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Abstract: Error detection and correction codes based on redundant residue number systems are
powerful tools to control and correct arithmetic processing and data transmission errors. Decoding
the magnitude and location of a multiple error is a complex computational problem: it requires
verifying a huge number of different possible combinations of erroneous residual digit positions in
the error localization stage. This paper proposes a modified correcting method based on calculating
the approximate weighted characteristics of modular projections. The new procedure for correcting
errors and restoring numbers in a weighted number system involves the Chinese Remainder The-
orem with fractions. This approach calculates the rank of each modular projection efficiently. The
ranks are used to calculate the Hamming distances. The new method speeds up the procedure for
correcting multiple errors and restoring numbers in weighted form by an average of 18% compared to
state-of-the-art analogs.

Keywords: redundant residue number system; error correction codes; multiple errors; Chinese
Remainder Theorem

1. Introduction

Despite significant efforts, both in industry and science, high fault tolerance remains a
serious problem in the management of large-scale IT systems.

The consequences of failures, regardless of their causes, can be eliminated using
various methods by introducing data redundancy. Erasure codes, replication, and Resilient
Distributed Dataset (RDD) [1] are the most important methods for ensuring fault tolerance
in modern data storage and processing systems.

Replication is the simplest-to-implement (therefore, most widespread) method of intro-
ducing redundancy [2]. However, replication leads to significant overhead costs expressed
in additional resources for duplicating data and functionality. In turn, erasure codes [3,4]
are devoid of this drawback. Such codes counteract the partial loss of data and are based
on a principle of antinoise coding (parity check). Erasure codes save significant costs and
energy [3]. However, data recovery after failures is associated with high reconstruction
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costs and network traffic. The transition from replication to erasure codes and RDD is
complicated by the need to update the hardware–software base and recode the entire
volume of stored data. Nevertheless, there are examples of successful adoption of these
technologies by Facebook [5] and Microsoft Azure [3].

This paper proposes a new approach to error correction codes based on a redundant
residue number system (RRNS) [6,7]. Along with the Reed–Solomon codes [8], the Rabin
dispersal algorithm [9], etc., RRNSs provide the functionality implemented by erasure
codes and the functionality implemented by RDD algorithms. In addition, an important
property of RNSs is the ability to perform arithmetic operations over encoded data. This
property can be used in modern distributed data processing systems [10–12] and encrypted
data processing schemes [13]. Therefore, RRNSs are a unique and versatile tool for a wide
range of applications.

There are two main strategies for correcting errors in RRNSs. The first one involves
syndrome decoding [14–16]: erroneous parts of the data are determined by comparing
a special numerical syndrome calculated on the obtained data with the reference values.
The second strategy is to restore error-free data based on the obtained code [17–19] by
calculating the error magnitude and correcting the code during the decoding process. The
authors [19] suggested a maximum likelihood decoding (MLD) approach to simplify the
corrective decoding method by reducing the enumeration of values during decoding.

This paper proposes a modified method for corrective data decoding in RRNSs using
MLD. Unlike the decoding method [19], this approach involves an alternative version
of the Chinese Remainder Theorem (CRT) [20–22] for more efficient data restoration due
to parallel execution of decoding and error correction. The CRT with fractions allows
dividing the decoding process into two independent parts: determining the weighted
characteristic of a number (a relative estimate of its magnitude) and decoding itself. The
weighted characteristic can be directly used for error correction, and data decoding can
be performed in parallel. The proposed modified modular projection method with MLD
speeds up the procedure of error correction and number restoration in the weighted number
system compared to the original method [19]. At the same time, it consumes many more
hardware resources.

This paper is organized as follows: In Section 2, the existing research in the field of
error correction in RRNSs is surveyed. A detailed introduction to RNSs, including the
notations and preliminaries used below, is given in Section 3. Additionally, this section
briefly describes MLD [19]. Section 4 presents the proposed method and analyzes its
complexity. Section 5 is devoted to the hardware implementation of the proposed method,
comparing it with the existing methods. The outcomes of this paper are summarized in
Section 6.

2. Related Works

Error detection and correction codes based on a redundant residue number system
(RRNS) are modern and powerful tools to control and correct arithmetic processing and
data transmission errors. Algorithms that correct only single errors were considered and
improved by several authors [6,23–25]. Decoding the magnitude and location of a single
error is significantly less complex than detecting and correcting errors in multiple bits of
RRNSs. It requires verifying a huge number of different possible combinations of erroneous
residual digit positions in the error localization stage. The localization stage consumes the
most time in the procedure for correcting multiple errors in RRNSs. All known methods for
detecting and correcting multiple errors in RRNSs can be divided into three large groups:
continuous fractions [26,27], syndrome decoding [14–16], and modular projections [17–19].
These groups of methods have advantages and drawbacks.

The methods with continuous fractions are based on the Euclidean recursive algorithm.
After localization, erroneous remainders are corrected by expanding the moduli system
using error-free remainders. For multiple errors in residual digits of large bit depth, the
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recursive Euclidean algorithm needs many iterations and becomes inefficient in hardware
implementation.

The paper [16] presented an approach to correcting multiple errors in RRNSs using
syndromes. Later, it was improved in [14,15]. According to [15], the residual digits in
syndrome decoding are divided into three groups; seven categories of error positions
are determined among them. The error magnitudes are distributed in three syndromes,
which are used to categorize the errors accurately and localize the erroneous residual digits
simultaneously from the six lookup tables. Syndromes can be calculated in parallel, and
operations are performed in small moduli. This feature is an undoubted advantage of the
approach, providing high-speed execution of the error correction procedure for RRNSs.
Among the drawbacks of this method, note a rather strong constraint on the choice of
redundant moduli:

2m1m2 . . . mk < mk+1mk+2 . . . mn,

where k denotes the number of information moduli in an RRNS, and n is the total number
of RRNS moduli. A critical shortcoming of methods with syndrome decoding is that the
volume of lookup tables sharply grows with an increase in the error multiplicity and the
bit width of the residual digits. Searching through large lookup tables is time consuming
and negates the benefit of efficiently calculated syndromes. Thus, methods with syndrome
decoding are efficient only for small moduli sets.

The method with modular projections was pioneered in [17] and improved and
extended to the case of multiple errors in the subsequent works [18,28]. With this approach,
erroneous residual digits are localized by reducing the RRNS, deleting the number of
remainders equal to the error multiplicity. The value represented in the RRNS falls into
the legitimate range after excluding the erroneous residual digits. This process is similar
to syndrome decoding. It requires estimating each possible combination of residual digit
error locations. Methods with modular projections need no large lookup tables: this is an
absolute advantage over methods with syndrome decoding. Other advantages include
a weaker constraint on the choice of redundant moduli than in the case of syndrome
decoding:

mi < mk+1, mk+2, . . . , mn, ∀i ≤ k,

where k denotes the number of information moduli in an RRNS, and n is the total number of
RRNS moduli. A critical shortcoming of such methods is the number of modular projections
equal to Ct

n, where t denotes the maximum error multiplicity. Obviously, the number of
modular projections grows fast with an increase in the error multiplicity, raising the number
of computations accordingly.

The paper [19] proposed an essentially different method with modular projections:
the number of projections was reduced by changing their construction procedure. The
idea is to delete r = n – k remainders instead of t ones (the conventional approach). The
algorithm for constructing modular projections and their number was refined in [29]. Since
r > t, the number of modular projections is significantly reduced, but it becomes necessary
to check the Hamming distances according to maximum likelihood decoding (MLD). This
approach eliminates the critical shortcoming of the rapidly growing number of projections
and seems an optimal choice for correcting multiple errors in modular codes. The ideas
and approaches [19] underlie the modified modular projection method with MLD; see
Section 4. Using the Chinese Remainder Theorem with fractions [20–22] opens up new
opportunities for parallelizing the algorithm and speeding up the procedure for correcting
RRNS errors. Section 5 presents the hardware implementations of the original method [19]
and the modified modular projection method with MLD on Field-Programmable Gate
Array (FPGA). The hardware implementations partially involve the authors’ computing
modules described in the earlier publications [30,31].
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3. Residue Number System and Multiple Error Correction
3.1. Residue Number System

A residue number system (RNS) [7,32,33] is a non-weighted number system. In
an RNS, an integer X is represented by a k-dimensional vector (x1, x2, . . . , xk) of the
remainders in dividing it by positive coprimes (m1, m2, . . . , mk) called the RNS moduli.
The magnitude of X belongs to the range [0, MK − 1], where

MK = ∏k
i=1 mi,

and each remainder xi is the least nonnegative modulo mi residue of X:

xi = Xmodmi

(
equivalently, |X|mi

)
. (1)

Note that when obtaining the RNS representation of X, the modulus remainders are
calculated independently and in parallel. The paper [30] considered the most effective
methods for calculating the remainder of the division and presented schematic diagrams
for their hardware implementation.

The inverse conversion, i.e., restoring the weighted representation of a number from its
RNS representation, is a much more difficult task than the direct conversion. The weighted
representation of a number (its weighted characteristic) can be found using the Chinese
Remainder Theorem (CRT) [7], the CRT with fractions (CRTf) [20–22], or conversion to a
mixed radix number system (MRNS) [34,35].

The modified multiple error correction method proposed below partially involves the
CRT and CRTf.

3.2. Chinese Remainder Theorem

According to the Chinese Remainder Theorem (CRT), an integer X is calculated from
its RNS representation (x1, x2, . . . , xk) as follows [7]:

X =

∣∣∣∣∣ k

∑
i=1

MK
mi

∣∣∣∣ mi
MK

∣∣∣∣
mi

xi

∣∣∣∣∣
MK

(2)

or equivalently,

X =
k

∑
i=1

MK
mi

∣∣∣∣ mi
MK

∣∣∣∣
mi

xi − rX MK (3)

where
∣∣∣ mi

MK

∣∣∣
mi

denotes the multiplicative inversion of
∣∣∣MK

mi

∣∣∣
mi

, and rX is the number rank (a

value showing how many times the sum in (3) exceeds the RNS range).

