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Featured Application: This paper carries out an analysis on Bluetooth RSSI data according to dif-
ferent poses. The related analysis results can provide a reference basis for research on proximity
detection algorithms for ship passengers.

Abstract: Concern about the health of people who traveled onboard was raised during the COVID-19
outbreak on the Diamond Princess cruise ship. The ship’s narrow space offers an environment
conducive to the virus’s spread. Close contact isolation remains one of the most critical current
measures to stop the virus’s rapid spread. Contacts can be identified efficiently by detecting intelligent
devices nearby. The smartphone’s Bluetooth RSSI signal is essential data for proximity detection.
This paper analyzes Bluetooth RSSI signals available to the public and compares RSSI signals in two
distinct poses: standing and sitting. These features can improve accuracy and provide an essential
basis for creating algorithms for proximity detection. This allows for improved accuracy in identifying
close contacts and can help ships sustainably manage persons onboard in the post-epidemic era.
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1. Introduction

Cruise ships have contributed to the spread of COVID-19 worldwide [1]. The Japanese
government ordered passengers and crew on the Diamond Princess to start a two-week
quarantine after a former passenger tested positive for COVID-19 [2]. Shipboard personnel
remain at high risk for an infectious disease outbreak from COVID-19. A rapid and coordi-
nated response is essential to containing the spread of Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2) [3]. The importation of viruses onboard is facilitated by
regular and irregular contact with land-based populations. Living in confined spaces with
limited air exchange promotes the spread of disease [4,5] and highlights the high risk of
SARS-CoV-2 transmission on cruise ships. Close-range contact and communications likely
contributed similarly to disease progression aboard the ship [6]. Crew members are one of
the occupational groups more susceptible to outbreaks of this virus due to the cramped
working environment [7].

Infectious diseases are more prone to spread quickly in this setting due to ships’
restricted and limited interiors. Isolation is still one of the most effective ways to keep
COVID-19 from spreading rapidly today. Those with confirmed COVID-19 and close
contacts are the two main groups of people who will need to be quarantined. Finding and
isolating close contacts is critical to halting COVID-19 rapid spread. Using smartphone
location data to track close contacts is an excellent approach to finding them. Based on
mobile sensor data from Smart Contact Tracking, 627,386 potential contacts related to
Diamond Princess cruise ship passengers were identified by using location methods and
analysis after cross validation with other sensor monitoring data [8]. Reference [8] also uses
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mobile sensor data to track close contacts. Bluetooth RSSI is precisely one of the mobile
sensor data. The idea of our paper is to use Bluetooth RSSI from smartphones for proximity
detection for close contact tracking. Using location information to track close contacts is
not the only method. This can also be accomplished by adjusting device distances between
cellphones. This technology separation is also known as proximity detection.

When faced with the threat of COVID-19, a highly contagious virus, maintaining
proximity detection is an effective method to prevent infection. Specifically, the risk of
COVID-19 transmission increases when an uninfected person is less than 6 ft away for
more than 15 min from an infected person (also known as “too close for too long” (TCTL)).
If a list of TCTL people could be detected and passively tracked via smartphones, users
could be notified if they test positive for COVID-19. Existing radio frequency (RF) location
technologies could be used to track the daily movements of infected smartphone users.
Owners of neighboring smart devices can then be notified to maintain proximity detection
or be tested if they are exposed to infected people.

Ubiquitous Bluetooth Low Energy (BLE) attracted significant attention due to its short-
range and low energy consumption. The Massachusetts Institute of Technology (MIT) leads
the Private Automated Contact Tracing (PACT) consortium [9]. The consortium provides
several high-quality BLE Received Signal Strength Indicator (RSSI) datasets [9]. These
data are collected in various proximity scenarios. The reliability analysis of RSSI-based
BLE ranging is a complex issue. Practical measurement studies and characterization of
proximity detection using BLE RSSI have been carried out in various scenarios [10]. Several
previous studies have proposed methods to improve RSSI-based proximity detection. In
addition to proximity, other researchers have used RSSI to estimate mutual orientation
between users [11] and energy consumption of BLE RSSI proximity detection [12].

