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Abstract: Traffic congestion is a worsening problem owing to an increase in traffic volume. Traffic
congestion increases the driving time and wastes fuel, generating large amounts of fumes and
accelerating environmental pollution. Therefore, traffic congestion is an important problem that
needs to be addressed. Smart transportation systems manage various traffic problems by utilizing the
infrastructure and networks available in smart cities. The traffic signal control system used in smart
transportation analyzes and controls traffic flow in real time. Thus, traffic congestion can be effectively
alleviated. We conducted preliminary experiments to analyze the effects of throughput, queue length,
and waiting time on the system performance according to the signal allocation techniques. Based on
the results of the preliminary experiment, the standard deviation of the queue length is interpreted as
an important factor in an order allocation technique. A smart traffic signal control system using a
deep Q-network , which is a type of reinforcement learning, is proposed. The proposed algorithm
determines the optimal order of a green signal. The goal of the proposed algorithm is to maximize
the throughput and efficiently distribute the signals by considering the throughput and standard
deviation of the queue length as reward parameters.

Keywords: intelligent traffic signal control; reinforcement learning; deep Q-network; multi-intersection;
throughput

1. Introduction

Traffic congestion is a common phenomenon that occurs when a signal is shorter
than the number of vehicles attempting to pass. Owing to the increasing number of
vehicles, traffic congestion is worsening and is one of the main problems that cities are
trying to solve. In the era of the 4th Industrial Revolution, research into smart cities using
information communication and Internet of Things (IoT) technologies is being actively
conducted. The urban management system of a smart city includes various fields, such
as medical, transportation, safety, and energy. The platform that deals with traffic-related
problems in smart cities is an intelligent transportation management system in which traffic
flow is controlled to reduce traffic congestion. The current traffic signal control is a fixed
signal control.

In a traditional fixed signaling system, a green signal is assigned in the order in which
it is input in advance. The system also distributes green signals of the same length, and
the process is repeated even under various traffic conditions. However, traffic conditions
dynamically and unexpectedly change over the time and spatial domains. There are times
when more vehicles are moving, such as during rush-hour or the weekend, and times when
relatively fewer vehicles are moving. As such, traffic signal systems have complex nonlinear
stochastic systems because they are affected by various factors, such as traffic infrastructure
and traffic load. Therefore, traffic signal systems have been previously studied for adaptive
traffic signal control.

Among the various studies on the traffic signal control system, there are studies using
fuzzy technology [1,2] as a type of CI technology, green wave technology [3], and traffic
signal control using particle swarm optimization [4] as a heuristic technology. However,
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these systems require many resources, such as time or computing power, to calculate the
optimal signaling strategy. Because of these resource constraints, the system can only
be used on environments and rules that have already been calculated, and there is a
limit to optimally control the traffic signal in a dynamic environment that changes in
real time. The traffic control system has to make optimal decisions by adapting to the
dynamic environment while recognizing the surrounding intersections. Therefore, research
on controlling traffic signals using reinforcement learning (RL) has recently attracted
attention [5,6].

In this paper, we propose a traffic signal system using a deep Q-network (DQN),
which is a type of reinforcement learning method. The proposed model recognizes traffic
conditions at intersections and determines the phase order, that is, the order in which
the green traffic light turns on. The purpose of the proposed model is to maximize the
throughput of the intersection and distribute the signals fairly. Throughput refers to the
number of vehicles passing through an intersection over time. The reason for the fair
distribution of traffic signals is to avoid the risk of some vehicles waiting too long to
increase the throughput.

The remainder of this paper is organized as follows. Section 2 introduces related
studies. Section 3 proposes a traffic signal control model using a DQN. Section 4 presents
and discusses the experiment results. Finally, Section 5 provides some concluding remarks
regarding this research.

2. Related Works

Recently, reinforcement learning method is widely applied to traffic signal control and
optimization to model and adapt to the dynamic traffic environment. Traffic conditions are
unpredictable. Therefore, the traffic signal control model should be able to improve itself
through learning. Reinforcement learning proceeds with learning based on past experiences
and selects the optimal behavior to achieve its goal. Applying reinforcement learning to
traffic signal control research enables flexible traffic flow management in unpredictable and
dynamic environments.

