
����������
�������

Citation: Ponce, V.; Abdulrazak, B.

Context-Aware End-User

Development Review. Appl. Sci. 2022,

12, 479. https://doi.org/10.3390/

app12010479

Academic Editor: Byung-Gyu Kim

Received: 8 November 2021

Accepted: 16 December 2021

Published: 4 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Review

Context-Aware End-User Development Review
Victor Ponce * and Bessam Abdulrazak

Ambient Intelligence Laboratory (AMI-Lab), Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
Bessam.Abdulrazak@USherbrooke.ca
* Correspondence: Victor.Ponce@USherbrooke.ca

Abstract: Context-aware application development frameworks enable context management and
environment adaptation to automatize people’s activities. New technologies such as 5G and the
Internet of Things (IoT) increase environment context (from devices/services), making functionalities
available to augment context-aware applications. The result is an increased deployment of context-
aware applications to support end-users in everyday activities. However, developing applications in
context-aware frameworks involve diverse technologies, so that it traditionally involves software
experts. In general, context-aware applications are limited in terms of personalization for end-
users. They include configurations to personalize applications, but non-software experts can only
change some of these configurations. Nowadays, advances in human–computer interaction provide
techniques/metaphors to approach non-software experts. One approach is end-user development
(EUD)—a set of activities and development tools that considers non-software experts as application
builders. In this paper, we present our analysis of existing EUD approaches for building context-aware
applications. We present a literature review of 37 screened papers obtained from research databases.
This review aims to identify the methods, techniques, and tools proposed to build context-aware
applications. Specifically, we reviewed EUD building techniques and implementations. Building
techniques include metaphors/interaction styles proposed for application specification, composition,
and testing. The implementations include a specification method to integrate and process context on
the target application platforms. We also present the adoption trend and challenges of context-aware
end-user development.

Keywords: context-aware; end-user development; literature review; metaphor; interaction style

1. Introduction

Internet of Things (IoT) and ubiquitous applications add context-aware techniques to
accomplish the desired adaptation given the rapidly growing data produced by different
resources (e.g., sensors, services, events) [1]. Traditionally, context-awareness considers end-
users (i.e., non-technical people) as receivers of computational services through applications;
and software experts (i.e., technical people) as enablers. However, the huge amount
of data produced by the flooding of resources increases end-users cognitive load. The
end-users are manipulating diverse technologies and smart devices, which increases the
elements on which users have to decide. An essential aspect of context-aware systems is
to provide mechanisms to augment the transparency [2,3] while decreasing the cognitive
load associated with using the system. One dimension of this load is linked to application
development and can be handled by improving the usability of application building tools.

Nowadays, building tools are not the only target for software experts; they empower
end-users to build/personalize applications by themselves. Thereby, end-users achieve
their goals when a building tool’s outcome is an application that represents their inten-
tions [4]. A primary challenge is improving usability while applying software concepts to
guide application development [5,6]. The usability targets comprehensible representations
and proper human–computer interaction, such as adopting interface metaphors. Applying
software concepts involves introducing techniques into existing users’ workflow, managing

Appl. Sci. 2022, 12, 479. https://doi.org/10.3390/app12010479 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12010479
https://doi.org/10.3390/app12010479
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4818-5935
https://orcid.org/0000-0002-5468-0190
https://doi.org/10.3390/app12010479
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12010479?type=check_update&version=2

Appl. Sci. 2022, 12, 479 2 of 29

the unplanned, implicit, opportunistic, instinctive, and self-priority user intents [7]. An-
other challenge is to include advanced methods (e.g., machine learning) and cooperative
work into application building tools [8].

Diverse solutions in the literature propose usable/useful building tools to empower
non-software experts (Section 2). Recent application building tools adopt End-User Pro-
gramming (EUP), End-User Development (EUD), and End-User Software Engineering
(EUSE) for gathering intents and support development [4,6,9]. These EUP, EUD, and EUSE
are three fields applied to development tools and are active research topics [9]:

• EUP’s central aspect is that programmers build a solution rather than a program [7]
(e.g., a spreadsheet solution (i.e., a program) for managing the expenses).

• EUD incorporates methods, techniques, and tools that allow end-users to create,
modify, or extend software artifacts [8]. It complements EUP with additional aspects
such as testing, debugging, reusing, and sharing artifacts.

• EUSE addresses software quality aspects [7]. It adds systematic and disciplined
activities for application development.

We have conducted a literature review to analyze context-aware end-user develop-
ment, i.e., how application building tools support creating context-aware applications. We
applied EUP/EUD/EUSE concepts to guide our review that aims to answer the following
research questions:

1. What building techniques are applied to develop context-aware applications by end-
users. Building techniques include metaphors/interaction styles (e.g., programming
by demonstration) proposed for application specification, composition, and testing.

2. What are the development tools’ implementation approaches? The development
tool implementations include a description of the method (e.g., machine learning) to
integrate, compose, and process context.

We queried research databases selecting 37 relevant papers after screening based on
inclusion criteria. Then, we classified the research outcome based on the application build-
ing techniques and analyzed tool implementation methods to get insights and challenges
of how the tools integrate context to enhance context-aware processes.

The paper is structured as follows: In Section 2, we introduce the main aspects of EUP,
EUD, and EUSE applied to develop context-aware applications. Section 3 details the review
method that we applied for the study. Section 4 describes the outcome of the review related
to the application building techniques. Section 5 examines tool implementations, with
limitations and challenges given by the applied techniques and development/deployment
platforms. Finally, we present the conclusions of the review in Section 6.

2. Background: End-User Developing Context-Aware Applications

End-users perceive applications’ usefulness to meet their requirements (e.g., motives,
goals, preferences, needs). To better meet end-user requirements, software developers incor-
porate user information represented in profile/preferences. Then, computers can correlate
individual attributes and available computer services. However, the requirements can vary,
and computers must adapt to the variations, e.g., a sick end-user temporarily changes a
usual activity for resting. A significant aspect of managing varying user requirements is
to empower end-users (non-technical people) rather than software experts (i.e., technical
people). End-users are aware of what they need and can directly express their requirements
to improve computer service provision.

In this section, we introduce relevant mechanisms applied to empower end-users in
building applications. They refer to requirement elicitation, development, and running of
applications. Then, we present the involvement of end-user in developing
context-aware applications.

Appl. Sci. 2022, 12, 479 3 of 29

2.1. End Users as Application Builders

Using end-user building tools supplement the traditional programming style (i.e.,
programming with text based on a language) and text-based conventions (e.g., source
code indentation). Various end-user building tools incorporate intuitive programming
styles (e.g., visual programming languages) and metaphors (e.g., spreadsheet), facilitating
requirement elicitation and application development. For example, end-users can create
applications using spreadsheets (e.g., OpenOffice Calc) without writing source code. Users
can also reuse and share spreadsheet applications; then, other users can improve these
applications. Table 1 lists examples of end-user tools and their programming interac-
tion styles/metaphors we found in the literature [6,9]. The table shows how end-user
building tools can be augmented, e.g., combining spreadsheets with other development
styles/metaphors to improve usability.

Table 1. Examples of end-user development tools.

Programming Interaction Style/Metaphor Description or Examples

Based on language GUI for programming languages, scripts, extended annotation or
parameterization, natural language processing

Based on spreadsheet Microsoft Excel, OpenOffice/LibreOffice Calc

Programming by demonstration (or similar,
e.g., by example, by teaching, by an

animation, by a game)

The user “gives” or “shows” the system a reference of the desired behavior (e.g., a
prototype, a set of actions). Examples: Stagecast creator, Toontalk

Based on math/specification GUI for formulas, formal methods, specification language

Visual programming language

LabView, Web Mashups
App Inventor (http://appinventor.mit.edu, accessed on 1 November 2021)

Scratch (https://scratch.mit.edu, accessed on 1 November 2021)
Modkit (http://www.modkit.com, accessed on 1 November 2021)

Rule-based GUI for rules, e.g., IFTTT (https://ifttt.com, accessed on 1 November 2021)

Combination of styles/metaphors

Forms/3 (Visual and Spreadsheet styles)
NaturalMash (Visual and natural language processing styles)

Excel macros (Visual, Programming by example and script styles)
Web design tools such as Dreamweaver (Visual and HTML languages styles)

Node-RED (https://nodered.org, accessed on 1 November 2021) (Visual
programming and GUI to add/edit source code)

We adopted End-User Development (EUD) to guide our review. EUD is an approach
that aims to empower end-users to build and manipulate applications. EUD subsumes
End-user programming (EUP), and both target programming tasks with easy-to-use and
easy-to-understand tools [8]. The amount of research in EUD has been increasing through
the years [10] since end-user development introduces the advantage of capitalizing on
users’ knowledge of their requirements, enhancing the development process. Furthermore,
researchers also promote end-user software engineering (EUSE) to help non-technical
people. EUSE incorporates traditional software engineering methods to EUD [7]. An
important consideration from software engineering is the Quality of Software materialized
as functional correctness given by users, who know their intentions [4]. However, because
people’s activities/behavior change, EUSE is characterized by fuzzy, unplanned, implicit,
overconfident, and opportunistic intents. Thus, EUD/EUSE is still a challenge for trending
technologies in each step of the application lifecycle [6,7,11]. Table 2 summarizes the
EUD/EUSE adoption in the application lifecycle with their challenges, which supported
our analysis of end-user building tools and methods for context-aware applications.

http://appinventor.mit.edu
https://scratch.mit.edu
http://www.modkit.com
https://ifttt.com
https://nodered.org

Appl. Sci. 2022, 12, 479 4 of 29

Table 2. EUD/EUSE challenges.

Step Description/Progress Challenges for Context-Aware
Applications

Requirement
elicitation

End-users are imprecise in what they want or what they need to
do. Existing approaches consider:

(1) Decrease imprecision by asking (a system then explains
behaviors).

(2) Similarly, all debugging strategies help when developers
refine requirements.

Providing an iterative development with
a proper methodology to relate other

development steps such as design
and debug.

Design/
creation

Visual design patterns such as What You See Is What You Get
(WYSIWYG) for direct manipulation and immediate feedback.
Techniques to complement design:

(1) Waiting for external suggestion/improvement,
(2) Provide suggestions (e.g., expert system or combinatorial

options),
(3) Provide peer suggestions (e.g., search inside an

organization),
(4) Searches from meta-design [12] (i.e., design for designers

[13]) or repositories (e.g., community).

Adapting from traditional software
engineering, e.g., design patterns to

visual design patterns. With the flooding
of smart objects, a new challenge is

manipulating the changing context for
applications’ design/creation.

Reuse/
collaboration

Facilitates problem-solving due to social creativity, but it is a
critical part of quality because of error propagation.
Support searching in repositories (e.g., by interest), assisting
end-users in finding (deciding) appropriate reusable
components.

Adapting for heterogeneous end-users
with diverse backgrounds (e.g., domain

experts, children).

Verification and
validation

Verification by immediate feedback (e.g., by visualization). UI is
the current validation method, including visual/tangible hints
such as colors, arrows, vibrations. E.g., What You See Is What
You Test (WYSIWYT [14])—an approach for systematic testing
in spreadsheets.
Likewise, WYSIWYT/ML [15] introduces Machine Learning
(ML) to predict and prioritize software parts to test, enhance
measuring coverage, and facilitate monitoring changes.

Verifying/validating applications with
appropriate inputs in pervasive

computing where smart sensors/objects
are diverse in values, format, e.g., the

temperature in ◦C/F.

Debugging

Adaptations from traditional software engineering include
insert prints (continuing executions) and assertions (halting
executions when false), and trigger debugging options.
Advanced techniques include

(1) reasoning backward on executed events/interactions, e.g.,
issue asking-explain;

(2) time-traveling debugger, modifying values, pausing,
rewinding, and replaying events.

Real-time debugging and debugging
dynamic context, e.g., in multiple

environments through a city.

Adaptation

Existing approaches consider:

(1) connections, with fixed integration (e.g., copy/paste
based on a standard data structure) and soft integration
(e.g., scripts, macros),

(2) implicit coupling defined by the end-user,
(3) communication to external entities, e.g., a database,
(4) augment/change functionality, e.g., extend trusted

Bluetooth devices.

Providing an appropriate integration and
extension due to the diversity of

resources in ubiquitous technologies.

Deploy

Traditional tools consider fixed adaptation when deployed
using parameterization and templates. They apply diverse
interaction styles, e.g., (a) direct manipulation using preference
forms, wizards, zoom level, color buttons, (b) language using
macros, annotations, voice, scripting, natural language.

A challenge is introducing a
context-aware adaptation, e.g., to adapt

without user intervention.

Appl. Sci. 2022, 12, 479 5 of 29

2.2. Context and Context-Awareness

Enabling technologies, resources, and services for context-aware applications is
diverse—all physical or virtual things could be regarded as context [16]. Ubiquitous tech-
nologies and IoT increase ambient computational capabilities, making even more resources
and services available for applications [17]. Relevant to user and application interaction,
context is any information used to characterize the situation of an entity (entity is a person,
a place, an object, or an application) [18], including the characteristics of the entity and
application’s domain [19]. In autonomic computing, entities also represent the self as
context, working with locally accessible information that includes their settings, operations,
and semantics [20]. Computational systems represent the context through context man-
agement processes when the context is available. The system then applies different data
processing and reasoning techniques, providing adaptation (e.g., ambient digital support)
through context-awareness.

