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Abstract: Automatic segmentation and centerline extraction of blood vessels from retinal fundus
images is an essential step to measure the state of retinal blood vessels and achieve the goal of
auxiliary diagnosis. Combining the information of blood vessel segments and centerline can help
improve the continuity of results and performance. However, previous studies have usually treated
these two tasks as separate research topics. Therefore, we propose a novel multitask learning network
(MSC-Net) for retinal vessel segmentation and centerline extraction. The network uses a multibranch
design to combine information between two tasks. Channel and atrous spatial fusion block (CAS-FB)
is designed to fuse and correct the features of different branches and different scales. The clDice loss
function is also used to constrain the topological continuity of blood vessel segments and centerline.
Experimental results on different fundus blood vessel datasets (DRIVE, STARE, and CHASE) show
that our method can obtain better segmentation and centerline extraction results at different scales
and has better topological continuity than state-of-the-art methods.

Keywords: retinal fundus images; vessel segmentation; centerline extraction; multitask learning

1. Introduction

The morphological transformation of the retinal vascular system is closely related to
various ophthalmological and cardiovascular diseases, such as glaucoma, hypertension,
diabetes, and arteriosclerosis [1]. Therefore, the morphology of retinal vessels is considered
as an important evaluation standard for many diseases. Retinal blood vessels can be imaged
through color fundus images [2], and clinicians can realize disease diagnosis, screening,
treatment, and evaluation by analyzing retinal image blood vessels [3]. Automatic methods
are desired because current methods for the labeling of retinal blood vessels require profes-
sional doctors and manpower [4]. The automatic segmentation and centerline extraction of
retinal blood vessels is still a challenging task because of the small size of blood vessels,
overlapping branches, distortion, and severe stenosis in retinal images, as well as varying
image quality caused by low contrast, noise, and artifacts [5].

The development of computer vision has led to the emergence of many methods for
retinal blood vessel segmentation. These methods can usually be organized into traditional
image processing methods and machine learning methods. Traditional blood vessel seg-
mentation methods include matched filters [6,7], morphological methods [8], blood vessel
tracking [9,10], and so on. In recent years, many machine learning methods, especially
deep learning methods, have been used for retinal vascular segmentation and achieved
good results. Machine learning methods can be further divided into supervised and un-
supervised methods. Unsupervised methods, such as the Gaussian mixture model [11],
fuzzy techniques [12], and k-means clustering [13], do not require labeled data for blood
vessel segmentation. Supervised retinal vessel segmentation methods use the image data
of labeled vessels to train the classifier and classify the vessels and background at the
pixel level. The supervised methods for retinal blood vessel segmentation are based on
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traditional machine learning methods and some deep learning methods. For example, Or-
lando et al. [14] used support vector machines for vessel segmentation, and Fraz et al. [15]
designed an integrated system based on decision tree to achieve the segmentation of blood
vessels from retinal images.

Among the many machine learning methods, deep learning is currently the state-of-
the-art method [16]. Ronneberger et al. [17] proposed a U-Net architecture that requires
only a few annotated images to achieve high-precision blood vessel segmentation. Alom
et al. [18] presented a recurrent residual convolutional neural network named R2U-Net
based on U-Net models and residual network models. Guo et al. [19] proposed a network
named Spatial Attention U-Net by introducing a spatial attention module that inferred
the attention map along the spatial dimension and multiplied the attention map by the
input feature map for adaptive feature refinement. Mou et al. [20] designed a segmentation
network, CS2-Net, which added an attention module in the encoder layer and decoder
layer to segment the tubular structure. These methods are better than classical methods.

