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Abstract: The prevalence of chronic kidney disease (CKD) is estimated to be 13.4% worldwide and
15% in the United States. CKD has been recognized as a leading public health problem worldwide.
Unfortunately, as many as 90% of CKD patients do not know that they already have CKD. Ultra-
sonography is usually the first and the most commonly used imaging diagnostic tool for patients
at risk of CKD. To provide a consistent assessment of the stage classifications of CKD, this study
proposes an auxiliary diagnosis system based on deep learning approaches for renal ultrasound
images. The system uses the ACWGAN-GP model and MobileNetV2 pre-training model. The images
generated by the ACWGAN-GP generation model and the original images are simultaneously input
into the pre-training model MobileNetV2 for training. This classification system achieved an accuracy
of 81.9% in the four stages of CKD classification. If the prediction results allowed a higher stage
tolerance, the accuracy could be improved by up to 90.1%. The proposed deep learning method solves
the problem of imbalance and insufficient data samples during training processes for an automatic
classification system and also improves the prediction accuracy of CKD stage diagnosis.

Keywords: deep learning; generative adversarial network; chronic kidney disease; ultrasonography

1. Introduction

According to an estimate by the U.S. Centers for Disease Control and Prevention
(CDC) in 2021, 37 million adults in the United States suffer from chronic kidney disease
(CKD) [1]. In addition to blood and urine tests, ultrasound is the most commonly used
imaging diagnostic tool by nephrologists for the early detection of chronic kidney disease.
Ultrasonography is a suitable approach for diagnosing kidney disease because the renal
cortex and medulla tissues possess different densities and hence the difference between the
tissues can be easily observed [2]. Though magnetic resonance angiography (MRA) and
computed tomography angiography (CTA) can display clearer vascular images with higher
resolution than ultrasonography, and advanced machines can even provide 3D images
directly. However, compared with MRA and CTA medical imaging, ultrasonography has
the advantages of non-ionizing radiation, is non-invasive, safe, portable, inexpensive, and
can be easily operated by medical staff [3,4]. Therefore, ultrasonography has become the
most commonly used and indispensable imaging tool in nephrology.

With the increasing popularity of inexpensive portable ultrasound scanners coupled
with professional training guidelines for renal ultrasonography, nephrologists can operate
ultrasound imaging equipment and easily interpret the diagnosed results [5]. Ultrasonog-
raphy can currently assist nephrologists in the diagnosis of all aspects of nephrology,
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including acute and chronic renal failure, renal blood vessels, kidney stones, tumors, infec-
tions, renal trauma, and guiding percutaneous biopsy, etc. [6]. This non-invasive diagnosis
approach is a low-cost and safe investigation suitable for outpatient visits and can be used
as the first-line investigation for the preliminary diagnosis of kidney diseases [4]. However,
the presence of speckle noise in ultrasound images degrades the image quality. Interpreta-
tion of renal sonograms is highly dependent on the experience of nephrologists in correctly
diagnosing a patient’s condition. While making a CKD diagnosis, different nephrologists
may have different interpretations of CKD stages from an identical ultrasound image or
even the same nephrologist may have inconsistent interpretation at different times [7].

Ultrasonography is an important investigation for patients with chronic kidney disease.
Nephrologists can evaluate kidney function based on measuring length, volume, cortical
thickness, and cortical echogenicity of the kidney through a sonogram, and make a final
decision on whether to proceed with a kidney biopsy or not [5,6]. Multiple studies have
found that kidney length and partial renal cortical echogenicity are significantly correlated
with overall sclerosis, focal tubular atrophy, and the number of glomeruli [8,9]. According
to a study by Päivänsalo et al., 67% of patients with renal parenchymal diseases can be
diagnosed with corresponding abnormalities using ultrasonography [10]. According to a
research report by Manley et al., the highest echo intensity of renal cortical echogenicity
is 62% higher than that of a normal kidney, which is several times larger than the margin
of error of ultrasonic instruments [11]. Cheong et al. measured the length and volume
of the kidneys using magnetic resonance imaging (MRI). The length of male and female
kidneys was 12.4 ± 0.9 cm and 11.6 ± 1.1 cm, respectively, while the volume of male
and female kidneys was 202 ± 36 mL, and 154 ± 33 mL, respectively [12]. The study by
Mazzotta et al. showed that with the progression of renal failure, the length and volume of
renal parenchyma were significantly reduced in patients with CKD from stage 1 to stage
3. For patients at stages 4 to 5, the volume of the kidney parenchyma was significantly
reduced [13]. According to Mustafiz et al. and Beland et al., the correlation coefficients
of kidney length and Estimated Glomerular Filtration Rate (eGFR) were only 0.34 and
0.36, respectively [14,15]. However, Lucisano et al. found that using the patient’s height
to adjust the renal parenchymal thickness and kidney length, the correlation coefficients
against eGFR could be improved to 0.537 and 0.510, respectively. The product of adjusted
renal parenchymal thickness and length showed the highest correlation of 0.560 with the
eGFR [16].