3.3. Chinese Remainder Theorem with Fractions

A number X is converted to a weighted number system (WNS) using the Chinese
Remainder Theorem with fractions (CRTf) [4,24,31]:

X = F(X)MK, (4)

where

F(X) =
∣∣∣∑k

i=1 k∗i xi

∣∣∣
1
, k∗i =

|mi/MK|mi

mi
, (5)

and |•|1 denotes taking the fractional part of a number.
The value F(X) is called the approximate weighted characteristic of X in the RNS

representation.
We propose using a binary shift of fractions to implement this algorithm on a hardware

base not supporting fractions (e.g., FPGA). The accuracy of the constants k∗i in (5), sufficient
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for correctly reconstructing the weighted representation of X, was thoroughly estimated
in [20]. A number XX is converted to a WNS using the CRTf with the binary shift as
follows:

X =
F(X)MK

2N , (6)

where

F(X) =

∣∣∣∣∣ k

∑
i=1

k∗i xi

∣∣∣∣∣
2N

, k∗i =
|mi/MK|mi

mi
· 2N (7)

and N = log2 (MK ∑k
i=1(mi − 1)) [4].

The CRTf allows converting RNS representations of numbers to the WNS ones effi-
ciently on any computing platform: all calculations are reduced to operations well imple-
mented in hardware. These operations include addition, multiplication, binary shifts, and
discarding the most significant digits of a number [31].

3.4. Redundant Residue Number System

The residual representation of an error-free integer is unique for the range [0, MK − 1].
This range is used for detecting and correcting errors in the RNS. Expanding the code space
of the residual representation r with additional residual bits, we form an (n, k)-redundant
residue number system (RRNS) with correcting properties.

An RRNS with n = k + r is based on coprime moduli (m1, m2, . . . , mk, mk+1, . . . , mn)

and the full range MN =
n
∏
i=1

mi. The additional moduli, mk+1, mk+2, . . . , mk+r, are called

the redundant moduli of the RRNS. The range [0, MK − 1] corresponding to the first k
information moduli from the n-dimensional vector is called the legitimate range. The
range [MK, MN − 1] corresponding to the additional r redundant (control) moduli is called
the illegitimate range. The legitimate range is the required computational range of the
number system, while the illegitimate range is necessary for error detection, localization,
and correction.

When an error occurs, an integer X = (x1, x2, . . . , xk, xk+1, . . . , xn) within the legitimate
range is converted to X′ = X + E, where EE is the error. The value X′ falls into the
illegitimate range if

1) mk+1, mk+2, . . . , mk+r > mi, ∀i ≤ k,
2) the number of erroneous remainders does not exceed r.

Thus, to detect an error, we should restore the number XX from its RRNS representa-
tion (x1, x2, . . . , xk, xk+1, . . . , xn). If the resulting value is smaller than the dynamic range
of the RRNS (X < MKM), the number X contains no errors of multiplicity r and below;
otherwise, the RRNS representation (x1, x2, . . . , xk, xk+1, . . . , xn) of XX contains 1 or 2 or
3,..., or r erroneous residual digits.

The number of erroneous residual digits detected and corrected is determined by the
number of redundant moduli added. In the general case without special restrictions, the
(n, k)-RRNS with r = n – k redundant moduli detects r and corrects t = r/2 erroneous
residual digits [7].

3.5. Modular Projection Method

The modular projection method is used to correct erroneous residual digits of numbers
in the RRNS representation. Let an error be detected in a number X′ written in the RRNS.
The (n, k)-RRNS allows correcting t = (n− k)/2 erroneous residual digits [7]. According
to the classical modular projection method, t or fewer errors are corrected in the following
steps:

1) Constructing Ct
n modular projections. A modular projection is obtained by deleting t

remainders in the original RRNS representation of the number. Deleting different sets
of t remainders, we construct different modular projections.
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2) Obtaining the weighted representation (weighted characteristic) of each modular
projection. The weighted representation of a number is its magnitude in the WNS. The
weighted characteristic of a number depends on the inverse RNS-to-WNS conversion
method.

3) Comparing the weighted representation (weighted characteristic) of each modular
projection with the value (weighted characteristic) of the dynamic range. A modular
projection whose weighted representation (weighted characteristic) does not exceed
that of the dynamic range contains the correct remainders. Note that there can be Ct−i

n−i
correct modular projections, where i is the number of erroneous digits, i = 1, . . . , t. In
this case, the remainders deleted when constructing each correct projection will be
erroneous.

4) Calculating the remainders on dividing the correct modular projection’s weighted
representation by the moduli corresponding to the erroneous remainders. Note that
correcting erroneous remainders is not required to decode correct data from the RRNS:
the weighted representation of a correct modular projection is the corrected number
written in the WNS. When using the weighted characteristic of a modular projection in
step 3), it is necessary to perform an additional step for decoding: obtain the weighted
representation of the number from its weighted characteristic.

For each projection, calculations are performed in parallel, which significantly reduces
the total time to correct errors in RRNS codes. A critical drawback of this method is the
fast-growing number of modular projections with an increase in the error multiplicity. An
increase in the number of modular projections does not affect the total execution time of
the error-correction procedure in RRNS codes due to the parallel computations for each
projection. However, it sharply raises hardware costs [18]. This critical drawback can be
overcome using the concept of maximum likelihood decoding (MLD) [19].

3.6. Modular Projection Method with MLD

The paper [19] improved the classical modular projection method to reduce the number
of projections by changing their construction. When constructing a modular projection, the
idea is to delete not r residual bits of the (n, k)-RRNS instead of t ones, where t = (n− k)/2
is the maximum multiplicity of an error corrected by the (n, k)-RRNS, and r = n – k is the
number of redundant moduli. The algorithm for constructing modular projections was
described in detail in [29].

Such an approach to constructing modular projections allows for reducing their num-
ber to Ct

n/2 [29]. However, some incorrect projections fall into the legitimate RRNS range. To
separate correct projections, we propose using maximum likelihood decoding (MLD) [19].
According to the MLD concept, an additional step is to calculate the Hamming distances
between the erroneous number in the RRNS representation and each modular projection.
In the RNS, the Hamming distance is defined as the number of distinct corresponding
remainders. Let X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn) be numbers written in the
RNS with bases m1, m2, . . . , mn. Then the Hamming distance is given by

h(X, Y) = ∑n
i=1 f (xi, yi), where f (a, b) =

{
1 if a 6= b,
0 if a = b.

(8)

Therefore, we should find the remainders of the moduli deleted when constructing
each projection.

Two conditions determine a correct projection:

- The modular projection X′i in the WNS (its weighted characteristic F
(
X′i
)
) is smaller

than the RRNS dynamic range MK (its weighted characteristic F(MK)).
- The Hamming distance between the distorted number X′X′ and the modular projec-

tion X′i in the RRNS does not exceed the value of the maximum multiplicity t of errors
corrected by this RRNS.
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The following formula combines these conditions:

X = X′i :
{

F
(
X′i
)
< F(MK)(or X′i < MK),

h
(
X′, X′i

)
≤ t,

where t = (n− k)/2. (9)

The remainders of the moduli deleted when constructing each projection can be
calculated by extending the RNS moduli system [32] or restoring the number in the WNS
and calculating the remainders of these moduli. These operations are resource-consuming
and significantly increase the total time for correcting errors and restoring the number in
the WNS.

4. Modified Modular Projection Method with MLD

Now consider a new method combining the advantages of the CRT, CRTf, and maxi-
mum likelihood projections [19]. The proposed modification concerns error localization
and restoration of a correct number in the WNS; error detection is identical for the original
method [19] and the modified method proposed below. In this regard, the description of
error detection is omitted.

According to [19], each projection is restored in the WNS using the CRT. The resulting
projections are employed to calculate the values of the missing remainders. Next, the
Hamming distances are calculated for each projection, and the correct projection is selected
(Figure 1a).

Reconstructing the weighted representation of projections using the CRT has high time
delays. First of all, the delay is due to executing operations on a large modulus comparable
to the dynamic range of the RRNS.
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In the original method [19], the reconstructed weighted representations of modular
projections are used, on the one hand, to calculate the missing remainders subsequently
and, on the other hand, to obtain the correct number in the WNS. (One of the projections
will be the correct number represented in the WNS.) In the modified method, we propose
using (a) the ranks of the modular projections to obtain the missing remainders and (b)
the approximate weighted characteristics of the CRTf to restore the modular projections in
the WNS. This approach allows for calculating the missing remainders and reconstructing
projections in the WNS in parallel (Figure 1b), not sequentially, as was proposed in [19].

The efficiency of the proposed modification largely depends on the efficiency of
calculating the rank of a number represented in the RRNS. The choice of the CRTf for
reconstructing modular projections in the WNS is not accidental: the approximate weighted
characteristic F(X) closely relates to the rank rX of the number X written in the RRNS.

According to (3), the rank rX is given by

rX =
∑k

i=1
MK
mi

∣∣∣ mi
MK

∣∣∣
mi

xi − X

MK
=

∑k
i=1

MK
mi

∣∣∣ mi
MK

∣∣∣
mi

xi

MK
− X

MK
=

k

∑
i=1

|mi/MK|mi
xi

mi
− X

MK
.

Due to (4) and (5),

rX =
k

∑
i=1

|mi/MK|mi
xi

mi
−
∣∣∣∣∣ k

∑
i=1

|mi/MK|mi
xi

mi

∣∣∣∣∣
1

.

Recall that |•|1 denotes taking the fractional part of a number. Hence, the rank of X is
given by

rX = b∑k
i=1

|mi/MK|mi
xi

mi
c = b∑k

i=1 k∗i xic, k∗i =
|mi/MK|mi

mi
. (10)
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Note that F(X) and rX are the integer and fractional parts of the same value. We
introduce the notation

F′(X) = ∑k
i=1 k∗i xi, k∗i =

|mi/MK|mi

mi
. (11)

Calculating F′(X), we simultaneously find the weighted characteristic F(X) (Equation (5))
and the rank rX of X (Equation (10)).