There are also some state-of-art methods, such as generative adversarial networks
(GAN), transfer learning, multitask learning, and so on. GAN has superior data classifica-
tion capabilities [21]. Park et al. [22] used a conditional generation confrontation network
to achieve accurate segmentation of fundus blood vessels. Transfer learning is a neural
architecture trained in other fields first, then fine-tuned and applied to new tasks [23]. Jiang
et al. [24] used the transfer learning method to pre-train the full convolutional network
to realize the segmentation of multiple fundus datasets. The method based on multitask
learning can associate different tasks, realize the sharing and mutual complement of fea-
tures, and realize the improvement of performance between tasks. Ma et al. [25] proposed a
multitask learning method that simultaneously performs two tasks of blood vessel segmen-
tation and arteriovenous classification, which enhances the performance of arteriovenous
classification. Xu et al. [26] designed a network framework to perform the task of extracting
blood vessels and centerlines at the same time.

Vessel segmentation is closely related to centerline extraction [27]. However, many
studies have divided these two tasks into independent tasks, which may lead to discontinu-
ities in the small part when only the blood vessel segmentation task is performed, and the
single centerline extraction will cause a higher false-positive rate because of the lack of con-
straint of the segmentation result. In the work of single centerline extraction, the centerline
can be obtained after the skeletonization process of pre-segmented blood vessels [28]. The
main disadvantage of this method is that inaccurate blood vessel segmentation may lead to
skeletonization errors. Morales et al. [29] proposed the method of determining the retinal
skeleton in a direct way through random watershed transformation. In this method, the
division area has no limit, which may generate wrong branches. Therefore, some methods
combine segmentation and centerline extraction. Shit et al. [30] proposed a clDice loss
function to realize the constraint of the centerline on blood vessels, but they only focus on
the segmentation task, and the centerline is only an intermediate result. Tetteh et al. [31]
used the Inception architecture without a pooling layer to classify each pixel in the image
block and extract the blood vessel centerline. Kromm et al. [5] performed blood vessel
segmentation and centerline generation based on the Capsule Network combined with the
Inception architecture. However, these methods usually do not take into account the direct
constraint relationship between the two tasks.

This paper proposes a multitask learning network to combine the two tasks, blood
vessel segmentation and centerline extraction. We specially design the network and loss
function to better discover the topological relationship between these two tasks and realize
their complementary features. In summary, the main contributions of this article are as
follows:

1. We propose a multitask learning network for retinal vessel segmentation and center-
line extraction, named MSC-Net. The multitask learning with the dual-branch design
can complete two tasks at the same time, and the fusion path can effectively aggregate
features.
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2. We design a channel and atrous spatial fusion block (CAS-FB) to solve the feature
calibration and fusion of different tasks in different sizes in the fusion path. The
channel attention module can effectively calibrate the features of different tasks, and
the spatial attention module can aggregate the features of different scales of blood
vessels.

3. Unlike the original clDice loss, which is only applied to the optimization of segmenta-
tion tasks, we apply clDice to segmentation and centerline extraction at the same time.
Therefore, the vessel segmentation and centerline result can be mutually constrained
to ensure the consistency of the topology.

2. Materials and Methods

In this section, we explain the materials and introduce the proposed multitask learning
network in detail. First, the datasets, namely, DRIVE, STARE, and CHASE, are introduced.
Then, the multitask learning network structure of MSC-Net, including the two branches of
blood vessel segmentation and centerline extraction, as well as the fusion path, is elaborated.
Next, the design of CAS-FB that composes the fusion path is described. Finally, the loss
functions for network segmentation, centerline extraction, and the mutual constraint of the
two tasks are introduced.

2.1. Materials

Three publicly available, mainstream datasets of retinal images are used to evaluate the
properties of the proposed method. The details of these datasets are provided as follows.

DRIVE dataset [8] includes 40 hand-labeled retinal vessel images with 565 × 584 pixel
resolution. The images are equally divided into training and testing datasets. In our training
and testing, we follow the same image division. Figure 1a shows two of the images in the
DRIVE dataset.

STARE dataset [32] consists of 20 images, which are digitalized to 700 × 605 pixels.
Figure 1b shows images in the STARE dataset. The training and test images are not
clearly defined in the STARE dataset; therefore, k-fold (k = 4) cross-validation is used in
performance evaluation. Model training is performed four times. Fifteen images are used
for training each time, and the remaining five images are used for testing. The average
value of the metrics for the four test results are calculated.

