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Abstract: The human attention mechanism can be understood and simulated by closely associating
the saliency prediction task to neuroscience and psychology. Furthermore, saliency prediction is
widely used in computer vision and interdisciplinary subjects. In recent years, with the rapid
development of deep learning, deep models have made amazing achievements in saliency prediction.
Deep learning models can automatically learn features, thus solving many drawbacks of the classic
models, such as handcrafted features and task settings, among others. Nevertheless, the deep
models still have some limitations, for example in tasks involving multi-modality and semantic
understanding. This study focuses on summarizing the relevant achievements in the field of saliency
prediction, including the early neurological and psychological mechanisms and the guiding role
of classic models, followed by the development process and data comparison of classic and deep
saliency prediction models. This study also discusses the relationship between the model and human
vision, as well as the factors that cause the semantic gaps, the influences of attention in cognitive
research, the limitations of the saliency model, and the emerging applications, to provide new saliency
predictions for follow-up work and the necessary help and advice.

Keywords: visual attention; visual saliency; saliency prediction; deep learning

1. Introduction

Approximately 80% of the information that humans receive every day comes from
vision. However, human visual nerve resources are limited [1]. An information bottleneck
exists in the human visual pathway. For instance, the visual system receives hundreds
of megabytes of visual media data every second, but the information processing speed
is only 40 bits per second [2]. In this process, the visual attention mechanism plays an
important role [3]. Among the information received in our daily lives, only a small amount
of stimuli can enter the visual system for further processing at any time, thereby avoiding
computational waste and reducing the difficulty of analysis. The development of the
Internet and the popularization of smart devices have enhanced the speed of information
collection and dissemination, even reaching an unprecedented level. However, if all
information is indiscriminately allocated with the same computing resources, then it will
lead to a waste of computing resources and excessive time consumption. Knowing how to
select interesting content from massive scenes for analysis and processing in the same way
as human beings is therefore a very important endeavor.

Visual saliency prediction is a mechanism that imitates human visual attention, in-
cluding relevant knowledge such as neurobiological, psychological, and computer vision.
Early attention models often used cognitive psychological knowledge to find information
about behaviors, tasks, or goals. For example, Itti et al. [4] proposed a saliency prediction
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model based on the bottom-up model, from which the deep learning models have gradually
flourished. Compared with the classic models, the performance of these newly developed
models has been greatly improved, and the performance is gradually approaching the
human inter-observer. The significance of the research on visual saliency detection lies
in two aspects: first, as a verifiable prediction, it can be used as a model-based hypothe-
sis test to understand human attention mechanisms at the behavioral and neural levels.
Second, the saliency prediction model based on the attention mechanism has been widely
used in numerous ways, such as target prediction [4], target tracking [5], image segmen-
tation [6], image classification [7], image stitching [8], video surveillance [9], image or
video compression [10], image or video retrieval [11], salient object detection [12], video
segmentation [13], image cropping [14], visual SLAM (Simultaneous Localization and Map-
ping) [15], end-to-end driving [16], video question answering [17], medical diagnosis [18],
health monitoring [19] and so on.

The current research on saliency detection mainly involves two types of tasks, namely,
saliency prediction (or eye fixation prediction) and Salient Object Detection (SOD). Both
types of tasks aim to detect the most significant area of a picture or a video. However,
differences exist between these two models and their application scenarios. Saliency
prediction is informed by the human visual attention mechanism and predicts the possibility
of the human eyes to stay in a certain position in the scene. By contrast, salient object
detection, as the other branch, focuses on the perception and description of the object level,
which is a pure computer vision task. The two types of tasks asre shown in Figure 1.

Figure 1. Two saliency detection tasks: (a) Original image, (b) Saliency prediction task, (c) Salient
object detection task.

Numerous researchers have recently investigated SOD tasks. Presumably, as a pure
visual task, SOD can be more easily and directly applied to certain visual scenes, which
is more driven by applications in different fields. Benefiting from large-scale bench-
marking and deep learning, SOD has been developing rapidly and has shown amazing
achievements [20]. In recent years, many researchers have made outstanding contributions.
Wang et al. [21] proposed a general framework using iterative top-down and bottom-up
saliency inference. In addition, the framework used parameter sharing and weight sharing
to reduce the amount of parameters. Besides, Wang et al. [22] proposed the PAGE-Net,
which mainly included two modules: pyramid attention and salient edge detection. With
an enlarged receptive field, PAGE-Net obtained the edge information by predicting the edge
of significant objects through supervised learning. The model proposed by Zhang et al. [23]
applied joint training to the two almost opposite tasks of SOD and COD(Camouflaged
Object Detection). The Dual ReFinement Network (DRFNet) proposed by Zhang et al. [24]
can be directly applied to high-resolution images. DRFNet consisted of a shared feature
extractor and two effective refinement heads, which could obtain more discriminative
features from high-resolution images.

However, the salient object is not necessarily the only possible salient target in the
graph. Other complicated factors should be considered. In addition to its wide range of
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applications, the saliency prediction task is related to human vision itself, and it is closely
related to neuroscience and psychology. Consequently, saliency prediction has been widely
used in interdisciplinary and emerging subjects. The main contributions of this study are
as follows:

• This research focused on the task of saliency prediction, analyzed the psychological
and physiological mechanisms related to saliency prediction, introduced the classic
models that have been affected by saliency prediction, and determined the impact of
these theories on deep learning models.

• The visual saliency model based on deep learning was analyzed in detail, and the
performance evaluation measures of the representative experimental datasets and
the model under static and dynamic conditions were discussed and summarized,
respectively.

• The limitations of the current deep learning model were analyzed, the possible di-
rections for improvement were proposed, new application areas based on the latest
progress of deep learning were discussed, and the contribution and significance of
saliency prediction with respect to future development trends were presented.