These sonographic parameters are highly correlated with eGFR, and ultrasonography
can be applied as an investigation method to diagnose CKD and its stage progression.
Yaprak et al. developed a CKD scoring system that integrated three ultrasound parameters,
kidney length, parenchymal thickness, and echo intensity, and a correlation coefficient
of 0.587 was obtained [17]. Chen et al. developed a CKD scoring system that applied
machine learning technologies to extract features, including 11 parameters such as visceral
length, parenchymal thickness, and echogenicity, and the accuracy of CKD stage predictions
reached 70.05% [7]. Kuo et al. developed a CNN-based deep learning CKD scoring system
based on a model architecture that included 33 residual blocks and three fully connected
layers for continuous eGFR prediction. The model achieved a correlation of 0.741 and a
mean absolute error (MAE) of 17.605 on the testing dataset. The gradient-boosting tree
model for classifying eGFR with a threshold of 60 mL/min/1.73 m2 could achieve an
accuracy of 85.6% and an area under the curve (AUC) of 0.904 [18].

At present, most accurate image classification systems usually apply CNN deep
learning algorithms, which surpass human experts in a variety of image classification
applications. The data for these successful studies were balanced and sufficient. Unfortu-
nately, it is comparatively difficult to obtain sufficient and balanced datasets in real medical
image classification applications. Researchers usually face the problem of insufficient and
imbalanced datasets for medical image classification. At present, medical imaging-related
research must first obtain the IRB agreement and informed consent from patients in ad-
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vance to perform the research, and the cost of acquiring and storing medical images is not
low, which is the main reason why the number of medical images is insufficient.

Therefore, this research aims to solve the data imbalance problem and to generate
sufficient kidney ultrasound images through the generative adversarial network (GAN) [19]
and use the generated additional images to solve the problem of data imbalance. GAN
captures features from the original dataset and generates new samples that share the same
distribution as the original samples. Since the first publication of GAN, various derivative
GAN models have been proposed and widely used in many fields. Related studies were
introduced in the next section.

In this study, we proposed an auxiliary diagnosis system based on deep learning for
renal ultrasound images for CKD stage classification. The training data used a collection
of 798 kidney ultrasound images from 205 patients with CKD. The deep learning model
applied ACWGAN-GP [20,21] and transfer learning [22] to assist doctors in categorizing
CKD subjects at different stages based on the obtained ultrasound images. As long as the
GAN model learns the potential probability distribution of the collected samples from the
training dataset, it can provide a large amount of newly generated training data to improve
the prediction accuracy of the classifier. This system provides an effective, objective, and
consistent method for CKD stage classification and provides medical staff with a reference
basis for practical clinical diagnosis.

2. Related Works

For a training dataset containing a small number of samples and unbalanced condition,
it can be solved by label-preserving transformations [23]. Common data augmentation
approaches include rotating, shifting, zooming, and flipping images within the origi-
nal dataset to increase the number of synthesized samples for training procedures [24].
These methods not only improve the accuracy of deep learning methods but also improve
generalization abilities. Usually, image classification tasks applied the traditional data aug-
mentation method to improve the performance of a trained model. In addition, adopting
synthetic data examples created by a GAN can achieve more variability and further im-
prove training effectiveness for deep learning classification. Since GAN was first published
in 2014, various derivative GAN models have been proposed and widely used in various
fields. Radford et al. proposed a deep convolution GAN (DCGAN) for image synthesis
in 2015 [25]. In order to solve the problem of mode collapse and vanishing or exploding
gradients in GAN, Arjovsky et al. proposed Wasserstein GAN (WGAN) and used Wasser-
stein distance instead of Jensen-Shannon (JS) divergence to solve instability problems in
GAN training [26]. Odena et al. proposed an auxiliary classifier GAN (ACGAN) model to
generate high-resolution images with labels based on a set of random vectors and labels [27].
Gulagani et al. proposed an improved Wasserstein GAN (WGAN-GP) which applied a
gradient penalty to limit the maximum norm of a gradient to 1, and which can ensure
the discriminator as a Lipschitz function [28]. Li et al. proposed an auxiliary classifier
Wasserstein GAN (ACWGAN-GP) with gradient penalty, and which can be applied to
imbalanced datasets to generate new samples for classes with fewer samples [21].