In most cases, Bluetooth RSSI is used in indoor positioning technology. In comparison
to room size, the most critical components impacting RSSI during the development of
indoor positioning algorithms are walls, metal materials, and water. The transmitter emits
signals to the surrounding environment, although the signs are generally reflected due to
walls and metal elements. As a result, misleading signals are generated. Human mobility
is required in typical interior placement settings, and the human body is primarily made of
water, which has a significant impact on RSSI signals. The preceding describes a typical
internal placement scenario. Proximity detection, on the other hand, is not the same as
traditional interior positioning scenarios. The transmitter and receiver in a proximity
detection application are commonly two cellphones. The transmitter is frequently on a wall
in classic indoor localization methods. A significant distance often separates the transmitter
and receiver in proximity detection. The focus of proximity detection is on proximity. Two
smartphone devices are pretty close to one other in practice. Proximity detection aims
to discriminate between distant and near situations, not compute distance. Significantly,
unlike previous proximity detection approaches, the proximity detection discussed in this
study does not add closeness via sensing distance but instead directly uses RSSI. After
distance is no longer a factor, the scenarios for proximity sensing are relatively similar,
whether in a ship or a typical interior setting. As a result, the relevant conclusions gained
through the dataset utilized in this study also apply to the ship environment.

RSSI can be considered as sensor data referring to indoor locations. However, the char-
acteristics of RSSI such as Bluetooth have been rarely studied. This is true despite the vast
knowledge about RF phenomena and received signal properties in indoor environments.
Since RSSI is not intended to be used as a position sensor, there may be inherent perfor-
mance limitations in using RSSI to determine position. Its statistical distribution is expected
to differ from other indoor radio propagation studies that use sophisticated equipment
such as vector signal analyzers to collect received signal data. The main objective of this
study is to understand the various properties of RSSI associated with proximity detection
through statistical data analysis of RSSI.
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It is important to perform basic mathematical statistics on RSSI in this study. The
apparent outcome is attained, and the results are declared by common sense. Our paper
does not only obtain this result alone but also other exciting developments.

Our paper analyzes Bluetooth RSSI signals available to the public and compares RSSI
signals in two distinct poses: standing and sitting. These features can improve accuracy and
provide an essential basis for creating algorithms for proximity detection. This enhances
accurate identification of close contacts and enables COVID-19 to be stopped further within
a ship.

2. Related Works

Many studies on indoor positioning systems have pointed out the properties of the
RSSI describing location fingerprints. In the seminal work of [13], the user’s orientation
may result in variations in RSSI levels of up to 5 dBm. However, no analysis of RSSI data is
provided. Different directions of the user and mobile device concerning the access point
may change the average value of RSSI at a location. The authors of [14] also suggest that
the orientation should be included in calculating the user’s location. The authors of [15]
studied indoor positioning systems and considered user orientation by adding a digital
compass to the mobile device to improve positioning accuracy. However, the increase
from two to eight directions does not significantly improve localization performance. A
preliminary study on the use of RSSI for location fingerprinting is reported in [16]. The
researcher performs several RSSI measurements influenced by the user, orientation, and
fade. The researcher finds that mean RSSI values changed, but RSSI values fluctuated more.
This finding emphasizes the need to consider the influence of the user. Since RSSI can
be used to calculate distance, it became the primary method for proximity detection, but
user behavior significantly impacts RSSI. In other words, the user’s pose fluctuates and
affects RSSI signal. It is necessary to determine the impact that different user poses will
have on the RSSI, which plays a crucial role in improving proximity detection accuracy.
Proximity detection can be achieved by indoor positioning techniques, although it can also
be reached directly by RSSI values. Applying machine learning algorithms to achieve RSSI
proximity detection is a classification problem. The authors of [17] focused on using RSSI
data to identify whether two persons are 6 ft apart by using machine learning classification
techniques. The authors of [18] studied, using a machine learning approach, making infer-
ences from the data collected by the sensor array to observe whether obtaining classifiers
and a regressor on the projected distance between objects and the sensor is possible. The
author of [19] uses classical estimation theory and several machine learning techniques to
compare the accuracy of proximity distances and accompanying confidence levels. The
author of [19] demonstrates that machine learning techniques may improve accuracy from
3.60 to 19.98 percent, bringing them closer to the feasible estimate bound. Therefore, this
article uses distance to represent proximity. However, what our paper proposes is that
there is a relationship between RSSI intensity and proximity, and proximity is not defined
by distance but by RSSI power. This is the most fundamental difference between our paper
and this article.

However, most of the studies in the literature do not further investigate the actual
statistical properties of RSSI samples. Most of the existing studies on indoor localization
focus on algorithms but do not analyze RSSI data. Therefore, in this study, we analyze
RSSI data statistically from people’s sitting and standing poses in order to analyze what
kind of influence different poses have on RSSI and to consider this influence for proximity
detection in the future to obtain accurate proximity detection. We first describe the MITRE
range angle structured (MRAS) PACT dataset. Next, RSSI values are statistically analyzed
in order to compare differences in mean, median, mode, standard deviation, and skewness
at different distances and compare different poses. In addition, the differences in RSSI
distributions at different poses are compared at exact distances.