Context-awareness produces a reaction or pro-action based on the context gathered
from the self-system and the environment; or integrating knowledge from the entities; the
awareness interprets synchronous, asynchronous, situation-based, and social-based infor-
mation changes. Schilit and Theimer introduced context-aware computing as a capability
of the applications to discover and react based on variation in the environment [21]. Dey
and Abowd extended the scope of awareness, highlighting the context’s significance, where
information and services are relevant to the user’s task [22]. Roy et al. considered the scope
of context-aware agents’ mission performing their micro assessments [16].

Due to the diversity of resources in environments and available technologies, new tech-
niques/metaphors are available to approach non-software experts to develop context-aware
applications. This review regards context as a digital representation of real conditions, con-
sidering internal and external system aspects that provide features for context-awareness.

2.3. Context-Aware Application Development Involving End Users

End-user empowering for application/service development has been a goal in perva-
sive computing [23]. An approach is to focus on end-users and involve them in the applica-
tion design process [24]. User-centered design/development (UCD) is an applied frame-
work to involve end-users in context-aware application development [25,26]. However,
modeling context (and mainly user activities) using UCD is challenging because the activity
context is dynamic, implicating unfeasible management of the design/implementation
(e.g., modeling all user activities). Likewise, testing is critical because it is challenging to
consider all users and situations’ contexts.

To overcome the complexity of involving end-users in the application design pro-
cess, context-aware application development targets end-users as application builders.
A first approach is to model user and situation profiles and allow end-users to change
fixed configurations. For example, the design of activity models regarding limited user
profile/environment and fixed activities [19,27]. The disadvantage is that this approach
restricts end-users to the available parameters for personalization.

Another approach is programming frameworks: mobile computing’s progress also
provides solutions that assist end-users in building applications. Emerging frameworks
simplify complex application development, including visual programming and techniques,
e.g., Apache Cordova [28] enables mobile web application development for various mo-
bile platforms. Through plugins, it allows for managing the context of devices and in-
tegrates external services. Others are platform-specific or purpose-specific frameworks,
e.g., App Inventor [29] facilitates application development for non-technological expert
users. Modkit [30] uses Scratch [31,32] for Arduino [33] (Arduino is an open-source elec-
tronics platform. It allows integrating sensors and actuators by coupling boards) to build
interactive hardware projects without advanced hardware programming knowledge. Catro-
bat [34] is a mobile end-user programming solution inspired by Scratch for developing
educational applications. The disadvantage is that most context-aware programming

Appl. Sci. 2022, 12, 479 6 of 29

frameworks require software experts (i.e., technical people) to adapt generic functionalities
to targeted applications.

End-user development tools are more straightforward mobile end-user tools (not
frameworks) accessible to users to create personalized applications or own actions. These
tools allow for using ambient resources to support user requirements. For example, Ur et al.
evaluated IFTTT [35] that helps to create condition → action rules (if-then rules called
Recipes) from pre-defined services available as building blocks (called Channels). In IFTTT,
a diverse context can exist (called Ingredients) and depends on the available services. The
IFTTT application builder tool is available on various mobile platforms and the Web. It
integrates diverse channels, e.g., Facebook, Dropbox, Android device context, weather,
e-mail. Users can discover, access, and contribute to collections of shared Recipes. Users
can then personalize the recipes, e.g., download into Dropbox the Facebook photos where
the user is tagged. Lucci and Paternò [36] analyzed three mobile tools that release the
technical knowledge for programming context-aware applications: Tasker (context →
action), Atooma (if→ then), and Locale (condition [setting]. These tools incorporate user-
friendly vocabulary and interaction to develop applications but limit logical operations
and expressiveness. In the current era of cloud computing and the Internet of Things,
EUD is also progressing. New solutions involve the integration of smart objects and cloud
computing services. For example, IFTTT includes intelligent assistants and smart home
provider channels such as Amazon Alexa [37] and SmartThings [38].

Similarly, Workflow for iOS [39] (now Shortcuts for iOS and iPadOS) is another tool
for composing a workflow (sequence of actions). To create a new application, users drag
and drop pre-existing actions and create a workflow representing the user’s intention on
the application. For example, take a picture, save to Dropbox, tweet the picture, post the
picture to Facebook, and then send it by e-mail. Users can add a complete application to
the quick launching menu or home screen for a future run or plug the workflow into other
mobile device’s applications. Workflow for iOS includes a shared gallery for contributing
and discovering other users’ applications.

2.4. The Rationale for the Review

End-user development promotes direct end-user elicitation rather than a developer
(i.e., not the end-user) elicitation/interpretation of end-users knowledge into the system’s
knowledge [40]. New tools empower end-users who have an in-depth knowledge of
their activities and evolve the applications in the presence of changes [41]. Nowadays,
end-users are active actors in software adaptation and can build applications tailored to
their needs. However, EUD challenges comprise having useful/usable development tools
while accessing dynamic context for context-aware applications. This review provides an
overview of context-aware application building techniques and implementation (i.e., what
is behind the tools). We also discuss the challenges to keep pervasive systems adaptation
while enhancing applications with functionalities that allow end-users to fulfill their needs.
Frameworks (e.g., Modkit for Arduino) or other complex tools (e.g., for industrial control
such as SCADA—Supervisory Control and Data Acquisition—allows gathering data from
control hardware in industries such as oil/gas distribution control systems) can also be
categorized as end-user development tools. However, we review research efforts with
simpler tools and techniques for testbed implementation or rapid simulations.

3. Review Method

We conducted a literature review with the following research question: What EUP,
EUD, and EUSE approaches and techniques researchers have proposed to build context-
aware applications? The method (Figure 1) begins with defining research questions and the
search string for searching in research databases. Then, we screened the papers following
the inclusion criteria presented in Table 3, selecting 37 research efforts for analysis. Finally,
we evaluated the selected papers and classified them for review.

Appl. Sci. 2022, 12, 479 7 of 29

Figure 1. Review method.

Table 3. Screening of papers.

Consideration Criteria for Inclusion Phase

Year of publication No regarded but restricted by the search keywords: “context-aware” +
EUP, EUD, EUSE. The search results show research from 2001. 1st, 2nd, 3rd

Relationship with the Subject
The tool includes a visual/graphical interface for context-aware

application development. The paper must consider a sensor/actuator
context integration/simulation and an adaptation involving such context.

1st

Type of document The research is published in proceedings or journal papers indexed on
Scopus, IEEE, or ACM. 1st

Available and comprehensible The paper presents arguments and details related to EUP, EUD, EUSE, and
UI concepts with enough information to evaluate. 2nd

Research outcome

The paper describes a solution with the implementation of a tool for
development. We discarded when a paper only refers to service

integration, e.g., using IFTTT, Web mashups, or templates without
describing the “programming” implementation.

3rd

Target end-user For technical users (i.e., with some software knowledge) and non-technical
users. We discarded when the target is exclusively for software experts. 3rd

3.1. Research Questions and Generic Search String

The following are the specific dimensions that we intend to analyze:

1. What building techniques are applied to develop context-aware applications by end-
users? We analyzed metaphors and interaction styles applied to create, modify, test,
share, and deploy applications in this dimension.

2. What are the development tools implementation approaches? In this dimension, we
analyzed the implementation technology of the tools, including context-awareness.

We conducted searches in SCOPUS, IEEE, and ACM. Although other sources could be
considered, we selected these sources because most of their indexed journals are accessible
to the university community. We searched using the title, abstract, and keywords with the
following generic string:

(end-user AND (program* OR develop* OR software*) AND context-aware*)

3.2. Inclusion/Exclusion Criteria

We divided the inclusion/exclusion criteria into three phases of relevant literature
for the review (Table 3). In the first phase, we queried research databases obtaining
968 documents. We then obtained 492, discarding papers mainly because they are duplicate,
inaccessible (due to license restrictions), or unrelated to the subject. In the second phase, we

Appl. Sci. 2022, 12, 479 8 of 29

screened in detail the papers, primarily based on the available details. The major criteria
are comprehension aspects related to UI building techniques (based on EUP, EUD, EUSE).
After the second phase, we obtained 90 for an in-depth reading. In the third phase, we
selected 37 papers for the review, based on the following considerations:

• Research outcome (Table 3): The paper includes enough detail to answer the research
questions. We discarded tools that are not described at the implementation level.

• Target end-user (Table 3): End-user application building tools have been proposed
for software experts (technical people) and non-software experts (non-technical peo-
ple). Even though traditional end-user empowering mechanisms [8,40] involve many
users, we consider end-user development for non-software experts. However, some
approaches propose a level of software experts’ involvement before end-user develop-
ment (e.g., to create APIs, models, meta-design/collaboration). We included those ap-
proaches because they target an end-user development process with fewer restrictions.

• On the other hand, we discarded approaches that require software experts or advanced
technical aspects. For example, the Context Modeling Toolkit (CMT) proposes a
context model to augment the template-based development of rules [42]. We discarded
CMT because the authors propose the involvement of software programmers in the
development process. Similarly, other solutions use human-readable configurations
(e.g., plain text, XML). We also discarded them because it is highly probable that non-
technical users (i.e., non-software experts) encounter difficulties configuring required
resources, actions, and services.

3.3. Data Extraction and Classification

Table 4 lists the analyzed papers by year, summarizing the programming interaction
and composition metaphor. The reviewed papers target two categories of end-users:
technical end-users (i.e., users with some knowledge of software) and non-technical users.
Figure 2 shows the distribution of research over time, with 26 out of 37 papers targeting
EUD only for non-technical users. The papers presented implementations for a diversity of
context, development, and running environments (Table 5).

Figure 2. (a) EUD research over time; (b) target end-user.

Appl. Sci. 2022, 12, 479 9 of 29

Table 4. EUD techniques and metaphors.

Paper Year
EUD Interaction

Metaphor *
Non-Technical Technical *

AutoHAN [43] 2001 Advanced interaction A 2D adjacency of cubes

iCAP [44] 2003 Demonstrate rules Sketch rules

a CAPpella [41] 2004 Demonstrate actions Stream of information

CAMP [45] 2004 Assembling pieces Magnet poetry

Topiary [46] 2004 Demonstrate actions Map, storyboarding scenarios

Context Studio [47] 2006 Selecting rules Folder-file

VisualRDK [48] 2007 Assembling pieces Visual blocks represent programming constructs

ActivityDesigner [49] 2008 Demonstrate rules Storyboarding activities + autocomplete and selection

Situations API [50] 2009 API API

Persona [51] 2009 Selecting rules API Document-centric/API

iPlumber [52] 2010 Language Rule language

Atomate [53] 2010 Selecting rules Global address book

OPEN [54] 2011 Selecting rules Language App templates/Rule language

MicroApps [55] 2011 Flow Jigsaw (blocks + visual aids to represent types and
connection compatibility)

Preuveneers et al. [56] 2012 Assembling pieces Visual blocks representing sensors/actuators

IVO [57] 2012 Model-based Workflow

MNFL [58] 2012 Flow
Blocks represent programming constructs and

input/output, visual aids to represent types and
connection compatibility

Rodríguez et al. [59] 2013 Assembling pieces Nodes and arcs represent RDF graphs; blocks
represent statements and operators

Context Cloud [60] 2013 Selecting rules Widgets

GALLAG Strip [61] 2013 Demonstrate actions Comic strip

SSB [62] 2013 Selecting rules Widgets

S-API [63] 2014 Selecting rules Flow Icons representing commands/API/graph

VS-CaSP [64] 2014 Selecting rules 3D smart building

SPOK [65] 2014 Language Smart keyboard

Puzzle [66] 2014 Flow jigsaw + visual and tap aids to compose

Mayer et al. [67] 2014 Language Sensing and actuation primitives

Martín et al. [68] 2015 Selecting rules Widgets, map, WYSIWYG editor

Dobby [69] 2015 Assembling pieces Programming by selection (selection of blocks)

T4Tags 2.0 [70] 2016 Advanced interaction Tangible tokens attached to objects/appliances

SITE [71] 2017 Selecting rules Language Widgets/scripts

CoRE [72] 2017 Language Editor to edit logical expressions

TARE [73] 2017 Selecting rules Widgets with colors for context categories

EPIDOSITE [74] 2017 Demonstrate actions Widgets (smartphone UI)

GrOWTH [75] 2018 Specify goals Natural language abstraction for Web-based app,
voice, mobile app (widgets)

VASH [76] 2020 Demonstrate actions Web browsing actions + voice commands + selection

EasyContext [77] 2020 Selecting rules Language Cards to represent contextual rules

CAPturAR [78] 2020 Advanced interaction Virtual object drawing, with a human avatar

* API: Application programming interface. WYSIWYG: What You See Is What You Get. RDF: Resource
Description Framework.

Appl. Sci. 2022, 12, 479 10 of 29

Table 5. EUD implementation approaches.