CHASE dataset [15] comprises 28 retinal images from 14 different children in the
Child Hear and Health Study in England. Each image has a 999 × 960 pixel resolution.
Similarly, we also conduct k-fold cross-training and testing on this dataset. As shown in
Figure 1c, the images in the CHASE dataset have worse contrast.

（a） (b) (c)

Figure 1. Examples of some images in the three datasets; (a) is the DRIVE dataset, (b) is the STARE
dataset, and (c) is the CHASE dataset.

Table 1 summarizes the information of the DRVIE, STARE, and CHASE datasets. In
addition, we use the skeletonization method mentioned in the literature [28] to skeletonize
the blood vessel annotations of the three datasets as the ground truth of the centerline.
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Table 1. An overview of the three public fundus datasets used: total number of images, image
resolution (width × height), training and testing split, and whether to perform cross-validation.

Dataset Quantity Resolution Train/Test Cross
Validation

DRIVE 40 565× 584 20/20 No
STARE 20 700× 605 15/5 Yes
CHASE 28 999× 960 21/7 Yes

2.2. Multitask Learning Network

The proposed multitask learning network, MSC-Net, performs the two tasks of vessel
segmentation and centerline extraction. The segmentation task can focus on the overall
shape and edge information of the blood vessel. However, the segmentation result usually
loses small features because of the imbalance of the scale of the blood vessel. The centerline
has uniform voxel points at each scale of the blood vessel; therefore, the centerline extraction
branch can avoid the imbalance of the scale and pay more attention to the continuity and
topological characteristics of the blood vessel. The overall shape and edge information can
constrain the centerline and reduce the influence of noise on the centerline extraction result.
The information of continuity and topological structure can repair broken blood vessels
and lengthen small blood vessels. Therefore, the information of the two branches in the
MSC-Net can be merged and mutually restricted to improve the results of segmentation
and centerline extraction.

As shown in Figure 2, the proposed multitask learning network, MSC-Net, consists
of two branches for vascular segmentation and centerline extraction, respectively, and a
feature fusion path. The two branches perform feature extraction and output the prediction
results of blood vessel segments and centerline. Similar to U-Net [17], segmentation and
centerline extraction branch have a down-sampling path, an up-sampling path, and skip
connections. A fusion path is added between the down-sampling paths of the two branches
to fuse the features and achieve the mutual constraints of the two tasks.

Segmentation Branch

Centerline Extraction Branch

Fusion path

Encoder
CAS-FB

Conv layer

Element-wise AdditionSkip Connection

Sigmoid

Decoder

BN+ReLU

Up-samping

Down-samping Concatenation

𝐼

𝑆′

𝐶′

Figure 2. The network architecture of MSC-Net consists of a blood vessel segmentation branch, a
centerline extraction branch, and a fusion path. The fusion path aggregates the features of the two
branches to effectively correct and supplement the features of the two branches.
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Take the segmentation branch as an example from Figure 2, and the input I is the
retinal image after data processing. First, a feature map is obtained through a 1× 1 2D
convolution and then input into the down-sampling path. The down-sampling path is
composed of four encoders for feature extraction. Each encoder includes a down-sampling
layer and two 3× 3 layers of convolution, BatchNorm, and rectified linear activation unit
(Conv+BN+ReLU). Considering the low-level and different scale image features, MSC-Net
uses skip connections to input the features after the first Conv+BN+ReLU layer of each
encoder into the upper-level up-sampling path. The input of each encoder is the output
of the previous module. In the up-sampling path of the segmentation branch, feature
restoration and up-sampling are carried out through four decoders. A decode block is
composed of two groups of 3 × 3 Conv+BN+ReLU layers and one up-sampling layer.
In each decoder, skip connection is used to concatenate the feature map output by the
first Conv+BN+ReLU layer, and the features obtained from the down-sampling path are
concatenated and input to the next Conv+BN+ReLU layer. The input of each decoder is
the output from CAS-FB (see Section 2.3 for details). After passing the up-sampling path,
the feature map size is restored to the same size as the original image. Finally, a 1× 1
convolutional layer and a sigmoid activation layer are used to predict the probability of the
vessel segmentation result S′.