2. Psychological and Neurobiological Basis of Visual Saliency

Attention mechanism has always been an important subject of neuroscience and
psychology. In the mid-1950s, cognitive psychology gradually emerged. Attention was
regarded as an important mechanism of human brain information processing, and several
influential attention models, such as the filter model (1958), attenuation model (1960), and
response selection model (1963), among others, were produced. Treisman [25] proposed an
important model called Feature Integration Theory (FIT) to vividly illustrate the selective
role of visual attention. The visual process in this model was divided into a pre-attention
stage and a focal attention stage. Feature integration was implemented after extracting the
location-related features. Koch and Ullman [26] enhanced FIT by integrating the return-
inhibition mechanism to achieve a focus shift. Moreover, on the basis of criticisms of the
early FIT model, Wolfe [27] proposed the guided search model to explain and predict search
results. These neurological and psychological studies have provided an important basis
and criteria for calculating visual saliency, such as center surround antagonism, global
rarity, or maximization of information.

Visual saliency prediction mainly used mathematical models to simulate the human
visual attention function and subsequently calculated the importance of visual information.
The simulation of the human visual attention system mainly used some of the important
achievements in visual physiology and psychology mentioned above. Notably, visual
saliency prediction did not study eye movement strategies in visual attention but rather
calculates the information pertaining to the different degrees of importance with respect
to scenes for eye movement decision-making. These studies have played a guiding and
standardizing role in the subsequent development of saliency detection models.

3. Classic Visual Saliency Models

The classic visual saliency model considered the psychological and neurobiological
basis, and most of them were handcrafted feature models. As a research basis of psychology,
classic visual saliency models could be usually divided into two models according to the
level of information processing: bottom-up saliency models (data-driven, task-agnostic
model), and top-down saliency models (task-driven, task-specific model).

3.1. Bottom-Up Visual Saliency Models

Bottom-up visual saliency models usually extract low-level features, such as contrast,
color, and texture. The difference between low-level features and background features
strongly attract attention resources. This attention prediction mechanism is involuntary
and entails fast processing. For example, the presence of pedestrians, vehicles, individual
flowers, and beasts in an image will show strong visual saliency. Among them, the local
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contrast model is based on the physiological and psychological principles of FIT and the
center surround antagonism, and it defines a certain mechanism when selecting salient
areas in an image to realize the simulation of the visual attention mechanism. For example,
the earliest model of Itti [4] could simulate the process of shifting human visual attention
without any prior information. According to the features captured from images, the model
analyzed visual stimuli, allocated computing resources, selected the salient areas in the
scene according to the saliency intensity of different positions, and simulated the process of
human visual attention transfer. Although the performance of the model was general, it was
the first successful attempt from the neurobiological model, which is of great significance.
Since then, other researchers have contributed improvements. Harel [28] changed the
graph-based visual saliency (GBVS) model to the Markov random field with non-linear
combination in the synthesis stage. The model formed activation maps on certain feature
channels, and then normalized them in a way which highlighted conspicuity and admitted
combination with other maps. Ma and Zhang [29] used local contrast analysis to extract the
saliency maps of an image, and on this basis, Tie Liu et al. [30] used 9 × 9 neighborhoods
and adopted a conditional random field (CRF) learning model. Borji [31] analyzed local
rarity based on the sparse coding. Sclaroff et al. [32] proposed a saliency prediction model
based on Boolean Map. In addition, researchers have used other models to predict saliency
by using local or global contrast. Some of the notable examples include the pixel-level
contrast saliency model proposed by Zhai and Shah [33], the sliding windows-based model
for global contrast calculation proposed by Wei [34], the color contrast linear fusion model
proposed by Margolin [35], the frequency tuning model proposed by Achanta [36], and the
color space quantization model proposed by Cheng [37]. Other researchers have used the
superpixel [38–40] as the processing unit to calculate the variance of color space distribution
as a means of improving the computational efficiency.

Some models have been based on information theory and image transformation. The
essence of these models based on information theory is to calculate the maximum infor-
mation sampling from the visual environment, select the richest part from the scene, and
discard the remaining part. Among them, the Attention-based on Information Maximiza-
tion (AIM) model of Bruce and Tsotsos [41] was influential. The AIM model has used
Shannon’s self-information measure to calculate the saliency of the image. Firstly, a certain
number of natural image blocks were randomly selected for training to obtain the basic
function. Then, the image was divided into blocks of the same size, the basis coefficients of
the corresponding blocks were extracted as the features of the block through Independent
Component Analysis (ICA), the distribution of each feature was obtained through proba-
bility density estimation, and finally the probability density of the feature was obtained.
Other notable models included the incremental coding length model proposed by Hou [42],
the rare linear combination model proposed by Mancas [43], the self-similarity prediction
model proposed by Seo [44] and the Mahalanobis distance calculation model proposed
by Rosenholtz [45]. As for the use of image transformation models for saliency predic-
tion, the spectral residual model proposed by Hou [46] did not examine the foreground
characteristics but rather utilizes the research background. The areas that did not match
these features are the areas of interest. After calculating the residual spectrum, the residual
spectrum was mapped back to the spatial domain by inverse Fourier transform to obtain
the saliency map. On this basis, Guo [47] proposed a model that used the phase spectrum to
obtain the saliency map and Holtzman-Gazit [48] extracted a variety of resolutions for the
picture. Sclaroff [49] proposed a Boolean Map based saliency model(BMS) by discovering
surrounding regions via boolean maps. The model obtained saliency maps by analyzing
the topological structure of boolean maps. Although BMS was simple to implement and
efficient to run, it performed well in the classical models.

3.2. Top-Down Visual Saliency Models

The top-down visual saliency model is often based on certain specific tasks. Due to
the diversity and complexity of tasks, modeling is also more difficult [50]. The top-down
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visual saliency model is mainly based on the Bayesian model. In addition, the Bayesian
model can be regarded as a special case of the decision theoretical model, as both simulate
the biological calculation process of human visual saliency.

The Bayesian model in saliency prediction is a probabilistic combination model that
combined scene information and prior information according to Bayesian rules. The
model proposed by Torrallba et al. [51] multiplied the bottom-up and top-down saliency
maps to obtain the final saliency map. On this basis, Ehinger et al. [52] integrated the
feature prior information of the target into the above framework. Xie et al. [53] proposed
a saliency prediction model based on posterior probability. The SUN model proposed by
Zhang et al. [54] used visual features and spatial location as the prior knowledge.