Similar to the case of the CRTf (Equations (6) and (7)), we propose using a binary shift
to implement the calculation of F′(X) on a hardware base not supporting fractions. The
accuracy of the constants k∗i in (11) is estimated by analogy with [20]. Then

F′(X) = ∑k
i=1 k∗i xi, k∗i =

|mi/MK|mi

mi
· 2N , (12)

where N = log2 (MK ∑k
i=1(mi − 1)) [20].

The value F′(X) is especially convenient for the hardware implementation of the
error correction procedure for modular codes. Really, the N least significant bits of the
binary representation of F′(X) calculated by Equation (12) will be the shifted weighted
characteristic F(X) (Equation (7)):

F(X) = F′(X)[N−1..0], (13)

where N = log2 (MK ∑k
i=1(mi − 1)) [20].

The other (most significant) bits will be equal to the rank rX of X:

rX = F′(X)[Length(F′(X))−1..N], (14)

where N = log2 (MK ∑k
i=1(mi − 1)) [20].

After obtaining the shifted approximate weighted characteristic F(X) by Equation (13),
the standard CRTf Equation (6) is used for restoration. We discuss in detail the calculation
of the missing remainders using the rank rX .

This operation extends the system of RNS moduli [7] and can be performed efficiently
by efficiently calculating the rank of a number.

According to (3),

X =
k

∑
i=1

MK
mi

∣∣∣∣ mi
MK

∣∣∣∣
mi

xi − rX MK.

Introducing the compact notation Bi =
MK
mi

∣∣∣ mi
MK

∣∣∣
mi

, we write

X =
k

∑
i=1

Bixi − rX MK, Bi =
MK
mi

∣∣∣∣ mi
MK

∣∣∣∣
mi

, i = 1, . . . k. (15)

Due to (15), for each modular projection, the missing remainders on dividing the
number X by the moduli mj deleted when constructing the projection are given by

|X|mj
=

∣∣∣∣∣ k

∑
i=1

Bixi − rX MK

∣∣∣∣∣
mj

.

Performing trivial transformations, we obtain

|X|mj
=

∣∣∣∣∣∣
∣∣∣∣∣ k

∑
i=1

Bixi

∣∣∣∣∣
mj

+ |rX · (−MK)|mj

∣∣∣∣∣∣
mj
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and, finally,

|X|mj
=

∣∣∣∣∣∣
∣∣∣∣∣ k

∑
i=1
|Bi|mj

xi

∣∣∣∣∣
mj

+
∣∣∣rX · |−MK|mj

∣∣∣
mj

∣∣∣∣∣∣
mj

. (16)

Note that for each modular projection, the values |Bi|mj
and |−MK|mj

differ. However,
these values are completely determined by the set of RRNS moduli. Therefore, they are
calculated in advance and stored in the memory of the computing device.

Thus, the missing remainders are calculated using multiplication by a constant and
addition on a small modulus comparable to the RRNS moduli. Both operations are well
implemented in hardware. The key feature of the proposed approach is the ability to
calculate the first term

∣∣∣∑k
i=1|Bi|mj

xi

∣∣∣
mj

in the sum (16) independently and in parallel with

the second one
∣∣∣rX · |−MK|mj

∣∣∣
mj

. We denote them by X(1)
mj and X(2)

mj , respectively:

X(1)
mj =

∣∣∣∑k
i=1|Bi|mj

xi

∣∣∣
mj

. (17)

X(2)
mj =

∣∣∣rX · |−MK|mj

∣∣∣
mj

. (18)

Then Equation (16) becomes

|X|mj
=
∣∣∣X(1)

mj + X(2)
mj

∣∣∣
mj

. (19)

Since the values X(1)
mj are calculated in parallel to F(X) and X(2)

mj , the total execution
time of the procedure for correcting errors in modular codes and restoring the correct
number in the WNS is reduced.

An example demonstrating an approach to extending the system of RNS moduli using
the number rank is presented in Appendix A (See, Example A1).

Another example demonstrating the proposed approach to error correction and restora-
tion of the correct number in the WNS is presented in Appendix B (See, Example A2).

The proposed modified modular projection method with MLD for correcting multiple
errors in modular codes allows for achieving a high level of parallelism and significantly
reducing the total execution time of the multiple error correction procedure.

The proposed method requires calculation of the rank rX (Equation (14)) for base
extension. CRT-I and CRT-II are not directly applicable to do this, while function F(X),
used in the article, gives the advantage to calculate the relative size of both the value X and
rX simultaneously.

5. Hardware Implementation of Modified Modular Projection Method with MLD

The original [19] and modified modular projection methods for correcting multiple
errors in modular codes (Section 4) have the identical error detection stage. For both
methods equally, the implementation variability of this stage lies in choosing an appropriate
algorithm for calculating the weighted characteristic of the corrected number. The hardware
implementation and comparative analysis of such algorithms were presented in [31]. Let
us compare the efficiency of error localization and correct data restoration in a WNS.

Using various computing devices for implementing methods and algorithms is often
dictated by the need to adapt them to the architectural features of a given hardware base.
Support of calculations in the ring of integers is a characteristic feature of FPGA computing
devices that increases speed but severely restricts the class of executed tasks.

The original method [19] can be implemented on FPGA without any restrictions.
The modified method contains operations with fractions and, therefore, requires adap-
tation when implemented on FPGA. Equations (12)–(14) are used for passing to integer
calculations. This transition is illustrated by an example in Appendix C (See, Example A3).
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The result of this example coincides with that of an example in Appendix B. Therefore,
the transition to integer calculations by Equations (12)–(14) is correct.

The efficiency of the original [19] and modified methods for correcting multiple errors
in modular codes was compared by their implementation in the Very High SpeedIntegrated
Circuits Hardware Description Language (VHDL) using Xilinx Vivado 2019.1, a software
tool for the design and analysis of HDL structures. For testing, we used a Kintex-7 FPGA
(core Xilinx xc7k70tfbg676-2) of a sufficient area without DSP blocks.

This software–hardware base has hardware parallelization at the level of blocks im-
plementing individual procedures and functions and, moreover, at the level of operations
within these blocks. Figure 2 shows the schemes for parallelizing the compared methods
at the block level: vertical lines separate parallel executed blocks, whereas horizontal
lines indicate the synchronization of upper blocks. The schemes in Figure 2 specify the
corresponding schemes in Figure 1, considering their hardware implementation.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 28 
 

at the block level: vertical lines separate parallel executed blocks, whereas horizontal lines 

indicate the synchronization of upper blocks. The schemes in Figure 2 specify the corre-

sponding schemes in Figure 1, considering their hardware implementation. 

The original method [19] contains no parallel blocks (Figure 2a); however, calcula-

tions for each modular projection are performed in parallel within each block, except for 

the first and the last ones. In the modified method, calculations for each modular projec-

tion are also performed in parallel within each block, except for the first and last ones; in 

addition, there is parallelism at the block level (Figure 2b). 

Let us consider the hardware implementation of each block in Figure 2. 

 

 
(a) (b) 

Figure 2. Scheme of parallelizing modular projection methods with MLD: (a) original, (b) modified. 

Original modular projection method with MLD [19] is presented in Appendix D. 

Modified Modular Projection Method with MLD 

Block 𝑋′. When an error is detected, this block receives at the input 𝑛 remainders rep-

resenting the distorted number 𝑋′ in the (𝑛, 𝑘)-RRNS. 

Block 𝑋𝑖
′. This block constructs modular projections. It is implemented in 𝐶⌈𝑛/2⌉

𝑡  par-

allel computational threads, where 𝑡 = ⌊(𝑛 − 𝑘)/2⌋. Each thread corresponds to a modular 

projection and receives at the input 𝑘 remainders of the distorted number 𝑋′ (the outputs 

of the block 𝑋′) obtained by the modular projection algorithm [29]. 

Block 𝐹′(𝑋𝑖
′). This block calculates the extended weighted characteristics of modular 

projections 𝑋𝑖
′ in the WNS. According to (12), it is implemented by 𝑘 parallel multiplica-

tions of the remainders (the outputs of the block 𝑋𝑖
′) by constants modulo 𝑀 and a 𝑘-op-

erand adder [31]. 

Block 𝑟𝑋𝑖
′. This block calculates the ranks for each modular projection 𝑋𝑖

′. It is imple-

mented by extracting the most significant bits with numbers not less than 𝑁 (14) from the 

extended weighted characteristic (the output of the block 𝐹′(𝑋𝑖
′)). 

Block 𝐹(𝑋𝑖
′). This block calculates weighted characteristics for each modular projec-

tion 𝑋𝑖
′. It is implemented by extracting the least significant bits with numbers less than 𝑁 

(13) from the extended weighted characteristic (the output of the block 𝐹′(𝑋𝑖
′)). 

Block𝑋′
𝑖𝑚𝑗

(1)
. This block calculates the missing remainders (the first term) for each 

modular projection 𝑋𝑖
′. It is implemented by 𝑘 parallel multiplications of the remainders 

(the outputs of the block 𝑋𝑖
′) by constants modulo 𝑀 and a 𝑘-operand modulo adder [31]; 

see Equation (17). 

Block 𝑋′
𝑖𝑚𝑗

(2)
. This block calculates the missing remainders (the second term) for each 

modular projection 𝑋𝑖
′. It is implemented by multiplying the rank (the output of the block 

𝑟𝑋𝑖
′) by a constant modulo 𝑀 [31]; see Equation (18). 

Block |𝑋𝑖
′|𝑚𝑗

. This block calculates the missing remainders for each modular projec-

tion 𝑋𝑖
′. It is implemented by modulo adding the first term (the output of the block 𝑋′

𝑖𝑚𝑗

(1)
) 

to the second term (the output of the block 𝑋′
𝑖𝑚𝑗

(2)
) [31]; see Equation (19). 

Figure 2. Scheme of parallelizing modular projection methods with MLD: (a) original, (b) modified.