The centerline extraction branch has the same structure as the blood vessel segmenta-
tion branch. The blood vessel segmentation and centerline extraction branches perform the
blood vessel segmentation and centerline extraction tasks, respectively. The features of the
up-sampling paths on the two branches are input to the fusion path formed by the CAS-FB
cascade to complement the features of the two tasks. After the prediction result of the vessel
segmentation S′ and centerline extraction C′ are obtained, the loss function calculation is
performed with the ground truth (S and C), and the two results are mutually restricted
through the clDice loss function (see Section 2.4 for details) to suppress the fracture and
erroneous results.

2.3. Channel and Atrous Spatial Fusion Block

Inspired by [33,34], CAS-FB is designed to fuse and calibrate the features from the
two branches, enhance the useful features for segmentation and centerline extraction,
and suppress noise. As shown in Figure 3, CAS-FB includes a dual-channel attention
module [35] and an atrous spatial attention module, which can realize attention to the
channel and the spatial context of different scales, and the fused feature map is obtained by
convolution and ReLU.

Assume that we have two feature maps, FS and FC, from two branches as input to CAS-
FB. FS and FC are first input to the dual-channel attention modules to achieve the adaptive
correction of features. The channel of interest can be emphasized, and useless channel
features can be suppressed through channel attention. The outputs of the dual-channel
attention modules are

Fca1 = Wca1 ⊗ FS (1)

Fca2 = Wca2 ⊗ FC (2)

Wca1 = σ(k1×1α(k1×1 AvgPool(FS))) (3)

Wca2 = σ(k1×1α(k1×1 AvgPool(FC))) (4)

where Fca1 and Fca2 are the output feature maps of the dual-channel attention modules, Wca1
and Wca2 are the channel-wise attention weights, and ⊗ is the element-wise multiplication,
while ka×b refers to a convolutional layer with a kernel size of a× b, and α and σ is a ReLU
layer and Sigmoid activation, respectively. Then, concatenate Fca1 and Fca2, and the result
Fconcat is

Fconcat = concatenate(Fca1, Fca2). (5)
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Channel Attention

F𝑆

r=1

r=3

r=5

r=7

Feature map Avg-Pooling Conv  (1x1) Conv  (3x3) ReLUBatch Normalization 

Channel Attention Atrous Spatial Attention

Concatenation Element-wise Multiplication SigmoidElement-wise Addition

F𝐶

F𝑜𝑢𝑡

Figure 3. The design of the channel and atrous spatial fusion block (CAS-FB). The dual-channel
attention modules correct the features of different tasks, and the atrous spatial attention module can
aggregate the blood vessel features of different scales.

With reference to the design of the ASPP [36] module, we design the spatial attention
module using atrous convolution with different dilation factors. This atrous spatial design
enables CAS-FB to pay more attention to the morphological characteristics of retinal blood
vessels at different scales (from thick to thin) in the spatial context. The output of the atrous
spatial module is as follows:

Fas = Was ⊗ Fconcat (6)

Was = ∑
r∈1,3,5,7

k1×1
r (α(β(k3×3

r Fconcat))) (7)

where Fas is the output feature map of the atrous spatial module, Was is the element-wise
spatial weight, ka×b

r is defined as the atrous convolution with an expansion rate of r and a
kernel size of a× b, and β refers to a BN layer. Finally, the output of CAS-FB is

Fout = α(β(k3×3
out Fas)) (8)

2.4. Loss Function

Our network implements two tasks: segmentation and centerline extraction. We
use dice loss as the loss function for the prediction results of the branch of the vessel
segmentation. Dice loss is calculated as:

Lossseg = 1−Dice(S, S′) = 1− 2
|S ∩ S′|
|S|+ |S′| (9)

where S is the ground truth of vessels, and S′ is the prediction result of the vessel segmentation.
We regard the task of centerline extraction as the classification of each pixel of the

image. The categories of centerline voxels and background are not balanced; hence, we cal-
culate the focal loss for the prediction results of the centerline extraction branch as follows:

Losscline = −
1
N

N

∑
i=1

(αyi(1− pi)
γ log pi + (1− α)(1− yi)pγ

i log(1− pi)) (10)

where yi ∈ (0, 1) indicates a pixel in the ground truth of centerline C, pi ∈ (0, 1) is the
predicted probability of a pixel in the prediction result of centerline C′, N is the number
of pixels in an image, and α is a parameter that balances the weight of the positive and
negative categories.
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We use the clDice loss function to constrain the blood vessel segmentation and cen-
terline extraction results and ensure the continuity of the segmentation and centerline
extraction. The clDice [30] loss function is calculated as:

Tprec(S, C′) =
|S ∩ C′|
|C′| , Tsens(S′, C) =

|S′ ∩ C|
|C| (11)

clDice = 2× Tprec(S, C′)× Tsens(S′, C)
Tprec(S, C′) + Tsens(S′, C)

(12)

LossclDice = 1− clDice (13)

where Tprec(S, C′) is used to measure topology precision, and Tsens(S′, C) is the topology
sensitivity (recall). clDice is defined as the harmonic mean of both measures to maximize
accuracy (ACC) and sensitivity (SE). The loss function proposed by MSC-Net is

Loss = λ1Lossseg + λ2Losscline + λ3LossclDice (14)

where λ1, λ2, and λ3 are hyper-parameters that balances different loss orders.

3. Results

In this section, we will introduce the evaluation metrics, implementation details, and
experimental results. The performance of the proposed MSC-Net on vessel segmentation
and centerline extraction is verified by comparing the numerical and visual results of
MSC-Net with those of other methods.

3.1. Evaluation Metrics

Accuracy (ACC), sensitivity (SE), and specificity (SP) are calculated using
Equations (15)–(17), respectively, to quantitatively evaluate the proposed method:

ACC =
TP + TN

TP + FP + TN + FN
(15)

SE =
TP

TP + FN
(16)

SP =
TN

TP + FP
(17)

where TP, FN, TN, and FP denote true positive, false negative, true negative, and false
positive, respectively. In addition, the area under the ROC curve (AUC) is calculated, as
it is an important evaluation metric that reflects the trade-off between SE and SP, thereby
more reliably assessing the quality of our results.

3.2. Implementation Details

Our software is developed and implemented on a computer equipped with an Intel
Core i7 CPU and NVIDIA GeForce RTX-2080Ti 11 GB GPU, and the operating system is
Ubuntu 16.04. We use Python 3.6 for programming, and Pytorch 1.2 to implement the deep
learning framework.

In the preprocessing stage, the green channel of each color fundus image is extracted,
and histogram equalization and standardization techniques are implemented. MSC-Net
training and testing are performed on the three datasets. Before inputting to the network,
the image sizes in the three datasets of DRIVE, STARE, and CHASE are resized to 572 × 572,
624 × 624, and 960 × 960, respectively. In the training process, random cropping and
contrast enhancement are used for data augmentation. In the training stage, the batchsize,
learning rate, epoch, and other parameter values are shown in Table 2.
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Table 2. This table describes the detailed setting values of different parameters during implementation.
The α is the parameter in Losscline (see Equation (10)), and λ1, λ2, and λ3 are hyper-parameters in
Loss (see Equation (14)). The settings of batchsize, learning rate, and epoch during training stage are
also shown in the table.

Hyper-Parameter Value

α 0.4
λ1, λ2, and λ3 0.2, 0.5, and 0.1

batchsize 8
learning rate 1 × 10−3

epochs 100

3.3. Results

The vessel segmentation results of MSC-Net and five state-of-the-art methods on three
retinal datasets are compared to evaluate the effectiveness of MSC-Net. The methods for
comparison, including traditional segmentation methods, are based on matched filters,
namely Combination of Shifted Filter Responses (B-COSFIRE) [6] and Weighted Symmetry
Filter (WSF) [7], as well as deep learning methods, namely U-Net [17], R2U-net [18], and
CS2-Net [20]. Table 3 shows the vessel segmentation metrics of different methods on the
DRIVE, STARE, and CHASE databases. The results of B-COSFIRE and WSF are quoted
from their papers.