Paper
Tool Implementation Design *

Context
Running *

Approach Expressiveness PC Mo Ph PC Mo Pl Ph

AutoHAN Language Ontology, linguistic terms X X Appliances, virtual devices X X

iCAP Rule-based IF-THEN X activity, location, people, time X

a CAPpella Machine Learning Annotations X
Sensors (e.g., video), actuators (e.g.,

turn on/off a light) X

CAMP Language Vocabulary (a subset of natural
language), reword dictionary X

Smart home (e.g., cameras,
interactive displays) X

Topiary Algorithms
Spatial relations (e.g., out,

enters) and proximity
(e.g., near)

X
Location (i.e., people, places,

things), temporal X

Context Studio Rule-based Ontology, IF-THEN X
Mobile (e.g., location), actions (e.g.,

call contact) X

VisualRDK Language
Events; commands for context

(e.g., set), for a process
(e.g., wait)

X
All, represented as an
abstract component X

ActivityDesigner Algorithms +
Language

Activity model, activity query
language, speech matching X Activities, simulated context, sensors

(e.g., location) X X X

Situations API Rule-based References (input context),
parameters, listeners X Sensors, users X

Persona FSM Past preferences X X Artifact, action, interaction
modality, contextual X X

iPlumber Rule-based Domain ontology (e.g.,
smart home) X All, integrated with context wrappers X

Atomate Rule-based +
Language Simplified natural grammar X

Personal information (e.g., people,
places, events), time X

OPEN Rule-based Domain ontology, high-level
ontology, application ontology X All, integrated with context wrappers X

MicroApps Language Pre-conditions (trigger),
implicit loops X Sensors, Web services, mobile

(native components) X

Preuveneers et al. Rule-based Ontology X Smart home devices X

IVO Rule-based + FSM IF-THEN-ELSE, events,
geographical, proximity X Temporal, proximity, location X

MNFL Language Blocks for computing (e.g.,
opposite, combine math) X Video/audio, motion sensors X

Rodríguez et al. Rule-based Ontology, IF-THEN, loops X All, integrated with ontologies for
smart spaces X

Context Cloud Rule-based IF-THEN X All, integrated with providers X

GALLAG Strip Rule-based IF-THEN X Smart home sensors X

SSB Rule-based Register/subscribe service rules X Home appliances and sensors X

S-API Rule-based +
Language

Language type compatibility.
Commands for functions, events X X All, integrated with ontologies for

cross-smart spaces X X

VS-CaSP Rule-based IF-THEN X Virtual and real sensors X

SPOK Rule-based +
Language

Pseudo-natural syntax,
IF-THEN, WHILE, WHEN X Smart home and Web services X

Puzzle Language Jigsaw language X Sensors and Web services X

Mayer et al. Language Get/set value (sensor/actuator),
stateless actuators (e.g., trigger) Undefined Smart things Undefined

Martín et al. Rule-based +
Algorithms

IF-THEN, proximity, location
algorithms X All, integrated with providers X

Dobby Rule-based +
Language

Language for selection,
IF-THEN X *-as-a-service X

T4Tags 2.0 Rule-based WHEN(trigger-condition-
action) X X Sensor, temporal, service X X

SITE Rule-based +
Language

Fuzzy rules, context-free
grammar X X Smart home X X

CoRE Rule-based +
Language

Except, when, if-then, and based
on natural language X All, integrated by middleware X

TARE Rule-based IF-THEN, WHEN, AND, OR X
All, defined as category,

subcategory, entity X

Appl. Sci. 2022, 12, 479 11 of 29

Table 5. Cont.

Paper
Tool Implementation Design *

Context
Running *

Approach Expressiveness PC Mo Ph PC Mo Pl Ph

EPIDOSITE Rule-based Annotations X
IoT (Smart home) and IR, accessed by

phone apps X

GrOWTH AI planning Ontology X
All, integrated by components of

the architecture X

VASH Language Annotations X Web elements, mouse, keyboard events X

EasyContext Rule-based
IF-THEN based on a
Backus-Naur form

(BNF) grammar
X Based on Google Awareness API X

CAPturAR Rule-based IF-THEN, events X Human actions, context
attributes, events X X

* PC: Personal Computer. Mo: Mobile. Pl (Platform) refers to a context or a service platform. Ph (Physical)
refers to running applications that involve physical objects such as smart objects, objects with tags, media cubes,
virtual/augmented reality.

In the following Section 4, we describe the review’s outcome related to the application
building techniques. Then, we present the implementation approaches and challenges for
future research in Section 5.

4. Application Building Techniques

The reviewed papers revealed different techniques for the application building process.
Some tools adopt well-known metaphors and interaction styles in EUP/EUD/EUSE [6],
e.g., programming by demonstration. Others adapt development artifacts (e.g., language,
ontologies, models) to facilitate the development process by reducing the technicalities. In
this section, we focus on the context-awareness building steps of the development process.
We analyzed the papers and identified 11 techniques. Even though some tools applied
more than one technique, we describe the most relevant technique applied for the tool.

4.1. Programming Artifact Abstractions

The first technique focuses on adaptations from traditional software development.
Specifying actions using programming artifact abstractions targets technical users (i.e.,
users with some knowledge of software). The technique decreases the complexity of
traditional programming components, e.g., API, scripts. As a result, the components
become usable/useful for non-software experts.

Situation API, presented by Dey et al. [50], is an abstraction of context-aware infrastruc-
ture to facilitate building applications for developers and interface designers. The aim is to
improve the end-user interaction in two aspects: intelligibility (i.e., users understanding
application behavior) and control (i.e., users changing/controlling context processing).
The authors implemented a default Situation to support the traceability/debugging of
applications. It allows us to visualize the state (e.g., a context value, parameter, rule) of
other Situation components and change context values and parameters at runtime to debug.

Persona, presented by Kawsar et al. [51], is a toolkit to generate user interfaces for
context-aware middleware. Afterward, end-users can customize and control applications
through preference documents, i.e., interaction parametrization in a document-centric
collaboration among system components. Persona provides APIs, plugins, and an interface
engine to enable software developers to build applications. Developers represent possible
user interactions, and the system generates (when deploying) user preferences/controls in
an XML document. Then, end-users interact with the tool by selecting their preferences.

4.2. Model-Based Specification

An extended programming abstraction technique is model-based [8], where the appli-
cation specification uses a model, i.e., pre-defined concepts with rules (e.g., a model for
actions and temporal constraints). End-users can follow the model to build applications,

Appl. Sci. 2022, 12, 479 12 of 29

creating a workflow connecting concepts as input—process—output. Then, the system
uses the model to interpret the defined actions, generating an interactive application.

IVO (Integrated Virtual Operator), presented by Realinho et al. [57], is a framework to
build and deploy applications by associating context conditions with activity workflows. It
includes three tools: IVO Outlook, IVO Builder, and a mobile client.

• IVO Outlook allows defining workflows based on temporary and proximity conditions
through an Outlook Calendar and Outlook Contacts add-ons, respectively [79].

• IVO Builder is a visual UI to create workflows of activities based on location con-
text. It allows for manipulating geographical representations to create areas of in-
terest through polygon or circle. IVO Builder can import geo-referenced areas from
Wikipedia and Wikimapia and then facilitates map control (e.g., zoom, map views),
including scripting for advanced users. A user associates the areas of interest with
related information (e.g., website link) and then creates workflows in the area. After-
ward, the user defines actions to be executed in both “on enter” and “on exit,” e.g.,
change phone profile, update Facebook status. Available actions include filling forms
and quizzes created by the IVO Builder tool.

• The mobile client provides the workflow functionalities, activating actions when the
conditions match. It includes a UI that is either invisible (if not required), or a visual
interface for user interaction, e.g., maps, augmented reality browser, forms, quizzes.

4.3. Simple Flow of Components

Diverse approaches simplify models proposing a simple flow of components (e.g.,
commands, actions, language-based). End-users create applications in easy steps by con-
necting components in sequence or parallel, e.g., pipeline [80]. The development tool
includes techniques for flow validation, such as a list of compatible components and icons
or colors for compatible connections/actions.

S-APIs (Semantic APIs), presented by Palviainen et al. [63], is a command-based pro-
gramming abstraction for building smart space applications. End-users connect commands,
forming sequences and branches, and the system provides composition input/output
validation. End-users can build command-oriented and goal-oriented applications using UI
editors that facilitate the use of S-APIs. Command-oriented programming provides two
visual approaches: graph-based editor for desktops (Smart Modeler) and list-based editor
for mobiles (RDFScript Creator). In graph-based development, a user attaches and connects
command/branches, creating the application sequence. The editor provides type compati-
bility between input/output and checks inputs configuration. In list-based development, a
user creates a command sequence by adding/removing commands, defining inputs, and
connecting the command to the output branch of the previous command. Goal-oriented
programming is performed in the RDFScript creator, enabling end-users to define goals
achieved by executing a sequence of commands, e.g., if location changes, and I arrive home;
then, turn on the TV.

MicroApps, presented by Cuccurullo et al. [55], is a tool to create applications in mobile
phones through a jigsaw-based visual editor. The tool integrates pre-existing applications
managing services (e.g., camera, contact, mail), making them available, exposing their list
of actions (e.g., camera.take, camera.preview). Icons represent actions for dragging and
dropping in a composition area. End-users can connect actions in sequential or parallel and
define preconditions (triggers), inputs/outputs of actions, and implicit loops, i.e., implicit
objects generated based on outputs. The visual editor helps through the composition
process. It highlights action icons by compatibility, disables not compatible columns, and
represents inputs/outputs with shapes and colors (e.g., a red bullet means text string, a
cyan bullet means contact data, a triangle means an available parameter for composition).
The visual editor also includes aids such as color descriptions when a user long-press an
action icon, allowance to associate parameters in parallel actions and undo operation to
remove the last action or association [81].

Appl. Sci. 2022, 12, 479 13 of 29

4.4. Visual Language-Based Flows

Visual language-based flows augment the interaction for connecting components in
sequence or parallel. End-users create flows through graphical components rather than
using only commands or actions. The development tool includes an enhanced visual
representation of each component (e.g., a block representing a programming construct). It
also enhances visual aids for flow validation, such as shapes for compatible components,
connections, or actions.

MNFL (the Monitoring and Notification Flow Language), presented by Edgcomb [58],
is a graphical flow language to build monitoring applications, i.e., an application that uses
data from sensors and cameras to detect and notify situations of interest. The semantics
include building blocks to represent sensing (e.g., audio/video, number, button), comput-
ing (e.g., opposite, combine, math), and actuating (e.g., send a message, display number,
beeper). The language lets us connect building blocks with inputs (at left for one variable
or top otherwise) or outputs (at right). Inputs/outputs types of graphical representation
include both shapes for Booleans (triangle) and numbers (trapezoid); and icons for pictures
and sounds. The language also includes blocks representing data duration types, i.e.,
snapshot, stream, and snippet types, to represent instant, continuous, and portion-time.
Diverse colors facilitate the development/execution, e.g., a red triangle means “no” (i.e.,
Boolean false), green when yes, and yellow when it is an error/not present. The language
implements other visual supports, such as showing the current number when the cursor is
over a trapezoid and an “i” icon to open the block’s configuration window.

Puzzle, presented by Danado et al. [66], is a framework to build, edit, and run end-user
applications on mobile devices. End-users combine visual blocks in a jigsaw-based visual
editor through drag and drop. The editor supports the developer with a color help system,
hints, and options [82]. A new set of interactions includes deleting by dragging a jigsaw into
a trash can, intuitive taps for configuration, and further helps and simplified menus [66].
A jigsaw piece includes an input (inner circular shape on the left) and an output (outer
circular shape on the right) to receive and send information. Two pieces can connect when
a piece’s output color matches with the next piece’s input color.

4.5. Assembling Pieces

Other visual programming languages release the restrictions of a sequential connection
(flow). An approach is assembling pieces (e.g., blocks, tiles) [80]: specify actions/rules by
joining visual components (pieces) that represent programing language constructs or sen-
sors/actuators, e.g., block-based [83], jigsaw [29,32]. In assembling pieces, the components
themselves provide the connection validation, generally through shape compatibility.

VisualRDK [48] is a high-level visual language targeted to non-computer novices. A
development environment presents context by querying sensors or connecting (as plu-
gins) to a context server. The language allows building programs with simple logic in
two classes of applications: Automation and communication. Automation applications are
contextual-reaction programs such as office automation and spatial information systems.
Communication applications include users triggering actions based on pre-defined roles,
e.g., an application for support lectures or meetings. A developer builds an application by
dragging and dropping components (a piece of hardware or software) and context (location,
situations, nearby persons, and available components). The final application can generate
two implementations from one source: prototype and debug versions. The prototype version
is a distributed version based on the application, and the Debug version is a centralized
interpreter executable where all devices are remote-controlled, simplifying debugging.

Rodríguez et al. [59] proposed a UI for prototyping smart space applications based
on the semantic Web. The UI presents diverse graph-based data (ontologies and datasets)
representing smart spaces’ context. End-users compose applications by dragging and
joining building blocks representing an RDF graph structure. The blocks include nodes (i.e.,
class, data property value), arcs (i.e., data property, object property), statements/operators
(i.e., loops, and, or). The UI includes visual support such as color to distinguish literals from

Appl. Sci. 2022, 12, 479 14 of 29

ontology classes and visualize the graphical structure, operators, and statements. Even
though more blocks (e.g., computing, service, semantic web components) allow building
richer applications, learning the meaning of the blocks is required.

4.6. Simplified Meaning of Pieces

Other approaches simplify the meaning of visual programing by assembling pieces.
The simplification is achieved using natural language, ontologies, or domain-specific lan-
guages, targeting non-technical users. The development tool includes an abstraction of
complex programming constructs, providing an instinctive interaction to connect compati-
ble components.

CAMP, presented by Truong et al. [45], is a tool that introduces a magnetic poetry
metaphor for programming smart home environments. Users combine flexible magnets
that contain a printed word, creating “poems” or statements, e.g., “dinner happens between
7:00 and 9:00 P.M. in the dining room.” A vocabulary set contains color-coded categories
belonging to who (e.g., I, everyone), what (e.g., picture, video), where (e.g., kitchen, ev-
erywhere), when (e.g., always, morning), and general (e.g., remember, save). A UI assists
users in the composition to highlight matching words with the first introduced letter and
select, drag, and re-order words. Users can extend the vocabulary by combining words,
creating a new magnet.

