
����������
�������

Citation: Köksal, Ö.; Tekinerdogan, B.

Automated Classification of

Unstructured Bilingual Software Bug

Reports: An Industrial Case Study

Research. Appl. Sci. 2022, 12, 338.

https://doi.org/10.3390/

app12010338

Academic Editors: Bruno Baruque

Zanón, Jose Luis Calvo-Rolle,

Santiago Porras Alfonso and

Petr Dolezel

Received: 14 November 2021

Accepted: 23 December 2021

Published: 30 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Automated Classification of Unstructured Bilingual Software
Bug Reports: An Industrial Case Study Research
Ömer Köksal 1,* and Bedir Tekinerdogan 2,*

1 ASELSAN Research Center, 06200 Ankara, Turkey
2 Information Technology Group, Wageningen University and Research,

6706 KN Wageningen, The Netherlands
* Correspondence: koksal@aselsan.com.tr (Ö.K.); bedir.tekinerdogan@wur.nl (B.T.)

Abstract: Software bug report classification is a critical process to understand the nature, implications,
and causes of software failures. Furthermore, classification enables a fast and appropriate reaction
to software bugs. However, for large-scale projects, one must deal with a broad set of bugs from
multiple types. In this context, manually classifying bugs becomes cumbersome and time-consuming.
Although several studies have addressed automated bug classification using machine learning
techniques, they have mainly focused on academic case studies, open-source software, and unilingual
text input. This paper presents our automated bug classification approach applied and validated in
an industrial case study. In contrast to earlier studies, our study is applied to a commercial software
system based on unstructured bilingual bug reports written in English and Turkish. The presented
approach adopts and integrates machine learning (ML), text mining, and natural language processing
(NLP) techniques to support the classification of software bugs. The approach has been applied within
an industrial case study. Compared to manual classification, our results show that bug classification
can be automated and even performs better than manual bug classification. Our study shows that the
presented approach and the corresponding tools effectively reduce the manual classification time
and effort.

Keywords: software bug classification; text categorization; text mining; machine learning; natural
language processing

1. Introduction

Due to software systems’ increased complexity and size, software failures are in-
evitable in software development projects. A large part of a software development project
is therefore often dedicated to software verification and validation. Detecting the faults,
diagnosing the cause of these faults, and resolving these faults is crucial to ensure the
functional and quality requirements for software projects. Fault detections are typically
described in bug reports, including textual descriptions of the problem and the steps that
led to a failure [1]. The validity and performance of the verification tasks depend heavily
on the quality of bug reports. Hence the accuracy and completeness of these bug reports
are essential.

Bug reports are generally handled and tracked with the help of bug tracking software
to manage maintenance activities and keep the bugs’ details [2]. After detecting the bugs,
the classification of software bugs is needed to understand the root causes and provide the
proper steps for correcting the bugs. The primary benefit of bug classification is to reduce
the bug fixing time by reducing the bug assignment time to the corresponding developer
who can fix the bug in the least amount of time [3].

However, one must soon deal with a broad set of bugs from multiple types for large-
scale projects. Manually classifying bugs then becomes quickly cumbersome, error-prone,
and time-consuming. For example, Pingclasai et al. [4] pointed out that, in their work,

Appl. Sci. 2022, 12, 338. https://doi.org/10.3390/app12010338 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12010338
https://doi.org/10.3390/app12010338
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8538-7261
https://doi.org/10.3390/app12010338
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12010338?type=check_update&version=1


Appl. Sci. 2022, 12, 338 2 of 26

researchers spent 90 days manually classifying more than 7000 bug reports. Similarly,
Jeong et al. [5] reported that, in big software projects, assigning a bug to the first developer
who will fix the bug might take up to 180 days, and to the second developer might take
an additional 250 days if the first developer cannot fix the bug. Moreover, bug reports are
not always well-structured and are very often unstructured. Structured reports adopt a
well-defined template for bug classification, whereas unstructured reports use free text,
which can dramatically impede bug classification.

Several studies have focused on adopting the automation of bug classification activi-
ties to overcome the bug classification problem, often using machine learning approaches.
However, these studies have focused mainly on academic case studies, open-source soft-
ware, and unilingual text input. This paper presents the results and lessons learned of our
developed bug classification approach and the corresponding tools, applied and validated
in an industrial case study research. Furthermore, in contrast to existing studies, our
study is applied to a commercial software system. Finally, bug classification is based on
unstructured bilingual bug reports written in English and Turkish, derived from black-box
testing results. The presented approach adopts and integrates machine learning (ML), text
mining, and natural language processing (NLP) techniques to support the classification of
software bugs. Our study shows that the presented approach and the corresponding tools
effectively reduce the manual classification time and effort.

Furthermore, we have used commercial bug reports in this paper. However,
Gomez et al. [6] stated that almost all studies in the literature use bug repositories of
open source systems. Therefore, in this paper, we attempt to extend bug classification
issues into commercial bug reports.

The contributions of this study are the following. First of all, we provide bug classi-
fication for a real industrial project. Since earlier studies mainly focused on open source
projects, this study can provide additional insight into the topic. Secondly, the approach
focuses on the usage of bilingual unstructured bug reports. Bug classification has been
broadly addressed in the literature, but bilingual unstructured bug report classification still
requires more in-depth research. Therefore, the current study adds to the existing knowl-
edge. Finally, we provide an empirical case study research-based approach for evaluating
automated bug classification. On the one hand, the study confirms the earlier conclusions
regarding bug classification. However, on the other hand, it provides additional insight
into bug classification for the particular situation of the case study, that is, automated bug
classification based on unstructured, bilingual black-box bug reports.

The remainder of the paper is organized as follows. Section 2 provides the back-
ground for this study. Section 3 presents the bug classification process and the adopted
bug classification schema. Section 4 describes the research questions and the research
methodology. Section 5 presents the adopted case study. Section 6 describes the results
of manual classification and the evaluation. Section 7 provides the discussion. Section 8
describes the related work on papers performing bug classification, emphasizing research
trying to automate software defect classification using machine learning algorithms, and
finally, Section 9 concludes the paper.

2. Background
2.1. Machine Learning

Machine learning enables computers to learn without being explicitly programmed
for a specific task. Hence, machine learning focuses on developing computer programs
that can access data and use it to learn for themselves. Due to advancements in computing,
machine learning has gained momentum and is applied in many application domains.

Machine learning algorithms can be categorized into four main fields: supervised,
semi-supervised, unsupervised, and reinforcement learning. In supervised learning, the
machine is trained using labeled data. This means the correct answer of classification is
already known for the training data. After the training phase, a new set of data is used for
which the supervised learning algorithm will produce the outputs based on the analyses in



Appl. Sci. 2022, 12, 338 3 of 26

training. Supervised learning algorithms can be divided into two main categories, namely
classification, and regression. In classification problems, the output of supervised learning
is a category. In the regression problems, the output is a real value.

In unsupervised learning, the machine is not trained with labeled or classified data.
Instead, the unsupervised learning algorithm decides the number of classes and which data
belongs to which class without a preliminary training phase. Unsupervised learning can be
divided into two main categories, which are clustering and association. In clustering prob-
lems, the algorithm discovers the inherent groupings in the data. The algorithm discovers
the rules that describe the large chunks of data in the association rule learning problems.

In semi-supervised machine learning, data used for training includes both labeled and
unlabeled samples. The goal of a semi-supervised learning algorithm and the supervised
learning algorithm is the same. However, in semi-supervised learning, some unlabeled
data are used to obtain a better model.

Reinforcement learning is about maximizing reward by taking suitable action or the
best possible behavior in a particular situation. Unlike supervised learning, in reinforcement
learning, there is no answer key. Instead, the algorithm can be trained with the correct
answers. In reinforcement learning, the agent decides what to do in the given task by trying
alternative actions and getting experience.

2.2. Text Mining and Text Classification

Text mining, also known as text analysis, is the automated process that uses natural
language processing to transform unstructured text data into information that provides
valuable insights. Text mining combines statistics, linguistics, and machine learning to cre-
ate models that can predict results on new information based on their previous experience.

Different methods and techniques for text mining can be distinguished. The basic ele-
mentary methods include word frequency, collocation, and concordance. Word frequency
defines the list of the most frequently occurring words or concepts in a given text. Colloca-
tion is used to help identify words that commonly co-occur. Concordance is used to identify
the context and instances of words or a set of words. These basic approaches are often used
in two advanced text mining techniques, including text classification and extraction.

Text classification is the process of assigning predefined tags or categories to unstruc-
tured text. Popular text classification tasks include topic analysis, sentiment analysis,
language detection, and intent detection. Topic analysis aims to understand the main
themes or subjects of a text. Sentiment analysis can be described as identifying the emo-
tions that underlie any given text. The objective of language detection is to classify a text
based on its language. Finally, intent detection aims to recognize the intentions or the
purpose behind a text. Text classification is often performed using a rule-based system that
uses linguistic rules to automatically detect the different linguistic structures and assign
the corresponding tags. As a result, these rules typically consist of references to syntactic,
morphological, and lexical patterns. In machine learning-based text classification, data is
used to train a machine learning model. Hybrid systems combine rule-based systems with
machine learning-based systems, typically to further increase the accuracy of the results.

2.3. Feature Extraction

In the feature extraction step, the preprocessed text is transferred into a numerical
representation in the form of a vector, also called vectorization. A common approach for
vectorization is the bag of words approach, whereby the vector represents the frequency of a
word in a predefined dictionary of words. We have used the “term frequency-inverse docu-
ment frequency” (TF-IDF) metric to have feature vectors. TF is the number of times a given
term (word or phrase) occurs in the document. TF-IDF stands for term frequency-inverse
document frequency and defines a statistical measure used to evaluate how important a
word is to a document in a collection or corpus. TF-IDF method formulation is given in the
below formula:

TF-IDF(t, d) = TF(t, d) log(N/DF(t)) (1)



Appl. Sci. 2022, 12, 338 4 of 26

where ‘d’ is document and t (term) is the word in a document. TF(t) stands for term
frequency, and ‘N’ is the number of documents in the corpus. Finally, DF(t) represents
the number of documents in the corpus containing “t”. The TF-IDF value increases as the
number of times a word appears increases in the document. The TF-IDF method also takes
into account the fact that some documents may be larger than others by normalizing the TF
term (expressing relative term frequencies instead).

As the vocabulary size increases, so do the size of the representation. Therefore, in
using these text representations, one of the most critical values is the size of the bag-of-
words in the model. The bag-of-words size used affects the performance of the classification.
To find the optimal bag-of-word size, we performed a grid search.

2.4. Word Embeddings

A more recent approach in feature extraction is using word embeddings. Word
embeddings acquire the meaning of words or phrases mapped to vector representations,
enabling similar text grouping in a new vector space. Hence, word embeddings might
be more efficient than the BOW models. In the BOW models, the broadness of document
collection and tagging at the index position causes data sparsity problems. However, word
embeddings take the token’s surrounding words into account to solve the data sparsity
problem. The given text’s information is transferred to the model to end up with dense
vectors. In this continuous vector space representation, semantically alike words are close
to each other. This deduction can either be ensured by utilizing neural networks for
language modeling, predicting a word in a sentence given the nearby words as input, or
capturing the training corpus’s statistical properties. When predicting words in similar
context inputs, neural networks generate similar predicted word outputs, resulting in a
semantic representation space with the desired property.

