Testing guidelines
can be found in the DO-178 [10] methodologies.

This article presents the architecture concept for an unmanned aerial platform, which
must operate in unfavorable environmental conditions, such as flight in an area with a
large number of other air platforms.

The methodology of designing a reliable UAV architecture, which can be used for
autonomous flight, was presented. It is possible thanks to integrated algorithms such as
detections and avoidance of collisions with other UAVs or detection of collisions with
terrain obstacles. A method of modeling an unmanned platform operation scenario was
also presented, in which algorithms for detection and avoidance of situations threatening
the platform’s security are integrated. Formal methods based on UML notation are used to
describe the problem presented like the method of transforming the requirements described
in the so-called Use Cases in UML on diagrams describing the dynamics of the system. In
this article, we mainly rely on State Machines, which are the basic method for modeling the
operation of real-time systems.

A special case presented in the article is the automatic correction of the flight route to
eliminate the possibility of a potential collision in the air with another platform. The article
assumes that each of the platforms is equipped with the ADS-B (Automatic Dependent
Surveillance Broadcast) system, which allows identifying the platforms’ and the directions
and speed of their movement. Algorithms of this type are usually built into unmanned
platforms that fly long distances from the Ground Control Station, because flights at such a
distance generate the risk of losing communication with GCS.

The article shows how to integrate the described algorithms with the platform man-
agement algorithms described in the form of State Machines. An exemplary method of
managing the detected emergencies and UAV operations in the event of two situations
co-occurring is also presented.

In Section 2, reference was made to works on a similar subject. The concept of UAV
architecture modeling and the formal description of requirements for selected algorithms
used in systems of this class were presented. Reference was also made to verifying the
correctness of the developed models, although the discussion of these methods is not the
subject of this article. The types of mathematical methods that are used to implement
collision avoidance algorithms are also described. Particular attention was paid to ge-
ometric methods. Other optimization-based methods, including heuristic methods, are
also mentioned.

Section 3 covers models for modeling the system architecture, from user requirements
to modeling class diagrams. Particular attention was paid to modeling emergencies that
may occur during the platform’s flight. The principles of selecting emergencies in order to
minimize their number are discussed. Methods of verifying the consistency of a set of states
and the transitions between individual states in which the unmanned platform may be
found are presented. Reference was also made to the very important but often overlooked
topic of integrating formal optimization methods with UML or SysML models in unmanned
systems. The methods of checking the completeness and adequacy of mathematical models
for an exemplary emergency situation in flight are discussed.

The following part of the article shows an example of the physical architecture of the
UAV, based on which the described algorithms for handling emergencies were designed and
tested. The deterministic algorithm for handling collision avoidance to ensure separation
between air platforms is presented in detail in Section 4. The algorithms are presented in the
form of formal descriptions, which are verified on the simulator. Section 5 presents sample
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tests of the presented algorithms included in the system test plan and the results of testing
the algorithms on the simulator. In the last section, further directions of the development of
the presented models are discussed. Our experiences related to the preparation of formal
models and their verification were also presented.

The innovative elements presented in the article are:

(a) The methodology of building advanced UAV flight algorithms that fly in an envi-
ronment with a large number of obstacles, which has been adapted to designing
algorithms for small and medium air platforms;

(b) A complete and tested collision avoidance algorithm of an unmanned platform
equipped with ADS-B, for which methods of detecting situations in which the al-
gorithm shows erroneous results have been defined (detection of a potential collision
in a situation where there is no such collision);

(c) An example of a complete scenario that can be used as documentation in the certifica-
tion process;

(d) A simulator for the verifying the UAV collision avoidance algorithm, the results of
which are presented.

2. Related Works

In order to understand the importance of designing reliable UAVs, it is necessary to
understand the principles of operation of these systems and their architecture. An excellent
introduction to this is given in the article by Sanchez-Lopez, et al. [11]. The article describes
the relationship between tasks related to mission planning and their implementation.
The logical dependencies between the UAV control components and the payload control
components were presented. Atyabi, et al. [12] introduce the reader to aspects of UAV
mission planning and management systems and discuss selected future directions for the
development of such systems. An extensive study was also presented on the assessment of
UAV autonomy, including the provision of situational awareness and the development of
decision-making methods.