Table 3. SE, SP, ACC, and AUC scores of MSC-Net and other baseline methods for vessel segmentation
task on the test set.

Dataset Method SE SP ACC AUC

DRIVE

B-COSFIRE [6] 0.7526 0.9707 0.9427 0.9514
WSF [7] 0.7740 0.9790 0.9580 0.9750

U-Net [17] 0.7817 0.9759 0.9531 0.9622
R2U-Net [18] 0.7992 0.9712 0.9556 0.9681
CS2-Net [20] 0.8259 0.9850 0.9622 0.9763

MSC-Net 0.8423 0.9783 0.9663 0.9862

STARE

B-COSFIRE [6] 0.7543 0.9689 0.9467 0.9487
WSF [7] 0.7880 0.9760 0.9570 0.9590

U-Net [17] 0.7956 0.9764 0.9578 0.9617
R2U-Net [18] 0.8488 0.9754 0.9618 0.9659
CS2-Net [20] 0.8516 0.9748 0.9651 0.9727

MSC-Net 0.8763 0.9835 0.9713 0.9786

CHASE

B-COSFIRE [6] 0.7257 0.9651 0.9411 0.9434
WSF [7] - - - -

U-Net [17] 0.7931 0.9793 0.9480 0.9464
R2U-Net [18] 0.8062 0.9779 0.9457 0.9530
CS2-Net [20] 0.7841 0.9831 0.9522 0.9628

MSC-Net 0.8056 0.9869 0.9686 0.9714

Based on Table 3, our proposed MSC-Net outperform COSFIRE, WSF, U-Net, and
R2U-Net in terms of ACC and AUC scores, and also has competitive SE and SP scores. In
addition, Figure 4 shows the visualization results of different methods. Image instances are
randomly selected in the three datasets. Figure 4 shows the retinal image, ground truth,
and segmentation results of various methods for each image instance. The displayed seg-
mentation results include U-Net, R2U-Net, CS2-Net, and our proposed MSC-Net. Figure 4
shows that our method has better continuity and fewer branch breaks compared with other
methods. MSC-Net also obtains segmentation results that are closer to the ground truth in
some details because of poor contrast or noise.
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Figure 4. Visualization results of different blood vessel segmentation methods. The segmentation
contained in the yellow dashed circle is our concern. Our method has better results in small parts.

We also compare the centerline results with other methods on the three retinal fundus
datasets. The comparison methods include skeletonization (Skeleton) [28] and U-Net [17].
The skeletonization method directly generates the centerline from the segmentation result
of MSC-Net. The processing method is the same as the method used to generate the
centerline label from the ground truth of the vessel. Table 4 shows the centerline scores of
different methods. The scores of different methods in Table 4 prove that our method has
the best performance in various indicators.

Table 4. SE, SP, ACC, and AUC scores of MSC-Net and other methods for centerline extraction on the
test set.

Dataset Method SE SP ACC AUC

DRIVE
Skeleton [28] 0.7224 0.8993 0.9352 -

U-Net [17] 0.7403 0.9313 0.9310 0.9045
MSC-Net 0.7905 0.9552 0.9510 0.9583

STARE
Skeleton [28] 0.7565 0.9156 0.9148 -

U-Net [17] 0.7836 0.9463 0.9589 0.9467
MSC-Net 0.8546 0.9625 0.9423 0.9683

CHASE
Skeleton [28] 0.6785 0.7636 0.9048 -

U-Net [17] 0.7560 0.8581 0.8902 0.9186
MSC-Net 0.8144 0.8865 0.9267 0.9541

In addition, Figure 5 shows the visualization results of the centerlines. Figure 5 shows
the fundus image, ground truth, and centerline results of various methods for each image
instance. The displayed results include those of Skeleton, U-Net, and our proposed MSC-
Net. Figure 5 shows that our method obtains centerline results with better topological
continuity and fracture situation than other methods.
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Figure 5. Visualization results of different centerline extraction methods. The centerline extracted by
our method will have better continuity.