The most common word embeddings libraries used in the literature are Word2Vec [7],
Doc2Vec [8], GloVe [9], and FastText [10].

FastText

FastText treats each word as composed of character n-grams contrary to Word2Vec
and GloVe. For rare words, FastText results in better word embeddings. Furthermore, it can
generate a vector for an out of vocabulary word that does not exist in the training corpus.
This feature is not possible with either Word2Vec or Glove.

2.5. Evaluation Metrics

Most of the evaluation metrics of classification tasks are built on the confusion matrix
concept that reveals the prediction results of the classification model for the test set. In the
confusion matrix, the columns present the instances of the predicted classes, whereas the
rows represent values for the actual classes, as shown in Table 1.

Table 1. Confusion matrix.

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)
Actual Negative False Positive (FP) True Negative (TN)

This matrix indicates the ways our model is confused in predicting classes. TP presents
the predicted positive instances whose actual classes are positive (i.e., no confusion). Sim-
ilarly, TN shows the instances that are predicted as negative, which are also true. On
the other hand, FP and FN show instances predicted as positive and negative, respec-
tively, which are false. The next sub-sections present evaluation measures based on the
confusion matrix.



Appl. Sci. 2022, 12, 338 5 of 26

Accuracy can be defined as dividing the sum of correct predictions (TP and TN) to all
instances, as given in the equation below.

Accuracy (A) = (TP + TN)/(TP + TN + FP + FN) (2)

Precision shows the accuracy of the positive class. Precision is the division of TP to
the total positive predictions (TP and FP), as shown in the following formula:

Precision (P) = (TP)/(TP + FP) (3)

Recall (or sensitivity) shows the ratio of correctly detected positive classes, and it is
defined as TP divided by the sum of positive classes (TP and FN), as shown below:

Recall (R) = (TP)/(TP + FN) (4)

F-Measure (or F1 Score) compares models having different Precision and Recall values
with a single evaluation measure. It can be defined as the harmonic mean of Precision and
Recall, as shown below:

F1 = 2 × (P × R)/(P + R) (5)

3. Triaging and Bug Report Classification Process

In the previous section, we have presented the preliminaries for understanding the
bug classification approach used in this paper. We will apply a machine learning-based
text mining approach for classifying bugs. The adopted type of the bug report might
differ from company to company or even within different departments in the same com-
pany. Depending on the project, methodology, and process types, the bug reports can
generally be in two formats, structured or unstructured report types, and often used in
combination. Unstructured bug reports include free-text descriptions of the bugs, whereas
structured bug reports include more detailed and well-presented information about the
bugs. The structured forms include specialized areas such as several check-boxes and
standard questions to describe the bug formally. Since these specialized areas do not exist
in unstructured forms, the only way to extract this information is to understand the free
texts in unstructured reports. Independent of the adopted bug report, several well-defined
steps are typically followed in the bug classification process. We have modeled the process
as shown in Figure 1. The defined model in the figure shows the typical steps of the bug
classification process and constitutes a baseline for the case study used in this paper.

First of all, a bug report is prepared based on the input from the adopted tracking
system. Then, the bug report will be reviewed, and each identified bug will be checked
whether it is a real bug or not. If the item is confirmed as a bug, it is checked whether it is
a duplicate definition of the previously entered bug report. For example, the same error
might be reported using different words, and it might be hard to understand the duplicate
definition. In practice, this is often not a difficult task, yet it is time-consuming since the
duplicate definitions need to be removed from the bug tracking systems. Subsequently,
bugs are classified into predefined categories. Classification of the software bugs helps in
assigning the most appropriate developer to fix the bug. Different classifications can be
used. A popular bug classification schema was proposed by Seaman [11]. Seaman’s schema
uses historical data to guide future projects. IBM presented another popular taxonomy
for software bugs called orthogonal defect classification (ODC) taxonomy [12], applied
to improve software development processes. The classification of the bug impacts the
subsequent activities, that is, triaging of the bugs and assignment to the developer.



Appl. Sci. 2022, 12, 338 6 of 26
Appl. Sci. 2022, 12, x FOR PEER REVIEW  6  of  27 
 

Review Bug Report

Select Item and 
Decide on Bug or Not

Bug Report

Check for Duplicate

Categorize Bugs

Prepare Bug Report

Not 
a Bug

a Bug

A duplicate

Not duplicate

Triage Bugs

(Re)Assign Bug to 
Developer

List of 
Duplicate Bugs

List of 
Bug Categories

Severity of Bugs

Analyze Bug

Tester Bug Report Triager Developer

Fix Bug

can fix bug

cannot fix

Update Bug Report 
with fixed Change

 

Figure 1. Bug classification process. 

First of all, a bug report is prepared based on the input from the adopted tracking 

system. Then, the bug report will be reviewed, and each identified bug will be checked 

whether it is a real bug or not. If the item is confirmed as a bug, it is checked whether it is 

a duplicate definition of the previously entered bug report. For example, the same error 

might be reported using different words, and it might be hard to understand the duplicate 

definition. In practice, this is often not a difficult task, yet it is time‐consuming since the 

duplicate definitions need to be removed from the bug tracking systems. Subsequently, 

bugs are classified into predefined categories. Classification of the software bugs helps in 

assigning the most appropriate developer to fix the bug. Different classifications can be 

used. A  popular  bug  classification  schema was  proposed  by  Seaman  [11].  Seaman’s 

schema uses historical data to guide future projects. IBM presented another popular tax‐

onomy for software bugs called orthogonal defect classification (ODC) taxonomy [12], ap‐

plied to improve software development processes. The classification of the bug impacts 

the subsequent activities, that is, triaging of the bugs and assignment to the developer. 

The triaging process aims to prioritize software bugs, thereby determining the bug 

severity. Bug severity is defined as the degree of bug impact on the software. Usually, the 

more severe bugs will be fixed earlier than those less severe bugs and thus can be resolved 

later. Assigning the severity of the bug is generally performed by a dedicated person who 

is called a triager. Although bug reports might include important information about the 

severity of the failure for the software developers, one of the most time‐consuming parts 

of solving bugs is to understand the degree of severity. Therefore, several studies in the 

literature have focused on determining the severity of software bugs and report categori‐

zation [13–15]. 

If the bugs are not correctly classified and prioritized, the selected developer might 

not be right. This issue, named bug bouncing [5], causes the assigned developer to send 

Figure 1. Bug classification process.

The triaging process aims to prioritize software bugs, thereby determining the bug
severity. Bug severity is defined as the degree of bug impact on the software. Usually, the
more severe bugs will be fixed earlier than those less severe bugs and thus can be resolved
later. Assigning the severity of the bug is generally performed by a dedicated person
who is called a triager. Although bug reports might include important information about
the severity of the failure for the software developers, one of the most time-consuming
parts of solving bugs is to understand the degree of severity. Therefore, several studies
in the literature have focused on determining the severity of software bugs and report
categorization [13–15].

If the bugs are not correctly classified and prioritized, the selected developer might
not be right. This issue, named bug bouncing [5], causes the assigned developer to send
the bug back, and another developer needs to be selected to fix it. Apparently, unnecessary
iterations will increase the fixing time of the bug and, as such, increase the cost.

For small projects with small bug reports, bug classification could, to some extent,
be conducted manually. However, it soon becomes less scalable and tractable. Several
drawbacks of manual bug classification can be identified. First of all, bug classification is
human-dependent and relies on the personal knowledge and experiences of the reviewer.
Understanding both the category and the severity of the bugs are not easy. Hence, a more



Appl. Sci. 2022, 12, 338 7 of 26

experienced reviewer will classify and prioritize bugs better, making the bug classification
a subjective activity. Furthermore, in the case of a massive number of bugs, the process of
reviewing, classifying, and triaging bugs can take too much time that is often not available.
It is thus essential to classify the bugs accurately, reducing the unnecessary time and
effort spent.

4. Research Questions and Research Methodology

This study aims to assess the effectiveness of ML-based automated bug classification
over manual bug classification by utilizing the F1 measure. To this end, we provide an
automated bug classification methodology based on machine learning. The typical process
for this is shown in Figure 2.

Appl. Sci. 2022, 12, x FOR PEER REVIEW  7  of  27 
 

the bug back, and another developer needs to be selected to fix it. Apparently, unneces‐

sary iterations will increase the fixing time of the bug and, as such, increase the cost. 

For small projects with small bug reports, bug classification could, to some extent, be 

conducted manually. However, it soon becomes less scalable and tractable. Several draw‐

backs of manual bug classification can be identified. First of all, bug classification is hu‐

man‐dependent and relies on the personal knowledge and experiences of the reviewer. 

Understanding both the category and the severity of the bugs are not easy. Hence, a more 

experienced reviewer will classify and prioritize bugs better, making the bug classification 

a subjective activity. Furthermore, in the case of a massive number of bugs, the process of 

reviewing, classifying, and triaging bugs can take too much time that is often not availa‐

ble. It is thus essential to classify the bugs accurately, reducing the unnecessary time and 

effort spent. 

4. Research Questions and Research Methodology 

This study aims to assess the effectiveness of ML‐based automated bug classification 

over manual bug classification by utilizing the F1 measure. To this end, we provide an 

automated bug classification methodology based on machine learning. The typical pro‐

cess for this is shown in Figure 2. 

Training

Read
Bug Reports

labels

Preprocessing
Feature 
Extraction

ML Model 
Training

Prediction

Read
Bug Report

Bug
Report

Preprocessing
Feature
Extraction

Bug Classification 
Model

Feature vector

LabelFeature vector

Bug
Report

 

Figure 2. Machine learning‐based bug classification process. 

Here,  two distinct processes are  identified,  that  is,  training and prediction.  In  the 

training activity, pre‐labeled examples of bug classifications are used as  training data, 

whereby multiple machine learning algorithms are used to develop a bug classification 

model. The preprocessing activity typically includes the steps of tokenization, stemming, 

and lemmatization. Feature extraction is the method used to transform the preprocessed 

text into a numerical representation in a vector. A common approach for feature extraction 

is the bag‐of‐words, where a vector represents the frequency of a word in a predefined 

dictionary of words. We will elaborate on this in a later section. Once the bug classification 

model is trained, it can be used in the prediction activity, which inputs a bug report and 

automatically classifies the bugs. 

Apart  from existing ML‐based bug classification approaches, our approach distin‐

guishes itself in the combination of the following characteristics: 

Figure 2. Machine learning-based bug classification process.

Here, two distinct processes are identified, that is, training and prediction. In the
training activity, pre-labeled examples of bug classifications are used as training data,
whereby multiple machine learning algorithms are used to develop a bug classification
model. The preprocessing activity typically includes the steps of tokenization, stemming,
and lemmatization. Feature extraction is the method used to transform the preprocessed
text into a numerical representation in a vector. A common approach for feature extraction
is the bag-of-words, where a vector represents the frequency of a word in a predefined
dictionary of words. We will elaborate on this in a later section. Once the bug classification
model is trained, it can be used in the prediction activity, which inputs a bug report and
automatically classifies the bugs.