There are two main ways through which a traffic signaling system controls the flow
of vehicles at an intersection: determining the direction in which the vehicles will pro-
ceed [7–10] or determining the duration of the green light [11–15]. Traditional traffic signals
have a predetermined phase for each intersection. Here, the phase indicates the direction
in which the green signal is assigned. In the method of determining the preceding signal,
the phase applied to receive the green signal is flexibly determined. Depending on the
situation, the vehicle in the most necessary phase direction passes through the intersection.
Meanwhile, another method determines the optimal duration of a green light phase for
receiving the next green signal in a predetermined phase order. In [12], there are only two
phases, and thus it is determined whether to continue or change the signal. This enables an
efficient signal time distribution.

The model proposed in [7], which determines the phase order, minimizes the aggrega-
tion of the total time spent in all vehicle queues at a single intersection using a transfer RL.
In [8], a vehicle is controlled at multiple intersections with the aim of minimizing the queue
length. A Q-value transfer strategy using the DQN was applied to reflect on the status of
the surrounding intersections. The Q-value of the surrounding intersection is reflected in
the Q-value update of the target intersection to recognize the status of the surrounding
intersection. The studies in both [9,10] proposed traffic signal control methods to minimize
the wait time at multiple intersections. In [9], the road network features are extracted
using GCNN (graph convolutional neural network), and the model is optimized by using a
neural fitted Q-iteration. The total travel time is considered as a reward parameter. In [10],
the proposed DQN model can be extended from a single agent to multiple agents through
transfer learning. Various factors such as travel time, waiting time, delay, and emergency
stop are considered reward parameters. Therefore, it is difficult to apply in a real environ-
ment. In [11], to determine the duration of a green signal, the traffic signal control system is
proposed by using a deep recurrent Q-network technique that combines a recurrent neural
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network (RNN) and a DQN. In [11], the action of the model determines whether to extend
the duration of the current green phase or not. The total number of the halting vehicle
is considered as a reward parameter. The aim is to minimize the total number of waited
vehicles by establishing a Q-network with long short-term memory, which is a type of
RNN. However, because it is based on a single intersection environment, it is necessary to
expand to a multi-intersection environment for optimized signal control. In [12], in order
to accelerate the learning, a simple RL model was proposed by using the average length of
the queue as a reward parameter.

In [13], the authors controlled the signal to minimize the average wait time of the
vehicles using RL. It provides the Q-value of the target agent to the surrounding agents.
There are two traffic signals consisting of a green signal and a red signal. When the lane
is allocated a green signal, the opposite lane is allocated a red signal. Accordingly, the
traffic signal determines the duration of the green and red signals. In [14,15], the authors
proposed a traffic signal that determines the duration of a green signal. In [14], the wait
time was considered as a reward parameter to reduce the travel time and increase the speed
of the vehicles. In [15], the queue length was considered as a reward parameter to optimize
the traffic flow. In addition, an excessive allocation of the green time in a specific moving
direction can cause disadvantages for the waiting vehicles in different directions.

We propose a traffic signal control technique that determines the order of the preceding
signals. In addition, the situations of the surrounding intersections are considered in a
multi-intersection environment. The proposed model aims to maximize the throughput
and fairly allocate the green signals.

3. Proposed Model

To identify the performance of the traffic signal system, there are three main factors at
the intersection: throughput, queue length, and waiting time. Throughput represents the
number of vehicles exiting from the intersection over a period of time. The traffic signal
system needs to be optimized to process as many vehicles as possible during a period of
time. The queue length refers to the number of vehicles waiting at an intersection. Finally,
the waiting time represents the time taken to exit the intersection after the vehicle arrives at
the intersection.

Usually, the average of queue length or waiting time are used to determine the situation
of the system. However, the average value can make it difficult to accurately analyze the
situation at an intersection. This is because the average is the intermediate between the
best and worst values. For example, if we focus only on reducing the length of the longest
queue to lower the average value of the queue length at the intersection, the progress of
vehicles in a short queue may be restricted. However, the standard deviation is a measure
of the degree of variance of data to the mean. The standard deviation of the queue length
represents information about the deviation between the lane where many vehicles wait
within the intersection and the lane where fewer vehicles wait. Therefore, it is effective to
compare and control the situation of each lane.