The original method [19] contains no parallel blocks (Figure 2a); however, calculations
for each modular projection are performed in parallel within each block, except for the first
and the last ones. In the modified method, calculations for each modular projection are
also performed in parallel within each block, except for the first and last ones; in addition,
there is parallelism at the block level (Figure 2b).

Let us consider the hardware implementation of each block in Figure 2.
Original modular projection method with MLD [19] is presented in Appendix D.

Modified Modular Projection Method with MLD

Block X′. When an error is detected, this block receives at the input n remainders
representing the distorted number X′ in the (n, k)-RRNS.

Block X′i . This block constructs modular projections. It is implemented in Ct
n/2 parallel

computational threads, where t = (n− k)/2. Each thread corresponds to a modular
projection and receives at the input k remainders of the distorted number X′ (the outputs
of the block X′) obtained by the modular projection algorithm [29].

Block F′
(
X′i
)
. This block calculates the extended weighted characteristics of modular

projections X′i in the WNS. According to (12), it is implemented by k parallel multiplications
of the remainders (the outputs of the block X′i ) by constants modulo M and a k-operand
adder [31].

Block rX′i
. This block calculates the ranks for each modular projection X′i . It is imple-

mented by extracting the most significant bits with numbers not less than N (14) from the
extended weighted characteristic (the output of the block F′

(
X′i
)
).

Block F
(
X′i
)
. This block calculates weighted characteristics for each modular projection

X′i . It is implemented by extracting the least significant bits with numbers less than N (13)
from the extended weighted characteristic (the output of the block F′

(
X′i
)
).
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Block X′(1)imj
. This block calculates the missing remainders (the first term) for each

modular projection X′i . It is implemented by k parallel multiplications of the remainders
(the outputs of the block X′i ) by constants modulo M and a k-operand modulo adder [31];
see Equation (17).

Block X′(2)imj
. This block calculates the missing remainders (the second term) for each

modular projection X′i . It is implemented by multiplying the rank (the output of the block
rX′i

) by a constant modulo M [31]; see Equation (18).
Block

∣∣X′i ∣∣mj
. This block calculates the missing remainders for each modular projection

X′i . It is implemented by modulo adding the first term (the output of the block X′(1)imj
) to the

second term (the output of the block X′(2)imj
) [31]; see Equation (19).

Block X′i (6). This block calculates the modular projections X′i in the WNS. It is
implemented by multiplying the weighted characteristic of the modular projection (the
output of the block F

(
X′i
)
) by the dynamic range MK. Subsequently, the least significant

bits with numbers less than N are discarded; see Equation (6).
Block h

(
X′, X′i

)
. This block calculates Hamming distances between the distorted num-

ber X′ and each modular projection X′i . It is implemented by (n – k) parallel comparisons of
the corresponding remainders of the distorted number X′ (the outputs of the block X′) and
the modular projection X′i (the outputs of the block

∣∣X′i ∣∣mj
). Subsequently, the mismatches

are counted by an n-operand adder.
Block XX (9). This block chooses a correct modular projection. It is implemented by

the conjunction of two comparisons: the modular projection X′i in the WNS (the output
of the block CRT: X′i ) is smaller than the dynamic range MK, and the Hamming distance
(the output of the block h

(
X′, X′i

)
) is not greater than the maximum multiplicity t of

errors corrected by the (n, k)-RRNS. The results for each thread (conjunctions for different
modular projections) are glued together into a Ct

n/2-bit number, and the number of the first
nonzero bit corresponds to the correct modular projection.

Block XX. This block outputs the correct number X in the WNS. It is implemented
by a Ct

n/2-input multiplexer with one control input. The common inputs are the modular
projections X′i in the WNS (the outputs of the block CRT: X′i ). The control input is the
number of the correct modular projection (the output of the block X (9)).

In the course of comparative analysis, we obtained data on the time and hardware
costs for correcting single and double errors in modular codes. We used the (2, 4)-RRNS
(single error) and (2, 6)-RRNS (double error) for numbers of different bit widths (4 bits,
8 bits, 16 bits, 24 bits, 32 bits, 48 bits, and 64 bits). The moduli sets, the time and hardware
costs for correcting single and double errors and restoring the number in the WNS using
the original modular projection method with MLD [19], and the modified one proposed in
this paper are presented in Appendix E (See, Tables A7 and A8).

Figure 3 shows the operating times of the methods depending on the bit width of
the numbers under correction for a single error (see, Figure 3a) and double errors (see,
Figure 3b).

According to Figure 3, the modified modular projection method with MLD proposed
in this dynamic is faster than the original method [19]. Based on the simulation results on
FPGA (see Appendix D), we conclude that the proposed method speeds up the procedure
of error correction and number restoration in the WNS by an average of 1.23 times (18%)
compared to the original approach [19]. On average, the modified modular projection
method with MLD requires 1.55 times (35%) more resources for single errors and 1.76 times
(43%) more resources for double errors.



Appl. Sci. 2022, 12, 463 13 of 29

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 28 
 

Block 𝑋𝑖
′ (6). This block calculates the modular projections 𝑋𝑖

′ in the WNS. It is imple-

mented by multiplying the weighted characteristic of the modular projection (the output 

of the block 𝐹(𝑋𝑖
′)) by the dynamic range 𝑀𝐾. Subsequently, the least significant bits with 

numbers less than 𝑁 are discarded; see Equation (6). 

Block ℎ(𝑋′, 𝑋𝑖
′). This block calculates Hamming distances between the distorted num-

ber 𝑋′ and each modular projection 𝑋𝑖
′. It is implemented by (𝑛 –  𝑘) parallel comparisons 

of the corresponding remainders of the distorted number 𝑋′ (the outputs of the block 𝑋′) 

and the modular projection 𝑋𝑖
′ (the outputs of the block |𝑋𝑖

′|𝑚𝑗
). Subsequently, the mis-

matches are counted by an 𝑛-operand adder. 

Block 𝑋X (9). This block chooses a correct modular projection. It is implemented by 

the conjunction of two comparisons: the modular projection 𝑋𝑖
′ in the WNS (the output of 

the block CRT: 𝑋𝑖
′) is smaller than the dynamic range 𝑀𝐾, and the Hamming distance (the 

output of the block ℎ(𝑋′, 𝑋𝑖
′)) is not greater than the maximum multiplicity 𝑡 of errors cor-

rected by the (𝑛, 𝑘)-RRNS. The results for each thread (conjunctions for different modular 

projections) are glued together into a 𝐶⌈𝑛/2⌉
𝑡 -bit number, and the number of the first non-

zero bit corresponds to the correct modular projection. 

Block 𝑋X. This block outputs the correct number 𝑋 in the WNS. It is implemented by 

a 𝐶⌈𝑛/2⌉
𝑡 -input multiplexer with one control input. The common inputs are the modular 

projections 𝑋𝑖
′ in the WNS (the outputs of the block CRT: 𝑋𝑖

′). The control input is the num-

ber of the correct modular projection (the output of the block 𝑋 (9)). 

In the course of comparative analysis, we obtained data on the time and hardware 

costs for correcting single and double errors in modular codes. We used the (2,4)-RRNS 

(single error) and (2,6)-RRNS (double error) for numbers of different bit widths (4 bits, 8 

bits, 16 bits, 24 bits, 32 bits, 48 bits, and 64 bits). The moduli sets, the time and hardware 

costs for correcting single and double errors and restoring the number in the WNS using 

the original modular projection method with MLD [19], and the modified one proposed 

in this paper are presented in Appendix E (See, Tables A7 and A8). 

Figure 3 shows the operating times of the methods depending on the bit width of the 

numbers under correction for a single error (see, Figure 3a) and double errors (see, Figure 

3b). 

  
(a) (b) 

Figure 3. Time to correct errors and restore numbers in WNS: (a) single error, (b) double error. 

According to Figure 3, the modified modular projection method with MLD proposed 

in this dynamic is faster than the original method [19]. Based on the simulation results on 

Figure 3. Time to correct errors and restore numbers in WNS: (a) single error, (b) double error.

6. Conclusions

Recovery weighted values of modular projections has high time complexity due to
computations on a large modulus. The paper proposes a method based on the use of
approximate positional characteristics and ranks of modular projections. The use of the
Chinese Remainder Theorem with fractions in the procedure for correcting errors and
recovery numbers in the weighted number system makes it possible to efficiently calculate
the rank of each of the modular projections. The ranks of modular projections are employed
to calculate the Hamming distances. This approach allows for parallelizing computations
at the levels of operations and computing blocks.

The simulation results on FPGA have demonstrated that the proposed modified
modular projection method with MLD speeds up the procedure of error correction and
number restoration in the weighted number system by an average of 18% compared to the
original method [19]. At the same time, it consumes many more hardware resources.

However, in further study, we are going to research the moduli set selection and the
possibility of applying the proposed method for error correction codes with the RNS special
moduli sets.
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Appendix A

Example A1. An RNS is given by a set of moduli m1 = 3, m2 = 5, and m3 = 11. It is required
to find the remainder on dividing the number X = (1, 4, 6) in this RNS by the modulus m4 = 7.
For ease of further consideration, note that X = 94 in the WNS.

Appendix A.1. Base Extension. Pre-Computation Stage

We obtain the constants for the moduli set {3, 5, 7}.
MK = m1m2m3 = 3 · 5 · 11 = 165.
We calculate the constants Bi by Equation (15):

B1 =
MK
m1

∣∣∣∣ m1

MK

∣∣∣∣
m1

=
165
3

∣∣∣∣ 3
165

∣∣∣∣
3
= 55 · 1 = 55,

B2 =
MK
m2

∣∣∣∣ m2

MK

∣∣∣∣
m2

=
165
5

∣∣∣∣ 5
165

∣∣∣∣
5
= 33 · 2 = 66,

B3 =
MK
m3

∣∣∣∣ m3

MK

∣∣∣∣
m3

=
165
11

∣∣∣∣ 11
165

∣∣∣∣
11

= 15 · 3 = 45.