Apart from existing ML-based bug classification approaches, our approach distin-
guishes itself in the combination of the following characteristics:



Appl. Sci. 2022, 12, 338 8 of 26

• Commercial bug reports In contrast to many studies that focus on open-source, public
non-commercial data sets, we have used commercial bug reports that reflect the bug
report from a large-scale software company.

• Use of unstructured bug reports We rely on unstructured bug reports for categorizing
the bugs, which are more difficult to classify than structured bug reports. In addition,
unstructured bug reports generally consist of short text, which is sometimes even hard
for a human being to understand the real cause of the problem. Therefore, additional
preprocessing of the text is needed to prepare it for proper classification.

• Bug report based on black-box testing Apart from the general drawback of the unstruc-
tured bug reports, we use bug reports generated after black-box testing, i.e., software
test engineers and developers might not know the root cause of the problem. In the
adopted case study, testers develop the bug reports after black-box testing. Hence
the code is not accessed by the testers, and thus the reports are considered black-box.
Even if the bug is defined perfectly in the report, it might be required to investigate
the source codes to classify the software bug type correctly.

• Bilingual bug reports Finally, bug definitions used in the case study are not written
in a single language but in English and Turkish. Generally, English terms are used
together with Turkish verbs and sentences. An example set of unstructured, bilingual
bug reports entered in the bug tracking systems is shown in Table 2.

Table 2. A sample set of unstructured bilingual bug report definitions.

Original Bug Definition Bug Definition in English

Bearing-Coordinate hesaplamaları gözden
geçirilecek. Önceki projelerde yapılan kordinat
hesaplamalarına göre formüller güncellenecek.

Bearing-coordinate calculations shall be
checked. The formulas shall be updated using
the coordinate calculations performed in the
previous projects.

CommonLogger Log Seviyesi and Dosyaya
Yazma Düzeltmesi. CommonLogger Sınıflarına
Log Seviyesi olarak ‘Error’, ‘Info’, ‘Warning’,
‘Debug’ eklenecek. Sınıf log’larını dosyaya
yazarken queue mantığı kullanacak.

CommonLogger log levels and correction of
file write. ‘Error’, ‘Info’, ‘Warning’, and ‘Debug’
levels shall be added to the CommonLogger
log levels. Queue logic shall be implemented
while writing the class logs.

‘Adaptive System Parameters’ ekranı tüm
değerleri XML dosyasından açılışta
yükleyecek.

‘Adaptive System Parameters’ screen must
load all values from the related XML file
during the startup of the software.

‘Adaptive System Parameters’ ekranında
search Adaptif parametre ekranındaki search
özelliği çalışmıyor.

‘Search Adaptive System Parameter’ function
in the ‘Adaptive System Parameters’ screen is
not working.

This bilingual structure of the bug definitions makes classification even more compli-
cated. To the best of our knowledge, no study has explicitly applied to the use of bilingual
bug reports for bug classification. The issues in the classification of bilingual bug reports
are given in Section 5.2.2.

The provided objective and the above combination of concerns make this study unique,
thereby providing additional insight into machine learning-based bug classification. In this
context, we focus on the following particular research questions:

• RQ 1: To what extent is the presented automated bug classification approach effective?
• RQ 2: How does the automated bug classification approach compare to the manual bug

classification approaches?

For addressing these research questions, we adopt the research methodology steps
as shown in Figure 3 and describe the industrial case study followed by the adopted bug
classification schema.

Subsequently, we identify two basic steps that are executed in parallel. The activity of
manual classification includes the activities for describing the case study and the manual



Appl. Sci. 2022, 12, 338 9 of 26

bug classification. The output of this activity is the manual bug classification report.
The activity of automated bug classification includes steps for ML-Based classification
and results in the automated bug classification report. This automated bug classification
report will be compared to the manual bug classification report to evaluate the approach’s
effectiveness and the corresponding implementation of the process utilizing the F1 measure.
In the following subsections, we will describe each of the above steps in more detail.

Appl. Sci. 2022, 12, x FOR PEER REVIEW  9  of  27 
 

 RQ 1: To what extent is the presented automated bug classification approach effective? 

 RQ 2: How does the automated bug classification approach compare to the manual bug classi‐

fication approaches? 

For addressing these research questions, we adopt the research methodology steps 

as shown in Figure 3 and describe the industrial case study followed by the adopted bug 

classification schema. 

Automated Bug 
Classification

Manual Classification

Automated Bug 
Classification Report

Comparison and Overall 
Evaluation

Lessons learned

Manual Bug 
Classification Report

Describe Case Study

Determining the Bug 
Classification Schema

 

Figure 3. Adopted research methodology. 

Subsequently, we identify two basic steps that are executed in parallel. The activity 

of manual classification includes the activities for describing the case study and the man‐

ual bug classification. The output of this activity is the manual bug classification report. 

The activity of automated bug classification includes steps for ML‐Based classification and 

results in the automated bug classification report. This automated bug classification report 

will be compared to the manual bug classification report to evaluate the approach’s effec‐

tiveness and the corresponding implementation of the process utilizing the F1 measure. 

In the following subsections, we will describe each of the above steps in more detail. 

   

Figure 3. Adopted research methodology.

5. Case Study and Bug Classification

To validate our automated bug classification approach, we have adopted the case
study empirical evaluation protocol discussed by Runeson and Höst [16]. The protocol
consists of the following steps: (1) case study design, (2) preparation for data collection, (3)
execution with data collection on the studied case, (4) analysis of collected data, and (5)
case reporting. Table 3 present the case study design steps for the selected case study.

Due to confidentiality reasons, the adopted case study is named a commercial software
project (CSP). Eight developers developed the project over 3 years. The programming
languages used are C++ and Java. We have used and adapted the bug classification schema



Appl. Sci. 2022, 12, 338 10 of 26

defined by Seaman [11] for the bug classification. We have used four bug categories in our
case study: (1) assignment/initialization, (2) external interface, (3) internal interface, and (4)
other. The number of bugs entered into the bug tracking software in our case study is 504.

In the following sub-sections, we elaborate on the manual and automated bug clas-
sification approaches, followed by the experimental results and evaluation in the follow-
ing section.

Table 3. Case study design of evaluation protocol adopted from [16].

Case Study Design Activity Case Study

Goal
Assessing the effectiveness of ML-based automated bug
classification over the manual bug classification utilizing F1
measure.

Research Questions

RQ 1: To what extent is the presented automated bug
classification approach effective?
RQ 2: How does the automated bug classification approach
compare to the manual bug classification approaches?

Background and Source

Software testers
Software developers
Bug classifiers
Bug reports
Source code

Data Collection Direct data collection of bug reports
Indirect data collection based on source code analysis

Data Analysis Qualitative and quantitative data analysis

5.1. Manual Bug Classification

In the manual bug classification approach, no automated tool is used, but the catego-
rization relies entirely on the decision of human experts. According to the general flow of
bug processing in Figure 1, the bug reports are first reviewed by a reviewer/triager. The
reviewer/triager inspects the bug reports and classifies the bugs concerning the bug classi-
fication schema used in the project. In this classification, since the reviewer/triager does
not know the root cause of the problem, the decision is based on the reports’ explanations
only. If the report type is an unstructured bug report, it is more challenging to make this
classification, especially for the reports of black-box tests. As stated previously, we have
classified 504 bugs manually before introducing machine learning algorithms. In our case
study, the bugs were classified according to Seaman’s bug categories [11].

The classification was performed independently by two expert senior software devel-
opers ESE1 and ESE2. Since ESE1 and ESE2 are fluent in English and native in Turkish,
bilingual bug reports are not an issue in manual bug classification. Both ESE1 and ESE2
are senior software developers having more than ten years of experience in software devel-
opment and six years of experience in the case study’s domain. The manual classification
of software bugs in the case study took five days for ESE1 and ESE2, but the overall time
for the case study took longer. The other tasks for the overall case study included the
preparation of the set-up (two days), developing and running the test cases (seven days),
developing the bug reports (three days), and the overall reporting (three days), which took
fifteen days in total. Two expert software engineers were involved in the bug classification,
but more than twenty people were involved in the whole process, including project man-
agers, developers, testers, and clients. In the paper, we have only focused on the time for
classifying the bugs.

These were then compared with the ground truth classification derived after thor-
oughly checking the bugs in the source code and the joint discussion with all the experts.
Finally, the results of manual classification are given in Table 4.



Appl. Sci. 2022, 12, 338 11 of 26

Table 4. Manual classification by two expert software engineers (ESE).

Bug Category Ground Truth
Classification

Classification of
ESE1

Classification of
ESE2

Assignment–
initialization 54 19 20

External interface 245 244 200
Internal interface 67 43 16
Other 138 126 268

Total 504 504 504

To evaluate the results, we have considered two issues. First of all, to what extent are
the classification of the expert software engineers aligned with each other? Secondly, to
what extent are the results of these first bug classifications accurate and reliable?

To address the first question, which is the inter-rating differences, we performed a
Kappa test. The Kappa (K) coefficient of agreement [17] measures inter-rater and intra-
rater reliability for categorical items. The Kappa coefficient is more robust than a simple
agreement calculation. K values are between 0 and 1, where higher K values indicate higher
and lower values indicate lower agreement between raters. The formula for K is given
as follows:

K = (Pr(a) − Pr(e))/(1 − Pr(e)) (6)

Pr(a) is the relative observed agreement among raters in the above equation, and Pr(e)
is the hypothetical probability of chance agreement.

The calculated K value for ESE1 and ESE2 based on the results of Table 4 is 0.63. To
interpret this coefficient, we have used the evaluation table of Landis and Koch [18] given
in Table 5. This evaluation table concluded that the classifications performed by ESE1 and
ESE2 are defined as “agreement with significant importance”.

Table 5. Interpretation of K measure [18].

K Measure Interpretation

K < 0 No agreement
0.00–0.20 Agreement with less importance
0.20–0.40 Agreement with medium importance
0.41–0.60 Agreement with general importance
0.61–0.80 Agreement with significant importance
0.81–1.00 Agreement with excellent importance

Table 6 present the accuracy and F1 measure. As observed from Table 6, the accuracy
and F1 measure are very close in each iteration, implying that multiple iterations are
necessary to classify the bugs correctly. In turn, this will lead to an increased time for
correcting bugs and the increased cost of the project.

Table 6. Accuracy and weighted F1 measure for manual classification by two ESE.

Accuracy (%) Weighted F1 Measure (%)

ESE1 60.32 58.48
ESE2 56.75 55.36

To sum up, even though expert software engineers classify the bugs, there seem to be
differences in classifications. It should be noted that, as stated before, the classifications are
based on bug reports that were derived from black-box testing. The source code was thus
not visible. The differences in classifications and the low F1 measures in the above table
could be explained from this perspective. Investigation of bug labels and explanations



Appl. Sci. 2022, 12, 338 12 of 26

showed that it is hard to remove the discrepancy. Labels and explanations are sometimes
written shortly, and it might be hard to understand the details of the bugs even for the
software developers.