Recently, much medical imaging research has begun applying GAN models. Frid-
Adar et al. trained a GAN model to synthesis medical images to improve the performance
of CNN in liver lesion classification [29]. Farias et al. proposed that the GAN-CIRCLE
framework generates images with better texture and sharper edges around the lesion [30].
Nie et al. proposed a GAN with a 3D FCN structure to solve the tasks of generating CT
from MRI and generating 7 Tesla (7T) MRI from 3 Tesla (3T) MRI images [31]. Armanious
et al. proposed MedGAN for medical image translation without any application-specific
modifications [32]. Bowles et al. used a GAN augmentation method to introduce GAN
synthesized data into the training set in two brain segmentation tasks, thereby increasing
the Dice Similarity Coefficient (DSC) by 1 to 5 percentage points [33]. Rubin et al. proposed
TOP-GAN, which combined transfer learning and GAN to classify cancer cells without
staining. After the initial training of TOP-GAN, the last layer of the discriminator is
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replaced with three new untrained fully connected layers to transfer it into a new classifier
network [34]. All these papers utilized GAN models to increase the amount of training
datasets and improve the classification performance in medical-related applications.

3. Dataset

Keelung Chang Gung Memorial Hospital in Taiwan collected a kidney ultrasound
image dataset, which contained a total of 798 kidney ultrasound images from 205 patients.
All subjects agreed to the ultrasound image collection, and the study was approved by the
Institutional Review Board of Chang Gung Memorial Hospital (IRB No. CGMH-99-0029B).
The acquired dataset was de-identified to protect the patient’s privacy. Subjects with
diabetes, acute renal failure, polycystic kidney disease, and hydronephrosis were excluded
from this study, and the subjects were aged between 18 and 75 years. The ultrasound
kidney images were obtained using a Toshiba PowerVision 7000 SSA-380A ultrasound
scanner, equipped with 3.5 MHz and 5.0 MHz linear array or convex scanning probes,
and the images were acquired under the same environmental settings. Among the 798
kidney ultrasound images, five images were obtained from the left kidney, right kidney, and
different directions of the same patient at the same time. In addition to these five images,
only the images of the left or right kidney of the patients were taken. After removing the
marks, borders, length, and width information, and other additional marks in the images
annotated by the doctors, the dataset contains 607 different images in total.

All subjects underwent blood tests and renal ultrasound examinations simultaneously,
and a collective diagnosis by two experienced nephrologists for CKD stage classification
of each subject was performed based on both eGFR index and renal ultrasound images.
The eGFR threshold settings were defined as 15, 30, 60, and 90 mL/min/1.73 m2 for five
different CKD stages. According to the settings, from the first to the fifth CKD stage, the
remaining ultrasound images contained 231, 134, 91, 108, and 43 images, respectively [35].
However, the number of images in the fifth stage was relatively small; we combined the
fourth and fifth stages into the fourth stage and represented it as a serious condition stage.
Several examples of kidney images are shown in Figure 1. From the left to right columns,
the images were diagnosed from the first to the fourth categories.

Figure 1. Kidney ultrasound image data collection. The images of different CKD stages are displayed
from left to right columns.
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4. Methodology

This study applied TensorFlow tools to design all deep learning models. To expand
the training data and improve the classification of CKD stages, in addition to the tradi-
tional methods of augmented images, such as rotation, mirroring, shifting, etc., this study
proposed a novel method that combined ACWGAN-GP and transfer learning.

4.1. ACWGAN-GP

ACWGAN-GP is a variant of the GAN [19] proposed by Goodfellow et al. in 2014. It
is a combination of ACGAN [27] and WGAN-GP [28], and explores the advantages of both
approaches simultaneously. The structure is illustrated in Figure 2. It can generate images
with labels and use the Wasserstein loss function and gradient penalty to train the GAN
models. The potential distribution can be learned from a small set of CKD images and
generates new images for training purposes. The critical loss function of ACWGAN-GP
is represented by a combination of Equations (1)–(3) and shown in Equation (4), and the
generator loss function of ACWGAN-GP is shown in Equation (5).