Next, we calculate the constants for Equation (16):

|B1|m4
= |55|7 = 6, |B2|m4

= |66|7 = 3, |B3|m4
= |45|7 = 3, |−MK|m4

= |−165|7 = 3.

Finally, we calculate the constants necessary for finding the rank rX of X. According to (10),

k∗1 =
|m1/MK|m1

m1
=
|3/165|3

3
=

1
3

,

k∗2 =
|m2/MK|m2

m2
=
|5/165|5

5
=

2
5

,

k∗3 =
|m3/MK|m3

m3
=
|11/165|11

11
=

3
11

.

Appendix A.2. Base Extension. Computation Stage

Step 1. We obtain X(1)
m4 by Equation (17):

X(1)
m4 =

∣∣∣∑3
i=1|Bi|m4

xi

∣∣∣
m4

= |6 · 1 + 3 · 4 + 3 · 6|7 = 1.

Calculating the first term in Equation (16), we calculate the rank rX in parallel. According to
(10),

rX =
3

∑
i=1

k∗i xi =
1
3
· 1 + 2

5
· 4 + 3

11
· 6 = 3

94
165

= 3.

Using Equation (18), we find the second term X(2)
m4 in Equation (16):

X(2)
m4 =

∣∣∣rX · |−MK|m4

∣∣∣
m4

= |3 · 3|7 = 2.

Step 2. We calculate the desired remainder by Equation (19):

|X|m4
=
∣∣∣X(1)

m4 + X(2)
m4

∣∣∣
m4

= |1 + 2|7 = 3.



Appl. Sci. 2022, 12, 463 15 of 29

This value matches the remainder on dividing X = 94 by the modulus m4 = 7.
End of example.

Appendix B

Example A2. An (n, k)-RRNS, where n = 6 and k = 2, is given by a set of moduli {5, 7, 8, 9, 11, 13}.
It is required to find erroneous digits in the number X′ = (0, 3, 7, 6, 1, 2) and correct them (if any).
For ease of further consideration, note that the correct number is X = 15 = (0, 1, 7, 6, 4, 2), (The
number X′ contains a double error in the 2nd and 5th remainders).

The (6, 2)-RRNS can correct t = (n− k)/2 = r/2 = 2 errors.

Appendix B.1. Error Detection. Pre-Computation Stage

To detect an error, we have to restore the number X′ in the WNS and compare it with
the dynamic range MK or calculate the weighted characteristic F(X′) and compare it with the
corresponding weighted characteristic F(MK) of the dynamic range. To reduce calculations, we
detect errors using weighted characteristics yielded by the CRTf. We calculate all necessary constants
that can be pre-computed, saving them in memory (See, Table A1).

We calculate the dynamic and full ranges of this RRNS:

MK = 5·7 = 35, MN = 5·7·8·9·11·13 = 360360.

The constants for error detection (Equation (5)) are

k∗1 =
|m1/MN |m1

m1
=
|5/360360|5

5
=

3
5

,

k∗2 =
|m2/MN |m2

m2
=
|7/360360|7

7
=

4
7

,

k∗3 =
|m3/MN |m3

m3
=
|8/360360|8

8
=

5
8

,

k∗4 =
|m4/MN |m4

m4
=
|9/360360|9

9
=

8
9

,

k∗5 =
|m5/MN |m5

m5
=
|11/360360|11

11
=

6
11

,

k∗6 =
|m6/MN |m6

m6
=
|13/360360|13

13
=

10
13

.

According to Equation (4),

F(MK) =
MK
MN

=
35

360360
=

1
10296

.

Table A1. Pre-computed constants for error detection using CRTf.

{mi} {k*
i } F(MK)

{5, 7, 8, 9, 11, 13} {3/5, 4/7, 5/8, 8/9, 6/11, 10/13} 1/10296
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Appendix B.2. Error Detection. Computation Stage

According to Equation (5),

F(X′) =
∣∣∣∣ 6

∑
i=1

k∗i x′i

∣∣∣∣
1
=
∣∣∣ 3

5 · 0 +
4
7 · 3 +

5
8 · 7 +

8
9 · 6 +

6
11 · 1 +

10
13 · 2

∣∣∣
1
=

=
∣∣∣ 324481

24024

∣∣∣
1
= 12169

24024 ≥
1

10296 = F(MK).

Since F(X′) ≥ F(MK), the number X′ contains an error.

Appendix B.3. Error Localization and Correction. Pre-Computation Stage

To correct errors, we use the modified modular projection method with MLD. The projections
are constructed according to the algorithm [29]:

X′1,2 = (x1, x2, x3, x4, x5, x6),

X′3,4 = (x1, x2, x3, x4, x5, x6),

X′5,6 = (x1, x2, x3, x4, x5, x6).

We calculate constants for each modular projection, saving them in memory (See, Table A2).

Table A2. Pre-computed constants for each modular projection.

Modular Projection

X
′
1,2={0, 3} X

′
3,4={7, 6} X

′
5,6={1, 2}

1 Number i = 1, 2
j = 3, . . . , 6

i = 3, 4
j = 1, 2, 5, 6

i = 5, 6
j = 1, . . . , 4

2 {mi} {5, 7} {8, 9} {11, 13}
3 MK 35 72 143

4 F(MK), (MK = 35) 1 35/72 35/143

5
{

k∗i
}

{3/5, 3/7} {1/8, 8/9} {6/11, 6/13}
6 [{|Bi|mj

}] [{5, 7}, {3, 6}, {10, 4}, {8, 2}] [{4, 4}, {2, 1}, {9, 9}, {9, 12}] [{3, 1}, {1, 3}, {6, 2}, {6, 3}]

7 {|−MK |mj
} {5, 1, 9, 4} {3, 5, 5, 6} {2, 4, 1, 1}

The modular projection X′1,2 : {mi} = {m1, m2} = {5, 7}, MK = 5·7 = 35.
The weighted characteristic of the dynamic range MK for the projection is obtained by Equation (4):

F(35) = 35/MK = 35/35 = 1.

The constants for Equation (18) are

|−MK|m3
= |−35|8 = 5, |−MK|m4

= |−35|9 = 1,

|−MK|m5
= |−35|11 = 9, |−MK|m6

= |−35|13 = 4.

According to Equation (15),

B1 =
MK
m1

∣∣∣∣ m1

MK

∣∣∣∣
m1

=
35
5

∣∣∣∣ 5
35

∣∣∣∣
5
= 7 · 3 = 21,

B2 =
MK
m2

∣∣∣∣ m2

MK

∣∣∣∣
m2

=
35
7

∣∣∣∣ 7
35

∣∣∣∣
7
= 5 · 3 = 15.
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The constants for Equation (17) are

|B1|m3
= |21|8 = 5, |B1|m4

= |21|9 = 3, |B1|m5
= |21|11 = 10, |B1|m6

= |21|13 = 8,

|B2|m3
= |15|8 = 7, |B2|m4

= |15|9 = 6, |B2|m5
= |15|11 = 4, |B2|m6

= |15|13 = 2.

According to (11),

k∗1 =
|m1/MK|m1

m1
=
|5/35|5

5
=

3
5

,

k∗2 =
|m2/MK|m2

m2
=
|7/35|7

7
=

3
7

.

The modular projection X′3,4 : {mi} = {m3, m4} = {8, 9}, MK = 8·9 = 72.
The weighted characteristic of the dynamic range MK for the projection is obtained by

Equation (4):
F(35) = 35/MK = 35/72.

The constants for Equation (18) are

|−MK|m1
= |−72|5 = 3, |−MK|m2

= |−72|7 = 5,

|−MK|m5
= |−72|11 = 5, |−MK|m6

= |−72|13 = 6.

According to Equation (15),

B3 =
MK
m3

∣∣∣∣ m3

MK

∣∣∣∣
m3

=
72
8

∣∣∣∣ 8
72

∣∣∣∣
8
= 9 · 1 = 9,

B4 =
MK
m4

∣∣∣∣ m4

MK

∣∣∣∣
m4

=
72
9

∣∣∣∣ 9
72

∣∣∣∣
9
= 8 · 8 = 64.

The constants for Equation (17) are

|B3|m1
= |9|5 = 4, |B3|m2

= |9|7 = 2, |B3|m5
= |9|11 = 9, |B3|m6

= |9|13 = 9,

|B4|m1
= |64|5 = 4, |B4|m2

= |64|7 = 1, |B4|m5
= |64|11 = 9, |B4|m6

= |64|13 = 12.

According to (11),

k∗3 =
|m3/MK|m3

m3
=
|8/72|8

8
=

1
8

,

k∗4 =
|m4/MK|m4

m4
=
|9/72|9

9
=

8
9

.

The modular projection X′5,6 : {mi} = {m5, m6} = {11, 13}, MK = 11·13 = 143.
The weighted characteristic of the dynamic range MK for the projection is obtained by Equation

(4):
F(35) = 35/MK = 35/143.

The constants for Equation (18) are

|−MK|m1
= |−143|5 = 2, |−MK|m2

= |−143|7 = 4,

|−MK|m3
= |−143|8 = 1, |−MK|m4

= |−143|9 = 1.

According to Equation (15),

B5 =
MK
m5

∣∣∣∣ m5

MK

∣∣∣∣
m5

=
143
11

∣∣∣∣ 11
143

∣∣∣∣
11

= 13 · 6 = 78,
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B6 =
MK
m6

∣∣∣∣ m6

MK

∣∣∣∣
m6

=
143
13

∣∣∣∣ 13
143

∣∣∣∣
13

= 11 · 6 = 66.

The constants for Equation (17) are

|B5|m1
= |78|5 = 3, |B5|m2

= |78|7 = 1, |B5|m3
= |78|8 = 6, |B5|m4

= |78|9 = 6,

|B6|m1
= |66|5 = 1, |B6|m2

= |66|7 = 3, |B6|m3
= |66|8 = 2, |B6|m4

= |66|9 = 3.

According to (11),

k∗5 =
|m5/MK|m5

m5
=
|11/143|11

11
=

6
11

,

k∗6 =
|m6/MK|m6

m6
=
|13/143|13

13
=

6
13

.