The model based on decision theory in saliency prediction is a strategy model that
decides the optimal plan based on the information and evaluation criteria requirements,
i.e., how to make optimal decisions about perceptual information of the surrounding
environment. Gao and Vasconcelos [55,56] believe that the salient features in the recognition
process are derived from other classes of interest, and they defined top-down attention as
a classification problem with the smallest expected error. Kim et al. [57] recommended a
temporal and spatial saliency model based on motion perception grouping. Gu et al. [58]
proposed a model based on the decision theory mechanism to predict regions of interest.

Early machine learning models often use a variety of machine learning methods,
such as Convolutional Neural Networks (CNNs), Support Vector Machines (SVMs), or
probability kernel density estimation, and they mostly combined the bottom-up and top-
down methods. Notable examples included the nonlinear mapping model proposed by
Kienzle et al. [59], the regression classifier model proposed by Peters et al. [60], and the
linear SVM model proposed by Judd et al. [61]. Those early machine learning models had
a certain exploratory nature for subsequent deep learning models, and they played an
important guiding role for the subsequently developed deep learning models.

Although these classical models were designed in a variety of ways, their performance
gradually reached a bottleneck due to handcrafted features. The development process of
neurobiological models and classic models is shown in Figure 2.

Figure 2. Development process of neurobiological models and classic models.

4. Deep Visual Saliency Models

In 2014, Vig et al. [62] proposed a deep convolutional network named eDN that could
be implemented in fully automatic data-driven mode to extract features. Compared with
the classic model, eDN could automatically learn the image expression and obtain the final
saliency map by fusing the feature maps from different layers. However, due to the limited
number of datasets and the limited number of trainable graphs in the data set, the depth
of the network was not enough, as the structural scalability was limited. Since then, more
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researchers have used deep models to study saliency prediction, and the application of
deep models in static and dynamic saliency prediction has achieved better results.

4.1. Static Models

After eDN, Kümmerer et al. [63] proposed a CNN model named Deep Gaze I based
on image classification by using the AlexNet [64] network. The major innovation of Deep
Gaze I was the application of transfer learning for saliency prediction by using pre-trained
weights on ImageNet [65], connecting them to the output layer of AlexNet. The network
contains a central deviation that was converted into a probability distribution by using
a softmax function. The typical saliency datasets were relatively small, and the training
effect was limited. ImageNet has a good training effect as a million-level database, but the
training resources are huge and the training time is excessive. The use of transfer learning
based on ImageNet makes it easier to learn the features of deep CNNs (DCNN) and attain
much better generalization effects. Kruthiventi et al. [66] proposed the DeepFix model in
the same year, by using the VGG-16 [67] network as the main feature extraction network,
allowing the network to use location-related information. Compared with AlexNet, the
VGG-16 network is simpler and more effective. Using a better target prediction network
becomes a better choice. Then, DeepGaze II [68] switched to VGG-19 [67], retrained the
image features on the SALICON [69] dataset, and then fine-tuned on the MIT1003 [70]
dataset. As a result, the performance of the updated model has been significantly improved
compared with that of Deep Gaze I. This development trend indicated that retraining
deep features and the task of fine-tuning contribute to performance enhancement. Many
researchers have adopted small-scale retraining and fine-tuning with the successful use of
transfer learning.

Similarly, many researchers have adopted models that can capture relatively fine or
coarse features by adjusting the input of different resolutions as a means of achieving better
results. Among them, Pan et al. [71] proposed two saliency models: shallow ConvNet
(JuntingNet) and deep ConvNet (SalNet) to train end-to-end architectures. SALICON
was used to train a convolutional network by using VGG-16 network with dual-branch
multi-scale features. Dual-branch can effectively improve the model performance, but the
calculation cost and memory are higher in training and testing.

Then, by combining migration-integrating information on different image scales, the
model could greatly surpass the level of advancements at the time. The probability distri-
bution prediction model proposed by Jetley et al. [72] defined saliency as a generalized
Bernoulli distribution, and it included a fully end-to-end training deep CNN that combined
the classic softmax loss with the calculation of the different probability distributions. Their
results showed that the new loss function was more effective than the classic loss function
(e.g., Euclidean) in saliency prediction. Liu and Han [73] proposed a Deep Spatial Contex-
tual Long-Term Recurrent Convolutional Network (DSCLRCN) model. First, CNN was
used to learn the local saliency of small image regions, and then images in the horizontal
and vertical directions were scanned using the Long Short-Term Memory networks (LSTMs)
to capture the global context. These two operations allowed DSCLRCN to effectively merge
local and global contexts at the same time for inferring the saliency maps of the image.

The ML-Net model proposed by Cornia et al. [74] combined the advantages of the
above models. Their model consisted of a feature extraction DCNN, a feature coding
network, and an a priori learning network. At the same time, the loss function of the
network was weighted by three parts: NSS, CC, and SIM. The SALICON model also used
differentiable metrics, such as NSS, CC, SIM, and KL divergence, to train the network. The
SAM-ResNet model and SAM-VGG model subsequently proposed by Cornia et al. [75]
combined the full convolutional network and the cyclic convolutional network to obtain a
spatial attention mechanism. SalGAN [76] used adversarial networks for training, and it
consisted of two parts, a generator and a discriminator. The network learned the parameters
through the backpropagation of the downsampled binary cross entropy loss calculation.
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The success of the model indicated that the choice of an appropriate loss function can be
treated as a method for improving the prediction effect.

In recent years, some excellent models have been proposed for saliency prediction.
Jia et al. [77] proposed a saliency model called EML-Net based on the similarities between
images and the integration of Extreme Learning Machines (ELMs). Wang et al. [78] pro-
posed the Deep Visual Attention (DVA) model in which the architecture was trained in mul-
tiple scales to predict pixel saliency based on a skip-layer network. The model proposed by
Gorji [79] used shared attention to enhance saliency prediction. Dodge et al. [80] proposed
a model called MxSalNet, which was formulated as a mixture of experts. Mahdi et al. [81]
proposed a deep feature-based saliency (DeepFeat) model to utilize features by combining
bottom-up and top-down saliency maps. AKa et al. [82] proposed the MSI-Net based on an
encoder–decoder structure and it includes a module with multiple convolutional layers at
different dilation rates to capture multi-scale features.