Generally speaking, technical literature contains many articles discussing particular
aspects of designing the hardware and software architecture of a safe UAV [13]. In fact,
papers containing a comprehensive description of the software design process itself and
the architecture of the unmanned system are difficult to access due to the complexity of
problems encountered in aviation. In particular, available literature lacks proposals for
methods that combine mathematical models with UAV operation models described in
formal languages such as UML. Such methodologies are currently being developed, also in
the form of methodologies such as DO-331, DO-332, and DO-333 [14–16].

Preparing a reliable and safe system is a comprehensive activity on many levels.
The first level is the development of hardware and software architecture that has the
required reliability determined based on the so-called FTA. This applies particularly to the
design of the system’s physical architecture that ensures redundancy of the most important
subsystems. The approach to modeling hardware and software architecture is described,
for example, in [1]. It is worth noting that in the case of designing unmanned platforms of
the MALE class and larger, the operation of FCC flight computers is particularly carefully
designed, the functionality of which covers most of the user’s requirements of this platform
class. However, it should be borne in mind that this element of the project is relatively
rarely presented in scientific articles due to the information it contains. It constitutes the
potential of the company producing unmanned systems. Hence, it is difficult to find studies
strictly related to the topic of the architecture of the entire system. Rather, UAV elements
such as FCC [13] flight computers are described.

Subsequently, the system to be designed must be verified in terms of meeting func-
tional requirements in the context of ensuring the appropriate level of safety, usually
defined in the FHA. Within the FHA, depending on the class of the air platform, several
primary groups of functions are defined that are subject to functional decomposition. In
the case of an unmanned aerial platform, the most important functional groups are:



Appl. Sci. 2022, 12, 294 6 of 19

• Mission planning
• Ensuring the stability and control of the platform
• Provision of platform navigation
• Data link management
• Payload management
• Flight systems management.

Each group is a set of UAV operation scenarios. In each of the groups, a number
of emergency situations can be distinguished that should be taken into account when
modeling the platform’s behavior during the mission. The article describes the platform
collision avoidance algorithm, which is an emergency situation in the group of scenarios
”Ensuring the stability and control of the platform”. The models in UML presented in the
following sections of the article are elements of the mentioned group of scenarios.

Based on the precisely defined functional decomposition of the unmanned system
and the developed hardware and software architecture of such a system, the next step
is to design algorithms (scenarios) for the operation of the air platform in accordance
with MBSE principles. Models compliant with the MBSE methodology, widely used in
systems engineering, verify individual elements of the air platform flight scenario. The
MBSE approach used in the design of the air platform is described quite extensively in the
literature on the subject. Examples include [4,17].

Designing basic platform operation scenarios is not sufficient when designing a secure
platform. The FHA defines the so-called emergency situations, i.e., potential failures that
may occur during the flight in a given mode. Usually, for each function described in the
decomposition process, potential emergency situations that may occur are indicated. The
system designer’s task is to design and describe the algorithms handling the occurrence
of emergency situations during the flight so that the platform retains the possibility of at
least a safe return in the event of one or several such events occurring in a short period.
Examples of exceptional situations are the loss of a radio link with NSK, loss of a GPS
signal, a potential collision of two platforms in the air, or a collision of a platform with a
terrain obstacle. For many events of this type, there is literature that allows the analyst to
design software to protect the platform against emergency situations. An example is the
in-flight separation algorithm [9], the development of which is presented in this article.

In the case of building advanced unmanned platforms, functions related to the im-
plementation of missions during the flight are designed. These often require optimization
tasks to be solved. The UAV uses deep learning neural networks for image recognition,
algorithms for route planning, avoiding obstacles, etc. These algorithms require detailed
descriptions and formal proof of correctness. Among these specific numerical algorithms
are the algorithms used during the mission, for example, algorithms determining a change
of the platform’s course after detecting the possibility of a collision in the air, i.e., algorithms
ensuring the separation between [9,18] platforms.

In this article, we focus on the particular situation in flight related to the need to
maintain the separation between two platforms whose flight trajectories intersect (also
taking into account time). In such a situation, a deterministic algorithm should be designed
to ensure that the appropriate minimum distance between platforms is maintained. At
the same time, aircraft must be equipped with systems that communicate data about
their position to others. The presence of ADS-B modules on the platform is assumed,
working both as emitters and receivers. These devices broadcast flight parameters (plane
position, velocity, and heading) to nearby vehicles. Having minimal information on the
position and velocities of nearby airplanes allows for effective and suboptimal dodge
maneuver prediction.