The queue length and waiting time indicate the intersection. A long queue length
indicates that many vehicles are waiting at the intersection. In addition, a large waiting
time means that there are vehicles that wait for a long time. The queue length refers to
the quantitative information of the vehicles, and the wait time is the temporal information
of the vehicles. Therefore, depending on the signaling method, more meaningful factors
differ. Thus, an experiment was conducted to determine which factors are important
according to the signaling technique. A single intersection was assumed in the experimental
environment. The experiments were conducted with the following reward parameters:
throughput (tp), the combination of throughput and average queue length (tp + avgql), the
combination of throughput and standard deviation of the queue length (tp + qlstd), the
combination of throughput and average wait time (tp + avgwt), and the combination of
throughput and standard deviation of the wait time (tp + wtstd).

Figures 1 and 2 show the experiment results of the phase order allocation techniques.
As shown in Figure 1, the technique of combining throughput and queue length-related
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elements, which are average queue length or standard deviation of queue length, has a
smaller average queue length performance value than other techniques. In step 3, the
technique of combining throughput and standard deviation of queue length shows about
20% shorter queue length than the combining technique of throughput and the standard
deviation of wait time. In Figure 2, the average wait time is about 35% lower with the tech-
nique of combining throughput and queue length-related factors than when considering
only throughput. It is also about 22% smaller than the performance of the wait time-related
factor combination technique.

Figure 1. Performance of a technique for determining the phase order in terms of the average
queue length.

Figure 2. Performance of a technique for determining the phase order in terms of the average
wait time.

Figures 3 and 4 show the experiment results of the allocation technique of the green
light duration. As shown in Figure 3, the average queue length is similar in all techniques.
In Figure 4, by contrast, the average wait time resulted in vehicles waiting less when the wait
time-related factor was applied to the reward parameter. On average, the combination of
throughput and wait time-related factors has about 35% less wait time than the combination
of throughput and queue length-related factors.

In the case of a signal control using an order allocation technique, the direction to
which the next green signal is allocated is determined. The queue length factor is more
meaningful than the wait time factor in allowing more vehicles to exit during a period of
time. Conversely, in the case of signal control using the time duration allocation technique,
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the direction that receives the next green signal is already fixed and determines how much
time is allocated. Therefore, the wait time factor with the time information of the vehicle is
more meaningful. In this paper, a traffic signal control using an order allocation technique
is proposed.

Figure 3. Performance of a technique for determining the green light duration of a phase in terms of
the average queue length.

Figure 4. Performance of a technique for determining green light duration of a phase in terms of the
average wait time.

When the order allocation technique is used, both in terms of queue length and wait
time, it shows good performance when throughput and queue length-related factors are
applied as reward parameters in the learning model. We selected the standard deviation of
the queue length among the related factors of the queue length. The reason is to reduce
the number of vehicles that have to wait for a relatively long time in order to increase the
throughput of the intersection. In order to increase the throughput of the intersection, it is
advantageous to assign green lights to the lanes with relatively long queues. However, in
this case, the drivers of the lanes with a relatively short queue have fewer opportunities
to proceed.

We propose an intelligent traffic-signal control system that determines the phase order.
It recognizes the situation and determines the lane to receive the green signal depending on
the situation. The intersection environment is dynamic, and the traffic volume changes in
real-time. Therefore, traffic conditions always change and are difficult to predict. Therefore,
we attempt to recognize the traffic condition and learn the optimal policy to determine
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directions for receiving green signals using a DQN, which is a reinforcement learning
method. The Markov decision process (MDP) of a model with an intersection environment
is defined as follows:

3.1. State and Action

The proposed model is a traffic signal control system that controls the vehicles by
optimizing the order in which a green light occurs at multiple intersections. Because
multiple intersections are involved, it is necessary to recognize the status of the surrounding
intersections. According to Figure 5, the lane entering the intersection is defined as ln.
Therefore, there are a total of eight incoming lanes, from l1 to l8, at a 4-way intersection.
There are also eight lanes in the direction leaving the intersection, from n1 to n8.