Furthermore, bug labels and explanations may also include errors. Altogether we
could conclude that the classification is subjective and, to some extent, error-prone and
requires further improvement to reduce the time to classify the bugs and herewith the
correction of the bugs. Some sample bug definitions and possible root causes are given in
Table 7. As observed from this table, it is impossible to determine the error’s root cause in
these cases by just reading the bug definitions. Therefore, software engineers use their past
experience to guess the type of bug for these definitions.

Table 7. Sample bug reports in CSP.

Bug Report Definition Classification

ERR-1:
Camera 1 is not working

The bug might be due to:
- The interface between the camera and software might have
an error
(Classification: External Interface)
- The camera control software component is not working
(Classification: Internal Interface)
- Software component developed for camera GUI is not
working
(Classification: Other)
- The camera hardware is not working
(Classification: Not a software bug)

ERR-2:
Unable to initialize the software

The bug might be due to:
- Error in software initialization components
(Classification: Assignment/Initialization)
- Error in multithreading components
(Classification: Other)
- Error in operating system settings during the test
(Classification: Not a software bug)

5.2. Automated Bug Classification

The second step of the research method presents the automated bug classification
approach and the corresponding results. The overall process is shown in Figure 4.

As observed from this figure, the process follows the general ML-based bug classifica-
tion process, as shown before in Figure 2. In addition, however, it has been adapted to the
specifically identified concerns, that is, unstructured, bilingual bug reports derived from
black-box testing. We discuss the details of the steps in the following sub-sections.

5.2.1. Bug Classification Schema

Similar to the manual classification, the bugs were classified based on the four cat-
egories. We have already noted that we could use a limited set of bugs (504) identified
based on black-box test reports. However, it is very hard for software developers and test
engineers to determine the real type of bug from the free text of unstructured bug reports.
In some cases, code inspection is required to find the class of the bug. In addition, bug
definitions written in short texts make classification harder.



Appl. Sci. 2022, 12, 338 13 of 26

Appl. Sci. 2022, 12, x FOR PEER REVIEW  13  of  27 
 

the specifically  identified concerns,  that  is, unstructured, bilingual bug reports derived 

from black‐box testing. We discuss the details of the steps in the following sub‐sections. 

Training

Read
Bug Reports

Labels from 
Classification

Schema

Preprocessing

Feature 
Extraction

ML Model 
Training

Prediction

Read
Bug Report

Bug
Report

Feature
Extraction

Bug Classification 
Model

Feature vector

LabelFeature vector

Bug
Report

Preprocessing

Stop World 
Elimination in 

Turkish

Stop World 
Elimination in 

English

Lemmatize 
in Turkish

Lemmatize 
in English

Tokenization

Stop World 
Elimination in 

Turkish

Stop World 
Elimination in 

English

Lemmatize 
in Turkish

Lemmatize 
in English

Tokenization

 

Figure 4. Proposed machine learning‐based bug classification process for bilingual, unstructured 

bug reports. 

5.2.1. Bug Classification Schema 

Similar to the manual classification, the bugs were classified based on the four cate‐

gories. We have already noted  that we could use a  limited set of bugs  (504)  identified 

based on black‐box test reports. However, it is very hard for software developers and test 

engineers to determine the real type of bug from the free text of unstructured bug reports. 

In some cases, code inspection is required to find the class of the bug. In addition, bug 

definitions written in short texts make classification harder. 

Furthermore, in bug definitions, both English and Turkish languages were used sim‐

ultaneously to define the bug that makes the classification complicated. The distribution 

of the bug definitions over bug categories is not uniform, and almost half of the bugs are 

classified as an “External Interface” type. The distribution of the bug data used in auto‐

matic classification is as given in the first column of Table 4. 

5.2.2. Preprocessing of Bug Reports 

In the preprocessing phase, we have first removed all punctuations and several non‐

ASCII characters and performed lower case conversion. Then, the preprocessing activity 

continued with the steps of tokenization, stemming, and lemmatization. 

The  tokenization step,  that  is, the process of breaking down  text documents apart 

into those pieces for further processing, is the same as the conventional approach. How‐

ever, the bug reports are mainly written in Turkish but also mixed with English words. 

Therefore, to deal with these bilingual  texts, we have applied the  lemmatizing step  for 

both languages. 

In automated bug classification, classifying bilingual bug reports requires extra care. 

Firstly, the English and Turkish words require different stemming/lemmatizing libraries. 

Furthermore, some words in both languages are written in the same letters but represent 

different meanings. For example, the English word ‘on’ also exists in Turkish but means 

Figure 4. Proposed machine learning-based bug classification process for bilingual, unstructured
bug reports.

Furthermore, in bug definitions, both English and Turkish languages were used
simultaneously to define the bug that makes the classification complicated. The distribution
of the bug definitions over bug categories is not uniform, and almost half of the bugs are
classified as an “External Interface” type. The distribution of the bug data used in automatic
classification is as given in the first column of Table 4.

5.2.2. Preprocessing of Bug Reports

In the preprocessing phase, we have first removed all punctuations and several non-
ASCII characters and performed lower case conversion. Then, the preprocessing activity
continued with the steps of tokenization, stemming, and lemmatization.

The tokenization step, that is, the process of breaking down text documents apart into
those pieces for further processing, is the same as the conventional approach. However, the
bug reports are mainly written in Turkish but also mixed with English words. Therefore, to
deal with these bilingual texts, we have applied the lemmatizing step for both languages.

In automated bug classification, classifying bilingual bug reports requires extra care.
Firstly, the English and Turkish words require different stemming/lemmatizing libraries.
Furthermore, some words in both languages are written in the same letters but represent
different meanings. For example, the English word ‘on’ also exists in Turkish but means
‘ten’. Suppose the word ‘on’ is removed in the stop-word removal process from the
bug reports. In that case, there will be a loss of meaning in the available data causing
extra difficulty in classification. In addition, due to the agglutinative structure of the
Turkish language [19,20], stop-word removal and lemmatizing processes are performed by
considering the grammatical structure of the Turkish language.



Appl. Sci. 2022, 12, 338 14 of 26

Similarly, the stop-word elimination phase has been applied for both languages. Since
some of the words could be valid both in English and Turkish (for example, the word “on”
is a valid and frequent word in English as well as it means “ten” in Turkish), we have
applied elimination considering this type of bilingual-equivocal definitions. This process is
unique to the bilingual NLP applications, which we call MUSE “Multi-language Stop-word
Elimination”.

We have applied the same methodology for lemmatizing, Multi-language Lemma-
tizing (MULE) for the hybrid bug definitions. The definitions must be lemmatized in
English first and then in Turkish (or vice-versa), considering that the same words might
exist in both languages. In cases such as the above example, the user (the person creating
the recommender system) shall check the words used in definitions and determine if the
language will be lemmatized.

5.2.3. Machine Learning-Based Bug Classification

Once the text is transformed into vectors, it is fed into a machine learning algorithm
and the expected predictions (tags), creating a classification model. Various ML classifiers
can be used the bug classification. To experiment with and as such identify the feasible
algorithms for this problem, we have selected Naïve Bayes (NB), support vector machine
(SVM), k-nearest neighbor (KNN), logistic regression (LR), decision tree (DT), and random
forest (RF) classifiers. We have used four kernels of the SVM classifier: linear, poly, radial
basis function (RBF), and sigmoid kernels.

Besides the selection of ML algorithms, we have also considered the typical char-
acteristics of the data set. In limited data sets, cross-validation techniques are typically
used to improve performance. Cross-validation also prevents obtaining random results.
Cross-validation is a random resampling procedure with a single parameter ‘k’ to refer to
the number of subgroups that the data are split into. Cross-validation is used to estimate
how the model is expected to perform when the data are not included during the training
phase, i.e., each sample is given an opportunity to be used in the test phase and k − 1 times
used in the training phase. Cross-validation is a popular method since it produces a less
biased or less optimistic estimate of the models than a simple train/test split. In our case
study, we have performed a grid search to find the optimal ‘k’ value.

5.2.4. Tuning Process

Our adopted machine learning training approach for the adopted case study is given
in Figure 5. Firstly, we select a machine learning classifier and investigate the effect of bi-
lingual stop-word elimination and lemmatizing and the effect of BOW size simultaneously.
After performing optimization in preprocessing phase, we optimize the internal parameters
of all selected machine learning classifiers. Then we perform N-fold cross-validation. In
this phase, instead of applying a fixed N value for the N-fold cross-validation, we tried and
checked the ‘N’ values for better results. Finally, we select the best classifier for our data
concerning the results obtained in previous steps.



Appl. Sci. 2022, 12, 338 15 of 26
Appl. Sci. 2022, 12, x FOR PEER REVIEW  15  of  27 
 

Select ML Algorithm

Select BOW size

Report Results and select
Pre‐processing Tuned ML algorithm

Select Stopword/lemmatization

Tune ML algorithm internal 
parameters

N‐Fold Crossvalidation

Provide Feasible Bug Classifier

Iterate until all optimized ML

with/without stopwords;
with/without lemmatization

 

Figure 5. Adopted machine learning training approach for the case study 

6. Experimental Results and Evaluation 

In this section, we present the results of the execution of the automated bug classifi‐

cation process for the provided case study with the 504 bugs and the selected ML algo‐

rithms. The answers to the first research question are provided in Sections 6.1–6.5. The 

answer to the second research question is provided in Section 6.6. 

As described in the previous section, we follow the process and describe the optimi‐

zation concerning the preprocessing parameters and internal ML algorithm hyperparam‐

eter values. The adopted detailed tuning process is shown in Figure 5. The separate steps 

will be explained  in  the following sub‐sections. In Section 6.1, we provide the effect of 

preprocessing on the bug classification. In Section 6.2, we analyze the impact of the bag of 

words (BOW) size. In Section 6.3, we investigate the effect of tuning internal parameters 

on classification results. Section 6.4 describes selecting the feasible ‘N’ value for the ‘N‐

fold cross validation’. Section 6.5 describes the effect of word embeddings. Finally, Section 

6.6 provides a comparison with the manual bug classification approach. 

6.1. Effect of Preprocessing on Bug Classification 

The preprocessing stage includes tokenization, lemmatization, and removing stop‐

words for bilingual bug definitions. Bilingual data poses different challenges for NLP [21]. 

Although some researchers apply different parsing techniques for multilingual data [22], 

we use two‐step lemmatization and two‐step removal of the stop words, as shown in Fig‐

ure 4. Details of this process are given in our previous study [23]. Since we are dealing 

with two different languages (Turkish, English), we have two different steps to eliminate 

Figure 5. Adopted machine learning training approach for the case study.

6. Experimental Results and Evaluation

In this section, we present the results of the execution of the automated bug classifica-
tion process for the provided case study with the 504 bugs and the selected ML algorithms.
The answers to the first research question are provided in Sections 6.1–6.5. The answer to
the second research question is provided in Section 6.6.