4. Discussion

MSC-Net is designed from the following aspects to achieve accurate retinal vessel
segmentation and centerline extraction at the same time. (1) The tasks of blood vessel seg-
mentation and centerline extraction are related to each other; thus, blood vessels can limit
the region of the centerline, and the centerline can supplement the small parts of the blood
vessels. Therefore, a multitask learning framework is proposed, which can simultaneously
perform retinal vessel segmentation and centerline extraction. (2) CAS-FB is designed for
feature fusion and calibration. Channel attention can perform feature correction between
different tasks, and the feature fusion block of multiscale spatial attention can effectively
fuse the features of different sizes of blood vessels. (3) The framework is trained with clDice
loss function, which can achieve mutual constraint on the segmentation and centerline
extraction results to ensure topological consistency.

The indicators of different ablation methods are further calculated on three fundus
datasets (DRIVE, STARE, and CHASE), to prove the effectiveness of these three designs
(Tables 5 and 6). The specific methods are as follows:

• S-Branch/C-Branch: The segmentation (S)/centerline (C) branch in MSC-Net is trained
separately. This method is equivalent to performing only one task to achieve blood
vessel segmentation or centerline extraction.

• MSC-Net (wo CAS-FB): The CAS-FB module in MSC-Net is replaced with a fusion
block. The fusion block only concatenates the features of the two branches and uses a
convolutional layer, BN, and ReLU layer for feature fusion.

• MSC-Net (wo clDice): When training MSC-Net, the clDice loss function is not added
to the loss function (equivalent to the λ3 = 0 in Equation (14)).

• MSC-Net: The result of training on our proposed MSC-Net.

Tables 5 and 6 compare the S-Branch/C-Branch and the other methods using multitask
learning. The results showed that the use of multitask methods can achieve better perfor-
mance in blood vessel segmentation and centerline extraction. Compared with MSC-Net
(wo CAS-FB), MSC-Net with CAS-FB for feature fusion has the best performance in all
indicators. This finding proves that the use of channel and multiscale spatial attention
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is very effective for feature fusion and is more suitable for a target with large changes in
feature morphology, such as blood vessels. Compared with the result of MSC-Net (wo
clDice), the use of clDice loss function improved the performance of MSC-Net.

Table 5. Ablation experiments of the influence of different modules on vessel segmentation.

Dataset Method SE SP ACC AUC

DRIVE

S-Branch 0.7917 0.9362 0.9414 0.9422
MSC-Net (wo CAS-FB) 0.7917 0.9362 0.9587 0.9682
MSC-Net (wo clDice) 0.8268 0.9533 0.9528 0.9647

MSC-Net 0.8423 0.9783 0.9663 0.9862

STARE

S-Branch 0.8348 0.9684 0.9508 0.9674
MSC-Net (wo CAS-FB) 0.8684 0.9751 0.9654 0.9681
MSC-Net (wo clDice) 0.8578 0.9814 0.9477 0.9751

MSC-Net 0.8763 0.9835 0.9713 0.9786

CHASE

S-Branch 0.7817 0.9701 0.9503 0.9511
MSC-Net (wo CAS-FB) 0.7941 0.9681 0.9571 0.9582
MSC-Net (wo clDice) 0.8145 0.9735 0.9583 0.9628.

MSC-Net 0.8056 0.9869 0.9686 0.9714

Table 6. Ablation experiments of the effects of different modules on centerline extraction.