There are three main approaches used in solving the task of separating platforms in
the air, described in the literature on the subject. The first approach, the most natural and
efficient, is based on determining the change in the direction of the UAV flight as well as
the speed and height of the UAV based on the available data using geometric methods.
These methods are characterised by a high speed of determining the solution. However,
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they require multiple repetitions in the case of minor modifications of the flight parameters
of one of the air platforms. Geometric approaches rely on the analysis of the geometric
attributes of the UAV to ensure that minimum distances between the air platforms are
maintained. This requires calculating the time to potential collision using the distance
between UAVs and their speed.

This article is mainly based on the geometric algorithm presented by Park, et al. [9].
The method proposed by Park is tested to ensure flight safety in various situations. Different
algorithm, described in [19], allows the UAV to avoid obstacles of various types (including
other UAVs) in 3D. Depending on the obstacle type identified and the information available
about the obstacle, the algorithm determines the time when the UAV should start avoiding
the obstacle. When the UAV reaches the point where obstacle avoidance begins, the
algorithm starts the avoidance operation for a specified period of time. The length of the
time window in which the UAV modifies the flight direction, is flexible and depends on the
size and distance from the obstacle. After completing the obstacle avoidance maneuvers,
the algorithm searches for new route points that will allow the UAV to return to the planned
route as quickly as possible. The work [20] also contains extensive literature review on
collision avoidance algorithms. Peng et al. [21] present a geometric model for UAVs where
horizontal maneuvers are only performed by varying the speed of the UAV. The direction
of flight remains constant. The model predicts the separation to be achieved by a horizontal
collision avoidance maneuver. In addition, they calculate the effects of the speed change
time and autopilot response on the horizontal miss distance and the reserved time to the
nearest potential collision point.

The second group of methods is methods based on optimization, in particular, methods
based on the principles of optimal control. Their description is out of the scope of this article
due to their complexity. The reader interested in the theory of optimization is referred to
the works of Pytlak [22] and Betts [23], who present direct and indirect methods in optimal
control. In the case of optimal control, it is worth emphasizing that the task to be solved
consists in determining the UAV flight trajectory between the starting and ending point,
assuming the knowledge of the air platform flight dynamics model. The dynamics model
is represented in the task in the form of state equations, which are subject to discretization
during the determination of feasible solutions using one of the aforementioned methods.
Ikeda et al. [24] describe the collision avoidance problem as an optimal control task. The
goal is to find a combination of safe maneuvers between the two UAVs that guarantees
the longest minimum separation distance among possible escape maneuvers. The optimal
control problem was formulated with quadratic performance criteria.

Many authors include among the set of algorithms that can be used in the process of
determining the separation of platforms, UAV route planning algorithms based on the general
VRP displacement planning task. For an example of the third group algorithm, see [25].
It seems, however, that the use of integer methods for this purpose does not guarantee a
short time of obtaining the result, because the general VRP problem belongs to the NP-hard
problems class. The authors of the article also believe that the use of heuristic methods in
the form of Genetic Algorithms or Particle Swarm Optimization (a good introduction can
be found in the article [26]) for this purpose, is also not a perspective path. For heuristic
algorithms, it is not possible to determine convergence, which makes their use in control in
the event of emergency situations very risky. In the case of system certification, it should
rather be assumed that the certification authority may prevent the operation of the system
with implemented algorithms of this class.

At this point, it is also worth noting that for several years there have been attempts to
formalize the methods of testing models based on languages such as UML or SysML, as
described, among others, in [8]. However, testing according to these methods is a design
task to which a separate team should be assigned. This topic is not covered in the article.
The interested reader is referred to the papers described in the article [8].