Appendix B.4. Error Localization and Correction. Computation Stage

Step 1. We calculate the extended weighted characteristic for each modular projection (Equation
(11)) using the pre-computed constants from Table A2. The weighted characteristic and rank of
each modular projection are the fractional and integer parts, respectively, of the extended weighted
characteristic.

The modular projection X′1,2:

F′
(
X′1,2

)
=

3
5
· 0 + 3

7
· 3 = 1

2
7

,

F
(
X′1,2

)
=
∣∣F′(X′1,2

)∣∣
1 =

∣∣∣∣12
7

∣∣∣∣
1
=

2
7

, rX′1,2
= F′

(
X′1,2

)
= 1

2
7
= 1.

The modular projection X′3,4:

F′
(
X′3,4

)
=

1
8
· 7 + 8

9
· 6 = 6

5
24

,

F
(
X′3,4

)
=
∣∣F′(X′3,4

)∣∣
1 =

∣∣∣∣6 5
24

∣∣∣∣
1
=

5
24

, rX′3,4
= F′

(
X′3,4

)
= 6

5
24

= 6.

The modular projection X′5,6:

F′
(
X′5,6

)
=

6
11
· 1 + 6

13
· 2 = 1

67
143

,

F
(
X′5,6

)
=
∣∣F′(X′5,6

)∣∣
1 =

∣∣∣∣1 67
143

∣∣∣∣
1
=

67
143

, rX′5,6
= F′

(
X′5,6

)
= 1

67
143

= 1.

Step 2. We calculate the second terms for finding the missing remainders for each modular
projection (Equation (18)) using the constants from Table A2.

The modular projection X′1,2:

X′(2)1,2m3
= |1 · 5|8 = 5, X′(2)1,2m4

= |1 · 1|9 = 1,

X′(2)1,2m5
= |1 · 9|11 = 9, X′(2)1,2m6

= |1 · 4|13 = 4.

The modular projection X′3,4:

X′(2)3,4m1
= |6 · 3|5 = 3, X′(2)3,4m2

= |6 · 5|7 = 2,

X′(2)3,4m5
= |6 · 5|11 = 8, X′(2)3,4m6

= |6 · 6|13 = 10.
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The modular projection X′5,6:

X′(2)5,6m1
= |1 · 2|5 = 2, X′(2)5,6m2

= |1 · 4|7 = 4,

X′(2)5,6m3
= |1 · 1|8 = 1, X′(2)5,6m4

= |1 · 1|9 = 1.

We obtain the weighted representations of modular projections (Equation (4)) in parallel with
calculating the second terms.

The modular projection X′1,2:

X′1,2 = F
(
X′1,2

)
MK =

2
7
· 35 = 10.

The modular projection X′3,4:

X′3,4 = F
(
X′3,4

)
MK =

5
24
· 72 = 15.

The modular projection X′5,6:

X′5,6 = F
(
X′5,6

)
MK =

67
143
· 143 = 67.

Step (1–2). We calculate the first terms for finding the missing remainders for each modular
projection (Equation (17)) using the constants from Table A2. This is done in parallel with Steps
1–2.

The modular projection X′1,2:

X′(1)1,2m3
= |5 · 0 + 7 · 3|8 = 5, X′(1)1,2m4

= |3 · 0 + 6 · 3|9 = 0,

X′(1)1,2m5
= |10 · 0 + 4 · 3|11 = 1, X′(1)1,2m6

= |8 · 0 + 2 · 3|13 = 6.

The modular projection X′3,4:

X′(1)3,4m1
= |4 · 7 + 4 · 6|5 = 2, X′(1)3,4m2

= |2 · 7 + 1 · 6|7 = 6,

X′(1)3,4m5
= |9 · 7 + 9 · 6|11 = 7, X′(1)3,4m6

= |9 · 7 + 12 · 6|13 = 5.

The modular projection X′5,6:

X′(1)5,6m1
= |3 · 1 + 1 · 2|5 = 0, X′(1)5,6m2

= |1 · 1 + 3 · 2|7 = 0,

X′(1)5,6m3
= |6 · 1 + 2 · 2|8 = 2, X′(1)5,6m4

= |6 · 1 + 3 · 2|9 = 3.

Step 3. We calculate the missing remainders for each modular projection (Equation (19)).
The modular projection X′1,2:∣∣X′1,2

∣∣
m3

= |5 + 5|8 = 2,
∣∣X′1,2

∣∣
m4

= |0 + 1|9 = 1,∣∣X′1,2
∣∣
m5

= |1 + 9|11 = 10,
∣∣X′1,2

∣∣
m6

= |6 + 4|13 = 10.

The modular projection X′3,4:∣∣X′3,4
∣∣
m1

= |2 + 3|5 = 0,
∣∣X′3,4

∣∣
m2

= |6 + 2|7 = 1,∣∣X′3,4
∣∣
m5

= |7 + 8|11 = 4,
∣∣X′3,4

∣∣
m6

= |5 + 10|13 = 2.
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The modular projection X′5,6:∣∣X′5,6
∣∣
m1

= |0 + 2|5 = 2,
∣∣X′5,6

∣∣
m2

= |0 + 4|7 = 4,∣∣X′5,6
∣∣
m3

= |2 + 1|8 = 3,
∣∣X′5,6

∣∣
m4

= |3 + 1|9 = 4.

Step 4. We calculate the Hamming distances between each modular projection in the RRNS
and the distorted number (Equation (8)):

h
(
X′, X′1,2

)
= h

(
(0, 3, 7, 6, 1, 2)
(0, 3, 2, 1, 10, 10)

)
= 4,

h
(
X′, X′3,4

)
= h

(
(0, 3, 7, 6, 1, 2)
(0, 1, 7, 6, 4, 2)

)
= 2,

h
(
X′, X′5,6

)
= h

(
(0, 3, 7, 6, 1, 2)
(2, 4, 3, 4, 1, 2)

)
= 4.

Step 5. We choose a correct projection (See, Table A3).

Table A3. Computed modular projections and their characteristics.

Modular Projection

X
′
1,2=10 X

′
3,4=15 X

′
5,6=67

1 F
(
X′i
)

2/7 5/24 67/143

2 F(MK), (MK = 35 ) 1 35/72 35/143

3
(

x′i
)

(0,3,2,1,10,10) (0,1,7,6,4,2) (2,4,3,4,1,2)

4 (x′) (0,3,7,6,1,2) (0,3,7,6,1,2) (0,3,7,6,1,2)

5 h
(
X′, X′i

)
4 2 4

6 F
(
X′i
)
<

F(MK), (MK = 35)
Yes Yes No

7 h
(
X′, X′i

)
≤ t, (t = 2) No Yes No

Both correctness conditions (9) are satisfied for the modular projection X′3,4 only. Therefore,
the corrected number is X = X′3,4 = 15 = (0, 1, 7, 6, 4, 2), and the proposed error correction
method works properly.

End of example.

Appendix C

Example A3. An (n, k)-RRNS, where n = 6 and k = 2, is given by a set of moduli {5, 7, 8, 9, 11, 13}.
It is required to find erroneous digits in the number X′ = (0, 3, 7, 6, 1, 2) and correct them (if any).
For ease of further considerations, note that the correct number is X = 15 = (0, 1, 7, 6, 4, 2).
(The number X′contains a double error in the 2nd and 5th remainders.)

The(6, 2)-RRNS can correct t = (n− k)/2 = r/2 = 2 errors.

Appendix C.1. Error Detection. Pre-Computation Stage

To detect an error, we have to restore the number X′ in the WNS and compare it with
the dynamic range MK , or calculate the weighted characteristic F(X′) and compare it with the
corresponding weighted characteristic F(MK) of the dynamic range. To reduce calculations, we
detect errors using weighted characteristics yielded by the CRTf. We calculate all necessary constants
that can be precomputed, saving them in memory (See, Table A4). In the memory of the computing
device, the constants are stored in the binary representation. In this example, we use the decimal
representation for clarity.
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We calculate the dynamic and full ranges of this RRNS:

MK = 5·7 = 35(10) = 100011(2),

MN = 5·7·8·9·11·13 = 360360(10) = 1010111111110101000(2).

The constants for error detection (Equation (5)) are

N = log2

(
MK

6

∑
i=1

(mi − 1)

)
= log2 (35 · (4 + 6 + 7 + 8 + 10 + 12)) = 25,

k∗1 =
|m1/MN |m1

m1
· 2N =

|5/360360|5
5 · 225 = 3

5 · 225 = 20132660(10) =

= 1001100110011001100110100(2),

k∗2 =
|m2/MN |m2

m2
· 2N =

|7/360360|7
7 · 225 = 4

7 · 225 = 19173962(10) =

= 1001001001001001001001010(2),

k∗3 =
|m3/MN |m3

m3
· 2N =

|8/360360|8
8 · 225 = 5

8 · 225 = 20971520(10) =

= 1010000000000000000000000(2),

k∗4 =
|m4/MN |m4

m4
· 2N =

|9/360360|9
9 · 225 = 8

9 · 225 = 29826162(10) =

= 1110001110001110001110010(2),

k∗5 =
|m5/MN |m5

m5
· 2N =

|11/360360|11
11 · 225 = 6

11 · 225 = 18302418(10) =

= 1000101110100010111010010(2),

k∗6 =
|m6/MN |m6

m6
· 2N =

|13/360360|13
13 · 225 = 10

13 · 225 = 25811102(10) =

= 1100010011101100010011110(2).

The weighted characteristic of the dynamic range MK is obtained by Equation (6):

F(MK) =
MK
MN
· 2N =

35
360360

· 225 = 3259(10) = 110010111011(2).

Table A4. Pre-computed constants for error detection using CRTf.