This paper’s main contribution is that using the mean value of RSSI brings more minor
proximity detection errors than by using the median, mode, minimum, and maximum. If
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only RSSI dispersion is considered, it is difficult to reduce the error. Moreover, in most
cases, RSSI values almost belong to the left-skewed distribution. There is a combination of
mean and skewness of RSSI at different poses. In the case of close distances, the current
posture of the person onboard can be identified based on the mean and skewness of RSSI.
As distance increases, the difference in RSSI in various poses decreases. The mean and
skewness features for distinguishing different poses will gradually disappear. In the case
of close distance, the RSSIs of different poses have various fluctuation intervals in different
periods. These features can improve the accuracy of proximity detection and identify
the pose of ship passengers under certain conditions. Under the condition of proximity
detection with high precision, close contacts can be accurately determined, thus preventing
COVID-19 from spreading further inside the ship.

3. The PACT Proximity Datasets

The Too Close for Too Long (TC4TL) challenge, organized by the National Institute
of Standards and Technology (NIST) in collaboration with the MIT PACT project, aims to
improve proximity detection for Bluetooth Low Energy (BLE)-based contact tracking.

The PACT consortium published seven datasets. MRAS dataset is well documented in
other datasets. Moreover, it contains measurements at different distances relevant to our
study goals of performance evaluation of COVID-19 proximity detection from BLE RSSI
measurements. The MRAS dataset also contains different tester pose settings. Environment
settings specify the properties of the testing area, such as the room size and the tester’s
location in the room. Tester settings define how testers use devices and how they hold
smartphones in addition to testers’ poses. Testers pose either by “sitting” or “standing”
at the marked location. Figure 1 shows BLE RSSI measurement scenarios for short-range
operations of up to 15 ft. Eight stationary locations for measurement begin at 3 ft, are
increased at intervals and end at 15 ft. The distances are identified relative to a person who
holds a smartphone with BLE beacons. RSSI measurement data are collected by another
person (a receiver) positioned at the eight labeled distances.
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Figure 1. Eight distances for measurements of the RSSI database (source: PACT website).

These datasets are collected by using three versions of the Range-Angle Collection
Protocol [20]: Short, Mid, and Full. The Full protocol consists of 40 datasets with RSSI
measurements at eight different distances, as shown in Figure 1, and this study uses these
datasets for performance evaluation for various distances. This study did not include Short
and Mid versions, which had only two different distances of 3 ft and 8 ft and did not offer
adequate diversity in measurement distances.

HANNARA is a Korean Maritime and Ocean University student training ship. Figure 2
depicts the layout of the HANNARA ship’s student living quarters. The purpose of
showing a plan of the HANNARA is that the ship environment is similar to that of a
cruise ship, and there are enough persons on board as well. In addition, the ship has
many stateroom structures similar to those on a cruise ship. It is possible to demonstrate
the natural application environment of proximity detection to the maximum extent. The
HANNARA ship is used as an experimental environment for this study in subsequent
research. As shown in Figure 2, the vessel is compact, and proximity detections of less
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than 6 ft are more likely in this context. Due to the fact that ship space is restricted, the
passengers onboard must engage in a full range of activities. Socialization distances of
less than 6 ft and duration of more than 15 min are more frequent in this instance. As a
result, one of the most critical aspects of locating close relationships is accurately calculating
proximity detection of ship riders.
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Figure 3 illustrates a practical application case of proximity detection. Firstly, the
location information of the person riding the boat is obtained by an indoor positioning
algorithm. It is assumed that the trajectory data of the COVID-19 confirmed person is
known. The trajectories similar to COVID-19 are found by a clustering algorithm (DBSCAN
(Density-based spatial clustering of applications with noise), as an example), and its user
ID is obtained in order to classify it as a close contact. The results of proximity detection
are combined at this time to finalize close contacts. Proximity detection can also confirm
whether the close contacts are in the room. Let us suppose the door lock of a room has a
Bluetooth signal transmitter. When the close contact leaves the room, proximity detection
is suspended as RSSI strength changes dramatically and fades to nothing. Not obtaining
proximity makes it possible to determine whether the close contact has left the isolated
room without permission.