Figure 5. A 4-way target intersection.

The information on the target intersection is determined based on the number of
vehicles currently waiting at the intersection. That is, the queue length information (ql) in
each lane of the target intersection is required. In Figure 5, the queue length of lane l1 is
defined as ql1. In addition, the situation of the surrounding intersection is determined by
the traffic load in each lane of the surrounding intersection, where the vehicle exits from
the target intersection. Traffic load information of the surrounding intersection is required
for a vehicle to exit the target intersection. This is because the number of vehicles that
exit from the target intersection should be less than the number of vehicles that can be
accommodated by the surrounding intersection. The lane in the direction of the exit from
the target intersection is the incoming lane of the surrounding intersection, and the traffic
load of lane n1 is defined as tl1. As shown in Figure 5, there are two directions on the road:
one is a straight lane capable of turning right and the other is a left lane. Thus, state (st) is
defined as in (1):

st =
[
ql1, ql2, ql3, ql4, ql5, ql6, ql7, ql8, tl1, tl2, tl3, tl4, tl5, tl6, tl7, tl8

]
. (1)

The proposed model determines the order of the green signal based on the intersection.
The possible movement signal at the 4-way intersection is shown in Figure 6. The action
of the MDP indicates the phase of the green signal. The phase of the intersection can vary
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depending on the structure of the intersection. At a 4-way intersection, the action (at) is
defined as in (2).

at =
[
p1, p2, p3, p4

]
(2)

Figure 6. The possible movement signal phase in a 4-way intersection.

3.2. Reward

The proposed model aims to maximize the throughput (τ) of an intersection. In
addition, the model intends to distribute signals that are not selfish. Therefore, throughput
is considered as a reward parameter. In addition, to avoid a selfish signal allocation, the
signal is distributed within the intersection in consideration of the standard deviation of
the queue length (dql). The throughput and standard deviation of the queue length are
adjusted with an adaptive weight factor (α). The reward (rt) formula is as indicated in (3):

rt = α · τ − ((1 − α) · dql) (3)

Figure 7 is a framework of the proposed model. A framework shows the interaction
between the environment and the agent. The environment represents multi-intersections.
The perceived state, which is the queue length of incoming lanes at the target intersection
and the traffic load of the exit lane from the target intersection, is sent from the environment
to the agent. Then, the agent learns over the DNN using the received information and
determines action in the next state. The action represents the phase order of traffic lights at
the intersection. The determined action is sent to the environment. Therefore, according to
the designated phase order, the green signal at the intersection is turned on.

Figure 7. A framework of the proposed model.
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4. Performance Evaluation

The performance experiment conducted on the proposed intelligent traffic signal
control system was conducted at nine intersections having a 4-way structure, as shown in
Figure 8. Vehicles can move in two directions on each road. One can turn left, and the other
can continue straight or turn right. The duration of the green signal was set to 30 s. This
experiment was conducted to simulate urban mobility (SUMO).

Figure 8. Structure of the experiment environment: nine intersections.

To evaluate the performance of the proposed algorithm, the model classifies the reward
parameters into two categories: the combination of throughput and queue length, and
the combination of throughput and standard deviation of the queue length. In addition,
the performance is evaluated by comparing fixed signal control as a baseline, which is a
traditional traffic signal control technique, and comparing two other RL techniques [8,16].
One comparison algorithm is referred to as QT-CDQN [8]. QT-CDQN considers the average
queue length as a reward parameter to propose an order-allocation technique, such as the
proposed algorithm. The other comparison algorithm is referred to as CRL which also uses
an order-allocation technique [16]. CRL considers the difference between the sum of queue
length of time t and t + 1 as a reward parameter

The vehicle distribution data used in the experiment were generated using SUMO.
Based on the real data of the Seoul area [17], the SUMO simulator was used to generate
vehicle data suitable for our experimental environment. The vehicle route data are set
to a repetition rate, period, and arrival rate. Then, based on this, the SUMO simulator
determines the time and route of the vehicle entering the road. Accordingly, the vehicle
is input into the road network according to a preset start time and route. Figure 9 shows
the distribution of the number of vehicles entering an intersection on weekdays. The
distribution shows a large amount of traffic during rush hour. The experiments were
conducted using vehicle distribution. One step is represented as one hour.
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Figure 9. Traffic distribution used in the experiment.