4.2. Dynamic Models

Unlike the settings of the static models, the observation time in dynamic models
is reduced from approximately 4 s to 0.05 s. In addition, due to the obvious motion
information in videos, predicting the saliency of the dynamic video is more difficult. As a
result, much fewer dynamic models exist. Nevertheless, as the demand for applications
continues to grow, the research on dynamic models has also been continuously developing.

Dynamic models usually add temporal information to CNNs or use LSTMs for mod-
eling. Early dynamic models mainly combined static saliency features with temporal
information based on the bottom-up model. Gao et al. [83] integrated additional motion
information, and Seo et al. [84] used a local regression kernel to calculate the similarity
between the pixels in the video and its surrounding area. However, the performance of
these models were restricted by their handcrafted features. The emergence of deep learning
frameworks has improved this situation. Bak et al. [85] proposed the dynamic model and
added motion features based on the two-stream network. Due to the final fusion of the in-
formation of the two streams, the network was limited in learning spatiotemporal features.
Chaabouni et al. [86] added residual motion and RGB color planes of two consecutive
frames to CNN based on transfer learning. The model of Leifman et al. [87] merged the RGB
color planes, dense optical flow map, and saliency map into a seven-layer CNN network.
Wang et al. [88] proposed a spatiotemporal residual attentive network (STRA-Net), which
learned a stack of local attentions as well as global attention priors to filter out unrelated
information. The model has advantages in precisely locating dynamic human fixations as
well as capturing the temporal attention transitions.

LSTMs are also widely used in dynamic models. Bazzani et al. [89] used 3D CNNs
to connect with the LSTMs and projected the output of the LSTMs to a Gaussian mixture
model. The Object-to-Motion (OM)-CNN model proposed by Jiang et al. [90] analyzed intra-
frame saliency based on the salient object networks and the motion information networks.
On this basis, Gorji [91] proposed a multi-stream convolutional LSTM (ConvLSTM) network
with three networks (gaze following, rapid scene change, and attention feedback) based on
the static model. The ACLNet proposed by Wang et al. [92] used an enhanced CNN-LSTMs
to encode static saliency information. However, the ability of the network to capture motion
information was limited. In this manner, LSTMs can focus on learning temporal saliency
representations across consecutive frames and avoid overfitting. Hang et al. [93] designed
an attention-aware ConvLSTM to obtain spatial features from static networks and temporal
features from dynamic networks, subsequently integrating them. The features extracted
from consecutive frames were used to predict the salient regions, and a final salient map is
generated for each video frame.

In the past two years, the dynamic saliency field has gradually developed in the
direction of omnidirectional images (ODIs) and 3D ODIs. Xu et al. [94] used adversarial
networks to predict the saliency of ODIs by imitating the head trajectory of the object and
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applied generative adversarial simulation models to train deep models. The development
process of saliency prediction models is shown in Figure 3.

Figure 3. Development process of deep saliency prediction models.

5. Visual Saliency Prediction Datasets

Many databases for target detection and image segmentation can be used as exper-
imental data; many of them have been obtained by eye-tracking devices and manual
annotations. The performance of saliency maps generated by different saliency models
needs to be quantitatively evaluated. At present, the application of visual saliency predic-
tion is mainly conducted for images and videos. The corresponding databases are also
divided into two types: static and dynamic.

5.1. Static Datasets

• TORONTO dataset: In 2006, Bruce et al. [41] established the TORONTO dataset. It is
one of the earliest and most widely used datasets of computer vision. It includes 120
color images with a resolution of 511 × 681. The images contain indoor and outdoor
scenes and a total of 20 recorded observers’ eye movement data.

• MIT300 dataset: In 2012, Judd et al. [70] of MIT established the MIT300 dataset. It
contains 300 natural images from Flickr’s creation and sharing and the eye movement
data of 39 observers. At that time, the MIT300 dataset was the most influential and
most widely used in the dataset saliency field. The dataset is generally not used as a
training set. However, the model comprising the MIT300 dataset can be evaluated.

• MIT1003 dataset: The MIT1003 dataset was also established by Judd et al. [61]. It
contains a total of 1003 images from Flickr’s collection of images and the LabelMe
website and the eye movement data of 15 observers. The MIT1003 dataset can be
regarded as a supplement to the MIT300 dataset. The MIT1003 and MIT300 datasets
can be used as a training set and a test set for performance evaluation, respectively.

• DUT-OMRON dataset: In 2013, Yang et al. [95] established the DUT-OMRON dataset.
It contains 5168 images, and each image provides eye movement data of 5 observers.
This dataset is annotated with eye movement data, but it mainly focuses on salient
object detection, with one or more salient objects and a relatively complex background.

• CAT2000 dataset: The CAT2000 dataset was established by Borji et al. [96]. It contains
2000 images under free observation by 24 observers. Twenty scenes are categorized as
cartoon, art, indoor, and outdoor scenes. These categories contain bottom-up attention
cues and top-down factors. The different types of images are suitable for a variety of
attention behavior studies.

• SALICON dataset: In 2015, Ming et al. [69] established the SALICON dataset. This
large mouse tracking dataset for contextual saliency was established by selecting
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20,000 images in MS-COCO. It is currently the largest attention dataset in terms of
scale and context variability. The difference from the abovementioned databases is
that the SALICON dataset does not use an eye tracker to record eye movement data
but rather uses the Amazon Mechanical Turk platform; however, the eye movement
data recorded by the mouse was used to evaluate the performance of the model.
Tavakoli et al. [97] emphasized that problems may arise in evaluating model per-
formance when eye movement data are recorded by the mouse. Nonetheless, the
SALICON dataset is the largest dataset in the current field, and it continues to be
widely used by current mainstream saliency prediction models based on deep learning
technology. The SALICON dataset offers eye movement data for the training set
(10,000 pictures) and validation set (5000 pictures), and it can retain the eye movement
data of the test set (5000 pictures).