Ldiscriminator = E
x̃∼Pg

[D(x̃)]− E
x∼Pr

[D(x)], (1)

Lgp = E
x̂∼Px̂

[
(‖ ∇x̂D(x̂) ‖2 −1)2

]
, (2)

Lclass = E
x̃∼Pg

[−logP(C(x̃) = cx̃)] + E
x∼Pr

[−logP(C(x) = cx)], (3)

Lc = Ldiscriminator + λ1Lgp + λ2Lclass, (4)

Lg = − E
x̃∼Pg

[D(x̃)] + λ3 E
x̃∼Pg

[−logP(C(x̃) = cx̃)], (5)

where Pr is the real data distribution, Pg is the generator model distribution that is implicitly
defined by x = G(z), z ∼ p(z). Random samples Px̂ sampling uniformly along straight
lines between pairs of points sampled from the Pr and Pg. Each real sample and generated
sample have a corresponding class label c ∼ p(c). Penalty coefficients were set as λ1 = 10,
λ2 = 0.1, λ3 = 0.1.

Figure 2. ACWGAN-GP architecture.

4.1.1. Discriminator Architecture

Owing to the small number of medical images collected, only a few convolutional
layers were applied for constructing a discriminator model to avoid overfitting problems.
Grayscale images with an image size of 80 × 128 pixels within an intensity range of [−1, 1]
[−1, 1] were required. The classifier consists of four convolutional layers, and its stride of
the sliding windows was set as 2, and the leaky ReLU was used as an activation function.
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The model has approximately 1.6 million parameters in total. To reduce the occurrence
of overfitting, a dropout layer with a probability of 0.2 is added after each convolutional
layer. Finally, a flattened layer is used to laminate and then output to two fully connected
layers. One of the fully connected layers outputs the probability that the image is true, and
the other fully connected layer applies the softmax function to output the corresponding
probabilities of the four CKD stages.

4.1.2. Generator Architecture

The images with annotated CKD stage information and a 100-dimensional random
vector were input to the generator model, and the size of the output image was assigned
to 80 × 128 pixels. First, the CKD images in different stages were constructed as 100-
dimensional vectors after the embedding layer. Second, it was combined with the previous
random vector through the fusion layer to form another 100-dimensional vector. Third, we
input a fully connected layer of 20,480 nodes and reshape the 20,480 nodes into 5 × 8 ×
512 pixels. Finally, upsampling was performed through four deconvolution layers, and
a batch normalization layer was added after each deconvolution layer. After each pass
through the deconvolution layer, an image with a larger resolution was created. Finally,
after four deconvolution layers, a new image of 80 × 128 pixels was obtained.

4.1.3. ACWGAN-GP Hyperparameter

Before entering the image into the ACWGAN-GP model, subtraction of 127.5 and
division by 127.5 would be performed to normalize image intensity within a range of
[−1, 1]. To split the original dataset with 607 images into 9:1 for training and validation, we
set 61 images in each batch and applied the Adam optimizer with a learning rate of 0.0002.

4.2. Transfer Learning

The ACWGAN-GP-generated images and real images were simultaneously input into
the pre-trained model as training data. The model architecture is illustrated in Figure 3.
The pre-trained model applied MobileNetV2 [36] and ResNet50 [37] models that have been
trained on ImageNet with an accuracy of more than 90%. MobileNetV2 is a convolutional
neural network suitable for mobile devices published by Sandler et al. It is an inverted
residual structure with a linear bottleneck layer. Its residual connection was not used for ex-
pansion layers but connected between linear bottleneck layers. The intermediate expansion
layer applied depth-wise separable convolutions to disassemble the general convolution
into two steps including depth-wise convolution that only performed convolution and
pointwise convolution that increased channel size.

Figure 3. Transfer learning architecture.