The final stage of the design work is the design of system testing procedures based on
mission simulators and air tests. This includes the development of documentation rules for the
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most critical procedures affecting flight safety and the documentation of the tests performed.
There are no clear guidelines for testing unmanned systems, but NATO and EU standards
and norms are emerging [8]. The most important standard in the design of unmanned aerial
vehicles is certainly STANAG 4586 [27], which presents general requirements for a UAV
that would cooperate with various Ground Control Stations (GCS) and operate in a swarm
with other platforms. Accompanying these standards are system design guidelines such as
DO-1878C (System Building Guidelines [10]), DO-331 [14], DO-332 [15] or DO-333 [16]. In
particular, the DO-331 standard-”Model-Based Development and Verification” is extremely
important. The standard is an attachment to DO-178C and DO-278A. The equivalent of these
guidelines is EMAR documents, which are also described in [8].

3. Modeling of UAV Architecture

This section describes a practical example of modeling a selected unmanned aerial
platform flight scenario, which considers the system’s response to selected emergency in
flight situations. An example of a scenario will be the problem of maintaining the separation
between two platforms, understood as a requirement not to exceed the minimum safe
distance between platforms. The algorithm described in the article is implemented in
the air platform Mission Computer and works automatically mainly when there is no
communication with the GCS. When the radio link is active, the pilot has priority in making
decisions on avoiding collisions with other platforms.

3.1. Selected Design Assumptions

The functional requirements and the requirements specified under the FHA are the
bases for developing the system architecture and the detailed description of the aircraft
flight scenarios. Each functional requirement is transformed, depending on the level of
detail, into a scenario or a single function of the designed system. In the further part of the
article, the operating models of the system in flight will be presented, taking into account
the detection of a potential air collision of two air platforms equipped with ADSB systems.
Figure 1 shows a Use Case diagram covering the scenario presented in the article. We
assume that the functional analysis of the system operation (FHA) has shown that a collision
with another aircraft equipped with ADSB may occur during the flight of the platform.
We also assume that the UAV may not be in contact with GCS at the time preceding the
collision. The UAV itself is equipped with ADSB with the option of receiving the signal
generated by other air platforms. Otherwise, the system should only prompt the pilot
on possible action, but the final decision must always be with the pilot. Based on these
assumptions, the model shown in the article was developed.

Figure 1. Use case scenario: UAV flight in WAYPOINT mode [27]. UAV can perform a flight in a
WAYPOINT mode with the handling of exceptional situations.
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Use Cases map to State Machine diagrams that best represent the interactions occur-
ring in concurrent systems. This modeling approach requires the determination of the
following data:

i. How many states are to be that model for the described scenarios?
ii. What are the transitions between states?
iii. What are the emergency situations in flight, when can they occur, and what do they

depend on?
iv. How to minimize the number of states describing emergency situations in flight so

that the pilot can easily manage the system (particularly UAV computers)?

3.2. The Modeling of an Emergency Situation

In this section, a practical example of modeling an emergency situation in the flight of
an unmanned platform will be presented, which concerns the response to a potential air
collision of two platforms.

Figure 1 shows an exemplary Use Case model that describes the flight of the UAV in
the WAYPOINT mode (flight along an a priori pre-set route consisting of many points). The
basic Use Case must include handling an emergency situation in flight, which concerns
the occurrence of a potential collision of air platforms that inform themselves about their
positions using the ADSB system. The same applies to the avoidance of collisions with a
terrain obstacle.

Figure 2 shows a general diagram of a State Machine for a Use Case that includes
testing for the possibility of collision between air platforms during flight. The state machine
model is shown, which describes the system’s operation during the flight in the WAYPOINT
mode (automatic flight after the a priori setpoints). All state changes occur within a single
thread, which allows the use of a Mission Computer with lower performance (and thus
smaller dimensions of the device). However, critical functions do not run in parallel, so the
method of implementation described by the model is unacceptable for larger platforms.

Figure 2. State machine diagram for a collision avoidance of UAV. Model for one core unit processor.
Actions within the states are presented.

Figure 3 shows the State Machine model, which describes the operation of the system
in flight in the same mode. The handling of the flight to the following points is separate
from checking for the occurrence of emergency situations. In this model, there are two
parallel threads, each affecting how the other works. The critical functions for testing
emergencies are performed serially in a separate thread. This implementation method is
acceptable for larger platforms and does not consume a significant amount of computer
resources (in this case, the Mission Computer).
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Figure 3. State machine diagram for collision avoidance of two UAVs. Model for two core units
processor. Actions within the states are presented.