As described in the previous section, we follow the process and describe the optimiza-
tion concerning the preprocessing parameters and internal ML algorithm hyperparameter
values. The adopted detailed tuning process is shown in Figure 5. The separate steps
will be explained in the following sub-sections. In Section 6.1, we provide the effect of
preprocessing on the bug classification. In Section 6.2, we analyze the impact of the bag of
words (BOW) size. In Section 6.3, we investigate the effect of tuning internal parameters on
classification results. Section 6.4 describes selecting the feasible ‘N’ value for the ‘N-fold
cross validation’. Section 6.5 describes the effect of word embeddings. Finally, Section 6.6
provides a comparison with the manual bug classification approach.



Appl. Sci. 2022, 12, 338 16 of 26

6.1. Effect of Preprocessing on Bug Classification

The preprocessing stage includes tokenization, lemmatization, and removing stop-
words for bilingual bug definitions. Bilingual data poses different challenges for NLP [21].
Although some researchers apply different parsing techniques for multilingual data [22], we
use two-step lemmatization and two-step removal of the stop words, as shown in Figure 4.
Details of this process are given in our previous study [23]. Since we are dealing with two
different languages (Turkish, English), we have two different steps to eliminate stop words
and two different steps for lemmatizing. Accordingly, we use two different lemmatizers,
one for English and one for Turkish, executed for each word. In the automated bug
classification process, we first use a Turkish lemmatizer followed by an English lemmatizer.
During the experiments, we applied a particular stop-word removal process. Hence,
applying this process means we have removed both Turkish and English words.

Similarly, not applying the stop-word removal process means that we did not remove
stop-words in either language. The same is true for lemmatizing. For the bug classification
using the various ML algorithms, we could use the alternative with or without removing
stop-words and similarly with or without lemmatization. These combinations led us to
four different alternatives, each of which had a different impact on the bug classification
using the corresponding ML algorithm. The computed F1 measures of the decision for
using or not using stop-word elimination and lemmatizing are given in Table 8.

Table 8. Effect of bilingual preprocessing using stop-word removal (SW) and lemmatizing (LEM) for
the case study.

F1-Measure (%)

Classifier No SW
No LEM

No SW
LEM

SW
No LEM

SW
LEM

Naïve Bayes 58.49 59.05 60.05 59.30
SVM-linear kernel 70.92 70.60 71.66 71.30
SVM-poly kernel 56.47 56.43 56.42 55.76
SVM- RBF kernel 67.92 68.97 69.48 68.71
SVM- sigmoid kernel 70.24 70.88 70.36 70.30
KNN 57.57 57.72 58.48 55.93
Logistic regression 63.11 64.24 65.63 65.15
Decision tree 55.04 55.78 58.03 54.40
Random forest 66.05 66.42 65.48 65.93

The experimental results showed that the most optimal ML algorithm appears to
be the SVM linear kernel (71.66%). Subsequently, we wanted to examine the effect of
stop word removal and lemmatizing in preprocessing process. We took the “no stop-
words and no lemmatizing” case (first table column) as the baseline. Then we saw that
the lemmatizing and stop-word removal processes affected the results of the classifiers
positively or negatively slightly in any combination of these. Therefore, it is not possible to
determine how these processes affect the classification results. However, this result is also
consistent with the work of Cagataylı and Celebi [24]. In their work, they applied several
preprocessing techniques and investigated the effect on the text classification results. They
reported the effect of each technique separately, concluding that only lowercase conversion
improves classification success in terms of accuracy and dimension reduction regardless of
domain and language. Thus, no particular combination of preprocessing tasks results in
better classification performance for any domain and language studied.

6.2. Effect of BOW Size on Bug Classification

In parallel with the focus on stop-words/lemmatization selection, we have also evalu-
ated the impact of the BOW size for the selected ML algorithms; the results are shown in
Figure 6. From the figure, we can observe that the SVM linear kernel performs the best.



Appl. Sci. 2022, 12, 338 17 of 26Appl. Sci. 2022, 12, x FOR PEER REVIEW  17  of  27 
 

 

Figure 6. Effect of BOW size in classification for the selected machine learning algorithms. 

The F1 measure values obtained for varying BOW size using SVM linear kernel are 

plotted in Figure 7. The vertical axis represents the F1 measure, while the horizontal value 

shows the BOW size. From the figure, we can conclude that the BOW size of 265 seems to 

be optimal. BOW sizes greater than 265 do not seem to have a further positive impact on 

the accuracy of the ML algorithm. 

 

Figure 7. Effect of BOW size in classification (using SVM‐linear kernel). 

6.3. Tuning Internal Parameters of Selected Machine Learning Algorithms 

We performed hyper‐parameter tuning to enable better classification. We evaluated 

the effect of several parameters to have optimal results. The test ratio was always set to 

20% during all the tests. Furthermore, we discussed the classification metrics in the fol‐

lowing sections. 

We used six classification algorithms in our case study. We have used Naïve Bayes, 

support vector machines (SVM), k‐nearest neighbors (KNN), logistic regression, decision 

tree, and random forest. We have applied SVM with four kernels: linear, poly, RBF, and 

sigmoid kernels. By applying different kernels of SVM to the same data, we investigated 

the differences between SVM kernels. These algorithms are widely used in classification 

problems. However, depending on the dataset used, one of the given algorithms might 

40

45

50

55

60

65

70

75

100 300 500 700 900 1100 1300 1500

F1
‐M

ea
su
re

BOW Size
NaiveBayes SVM‐linear SVM‐poly

SVM‐RBF SVM‐sigmoid KNN

Logistic Regression Decision Tree Random Forest

64

65

66

67

68

69

70

71

72

73

0 250 500 750 1000 1250 1500

F1
‐M

ea
su
re
 (
%
)

BOW Size

Figure 6. Effect of BOW size in classification for the selected machine learning algorithms.

The F1 measure values obtained for varying BOW size using SVM linear kernel are
plotted in Figure 7. The vertical axis represents the F1 measure, while the horizontal value
shows the BOW size. From the figure, we can conclude that the BOW size of 265 seems to
be optimal. BOW sizes greater than 265 do not seem to have a further positive impact on
the accuracy of the ML algorithm.

Appl. Sci. 2022, 12, x FOR PEER REVIEW  17  of  27 
 

 

Figure 6. Effect of BOW size in classification for the selected machine learning algorithms. 

The F1 measure values obtained for varying BOW size using SVM linear kernel are 

plotted in Figure 7. The vertical axis represents the F1 measure, while the horizontal value 

shows the BOW size. From the figure, we can conclude that the BOW size of 265 seems to 

be optimal. BOW sizes greater than 265 do not seem to have a further positive impact on 

the accuracy of the ML algorithm. 

 

Figure 7. Effect of BOW size in classification (using SVM‐linear kernel). 

6.3. Tuning Internal Parameters of Selected Machine Learning Algorithms 

We performed hyper‐parameter tuning to enable better classification. We evaluated 

the effect of several parameters to have optimal results. The test ratio was always set to 

20% during all the tests. Furthermore, we discussed the classification metrics in the fol‐

lowing sections. 

We used six classification algorithms in our case study. We have used Naïve Bayes, 

support vector machines (SVM), k‐nearest neighbors (KNN), logistic regression, decision 

tree, and random forest. We have applied SVM with four kernels: linear, poly, RBF, and 

sigmoid kernels. By applying different kernels of SVM to the same data, we investigated 

the differences between SVM kernels. These algorithms are widely used in classification 

problems. However, depending on the dataset used, one of the given algorithms might 

40

45

50

55

60

65

70

75

100 300 500 700 900 1100 1300 1500

F1
‐M

ea
su
re

BOW Size
NaiveBayes SVM‐linear SVM‐poly

SVM‐RBF SVM‐sigmoid KNN

Logistic Regression Decision Tree Random Forest

64

65

66

67

68

69

70

71

72

73

0 250 500 750 1000 1250 1500

F1
‐M

ea
su
re
 (
%
)

BOW Size

Figure 7. Effect of BOW size in classification (using SVM-linear kernel).

6.3. Tuning Internal Parameters of Selected Machine Learning Algorithms

We performed hyper-parameter tuning to enable better classification. We evaluated
the effect of several parameters to have optimal results. The test ratio was always set to 20%
during all the tests. Furthermore, we discussed the classification metrics in the following
sections.

We used six classification algorithms in our case study. We have used Naïve Bayes,
support vector machines (SVM), k-nearest neighbors (KNN), logistic regression, decision
tree, and random forest. We have applied SVM with four kernels: linear, poly, RBF, and



Appl. Sci. 2022, 12, 338 18 of 26

sigmoid kernels. By applying different kernels of SVM to the same data, we investigated
the differences between SVM kernels. These algorithms are widely used in classification
problems. However, depending on the dataset used, one of the given algorithms might
perform better. Therefore, instead of selecting some of the algorithms, we applied all of the
given algorithms to our dataset. Finally, we selected the best classifier for our dataset. For
tuning the ML algorithms, we checked each ML algorithm and its corresponding hyper-
parameters in detail. For the Naïve Bayes, we did not have any relevant hyperparameter.
For SVM, as stated before, we adopted four different kernels. For the k-nearest neighbor
algorithm, we optimized the K value to be used, namely, the number of neighbors used in
calculations. For the logistic regression algorithm, we optimized the solver and iteration
number. Finally, for the random forest algorithm, we optimized the number of estimators
and criteria.

6.4. N-Fold Cross-Validation

Firstly, we have investigated the number ‘N’ in N-fold cross-validation. We have
evaluated different N values to have optimal results. In this measure, the F1 mean value
is crucial for us. The F1-max and F1-min are subject to more random results. Therefore,
we have focused on the change of the F1-mean in the experiments. The change of the F1
measure concerning different ‘N’ values in N-fold cross-validation is plotted in Table 9.

Table 9. Impact of chosen N value for the N-fold cross-validation.

F1-Measure (%)

Classifier N = 5 N = 10 N = 15 N = 20 N = 25 N = 30

Naïve Bayes 62.40 60.64 60.44 59.79 59.66 58.48
SVM-linear kernel 69.98 71.66 68.73 70.27 68.89 67.56
SVM-poly kernel 55.43 55.69 55.34 55.35 54.49 55.70
SVM-RBF kernel 66.54 68.87 68.04 67.36 68.27 66.03
SVM-sigmoid kernel 69.06 69.56 68.57 69.21 67.93 67.37
KNN 55.06 57.03 55.67 55.50 55.91 54.41
Logistic regression 63.64 65.19 65.64 64.70 65.55 64.42
Decision tree 55.96 56.38 54.97 55.04 57.26 56.40
Random forest 65.82 65.54 65.71 65.86 65.00 64.07

From Table 9, although we can observe that the F1 mean values are close for the
selected N values, the best results are obtained using 10-fold cross-validation for the SVM
linear kernel case.

The most feasible bug classifier can be selected and applied after training the ML
models using the preprocessing and tuning hyperparameters. Moreover, we have obtained
the best F1 measure using SVM with a linear kernel, as stated above. Hence, this bug
classifier can thus be used for classifying the newly detected bugs following the steps of
the prediction process as depicted in the lower part of Figure 4.