In addition, the ResNet won the 2015 ImageNet Large Scale Visual Recognition Chal-
lenge and 2016 CVPR best paper. Simply increasing the number of layers in the network,



Appl. Sci. 2022, 12, 352 7 of 11

the accuracy could be saturated and degraded immediately. He et al. proposed the resid-
ual block method, which could achieve the effect of identity mapping when a shallower
network was already optimal, and a deeper network could achieve the effect of identity
mapping. The weights were fine-tuned by synthesized images and real images, and a lower
learning rate was applied in this experiment. A transfer learning model from the ImageNet
classification task to the CKD stage classification model was finally developed in this study.

The pre-trained model was achieved using an RMSProp Optimizer, the learning rate
was set to 0.00002, and the attenuation was set to 0.9. Before the image data were input into
the pre-trained model, subtraction of 127.5 for each image pixel and division by 127.5 were
performed for intensity normalization within the range of [−1, 1]. To split the original
dataset with 607 images into 9:1 for training and validation, we set 61 images in each batch.

The comparison of six different approaches including 4-layer CNN, ResNet50, Mo-
bileNetV2, ACWGAN-GP, ACWGAN-GP + ResNet50, and ACWGAN-GP + MobileNetV2,
were performed as follows. The 4-layer CNN model was trained on the original dataset.
ResNet50 and MobileNetV2 pre-trained models were fine-tuned using the original dataset.
ACWGAN-GP is a generative adversarial network that performs generation and classifica-
tion simultaneously. ACWGAN-GP + ResNet50, ACWGAN-GP + MobileNetV2 fine-tuned
the pre-trained model with the original and synthetic image datasets.

5. Results and Discussion

To verify the transfer learning with the ACWGAN-GP method described in Section 4,
we applied several different classification methods to automatically classify the four-stage
CKD ultrasound images to obtain the prediction accuracy of each method. The eGFR
threshold settings for the four CKD stages were defined as 15, 30, 60 mL/min/1.73 m2. The
classification was evaluated in two ways. The first method is based on evaluating whether
the predicted stage is the same as the annotated stage by two professional doctors, while
the second method refers to a more flexible verification approach in which the predicted
CKD stage could be allowed for one higher-level tolerance. For example, when a subject is
diagnosed in the second stage, if the prediction system returns either the second or third
stage, both predictions would be considered as acceptable predictions. Essentially, it would
be helpful for both patients and doctors to carefully evaluate and re-examine the true
condition of patients. In other words, it might be beneficial for early processes regarding
precision prevention and treatment.

TensorFlow was applied to perform training procedures for all the designed models.
Six different training modules including 4-layer CNN, ResNet50, MobileNetV2, ACWGAN-
GP, ACWGAN-GP + ResNet50, and ACWGAN-GP + MobileNetV2, were performed.
The first 4-layer CNN was trained from scratch using the original dataset, ResNet50 and
MobileNetV2 pre-trained models fine-tuned with the original dataset; ACWGAN-GP is a
generative adversarial network that constructs generators and classifiers simultaneously;
ACWGAN-GP + ResNet50, ACWGAN-GP + MobileNetV2 adopted pre-trained models
and applied the original images and generated images (Figure 4) for fine-tuning. The
prediction results and a comparison of each prediction model are presented in Table 1.

Table 1. Comparison of the prediction accuracy rates of six different prediction models used in the
stage classification of chronic kidney disease.

Model Accuracy (%) Accuracy Allows Deviation (%)

4-layer CNN 63.9 80.3
ResNet50 59.0 77.0

MobileNetV2 72.1 78.6
ACWGAN-GP 72.1 77.0

ACWGAN-GP + ResNet50 65.6 88.5
ACWGAN-GP + MobileNetV2 81.9 90.1
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Figure 4. Fake images generated by ACWGAN-GP.

It can be noticed that after the ACWGAN-GP training, the generated images and real
images were sent to a pre-trained model MobileNetV2. The proposed ACWGAN-GP +
MobileNetV2 model reached an average specificity of 93.6%, average sensitivity of 80.3%,
average positive predictive value (precision) of 81.8%, average F1-score of 81.0%, and an
accuracy of 81.9%. While allowing a higher stage tolerance prediction of CKD stages, the
prediction accuracy can be increased to 90.1%. In other words, if a subject was diagnosed
in the first stage condition, it was allowed to be predicted as the first or the second stage;
a subject annotated as the second stage is allowed to be predicted as the second or the
third stage; a subject annotated as the third stage is allowed to be predicted as the third
or the fourth stage. All these higher stage tolerances are counted as correct predictions.
The main reason for allowing such a higher stage tolerance prediction is that a severe
condition prediction can effectively remind patients and doctors that they should notice
the warning message as early as possible, and provide early diagnosis and treatment for
precise prevention.