• EMOd dataset: The EMOd dataset is a new dataset proposed by Fan et al. [98]. It
contains 1019 emotional images with target-level and image-level annotations. It
was designed for studying visual saliency and image emotion. In the image labeling
process of the EMOd dataset, the main target objects in each image are labeled with
attributes, such as target contour, target name, emotional category (negative, neutral,
or positive), and semantic category. The four semantic categories are as follows: the
target directly related to humans, the target related to human non-visual perception,
the target designed to attract attention or interact with humans, and the target with
implicit signs. Each target is coded to have one or more categories. Furthermore, the
EMOd dataset has a total of 4302 targets with fine contours, emotional labels, and
semantic labels. The number of positive, neutral, and negative targets are 839, 2429,
and 1034, respectively.

In these datasets, SALICON has the largest amount of data for static models. Most
models could use transfer learning to fine-tune on SALICON. Mit300 and cat2000, as
databases containing the most model comparisons, are usually used for model perfor-
mance testing.

5.2. Dynamic Datasets

The discussion in Section 4.2 has established the particularities of dynamic information
and human attention and the limitation of eye movement equipment, which have led to
difficulties in observing dynamic data. Incidentally, owing to the growth of application
requirements, some large datasets have emerged in recent years. At present, the dynamic
dataset mainly consists of the following:

• DIEM dataset: The DIEM dataset was established in 2011 by Mital et al. [99]. It contains
a total of 84 videos, including advertisements, movie trailers, and documentaries,
among others. A total of 50 observers have provided eye movement data through free
viewing. The scene content and data scale are both limited.

• UCF-sports dataset: The UCF-sports dataset was established by Mathe et al. [100]. The
dataset contains 150 videos, including 9 common sports categories. Different from
the DIEM dataset, the observation object in the UCF-sports dataset is prompted by
time-based actions in the video during the viewing process. The result is found to be
purposeful.

• Hollywood-2 dataset: The Hollywood-2 dataset was also established in 2012 by
Mathe et al. [100]. The dataset contains 1770 videos that are labeled according to
12 action categories, such as eating and running, among others. Unlike the UCF-sports
dataset, the observation objects of the Hollywood-2 dataset are divided into three
groups: free viewing, human action annotation, and video content annotation. The
human-eye focus data are in the free viewing mode only and accounts for a small
proportion of all of the data.

• DHF1K dataset: The DHF1K dataset was established by Wang et al. [92] in 2018. The
dataset consists of a total of 1000 video sequences watched by 17 observers and covers
seven main categories and 150 scene sub-categories. The video contains 582,605 frames
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with a total duration of 19,420 s. The DHF1K dataset also provides calibration for
movement mode and number of objects, among others, thus providing convenience
for studying high-level information of the dynamic attention mechanism.

• LEDOV dataset: The LEDOV dataset [101] was established by Wang et al. in 2018. It
includes daily activities, sports, social activities, art performances, and other content.
A total of 538 videos, with a resolution of 720px, contain a total of 179,336 frames of
video and 5,058,178 gaze locations.

For early dynamic models, the DIEM, Hollywood-2, and UCF-sports datasets were
the three most widely used datasets in video saliency research. In recent years, with the
continuous updating of datasets, there are more models also using the DHF1K database for
training and testing. The DHF1K database has a huge amount of data and a wide range of
application.

6. Evaluation Measures for Visual Saliency Prediction

The metrics of visual saliency prediction mostly use similarities and differences be-
tween estimated predicted values and the Ground Truth (GT) and then outputs an eval-
uation score to judge the similarity or difference degree between them. Given a set of
true values used to define the scoring function, the saliency prediction map can be used
as the input, and the result of evaluating the accuracy of the prediction is returned. The
evaluation measures are as follows:

AUC variant: The Area Under Curve (AUC) is used as a measurement standard for
the two-class pattern recognition problem. Different from the AUC in tasks, such as target
detection and image segmentation, given the particularity of the saliency prediction task,
the following AUC variants are often used in the saliency prediction tasks:

• AUC-Judd: Judd et al. [102] proposed a variant of the AUC called AUC-Judd. For
a given threshold, the true-positive probability is the ratio of the pixels predicted as
significant on all true-valued salient points, whereas the false-positive probability is
the ratio of pixels predicted as significant on non-salient points.

• AUC-Borji: Borji et al. [103] proposed another variant of the AUC called AUC-Borji.
This variant uses the uniform random sampling of non-focus points to calculate the
false positive rate and defines the saliency mapping value above the threshold of
these pixels as false positive. The false positive calculation in AUC-Borji is a discrete
approximation of the calculation in AUC-Judd. Due to the use of random sampling,
the same model may be evaluated with different results.

• Shuffled AUC: Shuffled AUC (sAUC) [97] is also a commonly used AUC variant. It
reduces the sensitivity of the AUC to the center shift by sampling the salient point
distribution of other images.

AUC-Judd, AUC-Borji, and sAUC, as variants of AUC, are widely used in the evalua-
tion of saliency models. Their values are positively correlated with model performance.
Although AUC is an important evaluation measure, it cannot distinguish the relative im-
portance of different regions. Therefore, other distribution-based similarity evaluation
measures are needed:

• Normalized Scanpath Saliency (NSS): NSS is a unique evaluation measure of saliency
prediction. It is used to calculate the average normalized significance value at the
point of interest [104]. The calculation formula of NSS is

NSS =
1
N

N

∑
i=1

P(i)×Q(i) (1)

where P is the average value at the gaze point Q of the human eye, N is the total number of
human eye gazes, i represents the i-th pixel, and N is the total number of pixels at the gaze
point. A positive NSS indicates consistency between mappings, whereas a negative NSS is
the opposite. The NSS value is negatively correlated with model performance.
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• Linear Correlation Coefficient (CC):The CC is the statistic used to measure the linear
correlation between two random variables. For the significance prediction evaluation,
the prediction significance map (P) and the true value view (G) can be regarded as the
two random variables. The calculation formula of CC is

CC =
cov(P, G)

σ(P)× σ(G)
(2)

where cov is the covariance, σ is the standard deviation. The CC can equally distin-
guish false positives and false negatives at the value range of (−1,1). A value close to the
two ends indicates a better model performance.