Figure 3 shows a fragment of the State Machine model with selected actions in selected
states. From a formal point of view, each state must have an action with the stereotype
do: that describes the processing that is performed in that state. This processing can be
modeled as an activity or sequence diagram. In our case, the functions do:testCollision() and
do:findWPT() are given numerical algorithms that are used to implement them. Collision
testing is performed according to the Equations (1) and (2) (see Section 4). It is worth noting
that the determination of the collision situation takes a short time so that individual tests
can be performed sequentially without risk. Determining a new flight direction is based on
the Equations (3) and (4).

The basic scenario carried out by the UAV, which performs a flight in the route mode,
consists in going through the following states in sequence:

FWM1 → FWM2 → FWM3 → FWM2 → SUP → FWM1 (selection of the next
waypoint, flight to a point, the configuration of the recognition sensor, checking for an
emergency, and going to the selection of the next waypoint).

An alternative processing scenario will occur when a parallel process described in
the [exceptional situation] state will execute the testCollision() function, which will deter-
mine the UAV in a potential collision with the UAV. At this point, an alternative scenario
is realized:

FWM1 → FWM2 → SUP → FWM4 → FWM2 → SUP → FWM1 (following way-
point selection, flight to point, emergency test, emergency collision avoidance (do:findWPT()
function, which determines the point to which the UAV must fly to avoid a collision), a
continuation of the flight to a point, a test of the occurrence of an emergency, and selection
of the next waypoint).

As part of handling emergency situations, potential collisions between aerial platforms
and a collision with a terrain obstacle are tested. The reader may notice two entries from
the state ExS2 to the state ExS1. It is not accidental. Depending on whether the possibility
of a collision with a terrain obstacle was observed, the test of the potential collision of the
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aircraft may give different results. For example, in the event of a potential collision with a
terrain obstacle, UAV algorithms must determine a route point above the obstacle, which
ensures no collision with another UAV. By default, the platform can lower the flight altitude
in certain situations, which is not possible in the event of a potential collision with a terrain
obstacle. The processing itself is strictly dependent on the adopted rules and considerations
that go beyond the article’s scope. They are issues bordering on aviation law.

473 The system’s physical architecture is designed after designing scenarios that take
into account specific cases (emergency situations) in flight. A modern approach to the
construction of unmanned platforms in line with the so-called Open architecture makes
it possible to use commercial control systems even in military systems. Therefore, many
modern UAVs use commercial Flight Control Computers (FCC), the functionality of which
is extended by the use of a special Mission Computer (MC), which performs functions that
cannot be performed with the use of FCC. A diagram of the architecture of the discussed
unmanned system is shown in Figure 4. Systems of this class have redundant FCC and
MC computers.

Figure 4. Physical architecture of UAV with logical units depicted (collision avoidance modules). The
figure shows GCS components and UAV components with the radio data link marked.

Architecture refers to the physical components processing data in the system with
indicating the types/roles of these elements («HWCI» stereotype means Hardware Config-
uration Item). The figure shows selected subsystems embedded on platform computers.
In particular, the subsystems responsible for the specific situation described in the arti-
cle, related to the avoidance of air platform collisions, were indicated. In classic systems
equipped with ADSB, the FCC detects the collision situation, but the collision avoidance
algorithm itself can be performed as part of MC processes. It depends on the computational
complexity of the algorithm used.

3.3. System Architecture with SIL Elements

This section shows the extensions of the physical architecture that concern the prepara-
tion of additional components simulating the operation of those systems that cannot be run
during system tests in the laboratory. Due to the scope of the simulation performed and the
used UAV physical components (GPS / INS and ADSB), it was decided to use the Software-
in-the-Loop (SIL) simulation scheme. Software-in-the-Loop represents the integration of a
production code into a mathematical model simulation, providing engineers with a virtual
simulation environment for the development and testing of complex systems. SIL makes
it possible to test the software before the hardware prototyping phase and accelerates the
development cycle. SIL enables the earliest detections of system-level defects or bugs.
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Testing of complex systems, in particular those that can cause harm to humans, must
be performed in conditions similar to reality. In this sense, simulators of real systems are
built. If most or part of the critical UAV systems is simulated by software, it is referred to
as SIL (Software-in-the-Loop) simulator testing. This approach has many disadvantages,
the main of which is the need to prove that the software simulator corresponds precisely to
the software embedded on the actual platform. In this respect, the most difficult thing is to
simulate the computing power, including the processors’ load. In addition, systems often
use a different architecture associated with differences in the interpretation of variables
and how some operations are performed. However, it is not easy to test a system other
than based on SIL in some situations. Examples include simulating collisions of unmanned
aerial vehicles, simulating a collision with a terrain obstacle, or simulating GPS/INS signal
interference. In the case of GPS/INS systems, modern systems are so intelligent that it is
impossible to substitute GPS position data to the device to simulate a flight. Therefore, in
most cases, GPS/INS signal interference is tested based on SIL. The presented approach
simulates the operation of GPS/INS spatial orientation systems and the ADSB system’s
operation, which generate information about UAVs whose flight trajectories may cause an
air collision with our UAV. The SIL scheme is sufficient in this case to test the correctness of
the designed algorithm. The SIL architecture integrated with GCS and UAV elements is
shown in Figure 5.