Preuveneers et al. [56] present a framework to configure home environments. A
composition tool enables end-users to create activities, i.e., building blocks representing
sensors/actuators (e.g., a required light setting). A composition manager facilitates the
composition, gathers available services, and presents available blocks to compose following
an ontology model. The ontology includes a BlockItem class representing a device and a
Mapping class to relate values to blocks, e.g., slider-mapping to pick a value between min
and max values. The ontology is used to adapt the composition tool to end-users.

Dobby, introduced by Park et al. [69], is a system to support programming by selec-
tion (PBS)—a method for creating end-user context-aware services by making a series of
selections to define rules. The development environment includes a visual language to
facilitate using the PBS method. End-users create applications by the selection, supported
by a visual language to connect building blocks. The UI shows blocks structured like a file
system, facilitates the interaction with a double click for zooming areas, presents available
attributes/values, and uses the language to support the composition.

4.7. Languages to Specify Rules

Other approaches also involve languages to specify rules. Examples are ontology-
based languages, domain-specific languages, and natural languages. The development tool
reduces the complexity of the language for developers, and the target application can have
a robust implementation (based on the language).

iPlumber, presented by Guo et al. [52], exploits the meta-design method [12] to create,
share, and reuse context-aware applications. The system provides tools to create application
templates (or meta-applications) based on an ontology rule language. A web sharing center
allows for sharing the applications. End-users can check recommendations (e.g., user
ratings, number of users) to decide which application to use. Afterward, end-users become
application co-designers, performing configurations to meet their needs, personalizing the
application. End-users also can simulate sensing values to test rules or test applications with
real sensing values. Guo et al. also introduced OPEN [54] to exploit the cooperation among
developers, end-users, and between developers and end-users. They extend the ontology
rule language to involve a broad category of users. They propose three programming
modes/complexities to create/modify applications: incremental mode (high-level users
who create/manage rules), composition mode (middle-level users who modify rules), and
parameterization mode (low-level users who set parameters).

Mayer et al. [67] introduce a domain-specific model and language to facilitate the
development of applications to control smart things—i.e., things that interact and com-

Appl. Sci. 2022, 12, 479 15 of 29

municate with each other and with physical and virtual entities. The authors proposed
abstracting sensing and actuation primitives. Then, the primitives’ implementation is
independent, e.g., graphical widgets, physical interactors, speech/gesture commands. The
authors reify the abstraction as a language that implements an interactive component rep-
resenting a physical or virtual component not reasonably sub-divisible (e.g., light switch).
Interactive components communicate with interactors—i.e., a device or software used
to interact, e.g., graphical interactors such as gauges, click wheels, knobs. The language
represents interactive model components for storing, querying, and composing with a UI.

SITE, presented by Häkkilä et al. [71], is a smart home solution to specify, monitor,
and control IoT smart objects (SOs). The UI was developed using the LabVIEW [84]
programming environment. The UI lists all available SOs, and the user selects the required
ones. Then, the UI presents SOs information and the available options, i.e., visualize
(monitor) real-time sensor measurement, configure rules, and run/stop controller to process
gathered data applying fuzzy rules and generating actuation commands. The UI also allows
scripting for advanced users.

EasyContext, presented by Ponciano et al. [77], is a visual tool to generate rules for
context-aware mobile applications. The authors propose an abstraction of the Google
Awareness API [85] and a Web-based tool that helps developers to create the rules. The
abstraction is based on context-free grammar to define conditions and actions. Based on the
grammar, the tool then generates a configuration file to be integrated into mobile devices.

In general, languages are targeted to technical people, requiring learning the language
concepts. Other approaches propose targeting non-technical people with natural language.
Coutaz et al. introduced SPOK [65], a development environment for smart home context-
aware applications. Non-technical users develop applications in clients with a simplified
language. End-users can compose applications using words from the language with
a smart keyboard, which updates the available words based on the current entry and
home state. Metaxas et al. introduced CoRE (context-range editor) [72] which includes a
constrained natural language text editor to edit logical expressions. Noura et al. introduced
GroWTH [75] with a natural language abstraction for web, voice, and mobile applications.

4.8. Select/Demonstrate Rules

Select/demonstrate rules [40] is a well-known approach for programming where end-
users define condition→ action rules by selecting conditions/actions/services/commands
from UI elements such as lists, menus, dialogs, widgets. Some of the previous approaches
adopted the select rules method to augment the usability, e.g., Persona [51], OPEN [54],
S-APIs [63], SITE [71], and EasyContext [77]. Persona allows end-users to select generated
preferences from an options list (e.g., yes/no). OPEN extends its ontology language for
non-technical users proposing a UI for modifying and parameterizing rules. S-APIs restrict
the creation of flows (called goal-oriented applications) to a sequence of commands that
define rules, e.g., if location changes, and I arrive home, then turn on the TV. SITE proposes
a UI (based on LabVIEW) to abstract its language for defining fuzzy rules. The EasyContext
Web tool presents actions and contextual clauses in cards (card metaphor). The cards are
divided into categories (conditions, actions), and the cards’ content is interactive, presenting
dynamic values according to user inputs. In the following, we present other approaches
that adopt the condition→ action rule pattern for a simplified specification of applications.

Context Studio, presented by Korpipää et al. [86], part of a context-aware frame-
work [47], is a tool to program applications in small-screen mobile devices. Context
Studio is a customization component to define rules based on input context (e.g., location,
environment sound, RFID-based commands) and actions (e.g., set profile Silent, call a
contact). According to a vocabulary hierarchy, it adopts the folder-file UI metaphor: con-
text and actions as folders and subfolders. Then, a user navigates through the hierarchy
and selects triggers and actions to configure rules. The UI allows us to create, edit, copy,
activate/deactivate and delete rules and include visual icons representing rule states and
options/menus to facilitate the navigation.

Appl. Sci. 2022, 12, 479 16 of 29

Atomate, presented by Van Kleek et al. [53], is a tool for defining context-aware
behaviors (rules) for web-based personal information management. The tool integrates
web feeds to generate/update a world model that enables context-reactive automation
based on rules. The world model includes information about the physical world (e.g.,
people, places, events), digital items (e.g., messages, articles, tweets, e-mails), and system
information (i.e., rules, predicates, data sources). End-users can configure rules via direct
manipulation in a UI based on a global address book metaphor representing the world
model. The UI presents info by type, e.g., people, places, and events. Then, it allows us to
select the desired type and define rules. The UI also allows us to explore the world model,
allowing us to assign/edit properties and merge redundant items.

Context Cloud, presented by Martín et al. [60], is a platform to build context-aware ap-
plications for end-users. The platform provides a web front-end to facilitate programming,
supported by a proposed methodology to guide situations identification and parameteri-
zation. The web front-end allows specifying providers, context models, mappings, areas
(polygons on Google Maps), and rules. It consists of widgets and dialogs to define rules
with priority, operations (e.g., equals, greater than), and a calendar option to define date
ranges. Martín et al. also improve Context Cloud UI to target domain-expert develop-
ment [68]. The tool allows virtual geographical areas creation (indoors or outdoors) and
proximity definition. The tool also includes widgets to specify date/time and a WYSIWYG
editor for locales (Spanish, French, and English) notifications.

Sensor service binder (SSB), presented by Nakamura et al. [62], is a visual UI to
orchestrate context-aware services in-home network systems (HNS). The aim is to fa-
cilitate end-users building applications based on Web technology implemented in their
HNS service-oriented framework. The UI parses the WSDL and XML representing sen-
sor/appliance services and enables end-users to interact in a user-friendly form through
buttons, lists, and text boxes. Similarly, Corcella et al. introduced TARE [73], which defines
all context as category, subcategory, and entity. Then, end-users specify rules selecting
widgets with colors for context categories.

VS-CaSP, introduced by Su et al. [64], is a system that facilitates non-technical users
authoring 3D environments for context-aware applications. The architecture consists of
three modules: Context manager, 3D authoring, and 3D simulation and hardware inte-
gration. Context manager manages context resources such as 3D objects, models, scenes,
and scenarios (context for rules and 3D models). 3D authoring facilitates building applica-
tion scenarios, including a 3D editor and UI tools to specify rules with conditions (data
from sensors) and actions. 3D simulation and hardware integration enable debugging and
simulation of applications using virtual and real sensors.

4.9. Illustration of Rules

Illustration of rules is another approach—end-users depict/sketch rules, facilitating
the definition of conditions and actions. The key point is to overcome the complexity
of the user interface elements, such as showing/hiding dialogs distracting end-users.
The development tool includes frames, shapes, or templates to guide the composition of
applications, simplifying the overall development process for a situation.

iCAP, introduced by Sohn et al. [44], is a visual tool for prototyping context-aware
applications. The tool allows for defining the input/action context, compose rules, and
testing. Using a drag-and-drop technique, the composition process allows for creating
situations/actions by sketching inputs and actions in a rule-based specification. The testing
allows checking rules in a run mode. In this mode, users can change input values and
evaluate the behavior of applications.

ActivityDesigner, introduced by Li et al. [49], is a tool for activity-based prototyping of
ubiquitous applications. The tool includes an activity language for the description of activity
characteristics. The tool also includes activity abstractions to extend the expressiveness,
i.e., Scenes representing the activity’s actions and Themes representing everyday aspects
(e.g., eating healthy). Then, end-users prototype applications using storyboarding to

Appl. Sci. 2022, 12, 479 17 of 29

combine Themes and Scenes in a GUI. Then, end-users define transition conditions using
the activity language. The tool allows simulating and testing individual activities and
multiple prototypes simultaneously, as well as running tests. In running tests, an Activity
Server controls applications and coordinates sensors modules and the Designer monitor.
The Designer also allows for presenting and exporting statistical data.

4.10. Demonstrate Actions

Demonstrate actions [8,40] refers to approaches to specifying actions by only showing
the system what to do through an interface, e.g., programming by example/demonstration/
rehearsal/teaching. The development tool includes functionalities to “record” a demonstra-
tion (e.g., sequence of events or actions), and then the application will perform accordingly.

Dey et al. introduced a CAPpella [41], programming by demonstration approach for
building context-aware applications. The approach enables end-users to specify features by
annotating relevant demonstration portions to program desired behaviors. A recording
system captures data from sensors (e.g., video, microphone, RFID, phone in use) and
actions from actuators (e.g., login/out, send e-mail, turn on/off a light). The recorded data
are presented in an UI as a stream of information, including three parts: a video/audio
player, events detected, and actions performed during the recorded session. A user can
annotate the data in the UI, setting a start and end time of events, representing desired
behaviors. The system then uses the annotations (of repeated recordings) as a machine
learning system’s training data. Then, the system recognizes “programmed” situations
with live data and performs the specified actions.

Li et al. introduced the Topiary tool [46] to prototype applications based on a location
of entities (i.e., people, places, or things), e.g., a location-based tour guide. The tool
includes a visual language to represent places of interest, linking people to the places.
Topiary can show status (i.e., display location), find (i.e., recognize specific or nearest
entity), active maps (i.e., update entity locations), trigger action (i.e., activate when in/near)
and wayfinding (i.e., reach location). Topiary’s scope is twofold: prototype scenarios
using a storyboarding interaction for representing location contexts, and running the
storyboards on mobile devices, testing the prototype by updating locations. The scenarios
are captured using programming by demonstration with a resizable recording window
covering the target screen. The demonstrations allow dragging entities to define spatial
relationships (i.e., in, out, enters, exits), a definition of proximity regions (i.e., near), and
inclusion and exclusion of entities. After being defined, the tool allows for generalizing
scenarios (e.g., replacing “a person” with “any person”) and editing scenarios through
visual functionalities. Finally, the tool facilitates linking scenarios to create storyboards with
explicit links (i.e., end-users followed actions) and implicit links (i.e., automatic actions
defined in scenarios).

Lee et al. introduced GALLAG Strip [61], a mobile tool for building context-aware
applications based on real-world tangibility—an approach that follows the programming
by demonstration development style. In this approach, end-users interact with sensors
and objects to create an application through physical demonstration rather than software
models and representations. A server maintains a registry of sensors, and the tool presents
available sensors for building applications using a comic strip metaphor. A user starts a
recording mode to create a new application, and the tool waits for user actions that trigger
events. The demonstration screen shows it as an action frame when existing an event
(physically triggered, such as turning on the TV). The user stops the recording mode after
the required events, and the tool changes to an edit mode. In edit mode, the user reviews the
sequence, and the tool allows for adding response frames (e.g., an alarm message). The tool
then allows starting the recording mode to add events (e.g., turn off TV) and complete the
application. The tool also allows for starting the recording mode again and completing the
application with additional events (e.g., turn off TV + turn off speakers). Finally, end-users
can edit the final application sequence (i.e., application strip), adding time-date frames
for constraining executions. The tool incorporates visual support for programming such

Appl. Sci. 2022, 12, 479 18 of 29

as colors (blue for actions, orange for responses, and green for time-date frames), icons
(default and taken by the mobile’s camera), and scroll functions. The programming model
follows a linear condition (if-then) read from left to right and top to bottom.

Li et al. introduced EPIDOSITE [74], a mobile tool to create apps by demonstration.
The tool integrates IoT devices (smart home) and infrared blasters and context accessed
by smartphone apps. Smartphone widgets allow for recording and editing actions (i.e., a
sequence of smartphone iterations). The tool allows for generalizing the demonstration to
create new apps.