• Earth Movers Distance (EMD): EMD [105] represents the distance between the two
2D maps denoted by G and S, and it calculates the minimum cost of converting the
estimated probability distribution of the saliency map S into the probability distribu-
tion of the GT map denoted by G. Therefore, a low EMD corresponds to a high-quality
saliency map. In saliency prediction, EMD represents the minimum cost of converting
the probability distribution of the saliency map into human-eye attention maps called
the fixation map.

• Kullback–Leibler (KL) Divergence: KL divergence is a general information theory
measurement corresponding to the difference between two probability distributions.
The calculation formula of KL is

KL(P, G) = ∑
i

Gi log(ε+
G

ε+ Pi
) (3)

Similar to other distribution-based measures, KL divergence takes the predicted
saliency map (P) and the true value view (G) as the input and evaluates the loss of informa-
tion where P is used to approximate G, ε is the regularization constant. Furthermore, KL
divergence is an asymmetric dissimilarity measure. A low score indicates that the saliency
map is close to the true value.

• (6) Similarity Metric (SIM): SIM measures the similarity between two distributions.
After normalizing the input map, SIM is calculated as the sum of the minimum values
at each pixel. The calculation formula of SIM is

SIM(P, G) = ∑
i

min(Pi, Gi) (4)

Given the predicted significance map (P) and the true value view (G), a SIM of 1 means
that the distribution is the same, whereas a SIM of 0 means no overlap. SIM can penalize
predictions that fail to consider all true densities.

In general, these evaluation measures are complementary. A good model should be
good under a variety of evaluation measures, because these measures reflect different
aspects of the saliency map. Usually, a variety of evaluation measures are selected when
evaluating the model. As a widely used measure of location based, AUC is essential. At
the same time, a variety of other measures such as CC, SIM and other distribution-based
measures should be selected to reflect other salient map factors such as relatively saliency
region or similarity.

Thus far, we have summarized the abovementioned six common evaluation mea-
sures based on whether they are appropriate as probability distribution, similarity, and
continuous GT tools for statistics and classification. The details are shown in Table 1.
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Table 1. Summary of evaluation measures for visual saliency prediction.

Evaluation
Measures Location Based Distribution

Based Similarity Continuous
Ground-Truth

AUC-Judd
√ √ √ √

AUC-Borji
√ √

sAUC
√ √

EMD
√ √

NSS
√ √

CC
√ √ √

SIM
√ √ √

KL
√ √

7. Performance of Visual Saliency Prediction Models

The MIT benchmark has the most comprehensive saliency model and evaluation
benchmark. In this chapter, the static image performance evaluation results of the models
in the MIT300 and CAT2000 datasets are selected over the MIT benchmark. Then, the
performance of the dynamic model is selected over the DHF1K dataset. The data have
been obtained from the running results of the MIT benchmark, the author’s study, and the
author’s program on GitHub.

The MIT benchmark has a total of eight evaluation measures (including three AUC
variants). A total of 93 static models are evaluated. The following 16 models with much
better performance are selected for comparison: eDN, Deep Gaze I, Deep Gaze II, DeepFix,
SALICON, SalNet, ML-Net, SalGAN, EML-Net, SAM-VGG, SAM-ResNet, AIM, Judd
Model, GBVS, ITTI, and SUN. In addition, MIT also considers five baselines. One of these
baselines, namely, the infinite humans, is used as the reference measure. The infinite-
humans baseline can simulate the gaze point under the observation of infinite people,
which is similar to the highest score. The obtained results are shown in Table 2. The best
indicators are marked in bold.

Table 2. Performance of the static models over the MIT300 dataset.

Model Name AUC-
Judd

AUC-
Borji sAUC SIM EMD CC NSS KL

infinite humans 0.92 0.88 0.81 1 0 1 3.29 0

Deep Gaze II [68] 0.88 0.86 0.72 0.46 3.98 0.52 1.29 0.96
EML-NET [77] 0.88 0.77 0.7 0.68 1.84 0.79 2.47 0.84
DeepFix [66] 0.87 0.8 0.71 0.67 2.04 0.78 2.26 0.63

SALICON [69] 0.87 0.85 0.74 0.6 2.62 0.74 2.12 0.54
SAM-ResNet [75] 0.87 0.78 0.7 0.68 2.15 0.78 2.34 1.27
SAM-VGG [75] 0.87 0.78 0.71 0.67 2.14 0.77 2.3 1.13

SalGAN [76] 0.86 0.81 0.72 0.63 2.29 0.73 2.04 1.07
ML-Net [74] 0.85 0.75 0.7 0.59 2.63 0.67 2.05 1.1

Deep Gaze I [63] 0.84 0.83 0.66 0.39 4.97 0.48 1.22 1.23
SalNet [71] 0.83 0.82 0.69 0.52 3.31 0.58 1.51 0.81
eDN [62] 0.82 0.81 0.62 0.41 4.56 0.45 1.14 1.1

Judd Model [61] 0.81 0.8 0.6 0.42 4.45 0.47 1.18 1.12
GBVS [28] 0.81 0.8 0.63 0.48 3.51 0.48 1.24 0.87
AIM [41] 0.77 0.75 0.66 0.4 4.73 0.31 0.79 1.18

IttiKoch2 [4] 0.75 0.74 0.63 0.44 4.26 0.37 0.97 1.03
SUN saliency [54] 0.67 0.66 0.61 0.38 5.1 0.25 0.68 1.27

Thus far, the CAT2000 dataset comprises a total of 31 evaluated models, 10 of which
are neural network-based models. The obtained results are shown in Table 3.
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Table 3. Performance of the static models over the CAT2000 dataset.