Figure 5. The physical architecture of UAV with additional simulation units. Simulation packages
replace FCC. The remaining UAV components remained unchanged.

When testing the collision avoidance procedures, one can use the software embedded
on the real Mission Computer (MC). The change in the platform’s position is still simulated
by software, but algorithms are used to determine new flight courses embedded in the MC.
At this point, we can talk about the Hardware-in-the-Loop (HIL) class simulation, in which
original elements of the air platform are used. However, in order to consider the simulation
environment to meet the requirements of the HIL test environment fully, an FCC would
have to be added to this environment, which would be fed with the necessary data about
the platform position and the status of onboard equipment. However, it is not necessary to
properly test the collision avoidance algorithm.

4. Collision Avoidance Algorithm
4.1. The General Model of Collision Avoidance

To present the algorithms supporting the UAV reaction to the occurrence of a critical
situation, an algorithm for avoiding the collision of two air platforms was selected. The
basic version of the algorithm is described in the article [9]. It defines a sequence of
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equations that allow the calculation of the minimum safe manoeuvres of two airplanes,
which restrains the platforms from violating the protection zone.

In brief, the article assumes that two UAVs fly with a constant speed and direction (see
Figure 6). Since the velocity vectors, ~VA and ~VB are known, the nearest approach vector is
defined as:

~rm = ĉ× (~r× ĉ) , (1)

where: ~c = ~VB − ~VA, is defined in the Figure 6, ĉ is its normalized representation (ĉ = ~c
‖~c‖ ).

If ‖~rm‖ < rsa f e, then separation distance will be violated. rsa f e is the safe distance.

Figure 6. Graphical representation of variables of the algorithm in a 3D cartesian coordinate system.
~VA and ~VB are UAVs speed vectors. ~UA and ~UB are new UAVs speed vectors.

Next, the time of closest approach τ is calculated:

τ = −~r ·~c
~c ·~c . (2)

This enables to calculation of the positions of the UAVs for the closest approach. For
UAVA, these vectors can be calculated as presented in the Equation (3):

~rVSA = k ·
rsa f e −~rm

~rm
(−~rm) , (3)

where k =
~VB

‖ ~VA‖+‖ ~VB‖
represents coefficient forcing a slower airplane to take a bigger turn,

as higher speed reduces maneuverability. The resulting dodge vector ~UA is calculated
as follows:

~UA = ~VA · τ +~rVSA . (4)

Park, et al. [9] propose to calculate ~UA as unit vectors to define the direction of
requested movement. However, for some reason, it is better to use the non normalized ~UA
on some systems to infer the collision avoidance waypoint position.

4.2. Visualization of the Results of the Collision Avoidance Algorithm

The results for this algorithm are shown in Figure 7. Each picture contains the current
positions of the UAVs and their flight history and two markers defining the current target
waypoint. The two-color scheme represents two UAVs. Both are surrounded by red ellipses
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(as an equirectangular projection of WGS84 is used for coordinates around N54deg). They
represent the safety radius in the horizontal plane. Each UAV model of presents a vector
of (horizontal) speed, while the number represents altitude at that point. The simulations
assume very close speed values of both UAVs as it is the worst-case scenario.