6.5. Bug Classification with Word Embeddings

In the above section, we used the BOW approach for vectorization. As the next step,
we used word embeddings for feature extraction. Word embeddings libraries provide
pre-trained word vectors that can be used with machine learning classifiers. This paper
selects FastText since FastText overperforms other word embedding libraries in many NLP
tasks [10,25]. Therefore, as an alternative to the TF-IDF approach, we have used FastText in
feature extraction. We obtained the results provided in Table 10 using the same machine
learning classifiers as in the previous case.



Appl. Sci. 2022, 12, 338 19 of 26

Table 10. Effect of bilingual preprocessing using stop-word elimination (SW) and lemmatizing (LEM)
for the case study.

Classifier F1-Measure (%)

FastText with Naïve Bayes 65.35
FastText with SVM-linear kernel 67.33
FastText with SVM-poly kernel 70.30
FastText with SVM-RBF kernel 69.31
FastText with SVM-sigmoid kernel 65.35
FastText with KNN 58.42
FastText with logistic regression 63.37
FastText with decision tree 50.00
FastText with random forest 71.19

In general, word embeddings might be more efficient than the BOW models in clas-
sification tasks. However, in our case study, we obtained a 71.19% F1 measure using
FastText with random forest. However, this value is slightly less than we obtained with the
BOW approach. We believe this is because FastText built-in vectors were trained using the
Wikipedia database to provide a general-purpose corpus suitable for news classification or
a product’s sentiment analysis. But such a corpus appeared not to be a perfect match for
classifying bug reports.

6.6. Comparison with Manual Bug Classification

The results of the overall comparison of automated bug classification with manual
classification are given in Table 11. The accuracy and F1 measure values for automated
bug classification outperform manual classification results performed by expert software
engineers, given in Table 4.

Table 11. Accuracy and weighted F1 measures for manual and automatic classification.

Accuracy (%) Weighted F1 (%)

ESE1 60.32 58.48
ESE2 56.75 55.36
Automated classification 73.70 71.66

7. Discussion

Several studies have addressed the topic of automated bug classification, indicating
that the manual classification of bugs is cumbersome and time-consuming. Moreover,
since the size and complexity of software keep increasing, manual bug classification is
not scalable and tractable anymore for human experts. As a result, the chance of making
more errors in the bug classification process can increase, and herewith also the process for
handling and resolving the bugs.

Although many studies in the literature investigated the automated bug classification
problem applying machine learning techniques; our approach distinguishes from these
studies in focus on the combination of various aspects: including the usage of commercial
software, use of bilingual bug reports (Turkish and English), use of unstructured bug
reports, and use of black-box bug reports. Each of these aspects by themselves implies an
additional complexity in the bug classification process. Together, these aspects even further
impede the manual bug classification process and the automated bug classification process.
The problem is thus inherently complicated. Therefore, the first research question focused
on searching the answer for whether the adoption of an automated bug classification
approach and, in particular, the approach that we have presented would be effective.

Despite the inherent difficulties, we can indeed state that the presented approach is
effective. The presented approach adopts and integrates machine learning, text mining,
and natural language processing techniques to support the classification of software bugs.



Appl. Sci. 2022, 12, 338 20 of 26

All of these techniques were necessary and had to be adequately integrated. Hence,
we have also discussed a well-defined and preplanned process in this paper. We have
adopted proven methods in text mining to analyze the bug reports lexically by tokenization,
derive the semantic meaning by lemmatization, and extract features using TF-IDF and
word embeddings. Then, we mapped these to vectors (vectorization) which machine
learning algorithms can process. With this, we took into account and also processed
words in the two different languages. We have not limited ourselves to a few machine
learning algorithms but adopted Naïve Bayes (NB), support vector machine (SVM), k-
nearest neighbor (KNN), logistic regression (LR), decision tree (DT), and random forest
(RF) classifiers in our experiments. We have also used all four kernels of the SVM classifier:
linear, poly, RBF, and sigmoid kernels. It should be stated that the process required some
iterations to fine-tune the hyperparameters of the ML algorithms.

In addition to the BOW approach, we have also adopted the more recent approach
in feature extraction using word embeddings. In general, word embeddings might be
more efficient than the BOW models in classification tasks. However, in our case study, we
obtained a 71.19 % F1 measure using FastText with random forest. This value is slightly
less than we obtained with the BOW approach and SVM with linear kernel. We believe this
is because FastText built-in vectors were trained using the Wikipedia database to provide a
general-purpose corpus suitable for news classification or a product’s sentiment analysis.
Despite this, such a corpus appeared not to be a perfect match for classifying bug reports.

We used the F1 score and accuracy metrics for the evaluation metrics, similar to the
earlier studies described in the survey on automated bug classification of Gomes et al. [6].
For the automated bug classification, the precision and recall metrics were considered
important. Since F1 covered both metrics, these were not separately reported. We might
have added other metrics independent of most of the practices published in the related
studies. This topic will be further explored and considered in our future studies.

Nevertheless, with this approach, we could process bug reports in an automated
manner without the need for a human expert. This result was an important observation for
the practical context whereby mainly manual classification by experts was applied. Still,
as we stated before, it became more and more cumbersome, time-consuming, and costly,
which brought us to the second question. Automated bug classification seems to work
and with good results too. However, was it also better than manual bug classification?
Our answer to this question is also confirmative. Our experimental results showed that
automated bug classification, as we have implemented, outperforms the human expert.

To evaluate this process, we have adopted a well-defined case study research [16]
in which we have carefully followed and executed the protocol. As a result, we first
checked the results of manual bug classification by two experts and compared these to
the known results (ground truth). The experiments also confirmed our hypothesis that
bug classification is subjective even for experts. Different explanations can be given for
this, such as the fact that bug classification is based on bug reports derived from black-
box testing, the relatively short texts in the bug reports, and the bilingual aspects. The
investigation of the reasons for the subjectivity could be one of the further research topics
of this study. After the manual bug classification, we thoroughly assessed the impact of
each machine learning algorithm that required some fine-tuning and effort. In parallel, we
also checked the impact of the BOW size and eventually derived the most feasible situation
that is effective in classifying bugs. Due to confidentiality reasons, we could only use a
data set of 504 bug reports. However, the size of the dataset is not large enough to use in
deep learning techniques that require large datasets for training. Furthermore, since this is
a proprietary dataset, we did not have a chance to increase the data size.

Several other text mining techniques can be identified, among which we can distin-
guish text summarization, which is mainly used to shorten longer texts in the text data.
The aim of this process is to obtain a short, coherent, and fluent summary by outlining
major points in the longer text data. However, in our case, we have short text in our bug
repository. Hence, text summarization is not a suitable approach to be used in short text



Appl. Sci. 2022, 12, 338 21 of 26

classification. Similarly, other techniques such as semantic similarity and abbreviation
discovery can be identified, which will be considered in our future work.

Since the data set was insufficient for training neural network architectures, we could
not apply deep learning models directly. We adopted artificial neural networks (ANN) and
convolutional neural networks (CNN) in earlier experiments. However, the F1 scores were
as expected, less than the machine learning approaches (ANN < 55% and CNN < 65%) that
we eventually applied.

As in this case study, the lack of data for commercial bug reports is still an obstacle.
Moreover, due to the business-critical aspects, the provided data is often confidential and
not publicly accessible. In case of the availability of larger commercial data sets, we will
experiment with the application of various deep learning models for bug classification.

Another issue was the classification schema that we used for classifying bugs. We
used and adapted the bug types of Seaman [11], whereby some categories were taken
together to align this with the industrial practice. In the adopted case study, we had to cope
with an imbalanced dataset which thus implies different results for different bug types of
the category. Hence the result of an imbalanced categorization of the bugs was expected.
We could have adopted a different bug taxonomy, but this would not have changed the
imbalance of the data.

Altogether, we can state that the approach and the corresponding tools were effective
and valuable for the automated bug classification of bilingual, unstructured bug reports
derived from black-box testing.

8. Related Work

Several studies in the literature have focused on bug classification, which has ad-
dressed different issues, including finding duplicate bugs, checking a report that includes
a bug, and bug triaging. In this section, we briefly provide general issues in the bug
classification domain and then give details regarding bug classification studies.

8.1. Bug Classification

One of the common issues in the bug classification domain is the selection of bug
categories. One of the oldest works to determine the software bugs was performed by
Beizer [26]. According to Beizer, many different sources are influencing the taxonomy.
He offers more than 100 bug categories, 10 of which are base categories. Chillarege et al.
(IBM) offered one of the earliest and most famous bug taxonomy Orthogonal Defect
Classifications (ODC) [12], which consists of 13 bug categories. Freimut et al. (Hewlett-
Packard) provided an approach for defining, introducing, and validating customized
software bug classification schemes in the industrial context [27]. In this context, bugs are
defined by their origin, mode, and type. The ‘origin’ of the bug is the activity in which
the defect was introduced. The ‘mode’ of the bug describes the scenarios leading to the
bug. Plosky et al. surveyed the literature that provides quantitative data on categories of
software faults [28]. Seaman et al. [11] offer categorization schemes to use the historical
data by guiding future projects. Seamon et al. offer three inspection areas for software
defects: “Requirements inspection”, “Design and source code inspection”, and “Test plan
inspection” defect types.

It has been observed that bug classification depends on the quality of bug reports, and
several studies have shown that bug reports are widely different in quality. In [27,28], the
authors report on the survey results to find the critical information that needs to exist in
bug reports.

Zimmermann et al. [29] and Bettenbutg et al. [30] claim that the duplicate bug def-
initions are not harmful as opposed to the common belief. On the other hand, many
studies [31] indicate that duplicate bug definitions might cause extra maintenance costs.

Several studies have focused on bug triaging [13,14] to assign software bugs to the
most suitable developer. Zhang et al. [15] conducted a thorough overview of the conducted
research in the context of bug triaging. Gomes et al. [6] provided a survey on severity



Appl. Sci. 2022, 12, 338 22 of 26

prediction in open-source software. They provided a comprehensive mapping study review
of recent research efforts on automatic bug report severity prediction. The paper concludes
that unstructured text features, traditional machine learning algorithms, and text mining
methods have played a central role in the most proposed methods in literature to predict
bug severity levels. The authors also conclude that there is room for improving prediction
results using state-of-the-art machine learning and text mining algorithms and techniques.
Furthermore, the paper shows that all of the papers have used open-source software, and
none of these have focused on commercial software as we did in this study.

In [32], the authors proposed a new severity prediction approach using a linear
combination of stack trace similarity and categorical features similarity on open-source
datasets.

8.2. Automatic Bug Classification with Machine Learning Algorithms

Antoniol et al. [2] investigated the automatic classification of bug reports by utilizing
conventional text mining techniques dealing with the reports’ description part (free text).
They have reported the misclassification of bug reports and claimed that more than half
are unrelated to software bugs. Therefore, they have proposed an ML-based classification
approach to distinguish software bugs from other issues in the bug tracking systems.
Similarly, Herzig et al. [33] concluded that “every third bug is not a bug”, stating that
alternatively, manual classification is time-consuming.