Model Name AUC-
Judd

AUC-
Borji sAUC SIM EMD CC NSS KL

infinite humans 0.9 0.84 0.62 1 0 1 2.85 0

SAM-ResNet [75] 0.88 0.8 0.58 0.77 1.04 0.89 2.38 0.56
SAM-VGG [75] 0.88 0.79 0.58 0.76 1.07 0.89 2.38 0.54

MSI-Net [82] 0.88 0.82 0.59 0.75 1.07 0.87 2.3 0.36
EML-NET [77] 0.87 0.79 0.59 0.75 1.05 0.88 2.38 0.96
DeepFix [66] 0.87 0.81 0.58 0.74 1.15 0.87 2.28 0.37

BMS [49] 0.85 0.84 0.59 0.61 1.95 0.67 1.67 0.83
eDN [62] 0.85 0.84 0.55 0.52 2.64 0.54 1.3 0.97

iSEEL [106] 0.84 0.81 0.59 0.62 1.78 0.66 1.67 0.92
Judd Model [61] 0.84 0.84 0.56 0.46 3.6 0.54 1.3 0.94

EYMOL [107] 0.83 0.76 0.51 0.61 1.91 0.72 1.78 1.67
LDS [108] 0.83 0.79 0.56 0.58 2.09 0.62 1.54 0.79
FES [109] 0.82 0.76 0.54 0.57 2.24 0.64 1.61 2.1

Aboudib Magn [110] 0.81 0.77 0.55 0.58 2.1 0.64 1.57 1.41
GBVS [28] 0.8 0.79 0.58 0.51 2.99 0.5 1.23 0.8

Context-Aware saliency
[111] 0.77 0.76 0.6 0.5 3.09 0.42 1.07 1.04

IttiKoch2 [4] 0.77 0.76 0.59 0.48 3.44 0.42 1.06 0.92
AWS [112] 0.76 0.75 0.61 0.49 3.36 0.42 1.09 0.94
AIM [41] 0.76 0.75 0.6 0.44 3.69 0.36 0.89 1.13

WMAP [113] 0.75 0.69 0.6 0.47 3.28 0.38 1.01 1.65
Torralba saliency [51] 0.72 0.71 0.58 0.45 3.44 0.33 0.85 1.6

Murray model [72] 0.7 0.7 0.59 0.43 3.79 0.3 0.77 1.14
SUN saliency [54] 0.7 0.69 0.57 0.43 3.42 0.3 0.77 2.22

Achanta [36] 0.57 0.55 0.52 0.33 4.46 0.11 0.29 2.31
IttiKoch [4] 0.56 0.53 0.52 0.34 4.66 0.09 0.25 6.71

Table 2 shows the results of the MIT300 dataset. The AUC-Judd index is arranged in
descending order. The top models are all based on deep learning. EML-NET performed best,
and it got the highest scores under a variety of measures. Based on the AUC-Judd measure,
DeepGaze II and EML-NET are in the top two ranks with a score of 0.88. DeepGaze II ranks
first in AUC-Borji with a score of 0.86. Based on the sAUC measure, SALICON performed
best with a score of 0.74. The rankings produced by different evaluation methods vary
greatly. DeepGaze II and DeepFix perform well in AUC, but other scores are average.
Although SAM-ResNet, SAM-VGG, EML-NET and SalGAN did not get the highest score
in AUC, these models are outstanding.

Table 3 shows the results of the CAT2000 dataset. AUC-Judd is arranged in descending
order. Based on the AUC-Judd measure, SAM-ResNet, MSI-Net and SAM-VGG are tied in
the top rank with 0.88 (infinite-humans score of 0.90). In the classic model, the performance
of BMS is the superior one. Its AUC-Borji score is the highest, and other scores are almost
higher than eDN. In general, the models that perform well on the MIT300 dataset also
perform well on the CAT2000 dataset.

The saliency maps of the model over the CAT2000 database are shown in Figure 4.



Appl. Sci. 2022, 12, 309 14 of 22

Figure 4. Saliency maps over the CAT2000 dataset.

AUC-Judd, sAUC, NSS, CC, and SIM are used as the five evaluation measures to
judge the performance of the model over the DHF1K dataset. The average is taken after
calculating the score for each frame. The evaluation results are mainly based on the public
results of the DHF1K dataset. The model performance is shown in Table 4.
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Table 4. Performance of the dynamic models over the DHF1K dataset.

Model Name AUC-
Judd sAUC CC NSS SIM

Static DVA [78] 0.86 0.595 0.358 2.013 0.262
Models SALICON [69] 0.857 0.59 0.327 1.901 0.232

JuntingNet [71] 0.855 0.592 0.331 1.775 0.201
Shallow-Net [71] 0.833 0.529 0.295 1.509 0.182

GBVS [28] 0.828 0.554 0.283 1.474 0.186
ITTI [4] 0.774 0.553 0.233 1.207 0.162

Dynamic ACLNet [92] 0.89 0.601 0.434 2.354 0.315
Models OM-CMM [90] 0.856 0.583 0.344 1.911 0.256

Two-stream [85] 0.834 0.581 0.325 1.632 0.197
FANG [114] 0.819 0.537 0.273 1.539 0.198

RUDOY [115] 0.769 0.501 0.285 1.498 0.214
STRA [88] 0.895 0.663 0.458 2.588 0.355

AWS-D [116] 0.703 0.513 0.174 0.94 0.157
PQFT [117] 0.699 0.562 0.137 0.749 0.139
OBDL [118] 0.638 0.5 0.117 0.495 0.171
SEO [119] 0.635 0.499 0.07 0.334 0.142

STRA -Net ranks first in all ratings, followed by ACLNet. Among the dynamic models,
OM-CNN outperforms the other types. Among the static models, the performance of
SALICON is superior. The results indicate that the performance of the deep model is better
than adding time information to the classic model.

8. Commonalities and Limitations of the Deep Saliency Models

Although the structures of the various deep saliency models differ from one another,
they have many commonalities. Compared with the classic model, the deep saliency model
automatically captures features. Although the classic models can manually encode features,
deep networks with multi-layer structures can automatically capture more features. The
CNN-based saliency model is trained in an end-to-end manner, and combined with feature
extraction and saliency prediction, it can greatly improve the performance compared with
that of the classic model. The success of these saliency prediction models indicates the
importance of automatically capturing features based on the deep learning framework.