Figure 7. Example of the working principle of the algorithm with visualization of a dynamic
environment. The red circles show the UAV’s safety zone. The numerical values in the figures show
the height of each UAV. (a) First detection of a long-distance collision of two UAVs flying in almost
parallel trajectories. (b) Slight target waypoints adjustment after 30 iterations. The trajectories are
corrected for the first time. (c) The end of the collision avoidance maneuver with visible target points.
A change in the trajectory of each UAV is presented.

4.3. Modifications to the Collision Avoidance Algorithm

The article proposes an additional set of conditions to improve the response of systems
in a realistic environment.

4.3.1. Time and Distance Limitations

The original algorithm does not consider the problem of detecting collisions of two
UAVs at very long distances (Figure 8). If we consider the situation of one UAV flying
in a straight line, while the other UAV turns with a constant turning radius around a
single point very far from the first UAV but of the same altitude, the algorithm has a high
probability of detecting a collision. This indicates a need to define an additional set of
conditions to limit launch cases for emergency situations.

The following additional condition (5) is proposed as a solution to this issue.

‖r‖ < (max (kmar · (UAVA.rsa f e + UAVB.rsa f e),

∆T · (‖VA‖+ ‖VB‖)) ) ,
(5)

where kmar is the safety margin coefficient, proposed value is kmar = 2, ∆T is assumed time
of safety margin, proposed value is either 60 [s] or twice the time required for 180 [deg .] turn
of the UAV. These proposed values are suggested minimal values. Higher distances will
increase the number of algorithm launches and the smoothness of avoidance maneuvers.

566 To further limit the number of calls on the systems, additional conditions regarding
time (τ) and distance (VA · τ) to the collision can be added after the first calculation steps of
the algorithm. A very long time to collision may suggest that no intervention is needed.
However, the distance between UAVs must be monitored as there is a possibility that they
will be very close and running in almost parallel straight lines. This can break safety zones,
especially for airplanes with minimal vertical speed or low-altitude flight situations where
lowering the flight level is impossible.
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Figure 8. Example of the problematic situation after introduction of a collision time limit. (a) Detection
of collision over a very long time, (b) safe area violation after a short period.

4.3.2. Spheroid Separation Areas

576 Most airplanes measure altitude positions with higher accuracy than other coor-
dinates. Therefore most of the norms assume safe ellipsoid areas. For example, Reduced
Vertical Separation Minimum (RVSM) [28] introduces lowered 1000 ft. vertical separation
for flights under 41,000 ft. and 2000 ft. above that threshold. Meanwhile, horizontal
separation is defined as more complex due to different definitions. Usually, horizontal
separation requires a distance of 15 nautical miles (27.8 km—lateral separation) or 15 min
of flight (longitudinal separation) [29].

There are many definitions for the safety radii, varying for countries, heights, speeds
or weather conditions (e.g., [30], or [31] presented in Figure 9b). In this paper, separation
values, due to low altitude flights, is 9260 m for horizontal distance and 600 m for vertical
distance, defining spheroid presented in Figure 9a.

Additionally, the distances depend on object type (UAVs usually assume smaller
collision spheroids) or flight conditions (IFR-Instrument flight rules versus VFR-visual
flight rules).

To solve this problem, simple coordinate transformation can be used. The operations
on the ellipsoid or spheroid are more complex than for sphere (for example, requiring
iterative calculations for projections), and the original algorithm does not consider variable
rsa f e distance. It is the easiest to assume a spheroid separation zone (rsa f e−H , rsa f e−V) and

stretch the Z-axis with coefficient
rsa f e−H
rsa f e−V

before the appliance of the calculations for the
sphere. Afterward, the Z-axis has to be brought back.

That yields few profits: dodge maneuvers in the Z-axis are smaller than initially, so it
is simpler to test the algorithm and prove its efficiency. The rm still represents the violation
grade of the separation distance as it can be compared to rsa f e−H .
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Figure 9. Examples of separation space definitions: (a) Spheroid safety zone and definition of used
vectors in this paper, (b) Cylindrical safety zone from [31].

4.3.3. Multiple Obstacle Scenario

Precise analysis of multiple obstacle scenario is outside of the scope of this article. An
exemplary approach to such situation is presented in an article by Lin et al. [19]. When the
collision is detected with more than one object there might be 2 cases:

1. Only one object has overlap with initial path and possible dodge manoeuvre—a single
dodge manoeuvre is needed in order to avoid safe area violation.