Pingclasai et al. [4] proposed using topic modeling techniques, namely, latent dirichlet
allocation (LDA), to classify bug reports automatically. Their work claimed that Naïve Bayes
is the most efficient classification model, applying LDA yields the F-Measure between 0.65
and 0.82. On the other hand, Limsettho et al. [34] applied the nonparametric Hierarchical
Dirichlet Process (HDP) as an alternative topic modeling technique. They claimed that
HDP performance is comparable with LDA where parameter tuning is required while
their data set, for both LDA and HDP, suffers from a lack of data and imbalance dataset
problems. Further, Zhou et al. [35] proposed a multi-stage classification hybrid approach
with data grafting by combining data mining and text mining with structured data (priority,
severity, etc.) to automate the prediction process. As a result, Zhou et al. claimed that they
achieved a reasonable enhancement between 81.7 and 93.7 by applying their technique to
the same data on the three large-scale open-source projects. Finally, Terdchanakul et al. [36]
proposed an alternative solution by using N-gram IDF to detect if bug reports contain
software bugs or non-bugs, achieving an F-Measure between 0.62 and 0.88.

Catalino et al. [1] indicated the research community deeply investigated the bug
triaging process. In contrast, only a few studies are available in the literature to support the
developers in understanding the type of a reported bug which is the most time-consuming
step of fixing software bugs. Therefore, they built a taxonomy for several popular open-
source projects such as Mozilla, Apache, and Eclipse, providing automatic support for
labeling bugs according to their type. Then they evaluated the automated classification
model utilizing the defined taxonomy, achieving an F-Measure of 64%.

In their recent work, Hernández-González et al. [37] provided a solution for classifying
the impact of bugs using ODC schema [12]. As a result, they claimed that they had reached
enhanced performance regarding the majority voting. Similarly, Huang et al. [38] used ODC
by casting as a supervised text classification problem and proposed AutoODC obtaining an
overall accuracy of 80.2% when using manual classification as the baseline.

Thung et al. [39] manually analyzed and classified 500 defects according to the ODC.
They offer an automatic classification approach to categorize bug defects into three super
categories of ODC: control and data flow, structural, and non-functional.

In his more recent work, Thung et al. [40] proposed an active semi-supervised defect
categorization approach to reduce the cost of manually labeling a huge number of examples
using the same 500 defects as a benchmark. Authors claim that this approach outperforms
the baseline approach of Jain and Kapoor [41] by incrementally refining the training model
and achieving an F-Measure of 0.623 and AUC of 0.710.



Appl. Sci. 2022, 12, 338 23 of 26

Xia et al. [42] proposed a fuzzy set-based future selection algorithm and categorized
defects into fault trigger categories by analyzing the natural language descriptions of bug
reports and utilizing text mining. They reported that they analyzed 809 bug reports and
their approach achieved an F-Measure of 0,453 by improving the Mandelburg F-Measure,
which is the best performing baseline, by 12.3%.

Lopes et al. [43] used ODC for classifying software defects, indicating that it requires
one or more experts to categorize each defect in a reasonably complex and time-consuming
process. They evaluated the applicability of a set of machine learning algorithms (NB,
KNN, SVM, Recurrent Neural Networks (RNN), Nearest Centroid, and RF) for performing
automatic classification of software defects based on ODC and using unstructured text
bug reports. The authors claimed that the difficulties in automatically classifying certain
ODC attribute solely using unstructured bug reports. Hence, they suggested that the use of
larger datasets to improve overall classification accuracy.

To compare our study with the related works in this section, we have listed the various
approaches in Tables 12 and 13. Thus, our study builds on and complements the above
studies. In addition, our study is unique since it deals with commercial bug reports instead
of other researchers dealing with bug reports of open-source software, as given in Table 12.
Furthermore, Table 13 show the techniques and classifiers used in the related works.

Table 12. Comparison of automatic bug classification studies.

Ref. Paper Year No. of Bugs Commercial/Open Source Dataset(s)

[2] Antoniol et al. 2007 1800 Open Source Mozilla, Eclipse, and JBoss
[39] Thung et al. 2012 500 Open Source Mahout, Lucene, and OpenNLP
[4] Pingclasai et al. 2013 1940 Open Source HTTP Client, Jackrabbit, and Lucene
[34] Limsettho et al. 2014 2718 Open Source HTTP Client, Jackrabbit, and Lucene

[35] Zhou et al. 2014 3220 Open Source Mozilla, Eclipse, JBoss, Firefox, and
OpenFOAM

[42] Xia et al. 2014 809 Open Source Linux, Mysql, Apache HTTPD, and AXIS
[40] Thung et al. 2015 500 Open Source Mahout, Lucene, and OpenNLP
[36] Terdchanakul et al. 2017 3356 Open Source HTTP Client, Jackrabbit, and Lucene
[37] Hernández et al. 2018 1444 Open Source Compendium and Mozilla
[1] Catalino et al. 2019 1280 Open Source Mozilla, Apache, and Eclipse
[43] Lopes et al. 2020 4096 Open Source MongoDB, Cassandra, and HBase
- Our work 2021 504 Commercial Proprietary Bug Dataset

Table 13. Comparison of automatic bug classification studies.

Ref. Techniques Used Classification/Clustering Algorithms

[2] ML and model feature selection NB, LR, and alternating decision tree

[39] ML and text mining using three super categories of ODC defect types C4.5, NB, SVM, and LR

[4] LDA topic modeling NB, LR, and alternating decision tree

[34] HDP topic modeling NB, LR, and alternating decision tree

[35] Data mining and text mining with structured data, multi-stage classification with
data grafting Multinominal NB, LR, and alternating decision tree

[42] Fuzzy-based text selection, text mining, and natural language descriptions with a
fuzzy eet-based feature selection [USES] algorithm.

USES, multinominal NB, NB, SVM, LR, and RBF
network

[40] Hybrid ML approach with semi-supervised defect categorization, active learning,
and clustering K-means clustering and SVM

[36] N-gram with inverse document frequency (IDF) LR and RF

[37] Bayesian network classifiers, K-means clustering and expectation-maximization
(EM) strategy with majority voting and ODC defect types

NB, tree augmented NB (TAN), and K-dependence
Bayesian network classifier (KDB)

[1] Taxonomy building by classifying according to the defined taxonomy with TF-IDF,
Word2Vec, and Doc2Vec NB, LR, SVM, and RF

[43] ML and RNN using ODC defect types NB, SVM, KNN, RNN, nearest centroid, and RF

Our
Work

ML, NLP, information retrieval, and multi-language pre-processing with Seaman’s
defect types NB, SVM, KNN, LR, DT, and RF



Appl. Sci. 2022, 12, 338 24 of 26

9. Conclusions

The proper management of bugs is a significant factor in decreasing the cost of software
projects. Different activities are needed here, including reporting the bug, determining
if it is a bug, finding duplicate bugs, bug prediction, bug classification, and bug triaging.
This article focused on and provided an approach for automated bug classification in a
real industrial context. Two main questions were posed: Is automated bug classification
effective, and how does this compare to manual bug classification?

We have shown that manual classification, even by performed by experts, is complex
and can lead to subjective results and interpretation; thus it is unnecessary to extend the
time to handle the bug. Bug classification becomes even more difficult if we deal with
unstructured bug reports derived from black-box testing, in which more than one language
is used. We have provided the method and the corresponding tools for automated bug
classification. We could build on existing text mining approaches but had to refine these
processes for the bilingual aspects. After the preprocessing, we applied several different
machine learning algorithms, fine-tuned the hyperparameters, compared the results for
different BOW sizes, and derived the most feasible algorithm. The SVM classifier that we
eventually used appeared to be effective. Our first conclusion was thus that the automated
bug classification that we have developed was undoubtedly effective.

We followed a systematic case study research protocol to answer the second question of
whether the presented automated bug classification is better than manual bug classification.
We checked the manual bug classification by experts and compared this to the automated
bug classification approach results. The results of the case study research showed that
automated bug classification was indeed more effective than manual bug classification.

Despite the overall performance of the approach, we concluded that preprocessing
in our bilingual case study did not result in significantly better classification performance.
This conclusion is in alignment with the outcome of earlier studies on the impact of
preprocessing.

The presented automated bug classification approach will be integrated into the
company’s bug tracking and handling process and system. In our future work, we will
further experiment and enhance the approach using deep learning and NLP. For this,
we will also consider larger case studies. In addition, we will also explore solutions for
imbalanced datasets which had an impact on the use of bug classification schema.

Author Contributions: Conceptualization, Ö.K. and B.T.; methodology, Ö.K. and B.T.; software, Ö.K.;
validation, Ö.K. and B.T. Writing—original draft preparation, Ö.K. and B.T.; writing—review and
editing, Ö.K. and B.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Catolino, G.; Palomba, F.; Zaidman, A.; Ferrucci, F. Not all bugs are the same: Understanding, characterizing, and classifying bug

types. J. Syst. Softw. 2019, 152, 165–181. [CrossRef]
2. Antoniol, G.; Ayari, K.; Di Penta, M.; Khomh, F.; Guéhéneuc, Y.G. Is it a bug or an enhancement? A text-based approach to classify

change requests. In Proceedings of the 2008 Conference of the Center for Advanced Studies (CASCON’08), Richmond Hill, ON,
Canada, 27–30 October 2008.

3. Bhattacharya, P.; Neamtiu, I.; Shelton, C.R. Automated, highly-accurate, bug assignment using machine learning and tossing
graphs. J. Syst. Softw. 2012, 85, 2275–2292. [CrossRef]

4. Pingclasai, N.; Hata, H.; Matsumoto, K.I. Classifying bug reports to bugs and other requests using topic modeling. In Proceedings
of the Asia-Pacific Software Engineering Conference (APSEC), Bangkok, Thailand, 2–5 December 2013; IEEE Computer Society:
Hoboken, NJ, USA, 2013; Volume 2, pp. 13–18.

http://doi.org/10.1016/j.jss.2019.03.002
http://doi.org/10.1016/j.jss.2012.04.053


Appl. Sci. 2022, 12, 338 25 of 26

5. Jeong, G.; Kim, S.; Zimmermann, T. Improving bug triage with bug tossing graphs. In Proceedings of the Joint 12th European
Software Engineering Conference and 17th ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC-
FSE’09), Amsterdam The Netherlands, 24–28 August 2009; ACM Press: New York, NY, USA, 2009; pp. 111–120.

6. Gomes, L.A.F.; da Silva Torres, R.; Côrtes, M.L. Bug report severity level prediction in open source software: A survey and
research opportunities. Inf. Softw. Technol. 2019, 115, 58–78. [CrossRef]

7. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. In Proceedings of the 1st
International Conference on Learning Representations, ICLR 2013—Workshop Track Proceedings, Scottsdale, AZ, USA, 2–4 May
2013.

8. Le, Q.V.; Mikolov, T. Distributed Representations of Sentences and Documents. In Proceedings of the 31st International Conference
on Machine Learning (ICML), Bejing, China, 22–24 June 2014; Volume 32, pp. 1188–1196.

9. Pennington, J.; Socher, R.; Manning, C. GloVe: Global Vectors for Word Representation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; Association for Computational
Linguistics (ACL): Doha, Qatar, 2014; pp. 1532–1543.