In Figure 10, the performance in terms of average queue length is compared. Step
1 to 5 refer to relatively light traffic load, and step 6 to 10 refer to relatively heavy traffic
load. In the case of heavy traffic load, tp + qlstd has an average queue length about 20%
lower than QT-CDQN and about 48% lower than CRL. Moreover, tp + qlstd is about 30%
lower than tp + avgql. This shows that tp + qlstd appropriately distributes traffic signals in
consideration of the standard deviation of the queue length in the intersection.

Figure 10. Performance comparison: average queue length.

Figure 11 shows the comparison of the average wait times. For heavy traffic load,
QT-CDQN has a similar wait time on average with that of tp + qlstd. On the other hand,
tp + qlstd has about 20% shorter wait time than that of CRL. As a reward parameter,
QT-CDQN applied the average queue length, CRL applied on the sum of queue lengths,
and tp + qlstd applied the standard deviation of the queue length. This shows that the
same factor, the queue length, was applied, but the performance varies depending on how
it is applied.
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Figure 11. Performance comparison: average wait time.

Figures 12 and 13 show the performance comparison using the standard deviation
of performance indicators. In the case of the standard deviation of the queue length, it
was the lowest when the standard deviation of the queue length and throughput were
considered as the reward parameters. Considering the standard deviation of the queue
length, it is interpreted that the queue lengths of the lanes within the intersection are
evenly adjusted by efficiently distributing the green signals. By contrast, in QT-CDQN, the
standard deviation of the queue length was approximately 35% higher on average than
the standard deviation of the combination of throughput and queue length. In addition, in
CRL, the standard deviation of the queue length was also about 16% higher on average than
that of tp + qlstd. Because QT-CDQN did not consider the standard deviation of the queue
length, it is interpreted that the order of green signals to lanes could not be evenly adjusted.

Figure 12. Performance comparison: standard deviation of queue length.

In the standard deviation of the wait time, the performance of the fixed signal is about
40% greater than tp + qlstd. This denotes that, in the case of a fixed signal, the deviation
of vehicles waiting at the intersection is large and signal control is inefficient. In addition,
CRL also has a value about 30% greater than tp + qlstd. The reason is that the difference
in the sum of the queue lengths of t and t + 1 considered by the CRL does not take into
account the deviation of the lanes. When the traffic load is heavy, tp + avgql has a standard
deviation of wait time about 20% higher than tp + stdql. This shows the performance that,
considering the standard deviation of the queue length, the deviation of the intersection
can be kept small.
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Figure 13. Performance comparison: standard deviation of wait time.

5. Conclusions

We proposed a DQN-based intelligent signal control system to determine the order of
green signals at multiple intersections. The purpose of this study is to distribute signals
efficiently while maximizing the throughput at the intersections. Through pre-experiments,
it was confirmed that the important factors affecting the performance differ depending on
the traffic signaling method. By applying various parameters to the proposed model, the
performance was compared with that of other signal control methods. This study classified
two reward parameters, average queue length and standard deviation of the queue length,
to evaluate the performance and compared them with the fixed-time signal, QT-CDQN [8]
and CRL [16]. In terms of the wait time, the proposed model performs approximately 30%
better when applying the standard deviation of the queue length than when applying the
average queue length . In addition, considering the standard deviation of the queue length,
it is interpreted that the length of the lanes within the intersection is similarly adjusted by
efficiently distributing the green signals.

Because we proposed a traffic signal control method applied at multiple intersections,
large-scale signal control studies, including in urban areas by expanding the range, also
need to be conducted. In addition, it will be necessary to expand the research area by
applying federated learning methods for faster learning with more diverse data [18].
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