Fischer et al. introduced VASH [76], a web tool to demonstrate applications through
web browsing actions and voice commands. The tool records web elements and user
interaction (mouse, keyboard events). Then, the tool converts the interaction to executable
operations based on an internal language. Finally, the tool uses the language to generalize
the demonstration.

4.11. Augmented/Advanced Interaction

Specification of actions through an augmented/advanced interaction [40] refers to
approaches applying other UI interactions such as virtual/augmented reality, physi-
cal/tangible proximity/interfaces [87], and voice.

Blackwell et al. introduced AutoHAN [43], an architecture that includes the Media
Cubes programming language to program home appliances accessible to users that can op-
erate a remote control. The language allows direct manipulation of cubes (physical blocks),
arguing that it is more important than pictorial metaphors for end-user programming.
Each cube has a single button, a single LED (status), and communication components
for the home network, appliances, and cubes, enabling pairing cube and appliances. The
home network integrates devices in the home living space (e.g., TV), outside it (e.g., cable
TV decoder in the attic), and virtual devices (e.g., software components). The language
allows a direct behavior associated with a concrete representation, including action effects,
e.g., a cube “play/pause function” associated with a CD player and a VCR. A program
then follows a composition of the abstractions represented in the media cubes, automating
home processes or enhancing situations. The AutoHAN language’s potential lies in the 2D
adjacency of cubes rather than a 1D arrangement of textual programming languages.

Vianello et al. introduced T4Tags 2.0 [70], a toolkit for end-user programming of
tangible tokens attached to home objects/appliances. The tokens, which embed sensing
technologies, are used to create smart behaviors (called recipes). The behaviors are config-
ured based on a trigger-condition-action syntax in a mobile-oriented web application. A
trigger is an event that activates a recipe, such as a physical action/state or a date/time
event. Conditions are constraints for triggered events using and/or operators. An action
is an activity to perform, e.g., send, share, buy. It contains an action object, e.g., e-mail,
file, item for the actions send, share, and buy, respectively. Actions also involve an action
provider, which is the action’s service, e.g., e-mail provider, Twitter, Facebook, and Ama-
zon. The application shows available options regarding the selected action, e.g., for “send
e-mail,” it presents fields to introduce “to,” “subject,” and “message”.

Wang et al. presented CAPturAR [78], an augmented reality authoring tool for IoT
context-aware applications. It includes a visual programming interface to create rules,
defining human actions corresponding to daily activities. The interface records scenarios
and then presents virtual replicas of objects and a human avatar. A user can demonstrate
actions supported by UI functionalities for timeline navigation object drawing (e.g., con-
necting object functions and desire actions). Then, the tool generates detection models
with motion data, which the user can also edit. Users can add or edit necessary contextual
information such as time, location, objects, state (e.g., light on/off). Finally, users can test
the functions on a simulated IoT.

Appl. Sci. 2022, 12, 479 19 of 29

5. What Is behind the Tool? Implementation Approaches and Challenges
5.1. Rule-Based Programming

Rule-based is the most common method to specify context-aware applications. The
basic rule expression form is the “IF condition Then action” adopted by iCap [44], Context
Cloud [60], GALLAG Strip [61], and VS-CaSP [64]. Martín et al. [68] improve the implemen-
tation of Context Cloud, incorporating a rule engine to infer and iBeacons and algorithms
to provide proximity functionalities. Situation API [50] enables decomposing context rules
into references, parameters, and listeners. A reference abstracts input context (e.g., location,
light level). The parameters are relevant parameters processed by references (e.g., bedroom
light is on). The listeners receive notification of occurrences such as invoked actions or
modified parameters (e.g., turn off the lights).

Events complement rule-based expressions, such as T4Tags 2.0 [70], which define
trigger–condition–action (WHEN) rules. TARE [73] extends the rule expression to include
IF-THEN, WHEN, AND, OR. Similarly, IVO [57] activity workflows model events. The ar-
chitecture includes a rule-based system and an event-driven workflow engine. The rule sys-
tem allows the definition of alternative actions (i.e., IF-THEN-ELSE), considering standard
operations (e.g., greater than, equals, not, AND, OR). The workflow engine is implemented
as a finite state machine (FSM) to execute workflows in mobile clients. A mobile client also
includes the perceived environment (sensing) and process conditions (register/unregister
context values in the workflow engine). The application definitions are expressed in
IVOML—an XML-based language to develop mobile context-aware applications [88].

SSB [62] allows for context registration and subscription of HNS (Home Network
System) services. End-users can search and aggregate context, as well as verify, reuse, and
refine existing services. The context registration allows defining conditions (logical expres-
sions) for sensor services. Afterward, the context subscription allows binding registered
contexts to appliance operations. In the end, end-users can create service rules for the HNS.

5.2. Using Ontologies for Programming

Ontologies further complement rule-based expressions. Context Studio [47] uses an
ontology [89] to define the trigger context and actions. The ontology and rule-based model
manage the context [90], enabling a hierarchical representation to customize applications.
Preuveneers et al. [56] adopt an ontology for modeling environments. The ontology in-
cludes a model of people, service devices, sensor devices, and location. The framework
integrates context from devices and infers high-level context for the composition of applica-
tions. In the Rodríguez et al. [59] approach, an application represents semantic IF-THEN
rules. Subgraphs (i.e., graph inside IF or THEN clauses) can be connected using logical
operators. Subgraphs in THEN clauses can also include loops.

iPlumber [52] adopts a domain ontology (e.g., an ontology for smart homes). An appli-
cation template consists of rules (action templates) that consider the context (hardware and
software input/outputs). The context is integrated using context wrappers and maintained
into an individualized ontology server, extended from the domain ontology. The individual-
ized ontology provides an abstract interface for applications, relating rules, and facilitating
context access and reasoning. OPEN [54] (iPlumber following proposal) introduced three
levels of ontologies to support developer/end-user cooperation: (1) domain ontology, e.g.,
an ontology for smart spaces, (2) upper ontology abstracting high-level concepts of context
spaces, e.g., place, sensor, and (3) individualized ontology for applications.

5.3. Using a Reduced Language or Pattern for Programming

The rule-based systems are combined with simplified languages to increase expres-
siveness. Atomate [53] UI is based on the Controlled Natural Language Interface, i.e., UI
with simplified grammars to reduce ambiguity/complexity. Furthermore, the tool includes
a feeder component to retrieve a list of all data sources and polls periodically. At startup, it
registers callbacks for data sources that provide asynchronous call-backs to push data. A

Appl. Sci. 2022, 12, 479 20 of 29

rule manager notices feeder updates and starts a brute-force evaluation of rules, checking
antecedent clauses (trigger) against the current world model state.

Similarly, CAMP [45] includes a domain-specific vocabulary subset of natural lan-
guage. The tool also includes a custom dictionary to reword and decompose statements,
applying diverse mechanisms for restructuring to standard phrases, e.g., “beginning at
3:00 p.m. for 2 h” becomes “between 3:00 p.m. and 5:00 p.m.” CoRE [72] includes a con-
strained natural language limited in vocabulary and grammar. Complementary to the
basic logic operation (and, or, not), it includes ‘unless’ to express exception, negations over
disjunctions (neither a nor b), and an association of logical expressions.

S-APIs [63] are implemented by software developers using semantic components and
a language for composition compatibility. S-APIs are supported by an interoperability
platform to describe and manage cross-smart spaces, e.g., information interchange between
a smartphone and a building. S-APIs provide commands to perform functionalities (e.g.,
PublishLocation) and event-based commands (e.g., IdentifyLocation). A command involves
inputs, outputs, and execution, branches (e.g., display_failure, information_displayed for
the command DisplayInformation).

SPOK [65] integrates context (i.e., sensor/actuators and Web services) through a mid-
dleware developed by software experts. The middleware manages the context and connects
to SPOK, supporting an interchange between the context and applications. The middleware
exposes its API through a simplified language (i.e., a pseudo-natural concrete syntax).
End-users define applications, i.e., abstract syntax tree following the middleware API.
Applications contain a set of ECA rules interpreted in parallel, including WHEN (events),
IF-THEN, and WHILE statements. Thus, the middleware can interpret applications and
provide the state of the smart home to clients, including triggered events.

Dobby [69] programming by selection (PBS) follows seven design patterns for context-
aware services. The proposed patterns extend the condition→ action pattern to action
services interchanging messages, sending multimedia streams, or synchronizing services.
The Dobby system support service creation and execution through a middleware (service
platform) and a development environment. The middleware enables registering service
objects (i.e., device/software as service) in a service space, checking rules, and executing
actions. The development environment (UI) shows service objects as blocks for selection to
build applications.

5.4. Language-Based Programming

Advanced languages enable an augmented and specific level of expressiveness. Au-
toHAN [43] programming language Media Cubes include ontological and linguistic ab-
straction. Ontological abstractions are tokens that represent “natural categories” such
as remote-control operations, appliance functions, network capabilities, and user skills.
Linguistic abstractions are physical situations represented as linguistic terms. The physical
cubes are made of wood with sensors and transducers, microprocessors, and batteries.
VASH [76] includes a grammar to define variables and create control constructs: functions
calls, conditionals, and iterations. End-users define (in the UI) a sequence of events, which
are then translated to the internal programming language.

Similarly, EasyContext [77] defines a Backus-Naur form grammar to create rules,
integrating contextual information using the Google Awareness API. A Web UI presents
conditions and actions as an abstraction of the Awareness API features. Then, the rules are
exported to mobile devices.

VisualRDK [48] integrates context as an abstract component to manage the hetero-
geneity of environments. Applications contain context and components connected with a
set of events and commands. The events allow the starting behavior of an application for
subsequent processing. Commands are pre-defined instructions for managing context, e.g.,
set, find, and for processing, e.g., wait, emit (send out a signal), split (execute threads in
parallel), and call (invoking functions).

Appl. Sci. 2022, 12, 479 21 of 29

MicroApps [55] visual language manages the UI composition process. The application
programming is based on a data-flow Direct Acyclic Graph of services using a sequential,
fork, and join compositions. The tool includes a running engine that interprets applica-
tions, generating a UI. In the running UI, each action is presented, waiting for user inputs
when necessary (e.g., press button “Take” for the action camera.take). Subsequently, the
authors presented a methodology to enable end-user development and an improved Mi-
croApps application environment [91]. The application environment includes a repository
(MicroAppStore) to share MicroApps and compose new applications based on existing
ones. Similarly, MNFL [58] visual language manages the UI composition process. The
expressiveness is given mainly by the blocks for computing (e.g., opposite, combine, math).

Puzzle [66] framework includes a jigsaw language that guides the sequential composi-
tion of an application. The framework is web-based, comprising a front-end and a mobile
client. The front-end links an application repository and a piece repository. The piece
repository stores standard pieces (e.g., quotes jigsaw piece), pieces representing external
Web Services (e.g., post on Facebook), and interactive physical objects (e.g., turn off the
lights). The mobile client includes an HTML viewer to build/edit/run applications and a
native module to access the mobile functionalities (e.g., send a text message).

Mayer et al. [67] domain-specific model/language for smart things defines a taxonomy
and hierarchy for abstracting sensing and actuation primitives. The taxonomy includes
abstraction for sensors (i.e., get data, get value, get proportion), stateless actuators (i.e.,
trigger, goto), and stateful actuators (i.e., set, set value, level, set intensity, switch mode,
switch, position, move). The hierarchy involves an organization for interactions. Get data,
trigger, and set are the root of the hierarchy. Similarly, SITE [71] includes a domain-specific
language representing a smart object (SO) context. The language, i.e., Simple Control
Language (SCL), facilitates the specification of SOs control rules through context-free
grammar. SOs represents transducers for objects, and the system supports a network for
connecting the transducers. A user builds and deploys SOs setting a smart environment.
Afterward, SITE enables the manipulation of SOs, registering a name and IP address,
defining control rules, and visualizing sensor information. The control rules follow three
modes: form-based, editor-based, and advanced for using an SCL graphical editor, SCL
text editor, and fuzzy logic (without SCL), respectively. Then, a Fuzzy Generator interprets
SCL expressions to generate fuzzy logic elements (i.e., membership functions and rules).

5.5. Artificial Intelligence and Other Approaches

Reviewed approaches also applied other methods for implementation. For instance, a
CAPpella [41] involves annotations introduced by end-users to train a machine learning
engine based on a Dynamic Bayesian Network (DBN). It allows for hiding the creation
of behavior models and simplifying the training and testing of the DBN. GrOWTH [75]
defines goals with an ontology to describe the set of actions required to achieve the goals.
Then, apply AI planning to achieve the desired goal.

Topiary [46] implement algorithms for spatial relations (e.g., out, enters) and proxim-
ity (e.g., near). Similarly, ActivityDesigner [49] tool’s model extends the activity theory
(Leontiev, 1978 [92]), where the activity is decomposed hierarchically into actions and
operations. The model adds the Scene as an action with a situation, e.g., for the action
running—situation 1: with friends in a gym, and situation 2: alone in a park. The model
also includes Themes inside a Scene. Themes are everyday aspects of people, e.g., eat-
ing healthy, having fun, and staying physically active. The model is the basis for the
Activity Query Language (AQL), which facilitates activity specification of time, duration,
confidence, and occurrences of interest using a list of filters. The tool allows scripting to
implement enhanced behaviors. The implementation includes a part-of-speech tagging tool
to analyze the scene’s textual data and an XML-based query engine (for AQL) to support
defining rules.