{mi} {k*
i } F(MK)

{5, 7, 8, 9, 11, 13} {20132660, 19173962, 20971520,
29826162, 18302418, 25811102} 3259

Appendix C.2. Error Detection. Computation Stage

According to Equation (7),

F(X′) =
∣∣∣∣ 6

∑
i=1

k∗i x′i

∣∣∣∣
225

= |20132660 · 0 + 19173962 · 3 + 20971520 · 7 + 29826162 · 6+

+18302418 · 1 + 25811102 · 2|33554432 = 16996504(10) =

= 1000000110101100010011000(2).

F(X′) = 16996504 ≥ 3259 = F(MK).

Since F(X′) ≥ F(MK), the number X′ contains an error.
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Appendix C.3. Error Localization and Correction. Pre-Computation Stage

To correct errors, we use the modified modular projection method with MLD. The projections
are constructed according to the algorithm [29]:

X′1,2 = (x1, x2, x3, x4, x5, x6),

X′3,4 = (x1, x2, x3, x4, x5, x6),

X′5,6 = (x1, x2, x3, x4, x5, x6).

We calculate constants for each modular projection, saving them in memory (Table A5). In
the memory of the computing device, the constants are stored in the binary representation. In this
example, we use the decimal representation for clarity.

The modular projection X′1,2 : {mi} = {m1, m2} = {5, 7},

MK = 5·7 = 35(10) = 100011(2),

N = dlog2

(
MK ∑2

i=1(mi − 1)
)
e = dlog2(35 · (4 + 6))e = 9.

The weighted characteristic of the dynamic range MK for the projection is obtained by Equation
(6):

F(35) = d 35
MK
· 2Ne = d35

35
· 29e = 512(10) = 1000000000(2).

The constants for Equation (18) are

|−MK|m3
= |−35|8 = 5(10) = 101(2), |−MK|m4

= |−35|9 = 1(10) = 1(2),

|−MK|m5
= |−35|11 = 9(10) = 1001(2), |−MK|m6

= |−35|13 = 4(10) = 100(2).

According to Equation (15),

B1 =
MK
m1

∣∣∣∣ m1

MK

∣∣∣∣
m1

=
35
5

∣∣∣∣ 5
35

∣∣∣∣
5
= 7 · 3 = 21,

B2 =
MK
m2

∣∣∣∣ m2

MK

∣∣∣∣
m2

=
35
7

∣∣∣∣ 7
35

∣∣∣∣
7
= 5 · 3 = 15.

The constants for Equation (17) are

|B1|m3
= |21|8 = 5(10) = 101(2), |B2|m3

= |15|8 = 7(10) = 111(2),

|B1|m4
= |21|9 = 3(10) = 11(2), |B2|m4

= |15|9 = 6(10) = 110(2),

|B1|m5
= |21|11 = 10(10) = 1010(2), |B2|m5

= |15|11 = 4(10) = 100(2),

|B1|m6
= |21|13 = 8(10) = 1000(2), |B2|m6

= |15|13 = 2(10) = 10(2).

According to (12),

k∗1 = d
|m1/MK|m1

m1
· 2Ne = d |5/35|5

5
· 29e = d3

5
· 29e = 308(10) = 100110100(2),

k∗2 = d
|m2/MK|m2

m2
· 2Ne = d |7/35|7

7
· 29e = d3

7
· 29e = 220(10) = 11011100(2).

The modular projection X′3,4 : {mi} = {m3, m4} = {8, 9},

MK = 8·9 = 72,

N = dlog2 (MK ∑2
i=1 (mi − 1))e = dlog2 (35 · (7 + 8))e = 11.
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The weighted characteristic of the dynamic range MK for the projection is obtained by
Equation (6):

F(35) = d 35
MK
· 2Ne = d35

72
· 211e = 996(10) = 1111100100(2).

The constants for Equation (18) are

|−MK|m1
= |−72|5 = 3(10) = 11(2), |−MK|m2

= |−72|7 = 5(10) = 101(2),

|−MK|m5
= |−72|11 = 5(10) = 101(2), |−MK|m6

= |−72|13 = 6(10) = 110(2).

According to Equation (15),

B3 =
MK
m3

∣∣∣∣ m3

MK

∣∣∣∣
m3

=
72
8

∣∣∣∣ 8
72

∣∣∣∣
8
= 9 · 1 = 9,

B4 =
MK
m4

∣∣∣∣ m4

MK

∣∣∣∣
m4

=
72
9

∣∣∣∣ 9
72

∣∣∣∣
9
= 8 · 8 = 64.

The constants for Equation (17) are

|B3|m1
= |9|5 = 4(10) = 100(2), |B4|m1

= |64|5 = 4(10) = 100(2),

|B3|m2
= |9|7 = 2(10) = 10(2), |B4|m2

= |64|7 = 1(10) = 1(2),

|B3|m5
= |9|11 = 9(10) = 1001(2), |B4|m5

= |64|11 = 9(10) = 1001(2),

|B3|m6
= |9|13 = 9(10) = 1001(2), |B4|m6

= |64|13 = 12(10) = 1100(2).

According to (12),

k∗3 = d
|m3/MK|m3

m3
· 2Ne = d |8/72|8

8
· 211e = d1

8
· 211e = 256(10) = 100000000(2),

k∗4 = d
|m4/MK|m4

m4
· 2Ne = d |9/72|9

9
· 211e = d8

9
· 211e = 1821(10) = 11100011101(2).

The modular projection X′5,6 : {mi} = {m5, m6} = {11, 13},

MK = 11·13 = 143,

N = dlog2 (MK ∑2
i=1(mi − 1))e = dlog2 (35 · (10 + 12))e = 12.

The weighted characteristic of the dynamic range MK for the projection is obtained by
Equation (6):

F(35) = d 35
MK
· 2Ne = d 35

143
· 212e = 1003(10) = 1111101011(2).

The constants for Equation (18) are

|−MK|m1
= |−143|5 = 2(10) = 10(2), |−MK|m2

= |−143|7 = 4(10) = 100(2),

|−MK|m3
= |−143|8 = 1(10) = 1(2), |−MK|m4

= |−143|9 = 1(10) = 1(2).

According to Equation (15),

B5 =
MK
m5

∣∣∣∣ m5

MK

∣∣∣∣
m5

=
143
11

∣∣∣∣ 11
143

∣∣∣∣
11

= 13 · 6 = 78,
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B6 =
MK
m6

∣∣∣∣ m6

MK

∣∣∣∣
m6

=
143
13

∣∣∣∣ 13
143

∣∣∣∣
13

= 11 · 6 = 66.

The constants for Equation (17) are

|B5|m1
= |78|5 = 3(10) = 11(2), |B6|m1

= |66|5 = 1(10) = 1(2),

|B5|m2
= |78|7 = 1(10) = 1(2), |B6|m2

= |66|7 = 3(10) = 11(2),

|B5|m3
= |78|8 = 6(10) = 110(2), |B6|m3

= |66|8 = 2(10) = 10(2),

|B5|m4
= |78|9 = 6(10) = 110(2), |B6|m4

= |66|9 = 3(10) = 11(2).

According to (12),

k∗5 = d
|m5/MK|m5

m5
· 2Ne = d |11/143|11

11
· 212e = d 6

11
· 212e = 2235(10) = 100010111011(2),

k∗6 = d
|m6/MK|m6

m6
· 2Ne = d |13/143|13

13
· 212e = d 6

13
· 211e = 1891(10) = 11101100011(2)

Appendix C.4. Error Localization and Correction. Computation Stage

Step 1. We calculate the extended weighted characteristic for each modular projection (Equation (12))
using the pre-computed constants from Table A5. The positional characteristic and rank of each
modular projection are given by Equations (13) and (14), respectively.

Table A5. Pre-computed constants for each modular projection.

Modular Projection

X
′
1,2={0, 3} X

′
3,4={7, 6} X

′
5,6={1, 2}

1 Number i = 1, . . . , 2
j = 3, . . . , 6

i = 3, 4
j = 1, 2, 5, 6

i = 5, 6,
j = 1, . . . , 4

2 {mi} {5, 7} {8, 9} {11, 13}
3 N 9 11 12

4 MK 35 72 143

5 F(MK), (MK = 35) 512 996 1003

6
{

k∗i
}

{308, 220} {256, 1821} {2235, 1891}
7 [{|Bi|mj

}] [{5, 7}, {3, 6}, {10, 4}, {8, 2}][{4, 4}, {2, 1}, {9, 9}, {9, 12}][{3, 1}, {1, 3}, {6, 2}, {6, 3}]

8 {|−MK |mj
} {5, 1, 9, 4} {3, 5, 5, 6} {2, 4, 1, 1}

The modular projection X′1,2:

F′
(

X′1,2

)
= 308 · 0 + 220 · 3 = 660(10) = 1010010100(2),

F
(

X′1,2

)
= F′(X′1,2)[N−1..0]

= 1010010100[8..0] = 010010100(2) = 148(10),

rX′1,2
= F′(X′1,2)[Length(F′(X′1,2))−1..N]

= 1010010100[9..9] = 1(2) = 1(10).

The modular projection X′3,4:

F′
(
X′3,4

)
= 256 · 7 + 1821 · 6 = 12718(10) = 11000110101110(2),

F
(
X′3,4

)
= F′(X′3,4)[N−1..0] = 11000110101110[10..0] = 00110101110(2) = 430(10),



Appl. Sci. 2022, 12, 463 25 of 29

rX′3,4
= F′(X′3,4)[Length(F′(X′3,4))−1..N]

= 11000110101110[13..11] = 110(2) = 6(10)

The modular projection X′5,6:

F′
(
X′5,6

)
= 2235 · 1 + 1891 · 2 = 6017(10) = 1011110000001(2),

F
(
X′5,6

)
= F′(X′5,6)[N−1..0] = 1011110000001[11..0] = 011110000001(2) = 1921(10),

rX′5,6
= F′(X′5,6)[Length(F′(X′5,6))−1..N]

= 1011110000001[12..12] = 1(2) = 1(10).

Step 2. We calculate the second terms for finding the missing remainders for each modular
projection (Equation (18)) using the constants from Table A5.