Dataset Method SE SP ACC AUC

DRIVE

C-Branch 0.7861 0.9431 0.9345 0.9353
MSC-Net (wo CAS-FB) 0.7894 0.9443 0.9358 0.9397
MSC-Net (wo clDice) 0.7806 0.9389 0.9483 0.9464

MSC-Net 0.7905 0.9552 0.9510 0.9583

STARE

C-Branch 0.8038 0.9545 0.9303 0.9455
MSC-Net (wo CAS-FB) 0.8214 0.9581 0.9358 0.9527
MSC-Net (wo clDice) 0.8467 0.9424 0.9321 0.9607

MSC-Net 0.8546 0.9625 0.9423 0.9683

CHASE

C-Branch 0.7675 0.8451 0.8905 0.9412
MSC-Net (wo CAS-FB) 0.7781 0.8661 0.9183 0.9508
MSC-Net (wo clDice) 0.8047 0.8538 0.9178 0.9468

MSC-Net 0.8144 0.8865 0.9267 0.9541

Figure 6 shows the visualization results of the influence of CAS-FB and clDice on the
topological continuity of blood vessel segmentation and centerline extraction. The figure
shows that MSC-Net with CAS-FB and clDice has better topological continuity and less
interruption than MSC-Net (wo CAS-FB) and MSC-Net (wo clDice) in predicting vessel
segmentation and centerline extraction.

In short, MSC-Net combines blood vessel segmentation and centerline extraction by
using a multitask learning method, which can achieve better results than a single task.
The feature fusion path composed of channels and spatial attention modules can solve the
calibration and fusion of multitask and multiscale features. Using clDice loss function to
constrain blood vessels and centerlines can effectively improve the accuracy of blood vessel
segmentation and centerline extraction and ensure that the results are more in line with
ground truth and topological consistency.

To further explore the influence of different modules on the number of parameters and
the speed of inference, we have counted the number of parameters of different methods
and calculated the average inference time required for each image. It can be seen from
Table 7 that the design of multitask learning and CAS-FB will increase the number of
parameters and inference time, thereby increasing the space and time complexity. It can
also be seen from Table 7 that since the loss function is not calculated during the inference
process, the use of clDice loss training does not affect the parameter number and inference
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time of the model (the subtle differences in the Table 7 are due to different experiments).
Images of different sizes will also affect the network inference time: images with larger
resolutions require more inference time. From the results of the inference time, it can be
seen that MSC-Net has certain real-time performance and can be used for disease diagnosis,
screening, treatment, and evaluation.

Ground Truth MSC-NetMSC-Net

(𝑤𝑜 clDice)
Images

D
R

IV
E

S
T
A

R
E

C
H

A
S

E
MSC-Net

(𝑤𝑜 CAS-FB)

Figure 6. Visualization results after ablation of different modules. The first line of each case is the
retinal image and vessel segmentation result, and the second line is the centerline result. The figure
shows that the complete MSC-Net has better visualization results.

Table 7. The parameters and reasoning time when ablating different modules of the network.

Dataset Resize Method Parameters (M) Time (s)

DRIVE 576 × 576

S-Branch/C-Branch 1.7682 0.0147
MSC-Net (wo CAS-FB) 4.2960 0.0197
MSC-Net (wo clDice) 9.5251 0.0312

MSC-Net 9.5251 0.0326

STARE 624 × 624

S-Branch/C-Branch 1.7682 0.0163
MSC-Net (wo CAS-FB) 4.2960 0.0211
MSC-Net (wo clDice) 9.5251 0.0387

MSC-Net 9.5251 0.0362

CHASE 960 × 960

S-Branch/C-Branch 1.7682 0.0367
MSC-Net (wo CAS-FB) 4.2960 0.0434
MSC-Net (wo clDice) 9.5251 0.0717

MSC-Net 9.5251 0.0739
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5. Conclusions

In this paper, we propose a new multitask learning network, MSC-Net, to simulta-
neously accomplish retinal vessel segmentation and centerline extraction. We design a
channel multiscale spatial attention fusion module, CAS-FB, which is used to fuse and
correct the features of different tasks and different scales. In addition, we use the clDice
loss function to perform constraints between different tasks and improve the topological
continuity of the results of blood vessel segmentation and centerline extraction. Compari-
son with other methods on three retinal datasets (DRIVE, STARE, and CHASE) and the
ablation of each module prove the superiority and effectiveness of our proposed method.
In the future, our work will focus on how to reduce the amount of network parameters and
calculations and extend the proposed method to other 3D medical imaging datasets.
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