Aiming at improving model performance, saliency models often perform similar
optimization. First, in view of reducing the loss of image features in a series of convolution
and pooling layers, some models use the multi-scale network or skip layers to preserve
the loss information. Second, using transfer-learning methods or adding some pre-trained
classification networks or LSTMs to the model can play a role in adding prior knowledge,
and this scheme has a significant impact on the model results. Finally, as evaluation
measures have a great influence on model performance, some models often select multiple
evaluation measures to train the model (i.e., ML-Net). Dynamic models also include multi-
stream, multi-modal, and 3D CNNs and other forms. However, the overall framework
type is less than the static models in terms of multi-tasking, action recognition, and other
frameworks and thus need to be developed.

Although the deep saliency model can sufficiently capture features, a wide gap exists
between the result and the GT. The problem can be resolved by studying how to imitate
human analysis scenes and understand the mechanism of the human gaze. Aimed at
achieving these aspects on the model, a higher level of visual understanding is required.
In particular, besides using the conventional optimization model and finding a better loss
function, saliency prediction can be explored and improved on the basis of the following:

1. New Datasets: Datasets are extremely important to model performance [120]. The GT
and measurement prediction errors obtained from the data have a significant impact
on the model performance. In earlier years, the collection of saliency datasets relied
on eye tracking data, and the datasets had fewer images. Although the emergence
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of SALICON improved the result, the gap remains to be an order of magnitude with
respect to datasets in related fields (e.g., ImageNet). The JFT-300M dataset recently
collected by Sun et al. [121] contains 300 million images, and it performs the target
recognition model that is trained on this dataset well. The difference in performance
between the use of eye tracking data and similar SALICON data collected with mouse
clicks is clearly controversial.

2. Multi-modal approaches: With the development of saliency prediction in the dynamic
field, an increasing number of features in different modes, such as vision, hearing,
and subtitles, can be used to train models. This multi-modal feature input mode has
proven to be an effective way to improve model performance. Coutrot et al. [122] used
audio data to help video prediction. The shared attention proposed by Gorji et al. [79]
could effectively improve model performance.

3. Visualization: The black box model of deep learning is difficult to present in a manner
that humans can understand. However, saliency prediction itself is a representation of
visual concepts. Visualized CNNs have many benefits for understanding models, in-
cluding the meaning of filters, visual patterns, or visual concepts. Bylinskii et al. [123]
designed a visual dataset and found that a specific type of database may be better for
training. Visualization can help us better understand a model, and it also brings the
possibility of proposing better models and databases.

4. Understand high-level semantics: The deep saliency models are good at extracting
common features, such as humans and textures, among others. The saliency pre-
dictor can also be used to handle these features. However, as shown in Figure 5,
the most interesting or significant parts of an image are not necessarily all of these
features. Human visual models often entail a reasoning process based on sensory
stimuli. To establish the reason behind the relative importance of image regions on
the saliency model, researchers can use higher-level features, such as emotions, gaze
direction, and body posture. Moreover, aiming to approach the human-level saliency
prediction, researchers need to carry out cognitive attention research to help over-
come the aforementioned limitations. A few useful explorations have been offered.
For example, Zhao [98] showed through his experimental results that emotion has
a priority effect. Nonetheless, the existing saliency model still cannot fully explain
the high-level semantics in the scene. The concept of “semantic gap” and the process
of determining the relative importance of objects still cannot be resolved; moreover,
whether the saliency in natural scenes is guided by objects or low-level features is a
matter of debate [124]. The research on the saliency prediction task is closely related
to cognitive disciplines, and its findings can help to improve the subsequent various
visual research.

Figure 5. An animal in the picture attracting more attention than humans.

With the great success of the deep model in saliency prediction, new developments
in deep learning have also provided the possibility for new applications and tasks of
saliency models. For example, Aksoy et al. [16] proposed a novel attention-based model
for making braking decisions and other driving decisions like steering and acceleration.
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Jia et al. [19] proposed a multimodal salient wave detection network for sleep staging called
SalientSleepNet, which translated the time series classification problem into a saliency
detection problem and applies it to sleep stage classification. Wei et al. [125] used a
saliency model to pursue their research on autism spectrum disorder (ASD). They found
that children with ASD, particularly autism, were informed by special objects and less
on social objects (e.g., face), and the application of the verification model of obviousness
is helpful in monitoring and evaluating their condition. O’Shea et al. [126] proposed a
model for detecting seizure events from raw electroencephalogram (EEG) signals with less
dependency on the availability of precise clinical labels. This work opens new avenues
for the application of deep learning to neonatal EEG. Theism et al. [127] used a fully
connected network and Fisher pruning to increase the saliency calculation speed by 10
times as a means of providing ideas for applications with high real-time requirements.
Fan et al. [128] proposed a model to detect shared attention in videos to infer shared
attention in third-person social scene videos, which were significant for studying human
social interactions. They proposed a new video dataset VACATION [129] and a spatial-
temporal graph reasoning model to explicitly represent the diverse gaze interactions in the
social scenes and to infer atomic-level gaze communication by message passing.

9. Conclusions

The development of visual saliency prediction tasks has produced numerous methods,
and all of them have played an important role in various research directions. Deep networks
can automatically capture features and effectively combine feature extraction and saliency
prediction. Furthermore, performance can be significantly improved with respect to the
classic model that uses handcrafted features. However, the features extracted by the
deep saliency model may not fully represent the salient objects and regions in an image,
especially in complex scenes that contain advanced information, such as emotion, text,
or symbolic information. In view of further improving the performance of the model,
the reasoning process of HVS must be imitated to realize the discrimination of relatively
important areas in the scene.

In this review, we have summarized the literature about saliency prediction, including
the early psychological and physiological mechanisms, the classic models affected by
this task, the introduction of visual saliency models based on deep learning, and the
data comparisons and summaries in the static and dynamic fields. The reasons for the
superiority and the limitations of the saliency model are also analyzed, and the ways of
improvement and possible development directions are identified. Although the visual
saliency model based on deep learning has made great progress, there is still room for
exploration in the aspects of visualization and multi-modality and the understanding of
high-level semantics, especially the research on attention mechanisms and the application
related to cognitive science.
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