10. Bojanowski, P.; Grave, E.; Joulin, A.; Mikolov, T. Enriching Word Vectors with Subword Information. Trans. Assoc. Comput.
Linguist. 2017, 5, 135–146. [CrossRef]

11. Seaman, C.; Shull, F.; Regardie, M.; Elbert, D.; Feldmann, R.L.; Guo, Y.; Godfrey, S. Defect categorization: Making use of a
decade of widely varying historical data. In Proceedings of the 2008 ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM’08), Kaiserslautern, Germany, 9–10 October 2008; pp. 149–157.

12. Chillarege, R.; Bhandari, I.S.; Chaar, J.K.; Halliday, M.J.; Ray, B.K.; Moebus, D.S. Orthogonal defect classification—A concept for
in-process measurements. IEEE Trans. Softw. Eng. 1992, 18, 943–956. [CrossRef]

13. Čubranić, D.; Gail, M. Automatic bug triage using text categorization. In Proceedings of the Sixteenth International Conference
on Software Engineering & Knowledge Engineering (SEKE), Banff, AB, Canada, 20–24 June 2004; pp. 92–97.

14. Neelofar; Javed, M.Y.; Mohsin, H. An automated approach for software bug classification. In Proceedings of the 6th International
Conference on Complex, Intelligent, and Software Intensive Systems (CISIS), Palermo, Italy, 4–6 July 2012; pp. 414–419.

15. Zhang, T.; Jiang, H.; Luo, X.; Chan, A.T.S. A Literature Review of Research in Bug Resolution: Tasks, Challenges and Future
Directions. Comput. J. 2016, 59, 741–773. [CrossRef]

16. Runeson, P.; Höst, M. Guidelines for conducting and reporting case study research in software engineering. Empir. Softw. Eng.
2008, 14, 131–164. [CrossRef]

17. Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [CrossRef]
18. Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159. [CrossRef]

[PubMed]
19. Oflazer, K.; Saraçlar, M. Turkish and Its Challenges for Language and Speech Processing. In Turkish Natural Language Processing;

Springer: Cham, Switzerland, 2018; pp. 1–19.
20. Oflazer, K.; Çetinoğlu, Ö.; Say, B. Integrating morphology with multi-word expression processing in Turkish. In Proceedings of

the Workshop on Multiword Expressions: Integrating Processing, Barcelona, Spain, 26 July 2004; Association for Computational
Linguistics (ACL): Doha, Qatar, 2004; pp. 64–71.

21. Yirmibeşoğlu, Z.; Eryiğit, G. Detecting Code-Switching between Turkish-English Language Pair. In Proceedings of the 2018
EMNLP Workshop W-NUT: The 4th Workshop on Noisy User-Generated Text, Brussels, Belgium, 1 November 2018; Association
for Computational Linguistics (ACL): Doha, Qatar, 2019; pp. 110–115.

22. Hall, J.; Nilsson, J.; Nivre, J.; Eryiǧit, G.; Megyesi, B.; Nilsson, M.; Saers, M. Single malt or blended? A study in multilingual
parser optimization. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning (EMNLP-CoNLL), Prague, Czech Republic, 28–30 June 2007; Springer: Dordrecht,
The Netherlands, 2007; pp. 933–939.

23. Koksal, O. Tuning the Turkish Text Classification Process Using Supervised Machine Learning-based Algorithms. In Proceedings
of the International Conference on INnovations in Intelligent SysTems and Applications (INISTA), Novi Sad, Serbia, 24–26 August
2020; IEEE: Hoboken, NJ, USA, 2020; pp. 1–7.

24. Cagataylı, M.; Celebi, E. The effect of stemming and stop-word-removal on automatic text classification in Turkish language. In
Proceedings of the ICONIP 2015, Istanbul, Turkey, 9–12 November 2015; Lecture Notes in Computer Science (Including Subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switzerland, 2015; Volume 9489,
pp. 168–176.

25. Kilimci, Z.H.; Yoruk, H.; Akyokus, S. Sentiment Analysis Based Churn Prediction in Mobile Games using Word Embedding
Models and Deep Learning Algorithms. In Proceedings of the 2020 International Conference on INnovations in Intelligent
SysTems and Applications (INISTA), Novi Sad, Serbia, 24–26 August 2020; Institute of Electrical and Electronics Engineers Inc.:
Hoboken, NJ, USA, 2020.

26. Beizer, B. Software Testing Techniques; Van Nostrand Reinhold: New York, NY, USA, 1990.
27. Freimut, B.; Denger, C.; Ketterer, M. An industrial case study of implementing and validating defect classification for process

improvement and quality management. In Proceedings of the International Software Metrics Symposium, Como, Italy, 19–22
September 2005; Volume 2005, pp. 165–174.

http://doi.org/10.1016/j.infsof.2019.07.009
http://doi.org/10.1162/tacl_a_00051
http://doi.org/10.1109/32.177364
http://doi.org/10.1093/comjnl/bxv114
http://doi.org/10.1007/s10664-008-9102-8
http://doi.org/10.1177/001316446002000104
http://doi.org/10.2307/2529310
http://www.ncbi.nlm.nih.gov/pubmed/843571


Appl. Sci. 2022, 12, 338 26 of 26

28. Ploski, J.; Rohr, M.; Schwenkenberg, P.; Hasselbring, W. Research issues in software fault categorization. ACM SIGSOFT Softw.
Eng. Notes 2007, 32, 6. [CrossRef]

29. Zimmermann, T.; Premraj, R.; Bettenburg, N.; Just, S.; Schröter, A.; Weiss, C. What makes a good bug report? IEEE Trans. Softw.
Eng. 2010, 36, 618–643. [CrossRef]

30. Bettenburg, N.; Just, S.; Schröter, A.; Weiss, C.; Premraj, R.; Zimmermann, T. What makes a good bug report? In Proceedings
of the ACM SIGSOFT Symposium on the Foundations of Software Engineering, Atlanta, GA, USA, 9–14 November 2008; pp.
308–318.

31. Sun, C.; Lo, D.; Khoo, S.C.; Jiang, J. Towards more accurate retrieval of duplicate bug reports. In Proceedings of the 2011 26th
IEEE/ACM International Conference on Automated Software Engineering (ASE), Lawrence, KS, USA, 6–10 November 2011; pp.
253–262.

32. Sabor, K.K.; Hamdaqa, M.; Hamou-Lhadj, A. Automatic prediction of the severity of bugs using stack traces and categorical
features. Inf. Softw. Technol. 2020, 123, 106205. [CrossRef]

33. Herzig, K.; Just, S.; Zeller, A. It’s not a bug, it’s a feature: How misclassification impacts bug prediction. In Proceedings of the
International Conference on Software Engineering, San Francisco, CA, USA, 18–26 May 2013; pp. 392–401.

34. Limsettho, N.; Hata, H.; Matsumoto, K.I. Comparing hierarchical dirichlet process with latent dirichlet allocation in bug report
multiclass classification. In Proceedings of the 2014 IEEE/ACIS 15th International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing (SNPD), Las Vegas, NV, USA, 30 June–2 July 2014; Institute of
Electrical and Electronics Engineers Inc.: Hoboken, NJ, USA, 2014.

35. Zhou, Y.; Tong, Y.; Gu, R.; Gall, H. Combining text mining and data mining for bug report classification. In Proceedings of the
30th International Conference on Software Maintenance and Evolution (ICSME), Victoria, BC, Canada, 29 September–3 October
2014; Institute of Electrical and Electronics Engineers Inc.: Hoboken, NJ, USA, 2014; pp. 311–320.

36. Terdchanakul, P.; Hata, H.; Phannachitta, P.; Matsumoto, K. Bug or not? Bug Report classification using N-gram IDF. In
Proceedings of the 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME), Shanghai, China, 17–22
September 2017; Institute of Electrical and Electronics Engineers Inc.: Hoboken, NJ, USA, 2017; pp. 534–538.

37. Hernández-González, J.; Rodriguez, D.; Inza, I.; Harrison, R.; Lozano, J.A. Learning to classify software defects from crowds: A
novel approach. Appl. Soft Comput. J. 2018, 62, 579–591. [CrossRef]

38. Huang, L.G.; Ng, V.; Persing, I.; Geng, R.; Bai, X.; Tian, J. AutoODC: Automated generation of Orthogonal Defect Classifications.
In Proceedings of the 2011 26th IEEE/ACM International Conference on Automated Software Engineering (ASE), Lawrence, KS,
USA, 6–10 November 2011; pp. 412–415.

39. Thung, F.; Lo, D.; Jiang, L.; Le, X.B.D.; Lo, D. Automatic defect categorization. In Proceedings of the Working Conference on
Reverse Engineering (WCRE), Kingston, ON, Canada, 15–18 October 2012; IEEE Computer Society: Hoboken, NJ, USA, 2012;
Volume 2015-Augus, pp. 205–214.

40. Thung, F.; Le, X.B.D.; Lo, D. Active Semi-supervised Defect Categorization. In Proceedings of the IEEE International Conference
on Program Comprehension, Florence, Italy, 18–19 May 2015; IEEE Computer Society: Hoboken, NJ, USA, 2015; Volume
2015-Augus, pp. 60–70.

41. Jain, P.; Kapoor, A. Active learning for large multi-class problems. In Proceedings of the 2009 IEEE Conference on Computer
Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; Institute of Electrical and Electronics Engineers (IEEE):
Hoboken, NJ, USA, 2009; pp. 762–769.

42. Xia, X.; Lo, D.; Wang, X.; Zhou, B. Automatic defect categorization based on fault triggering conditions. In Proceedings of
the IEEE International Conference on Engineering of Complex Computer Systems (ICECCS), Tianjin, China, 4–7 August 2014;
Institute of Electrical and Electronics Engineers Inc.: Hoboken, NJ, USA, 2014; pp. 39–48.

43. Lopes, F.; Agnelo, J.; Teixeira, C.A.; Laranjeiro, N.; Bernardino, J. Automating orthogonal defect classification using machine
learning algorithms. Futur. Gener. Comput. Syst. 2020, 102, 932–947. [CrossRef]

http://doi.org/10.1145/1317471.1317478
http://doi.org/10.1109/TSE.2010.63
http://doi.org/10.1016/j.infsof.2019.106205
http://doi.org/10.1016/j.asoc.2017.10.047
http://doi.org/10.1016/j.future.2019.09.009

	Introduction 
	Background 
	Machine Learning 
	Text Mining and Text Classification 
	Feature Extraction 
	Word Embeddings 
	Evaluation Metrics 

	Triaging and Bug Report Classification Process 
	Research Questions and Research Methodology 
	Case Study and Bug Classification 
	Manual Bug Classification 
	Automated Bug Classification 
	Bug Classification Schema 
	Preprocessing of Bug Reports 
	Machine Learning-Based Bug Classification 
	Tuning Process 


	Experimental Results and Evaluation 
	Effect of Preprocessing on Bug Classification 
	Effect of BOW Size on Bug Classification 
	Tuning Internal Parameters of Selected Machine Learning Algorithms 
	N-Fold Cross-Validation 
	Bug Classification with Word Embeddings 
	Comparison with Manual Bug Classification 

	Discussion 
	Related Work 
	Bug Classification 
	Automatic Bug Classification with Machine Learning Algorithms 

	Conclusions 
	References