As shown in the confusion matrix in Table 2, we observed that the MobileNet model
showed a relatively good accuracy rate in the first CKD stage, which was mainly due
to a greater number of samples in the first stage than in other stages. The results of this
classification model showed that more than 50% of the misclassified samples only hold a
one-stage difference, which confirms the effectiveness of the kidney ultrasound images
generated from the proposed GAN model for CKD stage classification.

Table 2. Performance of prediction results by using fake images generated by ACWGAN-GP.

Actual\Predict Stage 1 Stage 2 Stage 3 Stage 4 Sensitivity

Stage 1 21 1 0 2 87.5%
Stage 2 3 9 1 0 69.2%
Stage 3 2 0 7 0 77.8%
Stage 4 0 1 1 13 86.7%

Specificity 86.5% 95.8% 96.2% 95.7%
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Kidney ultrasound imaging has always been a convenient and fast diagnostic tool
in nephrology. At present, the clinical diagnosis of CKD stages highly depends on the
experience of nephrologists. Most nephrologists evaluate the renal function and CKD stages
based on the thickness of the kidney parenchyma and the intensity of renal echo. However,
different nephrologists might provide different diagnoses of CKD stages from an identical
ultrasound image, and even the same nephrologist might give inconsistent diagnoses of
CKD stages at different times. To provide a consistent assessment of CKD stages, this study
proposed a prediction model based on a deep learning algorithm to predict a patient’s
CKD stage. The proposed method is an objective, rapid, and non-invasive CKD staging
assessment.

To improve the prediction accuracy of neural network classification, this study estab-
lished an effective method to classify CKD patients in different stages based on kidney
ultrasound images. The proposed method not only applies the CNN network but also
provides data augmentation, generative adversarial networks, transfer learning, and other
technologies to obtain superior prediction performance. Data augmentation and GAN
technologies generated more kidney ultrasound images to increase the number of training
samples. The transfer learning technology retained the low-level features learned from
the ImageNet dataset. The MobileNet learned from the original training samples and the
generated training samples through fine-tuning and constructed a highly accurate CKD
ultrasound image prediction model. The non-invasive kidney ultrasound examination can
further provide accurate and stable predictions for CKD stages, assisting doctors to quickly
diagnose and activate the prognostic treatment or an early warning mechanism for CKD
patients. Although the CKD stage prediction by the proposed model cannot be used as a
clinical diagnosis alone, this model can provide decision-making support for facilitating
doctors’ diagnosis or precise treatment for patients at various stages of CKD. It can even
discover whether a subject is a potential CKD patient at an early stage so that nephrologists
can quickly provide appropriate personal treatment and precision healthcare for patients.

In this study, the ROIs of all kidney ultrasound images for training were cropped.
Therefore, kidney segmentation from an ultrasound image must be manually cropped
before entering it into the training system. Although nephrologists are supposed to mark
down kidney locations from severely degraded ultrasound images, this still requires an
extra step of manual segmentation for the prediction system. We have demonstrated that
kidney ultrasound images could provide a high degree of accuracy for CKD stage classifi-
cation, and we hope that the precise location of the kidneys within an ultrasound image
could be automatically allocated through R-CNN, SSD, YOLO, and other object detection
methods. Automatic kidney object recognition can provide and facilitate nephrologists
with a simplified approach for consistent and accurate CKD stage classification.

6. Conclusions

We proposed a CKD stage classification system based on integrating the ACWGAN-
GP model and MobileNetV2 pre-training model. The additional training images generated
by the ACWGAN-GP generation model incorporated with the original images were simul-
taneously pre-trained by MobileNetV2. This classification system achieved an accuracy
of 81.9% for the four stages of CKD classification, and an accuracy of 90.1% for a higher
stage tolerance prediction. Source codes of the proposed method can be downloaded in the
Supplementary Materials. Our proposed deep learning method could solve the problem
of imbalance and insufficient data samples during training processes for an automatic
classification system. The proposed GAN model for increasing synthesized samples in
data augmentation procedures demonstrated a significant improvement in CKD stage
classification, especially for kidney ultrasound images with very poor image quality. Our
proposed methods can be applied to different medical imaging applications, especially
under imbalanced dataset conditions.
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