Persona [51] customization depends on a small cache of past preference. The prefer-
ence changes (usage events) use a finite state machine implementation. Among others, the

Appl. Sci. 2022, 12, 479 22 of 29

authors consider preferences for an artifact (e.g., use wall-mounted display rather than
other display), action (e.g., enable/disable displaying weather information), interaction
modality (e.g., use handwriting/voice for input, display/sound for output), and contextual
events such as location, time, external (e.g., select the silent profile in a meeting room).

CAPturAR [78] processes augmented reality (AR) data from an AR platform with
multiple cameras. It applies diverse machine learning algorithms to detect human ac-
tivity and infer body positions. The authors also applied video and image processing
algorithms to detect and infer real object interactions such as cup, kettle, can, and proximity
to appliances (e.g., lamps).

5.6. Discussion and Challenges

The challenges for building a new application are variable and include challenges of
the application domain (e.g., integrate a health device context or service). A primary aspect
is providing more functionalities in a domain, managing different inputs, and data format.
Adaptation and different ways to act (required actions) are also important. Therefore,
EUD tools must consider user profiles and preferences to keep an enriched context for
context awareness. Furthermore, EUD tools must include traditional methods to manage
applications, e.g., update/upgrade, share, reuse, and deploy. In addition, they must include
methods to control applications, e.g., monitor resources/situations, audit performances,
failures, etc. A key challenge for building, manage and controlling applications is to
provide context-aware EUD without requiring advanced computer technical skills (i.e.,
non-technical users).

The first category of EUD adopted a rule-based application development, with 22 out
of 37 papers (Figure 3). They adopt ontologies, algorithms, and simplified languages
to increase the expressiveness for creating rules. Language-based is the next category
of EUD implementation method with ten out of 37 papers. These papers define the
programming constructs adopting ontologies, vocabularies, or defining their language
model (e.g., commands, composition logic). Other papers adopted other implementation
approaches such as machine learning (two out of 37), AI planning (one out of 37), location
algorithms (two out of 37), and finite state machine (two out of 37). In the following, we
present the overall challenges obtained after our review.

Figure 3. Implementation approaches.

Appl. Sci. 2022, 12, 479 23 of 29

5.6.1. Context-Aware End-User Development

The presented approaches facilitate the specification of context-aware applications,
which involves (1) integration of required context, e.g., reading from sensors, (2) how
to evaluate context values, e.g., two similar contexts, check event, and (3) definition of
desired actions (i.e., reaction, proaction) that the system must perform when evaluating
matches. Furthermore, rule-based, natural language, programming by demonstration, and
trigger-action (based on events) are EUD approaches suitable for the IoT [11]. However, the
reviewed approaches reveal challenges to target non-technical users. For example, using
a model for tailoring applications requires end-users to learn the model’s components.
Combining metaphors for improved UI composition [80] and introducing artificial intelli-
gence and machine learning is complicated for non-technical users. Likewise, we found
technicalities for programming with an augmented UI interaction, e.g., tangible, wearable,
and embodied interaction. This aspect is relevant because the final product (end-user
program) uses things through a tangible/embodied [87] or wearable [93] interaction. Non-
technical users should learn technical aspects such as linking smart tags and wearables
(e.g., rings [94]).

Mobile end-user tools use available device resources that users can access for building
applications (e.g., available services and actions, mobile sensors). We found eight out of
37 projects that enable EUD on mobile devices. From those projects, seven out of eight also
run on mobile devices. In addition to those seven projects, three out of 37 projects run on a
mobile device, but the EUD is on a PC/Web. However, in mobile EUD, it is challenging
to include functionalities and improve the expressiveness because of the limitation in
resources and screen dimensions. For example, eliciting space/geographical relations and
enabling complex composition blocks (e.g., computing math) is still performed in a PC.

5.6.2. Specification of Complex Situations

End-user development proposes empowering non-software experts with building
tools, adopting metaphors, and programming methods that increase usability. Most of the
analyzed tools limit their expressivity to rules or simple languages/artifacts, simplifying
the system to increase usability. For example, a sequential flow programming drawback is
the restriction to build complex applications. Similarly, the illustration of rules improves
usability but constrains the development of complex applications either by requiring know-
ing advanced elements (e.g., activity language for scripting), or by pre-defined elements for
composing rules. For example, Dey et al. [95] presented the iCAP tool, including 371 build-
ing rules. The authors defined the rules based on a study of 20 subjects and their activities.
With this study, the authors defined the categories of input/action context. They concluded
the need to implement a sophisticated Boolean logic in the iCAP tool and manage dynamic
rules to infer activities with ambiguous context.

Furthermore, to achieve the ubiquity characteristic of pervasive systems, it is necessary
to facilitate the specification of complex situations, e.g., build applications to maintain
conditions in diverse environments. A complex situation requires advanced mechanisms
(i.e., mathematical calculations, algorithms), contrary to simpler input/action rules. An
approach to deal with complex situations is to target the EUD tool for professional devel-
opers [48]. Likewise, augmenting the expressiveness of the context-aware platform can
expand the situations that end-users can program. In this sense, one approach considers
an enriched context to create a semantic layer with which semantic operations enable ex-
pressing/interpreting diverse situations [19,96,97]. However, it is still challenging for EUD
tools to keep usability, targeting non-technical users while expanding the expressiveness
for complex situations.

5.6.3. End-User Development in Industry

Adopting available development artifacts such as APIs and tools enhances end-user
development due to the pre-existing functionalities. We found research efforts adopting
available artifacts, combining them to promote end-users as active actors in software

Appl. Sci. 2022, 12, 479 24 of 29

adaptation to build applications tailored to their needs. For example, EasyContext [77]
abstracts the Google Awareness API [85] to create rules for Android apps. SITE [71] uses
the LabVIEW [84] visual programming environment to create fuzzy rules for smart homes.

Industry tools also promote end-user development, empowering industry operators.
They rely on the tools which provide a versatile Human Machine Interface (HMI) to monitor
and control machines and processes. Industry operators customize UIs with high-quality
graphics (2D, 3D) for representations of industry machine and processes, alarms, real-
time trends, simulation, messaging (e.g., for errors), scripting language, and machine
integration (i.e., access to the industrial network and machines) [98,99]. For example,
Normanyo et al. [99] adopted Siemens Simatic WinCC to design an automated boiler plant.
The authors described the industrial HMI design covering UI factors and risk factors such
as (a) having a realistic view of an industrial plant, (b) reducing hardware (by replacing
many push buttons and selector switches, and lights), and (c) replacing humans in tasks
done in dangerous environments.

Similarly, Industry 4.0/5.0 is introducing additional interface capabilities. The new
HMI generation for the industry is enhanced with an intuitive/autonomic UI and process
prediction, adopting advances in technology such as virtual/augmented reality, collabora-
tive robots, and artificial intelligence/machine learning [100,101]. End-user development
and meta-design (i.e., design for designers) will play an important role in empowering
industrial operators to capitalize on new technologies [102].

5.6.4. Development Methodology and End-User Software Engineering (EUSE)

End-user development (EUD) subsumes end-user programming (EUP) and target pro-
gramming tasks with easy-to-use and easy-to-understand tools [8] for end-users. Comple-
mentary, end-user software engineering (EUSE) also focuses on the development method-
ology. EUSE involves systematic and disciplined activities that address software quality
issues to improve application development for non-technical users. These activities are
indistinguishable for the users and, consequently, secondary to the software’s goal [7].

Adopting EUSE for context-aware application development is also a challenge. We
found two out of 37 papers describing a development methodology. Context Cloud [60]
methodology involves analysis (i.e., identify and parameterize situations), configuration
(i.e., configure/implement context data model and providers), development (i.e., imple-
ment behavior), validation, and maintenance. MicroApps [91] methodology involves an
incremental and iterative development process through service management of MicroApps
components, e.g., finding compatible services. However, providing a EUSE methodology
is not enough: the functional correctness and software quality still lies on the end-user and
how the tools can support the end-user development.

6. Conclusions

End-user programming (EUP), end-user development (EUD), and end-user software
engineering (EUSE) have been adopted to facilitate context-aware application development.
This paper presented the result of our literature review of context-aware application devel-
opment tools applying EUP, EUD, and EUSE. We selected 37 papers (out of 968 documents
found) for the review to analyze the development technique (i.e., programming interac-
tion and composition metaphor) and implementation approaches (i.e., what is behind
the tools?).

The tools target non-technical and technical users, supporting them in the building
process. The tools include techniques to facilitate the integration of context and appli-
cation development, specifying conditions, actions, activities, and sharing resources in
environments. We found 11 techniques, including the abstraction of traditional program-
ming artifacts (e.g., APIs), visual programming (e.g., composing UI blocks), programming
by demonstration (e.g., recording interactions), and augmented interactions (e.g., using
tangible tokens).

Appl. Sci. 2022, 12, 479 25 of 29

Our review found that the most common implementation approach behind the tools
is rule-based programming (e.g., selecting conditions and required actions in the UI will
create the target rule). Ontologies and simplified natural language are used to increase
the expressiveness of rules. Language-based programming is also applied to manage the
diversity of elements for building applications (e.g., heterogeneous devices, context types,
visual block types). Other mechanisms include finite state machines, algorithms, and
machine learning for advanced management of the context.

Even though end-users can use well-known language constructs (e.g., if, when, then,
and) to build applications, empowering end-users also implies simplifying constructs using
abstractions (e.g., icons, blocks, commands, model). Thereby, EUD is a promising approach
to achieve end-user intentions, and EUD implementations are also evolving to mobile
devices. However, the end-user development of complex context-aware applications is still
challenging while applying advanced algorithms to improve reasoning and learning.

Author Contributions: Conceptualization, V.P. and B.A.; methodology, V.P. and B.A.; software, V.P.;
validation, V.P. and B.A.; formal analysis, V.P.; investigation, V.P.; resources, V.P.; data curation, V.P.;
writing—original draft preparation, V.P.; writing—review and editing, V.P. and B.A.; visualization,
V.P.; supervision, B.A.; project administration, B.A.; funding acquisition, B.A. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by SENESCYT, Ecuador and Université de Sherbrooke, Canada.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Perera, C.; Zaslavsky, A. Context aware computing for the internet of things: A survey. IEEE Commun. Surv. Tutor. 2014, 16,

414–454. [CrossRef]
2. Saha, D.; Mukherjee, A. Pervasive computing: A paradigm for the 21st century. IEEE Comput. 2003, 36, 25–31. [CrossRef]
3. Satyanarayanan, M. Pervasive Computing: Vision and Challenges. Pers. Commun. IEEE 2001, 8, 10–17. [CrossRef]
4. Burnett, M.M.; Myers, B. A Future of End-user Software Engineering: Beyond the Silos. In Proceedings of the on Future of

Software Engineering, Hyderabad, India, 31 May–7 June 2014; ACM: New York, NY, USA, 2014; Volume 2014, pp. 201–211.
5. Burnett, M.M.; Scaffidi, C. End-user development. In The Encyclopedia of Human-Computer Interaction, 2nd ed.; The Interaction

Design Foundation: Aarhus, Denmark, 2012.
6. Paternò, F. End User Development: Survey of an Emerging Field for Empowering People. ISRN Softw. Eng. 2013, 2013, 532659.

[CrossRef]
7. Ko, A.J.; Myers, B.; Rosson, M.B.; Rothermel, G.; Shaw, M.; Wiedenbeck, S.; Abraham, R.; Beckwith, L.; Blackwell, A.; Burnett, M.;

et al. The State of the Art in End-user Software Engineering. ACM Comput. Surv. 2011, 43, 1–44. [CrossRef]
8. Lieberman, H.; Paternò, F.; Klann, M.; Wulf, V. End-User Development: An Emerging Paradigm. In End User Development;

Lieberman, H., Paternò, F., Wulf, V., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 1–8.
9. Barricelli, B.R.; Cassano, F.; Fogli, D.; Piccinno, A. End-user development, end-user programming and end-user software

engineering: A systematic mapping study. J. Syst. Softw. 2019, 149, 101–137. [CrossRef]
10. Tetteroo, D.; Markopoulos, P. A review of research methods in end user development. In Proceedings of the International

Symposium on End User Development, Madrid, Spain, 26–29 May 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 58–75.
11. Paternò, F.; Santoro, C. A design space for end user development in the time of the internet of things. In New Perspectives in

End-User Development; Springer: Berlin/Heidelberg, Germany, 2017; pp. 43–59.
12. Fischer, G.; Giaccardi, E.; Ye, Y.; Sutcliffe, A.G.; Mehandjiev, N. Meta-design: A manifesto for end-user development. Commun.

ACM 2004, 47, 33–37. [CrossRef]
13. Ardito, C.; Costabile, M.F.; Desolda, G.; Matera, M. A Three-Layer Meta-Design Model for Addressing Domain-Specific

Customizations. In New Perspectives in End-User Development; Springer: Berlin/Heidelberg, Germany, 2017; pp. 99–120.
14. Burnett, M.; Cook, C.; Rothermel, G. End-user software engineering. Commun. ACM 2004, 47, 53–58. [CrossRef]
15. Kulesza, T.; Burnett, M.; Stumpf, S.; Wong, W.; Das, S.; Groce, A.; Shinsel, A.; Bice, F.; Mcintosh, K. Where are my intelligent

assistant’s mistakes? A systematic testing approach. In Proceedings of the International Symposium on End User Development,
Torre Canne, Italy, 7–10 June 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 171–186.

16. Roy, P. ContextAA: Plateforme Sensible au Contexte Pour Aborder le Problème de L’espace Intelligent Ouvert; Université de Shrerbrooke:
Sherbrooke, QC, Canada, 2019.