2. Two or more objects overlap the initial path—authors propose the expansion of the
collision zone for new, single virtual target.

5. Results
5.1. Assumptions for the Testing Process

Several critical assumptions were made for the presented scenario of the system’s
operations. Firstly, it was assumed that it is not possible for more than two platforms to
be in the area of a potential collision in a short period. Secondly, it was assumed that the
algorithm determining a dodge maneuver for collision avoidance could be allotted any
direction, i.e., there are no no-fly areas in the flight area. Otherwise (as is the case in the real
system), a solution considering the above limitations should be determined at one stage
of the algorithm. The state machine model for such a case would be beyond the scope of
this article.

5.2. Testing of Emergency Situation in Flight

The article [9] shows the basic version of the algorithm for calculating a new UAV
course to avoid a collision with another UAV that is on a collision course. Two prominent
cases were considered: when the platforms are flying towards a head-on collision from two
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directions and when the courses of the platforms intersect in the near distance. For these
cases, a method of determining a new course of both platforms was shown.

Additionally, the real-life application requires consideration over a non-zero sampling
interval, which introduces delays and step changes of setpoints for the flight controllers.

The article presents the results of simulations of cases described in [9] and new cases
that the basic algorithm developed by Jung-Woo did not correctly detect.

Testing scenarios:

(a) The platforms are on a collision course, and the collision will occur at a short distance
(Figure 10a);

(b) The platforms are on a collision course, but the collision will occur at a considerable
distance from the actual position of the platforms (Figure 10b);

(c) The platforms fly to points close to each other, almost parallel, which creates a risk
of collision at any point in the route (Figure 10c,d).

Figure 10. Output images from the simulation. (a) Dodge maneuvers of two crossing airplanes.
(b) Dodge maneuvers of two semi-parallel airplanes. (c) Straight route with spherical safety zone—
original algorithm. (d) Straight route with limited vertical movement and spheroid safety zone.

5.3. Results from the Simulator and Calculations

The result of the algorithm is shown in Figure 10. Figure 10a presents two dodge
maneuvers need for two UAVs to dodge a safe area collision when given the same target
waypoints. Their vectors of approach differ considerably. Figure 10b presents a similar
situation, but the speed vectors of the UAVs are similar, which leads to more prolonged
dodge maneuvers. Figure 10c presents a dodge for the original algorithm. This case leads
to a terrain collision, as the lower UAV drops altitude to avoid conflict. Figure 10c presents
a modified algorithm, which leads to much lower altitude changes, but a bigger and slower
horizontal dodge.

6. Conclusions

The article discusses the methods of designing a reliable hardware and software archi-
tecture of unmanned aerial vehicles, that consider the modeling of emergency situations
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in the flight. The models and results are for a medium-range UAV system subject to cer-
tification regulations under current EU legislation. Therefore, it should be assumed that
these platforms will be subject to a certification process similar to that to which airplanes
are subject.

The article focuses primarily on the methods of modeling scenarios implemented by
the platform in flight, using the technique of functional threat analysis and failure trees
of elements included in the hardware and software architecture of the system. It will not
be an overstatement to say that this approach will soon dominate companies producing
flying systems.

Particular attention was paid to describing methods of modeling the collision avoid-
ance behavior in a flight of two platforms equipped with ADSB devices. One of the better
algorithms has been referred to, which gives a deterministic solution to the above problem.
Ways to test this algorithm are provided. It was shown that the descriptions of the algo-
rithm in the source article contained inaccuracies that could cause errors in the platform or
its unexpected reactions in real-world conditions. The simulation tests proved it, and an
analytical solution was given, an extension of the base algorithm. The article focuses on
the principles of designing system test plans and designing individual test cases to verify
the system’s operation in the event of emergency situations in flight. We also present the
air platform flight simulator that we use in practice in the form of a SIL model based on
selected algorithms for avoiding dangerous situations.

Further work will go in two directions. First of all, the model should be extended with
additional algorithms for reacting to emergencies, such as, for example, ensuring separation
from a terrain obstacle or maintaining the UAV flight in the permitted area. Secondly, the
described simulator should be expanded to a full HIL model using additional equipment.
However, this requires the construction of simulators of mechanical components such as
the engine, which is a separate project due to the complexity of the task.
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