If the device proximity of a smartphone is known in addition to the COVID-19 patient
and close contacts, then distance data can be tagged, and a machine learning method, such
as the DBSCAN algorithm, is used to discover trends. The computer can find close contacts
by learning the rules on its own, which will result in a significant increase in efficiency and
accuracy. Close contacts are isolated according to epidemic prevention regulations after
accurately identifying connections in a short period of time. An electronic barrier is set
up in the isolation area of close contacts. Suppose a close contact leaves the isolation area
without permission. In that case, a warning is sent to the monitoring room via a cell phone
voice triggering device, and personnel can intervene in time to decrease the danger of viral
transmission. As a result, distance recognition accuracy becomes highly critical.
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For proximity detection applications, the ship does not require additional equipment
but only a smartphone in the hands of persons onboard. Generally, wireless networks
are installed on newly built ships. The ship’s wireless network covers the active area of
the ship’s occupants. RSSI data received from another person on the cell phone estimates
proximity. Estimation results can be transmitted back to the control center by using WiFi.
The server will store data in the local database to make it easier for the program to read
the data. In older ships, a ship’s wireless network has to be installed to be able to obtain
proximity detection results from the user’s device and to transmit information to the control
center. Furthermore, as satellite-based marine networks, such as the Starlink program,
are gradually implemented [22], the problem of data backhaul on all types of boats may
be solved.

We quantify possible parameters influencing proximity detection results in this study
and provide a solid reference base for future proximity detection algorithm development.

4. Impact of Quantization of Bluetooth RSSI Values
4.1. Statistical Analysis

Due to the limited space of the ship, most of the time, passengers are in the sitting pose
instead of the standing pose. Therefore, it is necessary to study the influence on proximity
detection in the case of two different poses, sitting and standing, in order to provide a basis
for future research related to the theoretical method of distance identification.

Experimental data are obtained from the PACT consortium. RSSI values are reported
by smartphones. These quantization bins are represented by all possible values reported
by the RSSI of each smartphone [20]. The larger the quantization of RSS, the better RSS
represents a Bluetooth signal. Bluetooth with more quantization steps should provide a
better method for proximity detection [23]. If only the integer number is used for proximity
detection, the chance of any two locations having exact locations would increase and
degrade the performance of the proximity detection technique [24].

Typically, most of the research studies involving indoor positioning systems calculate
the average values of RSSI and record them as real numbers [25]. This reduces the problem
of the quantization effect in development [26]. A comparison of RSSI from the different
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distances and poses is shown in Table 1. The quantization impact can also be mitigated by
using the mode and median. Table 1 shows how RSSI values of the mean, median, and mode
change over time for the same distance. Each distance and pose collected 3240 RSSI samples
over three minutes (18 samples/second) in order to calculate the summary statistics in
the table.

Table 1. Statistics of RSSI measured from different distances (Sit and Stand cases) (source: PACT dataset).