17. Pham, Q.V.; Fang, F.; Ha, V.N.; Piran, M.J.; Le, M.; Le, L.B.; Hwang, W.J.; Ding, Z. A Survey of Multi-Access Edge Computing in
5G and Beyond: Fundamentals, Technology Integration, and State-of-the-Art. IEEE Access 2020, 8, 116974–117017. [CrossRef]

18. Dey, A.K. Understanding and Using Context. Pers. Ubiquitous Comput. 2001, 5, 4–7. [CrossRef]

http://doi.org/10.1109/SURV.2013.042313.00197
http://doi.org/10.1109/MC.2003.1185214
http://doi.org/10.1109/98.943998
http://doi.org/10.1155/2013/532659
http://doi.org/10.1145/1922649.1922658
http://doi.org/10.1016/j.jss.2018.11.041
http://doi.org/10.1145/1015864.1015884
http://doi.org/10.1145/1015864.1015889
http://doi.org/10.1109/ACCESS.2020.3001277
http://doi.org/10.1007/s007790170019

Appl. Sci. 2022, 12, 479 26 of 29

19. Ponce, V.; Roy, P.; Abdulrazak, B. Dynamic domain model for micro context-aware adaptation of applications. In Proceedings
of the 13th IEEE International Conference on Ubiquitous Intelligence and Computing, Toulouse, France, 18–21 July 2016; IEEE:
Piscataway, NJ, USA, 2016; pp. 98–105.

20. Abdulrazak, B.; Roy, P.; Gouin-Vallerand, C.; Giroux, S.; Belala, Y. Macro and micro context-awareness for autonomic pervasive
computing. In Proceedings of the 12th International Conference on Information Integration and Web-Based Applications &
Services, Paris, France, 8–10 November 2010. [CrossRef]

21. Schilit, B.; Theimer, M. Disseminating Active Map Information to Mobile Hosts. Netw. IEEE 1994, 8, 22–32. [CrossRef]
22. Abowd, G.D.; Dey, A.K.; Brown, P.J.; Davies, N.; Smith, M.; Steggles, P. Towards a better understanding of context and context-

awareness. In International Symposium on Handheld and Ubiquitous Computing; Springer: Berlin/Heidelberg, Germany, 1999;
pp. 304–307.

23. Brønsted, J.; Hansen, K.M.; Ingstrup, M. Service Composition Issues in Pervasive Computing. IEEE Pervasive Comput. 2010, 9,
62–70. [CrossRef]

24. Holloway, S.; Julien, C. The case for end-user programming of ubiquitous computing environments. In Proceedings of the
FSE/SDP Workshop on the Future of Software Engineering Research, FoSER 2010, Santa Fe, NM, USA, 7–8 November 2010;
ACM: New York, NY, USA, 2010; pp. 167–171.

25. Zhang, D.; Adipat, B.; Mowafi, Y. User-centered context-aware mobile applications-the next generation of personal mobile
computing. Commun. Assoc. Inf. Syst. 2009, 24, 27–46. [CrossRef]

26. Butz, A. User Interfaces and HCI for Ambient Intelligence and Smart Environments. In Handbook of Ambient Intelligence and
Smart Environments; Nakashima, H., Aghajan, H., Augusto, J.C., Eds.; Springer: New York, NY, USA, 2010; pp. 535–558,
ISBN1 978-0-387-93807-3. (Print); ISBN2 978-0-387-93808-0. (Online).

27. Ponce, V.; Deschamps, J.P.; Giroux, L.P.; Salehi, F.; Abdulrazak, B. QueFaire: Context-Aware in-person social activity recommen-
dation system for active aging. In Proceedings of the Inclusive Smart Cities and e-Health, ICOST 2015, Geneva, Switzerland,
10–12 June 2015; Springer: Cham, Switzerland, 2015; pp. 64–75.

28. Apache Cordova. Available online: https://cordova.apache.org (accessed on 10 December 2021).
29. Wolber, D.; Abelson, H.; Friedman, M. Democratizing Computing with App Inventor. GetMobile Mob. Comput. Commun. 2015, 18,

53–58. [CrossRef]
30. Modkit. Available online: https://www.modkit.com (accessed on 10 December 2021).
31. Resnick, M.; Maloney, J.; Monroy-Hernández, A.; Rusk, N.; Eastmond, E.; Brennan, K.; Millner, A.; Rosenbaum, E.; Silver, J.;

Silverman, B.; et al. Scratch: Programming for All. Commun. ACM 2009, 52, 60–67. [CrossRef]
32. Maloney, J.; Resnick, M.; Rusk, N. The Scratch programming language and environment. ACM Trans. Comput. Educ. 2010, 10,

1–15. [CrossRef]
33. Arduino. Available online: https://www.arduino.cc (accessed on 10 December 2021).
34. Slany, W. A mobile visual programming system for Android smartphones and tablets. In Proceedings of the IEEE Symposium on

Visual Languages and Human-Centric Computing, VL/HCC, Innsbruck, Austria, 30 September–4 October 2012; IEEE: Piscataway,
NJ, USA, 2012; pp. 265–266.

35. Ur, B.; McManus, E.; Pak Yong Ho, M.; Littman, M.L. Practical trigger-action programming in the smart home. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, New York, NY, USA, 26 April–1 May 2014; ACM: New York,
NY, USA, 2014; pp. 803–812.

36. Lucci, G.; Paterno, F.; Paternò, F. Understanding End-User Development of Context-Dependent Applications in Smartphones. In
Proceedings of the Human-Centred Software Engineering, HCSE 2014, Paderborn, Germany, 16–18 September 2014; Springer:
Berlin/Heidelberg, Germany, 2014; Volume 8742, pp. 182–198.

37. Amazon Alexa. Available online: https://developer.amazon.com/en-US/alexa (accessed on 10 December 2021).
38. SmartThings. Available online: https://www.smartthings.com (accessed on 10 December 2021).
39. Workflow for iOS. Available online: https://my.workflow.is (accessed on 10 December 2021).
40. Kelleher, C.; Pausch, R. Lowering the barriers to programming: A taxonomy of programming environments and languages for

novice programmer. ACM Comput. Surv. 2005, 37, 83–137. [CrossRef]
41. Dey, A.K.; Hamid, R.; Beckmann, C.; Li, I.; Hsu, D. A CAPpella: Programming by demonstration of context-aware applications.

In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Vienna, Austria, 24–29 April 2004; ACM:
New York, NY, USA, 2004; Volume 6, pp. 33–40.

42. Trullemans, S.; Van Holsbeeke, L.; Signer, B. The Context Modelling Toolkit: A Unified Multi-layered Context Modelling
Approach. In Proceedings of the ACM on Human-Computer Interaction; ACM: New York, NY, USA, 2017; Volume 1, pp. 1–16.

43. Blackwell, A.F.; Hague, R. AutoHAN: An architecture for programming the home. In Proceedings of the IEEE Symposia on
Human-Centric Computing Languages and Environments, Stresa, Italy, 5–7 September 2001; IEEE: Piscataway, NJ, USA, 2001;
pp. 150–157.

44. Sohn, T.; Sohn, T.; Dey, A.; Dey, A. iCAP: An informal tool for interactive prototyping of context-aware applications. In Proceedings
of the CHI’03 Extended Abstracts on Human Factors in Computing Systems, Fort Lauderdale, FL, USA, 5–10 April 2003; ACM:
New York, NY, USA, 2003; pp. 974–975.

http://doi.org/10.1145/1967486.1967553
http://doi.org/10.1109/65.313011
http://doi.org/10.1109/MPRV.2010.11
http://doi.org/10.17705/1CAIS.02403
https://cordova.apache.org
http://doi.org/10.1145/2721914.2721935
https://www.modkit.com
http://doi.org/10.1145/1592761.1592779
http://doi.org/10.1145/1868358.1868363
https://www.arduino.cc
https://developer.amazon.com/en-US/alexa
https://www.smartthings.com
https://my.workflow.is
http://doi.org/10.1145/1089733.1089734

Appl. Sci. 2022, 12, 479 27 of 29

45. Truong, K.N.; Huang, E.M.; Abowd, G.D. CAMP: A Magnetic Poetry Interface for End-User Programming of Capture Applications
for the Home. In Proceedings of the UbiComp 2004: Ubiquitous Computing, Nottingham, UK, 7–10 September 2004; Springer:
Berlin/Heidelberg, Germany, 2004; Volume 3205, pp. 143–160.

46. Li, Y.; Hong, J.; Landay, J. Topiary: A tool for prototyping location-enhanced applications. In Proceedings of the 17th Annual
ACM Symposium on User Interface Software and Technology, Santa Fe, NM, USA, 24–27 October 2004; ACM: New York, NY,
USA, 2004; Volume 6, pp. 217–226.

47. Korpipää, P.; Malm, E.J.; Rantakokko, T.; Kyllönen, V.; Kela, J.; Mäntyjärvi, J.; Häkkilä, J.; Känsälä, I. Customizing user interaction
in smart phones. IEEE Pervasive Comput. 2006, 5, 82–90. [CrossRef]

48. Weis, T.; Knoll, M.; Ulbrich, A.; Mühl, G.; Brändie, A. Rapid prototyping for pervasive applications. IEEE Pervasive Comput. 2007,
6, 76–84. [CrossRef]

49. Li, Y.; Landay, J.A. Activity-based prototyping of ubicomp applications for long-lived, everyday human activities. In Proceedings
of the ACM CHI 2008 Conference on Human Factors in Computing Systems, Florence, Italy, 5–10 April 2008; ACM: New York,
NY, USA, 2008; Volume 1, pp. 1303–1312.

50. Dey, A.K.; Newberger, A. Support for Context-Aware Intelligibility and Control. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, Boston, MA, USA, 4–9 April 2009; ACM: New York, NY, USA, 2009; pp. 859–868.

51. Kawsar, F.; Fujinami, K.; Nakajima, T.; Park, J.H.; Yeo, S.S. A portable toolkit for supporting end-user personalization and control
in context-aware applications. Multimed. Tools Appl. 2010, 47, 409–432. [CrossRef]

52. Guo, B.; Zhang, D.; Imai, M. Enabling user-oriented management for ubiquitous computing: The meta-design approach. Comput.
Netw. 2010, 54, 2840–2855. [CrossRef]

53. Van Kleek, M.; Moore, B.; Karger, D.; André, P.; Schraefel, M.C. Atomate it! end-user context-sensitive automation using
heterogeneous information sources on the web. In Proceedings of the 19th International Conference on World Wide Web, Raleigh,
NC, USA, 26–30 April 2010; ACM: New York, NY, USA, 2010; Volume 26, pp. 951–960.

54. Guo, B.; Zhang, D.; Imai, M. Toward a cooperative programming framework for context-aware applications. Pers. Ubiquitous
Comput. 2011, 15, 221–233. [CrossRef]

55. Cuccurullo, S.; Francese, R.; Risi, M.; Tortora, G. MicroApps Development on Mobile Phones. In Proceedings of the End-User
Development, IS-EUD 2011, Torre Canne, Italy, 7–10 June 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 289–294.

56. Preuveneers, D.; Berbers, Y. Intelligent widgets for intuitive interaction and coordination in smart home environments. In
Proceedings of the 2012 Eighth International Conference on Intelligent Environments, Guanajuato, Mexico, 26–29 June 2012; IEEE:
Piscataway, NJ, USA, 2012; pp. 157–164.

57. Realinho, V.; Romão, T.; Dias, A.E. An event-driven workflow framework to develop context-aware mobile applications.
In Proceedings of the 11th International Conference on Mobile and Ubiquitous Multimedia—MUM ’12, Ulm, Germany,
4–6 December 2012; ACM: New York, NY, USA, 2012; pp. 1–10.

58. Edgcomb, A.D.; Vahid, F. MNFL: The monitoring and notification flow language for assistive monitoring. In Proceedings of
the 2nd ACM SIGHIT Symposium on International Health Informatics—IHI ’12, Miami, FL, USA, 28–23 January 2012; ACM:
New York, NY, USA, 2012; pp. 191–200.

59. Rodríguez, N.D.; Lilius, J.; Cuéllar, M.P.; Calvo-Flores, M.D. Extending semantic web tools for improving smart spaces interoper-
ability and usability. In Proceedings of the Distributed Computing and Artificial Intelligence, Salamanca, Spain, 22–24 May 2013;
Springer: Berlin/Heidelberg, Germany, 2013; pp. 45–52.

60. Martín, D.; López-de-Ipiña, D.; Alzua-Sorzabal, A.; Lamsfus, C.L.; Torres-Manzanera, E. A methodology and a web platform for
the collaborative development of context-aware systems. Sensors 2013, 13, 6032–6053. [CrossRef]

61. Lee, J.; Garduno, L.; Walker, E.; Burleson, W. A Tangible Programming Tool for Creation of Context-Aware Applications. In
Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Zurich, Switzerland,
8–12 September 2013; ACM: New York, NY, USA, 2013; pp. 391–400.

62. Nakamura, M.; Matsuo, S.; Matsumoto, S. Supporting end-user development of context-aware services in home network system.
In Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing 2012; Springer: Berlin/Heidelberg,
Germany, 2013; Volume 443, pp. 159–170. ISBN 9783642321719.