The modular projection X′1,2:

X′(2)1,2m3
= |1 · 5|8 = 5(10) = 101(2), X′(2)1,2m4

= |1 · 1|9 = 1(10) = 1(2),

X′(2)1,2m5
= |1 · 9|11 = 9(10) = 1001(2), X′(2)1,2m6

= |1 · 4|13 = 4(10) = 100(2).

The modular projection X′3,4:

X′(2)3,4m1
= |6 · 3|5 = 3(10) = 11(2), X′(2)3,4m2

= |6 · 5|7 = 2(10) = 10(2),

X′(2)3,4m5
= |6 · 5|11 = 8(10) = 1000(2), X′(2)3,4m6

= |6 · 6|13 = 10(10) = 1010(2).

The modular projection X′5,6:

X′(2)5,6m1
= |1 · 2|5 = 2(10) = 10(2), X′(2)5,6m2

= |1 · 4|7 = 4(10) = 100(2),

X′(2)5,6m3
= |1 · 1|8 = 1(10) = 1(2), X′(2)5,6m4

= |1 · 1|9 = 1(10) = 1(2).

We obtain the weighted representations of modular projections (Equation (6)) in parallel with
calculating the second terms. Note that in Equation (6), division by 2N , followed by rounding down,
is implemented by simply discarding the last N digits in the binary representation.

The modular projection X′1,2:

X′1,2 = d
F
(

X′1,2

)
MK

2N e = d148 · 35
29 e = 10.

The modular projection X′3,4:

X′3,4 = d
F
(

X′3,4

)
MK

2N e = d430 · 72
211 e = 15.

The modular projection X′5,6:

X′5,6 = d
F
(

X′5,6

)
MK

2N e = d1921 · 143
212 e = 67.

Steps (1–2). We calculate the first terms for finding the missing remainders for each modular
projection (Equation (17)) using the constants from Table A5. This is done in parallel with Steps
1–2.

The modular projection X′1,2:

X′(1)1,2m3
= |5 · 0 + 7 · 3|8 = 5(10) = 101(2), X′(1)1,2m4

= |3 · 0 + 6 · 3|9 = 0(10) = 0(2),
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X′(1)1,2m5
= |10 · 0 + 4 · 3|11 = 1(10) = 1(2), X′(1)1,2m6

= |8 · 0 + 2 · 3|13 = 6(10) = 110(2).

The modular projection X′3,4:

X′(1)3,4m1
= |4 · 7 + 4 · 6|5 = 2(10) = 10(2), X′(1)3,4m2

= |2 · 7 + 1 · 6|7 = 6(10) = 110(2),

X′(1)3,4m5
= |9 · 7 + 9 · 6|11 = 7(10) = 111(2), X′(1)3,4m6

= |9 · 7 + 12 · 6|13 = 5(10) = 101(2).

The modular projection X′5,6:

X′(1)5,6m1
= |3 · 1 + 1 · 2|5 = 0(10) = 0(2), X′(1)5,6m2

= |1 · 1 + 3 · 2|7 = 0(10) = 0(2),

X′(1)5,6m3
= |6 · 1 + 2 · 2|8 = 2(10) = 10(2), X′(1)5,6m4

= |6 · 1 + 3 · 2|9 = 3(10) = 11(2).

Step 3. We calculate the missing remainders for each modular projection (Equation (19)).
The modular projection X′1,2:∣∣X′1,2

∣∣
m3

= |5 + 5|8 = 2(10) = 10(2),
∣∣X′1,2

∣∣
m4

= |0 + 1|9 = 1(10) = 1(2),∣∣X′1,2
∣∣
m5

= |1 + 9|11 = 10(10) = 1010(2),
∣∣X′1,2

∣∣
m6

= |6 + 4|13 = 10(10) = 1010(2).

The modular projection X′3,4:∣∣X′3,4
∣∣
m1

= |2 + 3|5 = 0(10) = 0(2),
∣∣X′3,4

∣∣
m2

= |6 + 2|7 = 1(10) = 1(2),∣∣X′3,4
∣∣
m5

= |7 + 8|11 = 4(10) = 100(2),
∣∣X′3,4

∣∣
m6

= |5 + 10|13 = 2(10) = 10(2).

The modular projection X′5,6:∣∣X′5,6
∣∣
m1

= |0 + 2|5 = 2(10) = 10(2),
∣∣X′5,6

∣∣
m2

= |0 + 4|7 = 4(10) = 100(2),∣∣X′5,6
∣∣
m3

= |2 + 1|8 = 3(10) = 11(2),
∣∣X′5,6

∣∣
m4

= |3 + 1|9 = 4(10) = 100(2).

Step 4. We calculate the Hamming distances between each modular projection in the RRNS
and the distorted number (Equation (8)):

h
(
X′, X′1,2

)
= h

(
(0, 3, 7, 6, 1, 2)
(0, 3, 2, 1, 10, 10)

)
= 4,

h
(
X′, X′3,4

)
= h

(
(0, 3, 7, 6, 1, 2)
(0, 1, 7, 6, 4, 2)

)
= 2,

h
(
X′, X′5,6

)
= h

(
(0, 3, 7, 6, 1, 2)
(2, 4, 3, 4, 1, 2)

)
= 4.

Step 5. We choose a correct projection (See, Table A6).
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Table A6. Computed modular projections and their characteristics.

Modular Projection

X
′
1,2=10 X

′
3,4=15 X

′
5,6=67

1 F
(
X′i
)

148 430 1921

2 F(MK), (MK = 35 ) 512 996 1003

3
(

x′i
)

(0,3,2,1,10,10) (0,1,7,6,4,2) (2,4,3,4,1,2)

4 (x′) (0,3,7,6,1,2) (0,3,7,6,1,2) (0,3,7,6,1,2)

5 h
(
X′, X′i

)
4 2 4

6 F
(
X′i
)
< F(MK),

(MK = 35)
Yes Yes No

7 h
(
X′, X′i

)
≤ t, (t = 2) No Yes No

Both correctness conditions (9) are satisfied for the modular projection X′3,4 only. Therefore,
the corrected number is X = X′3,4 = 15 = (0, 1, 7, 6, 4, 2), and the proposed error correction
method works properly.

End of example.

Appendix D

Original Modular Projection Method with MLD

Block X′X′. When an error is detected, this block receives at the input n remainders
representing the distorted number X′ in the (n, k)-RRNS.

Block X′iX
′. This block constructs modular projections. It is implemented in Ct

n/2
parallel computational threads, where t = (n− k)/2. Each thread corresponds to a modular
projection and receives at the input k remainders of the distorted number X′ (the outputs
of the block X′) obtained by the modular projection algorithm [29].

Block CRT: X′i . This block calculates the modular projections X′i in the WNS. According
to the CRT, it is implemented by k parallel multiplications of the remainders (the outputs of
the block X′i ) by constants modulo M and a k-operand modulo adder [31].

Block
∣∣X′i ∣∣mj

. This block calculates the missing remainders for each modular projection

X′i . It is implemented by (n – k) parallel computations of the remainders of the division of
the number X′i (the output of the block CTR: X′i ) by the missing moduli [30].

Block h
(
X′, X′i

)
. This block calculates Hamming distances between the distorted

number X′ and each modular projection X′i . It is implemented by (n – k) parallel com-
parisons of the corresponding remainders of the distorted number X′ (the outputs of the
block X′) and the modular projection X′i (the outputs of the block

∣∣X′i ∣∣mj
). Subsequently,

the mismatches are counted by an n-operand adder.
Block X (9). This block chooses a correct modular projection. It is implemented by

the conjunction of two comparisons: the modular projection X′i in the WNS (the output
of the block CRT: X′i ) is smaller than the dynamic range MK, and the Hamming distance
(the output of the block h

(
X′, X′i

)
) is not greater than the maximum multiplicity t of

errors corrected by the (n, k)-RRNS. The results for each thread (conjunctions for different
modular projections) are glued together into a Ct

n/2-bit number, and the number of the first
nonzero bit corresponds to the correct modular projection.

Block X. This block outputs the correct number X in the WNS. It is implemented
by a Ct

n/2-input multiplexer with one control input. The common inputs are the modular
projections X′i in the WNS (the outputs of the block CRT: X′i ). The control input is the
number of the correct modular projection (the output of the block X (9)).
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Appendix E

Table A7. Hardware and time costs for correcting single errors and restoring numbers in WNS.

Bit
Width (2,4)-RRNS Original Modular Projection Method with MLD [19] Modified Modular Projection Method with MLD

LUT Delay, ns LUT Delay, ns

1 4 {5, 7, 8, 9} 45 9.012 84 9.079

2 8 {16, 17, 19, 21} 108 13.459 161 10.853

3 16 {256, 257, 259, 261} 323 23.428 480 18.709

4 24 {4096, 4097, 4099, 4101} 601 26.173 996 21.803

5 32 {65536, 65537, 65539, 65541} 998 34.677 1526 25.305

6 48 {16777216, 16777217,
16777219, 16777221} 1932 41.042 2698 32.047

7 64 {4294967296, 4294967297,
4294967299, 4294967301} 3304 53.05 4606 40.942

Table A8. Hardware and time costs for correcting double errors and restoring numbers in WNS.

Bit
Width (2,6)-RRNS Original Modular Projection Method with MLD [19] Modified Modular Projection Method with MLD

LUT Delay, ns LUT Delay, ns

1 4 {5, 7, 8, 9, 11, 13} 145 10.961 251 10.751

2 8 {16, 17, 19, 21, 23, 25} 277 14.963 464 12.467

3 16 {256, 257, 259, 261, 263, 265} 811 25.261 1414 21.744

4 24 {4096, 4097, 4099,4101, 4103,
4105} 1612 30.616 3154 25.092

5 32 {65536, 65537, 65539,65541,
65543, 65545} 2633 39.965 4960 30.23

6 48 {16777216,16777217,16777219,16777221,
16777223, 16777225} 5309 48.673 9048 37.962

7 64
{4294967296, 4294967297,
4294967299, 4294967301,
4294967303, 4294967305}

9102 58.294 14709 43.015
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