63. Palviainen, M.; Kuusijärvi, J.; Ovaska, E. A semi-automatic end-user programming approach for smart space application
development. Pervasive Mob. Comput. 2014, 12, 17–36. [CrossRef]

64. Su, J.-M.; Huang, C.-F. An easy-to-use 3D visualization system for planning context-aware applications in smart buildings.
Comput. Stand. Interfaces 2014, 36, 312–326. [CrossRef]

65. Coutaz, J.; Demeure, A.; Caffiau, S.; Crowley, J.L.; Demeure, A.; Crowley, J.L. Early lessons from the development of SPOK,
an end-user development environment for smart homes. In Proceedings of the 2014 ACM International Joint Conference on
Pervasive and Ubiquitous Computing Adjunct Publication, Seattle, WA, USA, 13–17 September 2014; ACM: New York, NY, USA,
2014; pp. 895–902.

66. Danado, J.; Paterno, F.; Paternò, F. Puzzle: A mobile application development environment using a jigsaw metaphor. J. Vis. Lang.
Comput. 2014, 25, 297–315. [CrossRef]

67. Mayer, S.; Tschofen, A.; Dey, A.K.; Mattern, F. User interfaces for smart things—A generative approach with semantic interaction
descriptions. ACM Trans. Comput. Interact. 2014, 21, 1–25. [CrossRef]

http://doi.org/10.1109/MPRV.2006.49
http://doi.org/10.1109/MPRV.2007.41
http://doi.org/10.1007/s11042-009-0330-8
http://doi.org/10.1016/j.comnet.2010.07.016
http://doi.org/10.1007/s00779-010-0329-1
http://doi.org/10.3390/s130506032
http://doi.org/10.1016/j.pmcj.2013.04.002
http://doi.org/10.1016/j.csi.2012.07.004
http://doi.org/10.1016/j.jvlc.2014.03.005
http://doi.org/10.1145/2584670

Appl. Sci. 2022, 12, 479 28 of 29

68. Martín, D.; Lamsfus, C.; Alzua-Sorzabal, A. A cloud-based platform to develop context-aware mobile applications by domain
experts. Comput. Stand. Interfaces 2016, 44, 177–184. [CrossRef]

69. Park, J.; Lee, K.H. Design patterns for context-aware services. Multimed. Tools Appl. 2015, 74, 2337–2358. [CrossRef]
70. Vianello, A.; Florack, Y.; Bellucci, A.; Jacucci, G. T4Tags 2.0: A Tangible System for Supporting Users’ Needs in the Domestic

Environment. In Proceedings of the TEI ’16: Tenth International Conference on Tangible, Embedded, and Embodied Interaction,
Eindhoven, The Netherlands, 14–17 February 2016; ACM: New York, NY, USA, 2016; pp. 38–43.

71. Hafidh, B.; Al Osman, H.; Dong, H.; Arteaga-Falconi, J.; El Saddik, A. SITE: The Simple Internet of Things Enabler For Smart
Homes. IEEE Access 2017, 5, 2034–2049. [CrossRef]

72. Metaxas, G.; Markopoulos, P. Natural contextual reasoning for end users. ACM Trans. Comput. Interact. 2017, 24, 1–36. [CrossRef]
73. Corcella, L.; Manca, M.; Paternò, F. Personalizing a student home behaviour. In International Symposium on End User Development;

Springer: Cham, Switzerland, 2017; pp. 18–33.
74. Li, T.J.-J.; Li, Y.; Chen, F.; Myers, B.A. Programming IoT devices by demonstration using mobile apps. In International Symposium

on End User Development; Springer: Cham, Switzerland, 2017; pp. 3–17.
75. Noura, M.; Heil, S.; Gaedke, M. GrOWTH: Goal-oriented end user development for web of things devices. In Proceedings of the

Web Engineering—ICWE 2018, Cáceres, Spain, 5–8 June 2018; Springer: Cham, Switzerland, 2018; Volume 10845, pp. 358–365.
76. Fischer, M.H.; Campagna, G.; Choi, E.; Lam, M.S. Multi-Modal End-User Programming of Web-Based Virtual Assistant Skills.

arXiv 2020, arXiv:2008.13510.
77. Ponciano, T.; Tabosa, D.; Viana, W.; Duarte, P.; Carmo, R. A Generative Approach for Android Sensor-based Applications. In

Proceedings of the Brazilian Symposium on Multimedia and the Web, São Luís, Brazil, 30 November–4 December 2020; ACM:
New York, NY, USA, 2020; pp. 33–40.

78. Wang, T.; Qian, X.; He, F.; Hu, X.; Huo, K.; Cao, Y.; Ramani, K. CAPturAR: An augmented reality tool for authoring human-
involved context-aware applications. In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and
Technology—UIST 2020, Virtual Event, USA, 20–23 October 2020; ACM: New York, NY, USA, 2020; pp. 328–341.

79. Realinho, V.; Dias, A.E.; Romão, T. Testing the usability of a platform for rapid development of mobile context-aware applica-
tions. In Proceedings of the Human-Computer Interaction—INTERACT 2011, Lisbon, Portugal, 5–9 September 2011; Springer:
Berlin/Heidelberg, Germany, 2011; Volume 6948, pp. 521–536.

80. Davidyuk, O.; Milara, I.S.; Gilman, E.; Riekki, J. An Overview of Interactive Application Composition Approaches. Open Comput.
Sci. 2015, 5, 79–95. [CrossRef]

81. Cuccurullo, S.; Francese, R.; Risi, M.; Tortora, G. A visual approach supporting the development of MicroApps on mobile
phones. In Proceedings of the 17th International Conference on Distributed Multimedia Systems, DMS 2011, Florence, Italy,
18–20 August 2011; Knowledge Systems Institute: Skokie, IL, USA, 2011; pp. 171–176.

82. Danado, J.; Paternò, F. Puzzle: A visual-based environment for end user development in touch-based mobile phones. In
Proceedings of the Human-Centered Software Engineering, HCSE 2012, Toulouse, France, 29–31 October 2012; Springer:
Berlin/Heidelberg, Germany, 2012; Volume 7623, pp. 199–216.

83. Lee, J.; Burleson, W.; Walker, E.; Hekler, E.B.E.; Burleson, W.; Hekler, E.B.E.; Walker, E.; Hekler, E.B.E. Programming tool of
context-aware applications for behavior change. In Proceedings of the 2014 ACM International Joint Conference on Pervasive
and Ubiquitous Computing: Adjunct Publication, Seattle, WA, USA, 13–17 September 2014; ACM: New York, NY, USA, 2014;
pp. 91–94.

84. LabVIEW. Available online: https://www.ni.com/en-ca/shop/labview.html (accessed on 10 December 2021).
85. Google Awareness API. Available online: https://developers.google.com/awareness (accessed on 10 December 2021).
86. Häkkilä, J.; Korpipää, P.; Ronkainen, S.; Tuomela, U.; Hakkila, J.; Korpipaa, P.; Ronkainen, S.; Tuomela, U. Interaction and end-user

programming with a context-aware mobile application. In Proceedings of the Human-Computer Interaction-INTERACT 2005,
Rome, Italy, 12–16 September 2005; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3585, pp. 927–937.

87. Tetteroo, D.; Soute, I.; Markopoulos, P. Five key challenges in end-user development for tangible and embodied interac-
tion. In Proceedings of the 15th ACM on International Conference on Multimodal Interaction—ICMI ’13, Sydney, Australia,
9–13 December 2013; ACM: New York, NY, USA, 2013; pp. 247–254.

88. Realinho, V.; Romão, T.; Dias, A.E. A language for the end-user development of mobile context-aware applications. J. Wirel. Mob.
Netw. Ubiquitous Comput. Dependable Appl. 2020, 11, 54–80. [CrossRef]

89. Korpipää, P.; Häkkilä, J.; Kela, J.; Ronkainen, S.; Känsälä, I. Utilising context ontology in mobile device application personalisation.
In Proceedings of the 3rd International Conference on Mobile and Ubiquitous Multimedia—MUM ’04, College Park, MD, USA,
27–29 October 2004; ACM: New York, NY, USA, 2004; pp. 133–140.

90. Korpipää, P.; Malm, E.-J.J.E.E.-J.; Salminen, I.I.; Rantakokko, T.; Kyllönen, V.; Känsälä, I.I. Context management for end user
development of context-aware applications. In Proceedings of the 6th International Conference on Mobile Data Management,
MDM’05, Ayia Napa, Cyprus, 9–13 May 2015; ACM: New York, NY, USA, 2005; pp. 304–308.

91. Francese, R.; Risi, M.; Tortora, G.; Tucci, M. Visual Mobile Computing for Mobile End-Users. IEEE Trans. Mob. Comput. 2016, 15,
1033–1046. [CrossRef]

92. Leontyev, A.N. Activity and Consciousness; Progress Publishers: Moscow, Russia, 1977.

http://doi.org/10.1016/j.csi.2015.08.009
http://doi.org/10.1007/s11042-014-2001-7
http://doi.org/10.1109/ACCESS.2017.2653079
http://doi.org/10.1145/3057860
http://doi.org/10.1515/comp-2015-0007
https://www.ni.com/en-ca/shop/labview.html
https://developers.google.com/awareness
http://doi.org/10.22667/JOWUA.2020.03.31.054
http://doi.org/10.1109/TMC.2015.2422295

Appl. Sci. 2022, 12, 479 29 of 29

93. Rissanen, M.J.; Fernando, O.N.N.; Pang, N.; Iroshan, H.; Foo, S. Ubiquitous Shortcuts: Mnemonics by Just Taking Photos. In
Proceedings of the CHI’13 Extended Abstracts on Human Factors in Computing Systems, Paris, France, 27 April–2 May 2013;
ACM: New York, NY, USA, 2013; pp. 1641–1646.

94. Rissanen, M.J.; Vu, S.; Fernando, O.N.N.; Pang, N.; Foo, S. Subtle, Natural and Socially Acceptable Interaction Techniques for
Ringterfaces—Finger-Ring Shaped User Interfaces. In Proceedings of the Distributed, Ambient, and Pervasive Interactions, DAPI
2013, Las Vegas, NV, USA, 21–26 July 2013; Springer: Berlin/Heidelberg, Germany, 2013; Volume 8028, pp. 52–61.

95. Dey, A.K.; Sohn, T.; Streng, S.; Kodama, J. iCAP: Interactive Prototyping of Context-Aware Applications. In International
Conference on Pervasive Computing, Dublin, Ireland, 7–10 May 2010; Fishkin, K.P., Schiele, B., Nixon, P., Quigley, A., Eds.; Springer:
Berlin/Heidelberg, Germany, 2006; Volume 3968, pp. 254–271.

96. Roy, P.; Abdulrazak, B.; Belala, Y. Quantifying Semantic Proximity between Contexts. In Proceedings of the Smart Homes and
Health Telematics, ICOST 2014, Denver, CO, USA, 25–27 June 2014; Springer: Cham, Switzerland, 2014; pp. 165–174.

97. Ponce, V.; Abdulrazak, B. Activity Model for Interactive Micro Context-Aware Well-Being Applications Based on ContextAA. In
Proceedings of the Enhanced Quality of Life and Smart Living, ICOST 2017, Paris, France, 29–31 August 2017; Springer: Cham,
Switzerland, 2017; pp. 99–111.

98. Qasim, I.; Anwar, M.W.; Azam, F.; Tufail, H.; Butt, W.H.; Zafar, M.N. A model-driven mobile HMI framework (MMHF) for
industrial control systems. IEEE Access 2020, 8, 10827–10846. [CrossRef]

99. Normanyo, E.; Husinu, F.; Agyare, O.R. Developing a human machine interface (HMI) for industrial automated systems using
siemens simatic WinCC flexible advanced software. J. Emerg. Trends Comput. Inf. Sci. 2014, 5, 134–144.

100. Papcun, P.; Kajáti, E.; Koziorek, J. Human machine interface in concept of industry 4.0. In Proceedings of the 2018 World
Symposium on Digital Intelligence for Systems and Machines (DISA), Košice, Slovakia, 23–25 August 2018; pp. 289–296.

101. Longo, F.; Padovano, A.; Umbrello, S. Value-oriented and ethical technology engineering in industry 5.0: A human-centric
perspective for the design of the factory of the future. Appl. Sci. 2020, 10, 4182. [CrossRef]

102. Fogli, D.; Piccinno, A. End-user development in industry 4.0: Challenges and opportunities. In Proceedings of the International
Symposium on End User Development, Hatfield, UK, 10–12 July 2019; pp. 230–233.

http://doi.org/10.1109/ACCESS.2020.2965259
http://doi.org/10.3390/app10124182

	Introduction
	Background: End-User Developing Context-Aware Applications
	End Users as Application Builders
	Context and Context-Awareness
	Context-Aware Application Development Involving End Users
	The Rationale for the Review

	Review Method
	Research Questions and Generic Search String
	Inclusion/Exclusion Criteria
	Data Extraction and Classification

	Application Building Techniques
	Programming Artifact Abstractions
	Model-Based Specification
	Simple Flow of Components
	Visual Language-Based Flows
	Assembling Pieces
	Simplified Meaning of Pieces
	Languages to Specify Rules
	Select/Demonstrate Rules
	Illustration of Rules
	Demonstrate Actions
	Augmented/Advanced Interaction

	What Is behind the Tool? Implementation Approaches and Challenges
	Rule-Based Programming
	Using Ontologies for Programming
	Using a Reduced Language or Pattern for Programming
	Language-Based Programming
	Artificial Intelligence and Other Approaches
	Discussion and Challenges
	Context-Aware End-User Development
	Specification of Complex Situations
	End-User Development in Industry
	Development Methodology and End-User Software Engineering (EUSE)

	Conclusions
	References