Statistics 3 ft 4 ft 5 ft 6 ft 8 ft 10 ft 12 ft 15 ft

Mean (Sit) −58.2 −62 −66.5 −69.5 −67.5 −68.0 −72.4 −71.2

Median (Sit) −56 −61 −66 −68 −67 −68 −72 −71

Mode (Sit) −51 −57 −62 −68 −61 −72 −72 −72

Standard Deviation (Sit) 6.1 6.7 5.9 7.6 6.5 7.4 6.7 4.9

Skewness (Sit) −0.62 −0.62 −0.64 −1.03 −0.76 −0.14 −0.47 0.06

Range (Sit) 26 36 40 40 35 40 41 33

Minimum (Sit) −76 −86 −93 −97 −91 −93 −98 −89

Maximum (Sit) −50 −50 −53 −57 −56 −53 −57 −56

Statistics 3 ft 4 ft 5 ft 6 ft 8 ft 10 ft 12 ft 15 ft

Mean (Stand) −54.0 −57.9 −58.0 −58.6 −60.7 −61.0 −67.4 −70.6

Median (Stand) −54 −57 −58 −58 −60 −60 −66 −69

Mode (Stand) −57 −54 −54 −55 −61 −56 −66 −65

Standard Deviation (Stand) 5.2 6.2 5.5 5.2 4.9 5.4 5.8 6.2

Skewness (Stand) −0.18 −1.37 −1.36 −0.94 −0.67 −0.6 −0.8 −0.96

Range (Stand) 35 45 43 33 35 36 44 36

Minimum (Stand) −77 −92 −92 −82 −85 −86 −97 −95

Maximum (Stand) −42 −47 −49 −49 −50 −50 −53 −59

The means are different by about 0.6 dBm to 10.9 dBm in various poses at the same
distance. Range, standard deviation, and skewness are also diverse. A particular point of
interest is that the mean of RSSI (Sit and Stand) is the most similar at 15 ft. RSSI will rapidly
deteriorate as the distance between two points increases. At 8 ft, the RSSI value becomes
more vital in the sitting pose. Mean and median readings, −67.5 dBm and −67 dBm, are
nearly identical. The mode value, however, is −61 dBm. The mode value at 6 ft and the
mode value at 8 ft is 7 dBm. The mean and median readings are only 2.5 and 1 dBm,
respectively. If proximity is calculated by using mode as a representative value of RSSI, the
result may be around 4 ft; however, if proximity is calculated using mean and median, the
result will be between 5 ft and 6 ft. To put it another way, using mode as an RSSI proxy for a
sitting pose at an 8 ft will result in more significant inaccuracy. Mean and median values in
the standing pose show a declining tendency with increasing distance. The 4 ft to 6 ft mode
values are more significant than the 3 ft mode values. This contradicts the RSSI rule, which
states that RSSI decreases with distance. The mode value at 4 ft distance is 7 dBm higher
than at 3 ft, resulting in a substantial mistake in distance computation. Finally, we find
that mean and median RSSI values are recommended for calculating proximity detection,
whereas the mode value is not.

Standard deviation is a measure of a set of value variability or dispersion. A low
standard deviation shows that these values tend to be close to the average value of the
group, whereas a high standard deviation indicates that these values are spread across a
broader range. As shown in Table 1, standard deviation is the lowest at 15 ft and largest
at 6 ft for the sitting pose. However, the most significant distance error occurs at 8 ft. In
standing poses, the median values are the same for 5 ft and 6 ft and 8 ft and 10 ft. That is to
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say that using the median value of RSSI for proximity detection will produce a significant
error at these distances. In addition, it is not possible to reduce these errors from the
standard deviation at these distances.

Considering only the dispersion of Bluetooth RSSI values from the mean value,
whether in sitting or standing poses, does not minimize errors. In skewness, all dis-
tributions are left-skewed, except for the 15 ft RSSI distribution in sitting pose, which is
right-skewed. In addition, the minimum and maximum values of RSSI also do not conform
to the rule that RSSI decays with increasing distance.

From the above analysis, we conclude that the mean value of RSSI can be used
to reduce error rather than relying on median, mode, minimum, and maximum when
conducting proximity detection in two different poses: that of sitting and standing. If only
RSSI dispersion is considered, reducing errors becomes challenging. Moreover, in most
cases, RSSI values almost wholly belong to left-skewed distributions.

Traditionally, RSSI is believed to be log-normally distributed according to the large-
scale fading model impact on receiver design and coverage. There is still a lack of necessary
understanding of RSSI properties from the perspective of proximity detection [27].

Due to propagating effects, such as reflection, diffraction, and dispersion caused by
dense multipath and indoor environments, it is challenging to predict radio frequency
(RF) signal variations [28]. The multi-path fading effect results from a constructive or
destructive combination of multiple signal copies at the receiver, causing the signal received
to fluctuate in a particular area around the mean value [29]. In the case of large-scale
decreases and small-scale declines, the received signal is generally modeled [30]. Note that
the measurements average small-scale fading results when RSSI is average [31]. However,
these results do not consider an in-depth analysis of RSSI distribution.

Observations from datasets of 3 ft (Sit and Stand) histograms indicated that the differ-
ent distribution shapes of the RSSI occurred for varying poses. The reason is that the upper
and lower bounds of measurable RSSI at each distance cause other forms of distributions.

Figures 4 and 5 illustrate slightly skewed RSSI distributions measured from 3 ft
(Sit and Stand). Two samples of RSSI histograms were collected from 3 ft (Sit) and 3 ft
(Stand) in Figures 4 and 5. This study compared the sitting pose with the standing posture
for three minutes at 3 ft—the histogram of 3 ft (Sit) is shown in the left-skewed RSSI
distribution in Figure 4. The histogram of 3 ft (Stand) is shown as an almost normal-skewed
RSSI distribution in Figure 5. The authors of [32] report a normal distribution where the
measurement in that study is taken inside an office room. However, the fact is that people‘s
poses can influence the distribution of RSSI.
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The samples are predominantly concentrated between −65 dBm and −50 dBm in
the sitting pose and between −60 dBm and −50 dBm in the standing pose. In other
words, different poses slightly change the distribution of RSSI. RSSI distribution is closer
to the normal distribution in the standing posture. In addition, it can be observed from
Figures 4 and 5 that different postures cause different ranges of variation in RSSI, which
can cause inconsistencies to occur in mean RSSI values of these two poses, which may
form their respective characteristics. From the above analysis, we conclude that there is a
combination of mean value and skewness characteristics of RSSI in different poses. In the
case of close distance, the current posture of ship passengers can be identified based on the
mean and skewness of RSSI.

4.2. Autocorrelation Analysis

Figure 6 shows the variation of RSSI for two different poses of 3 ft and 15 ft. The
measurement is performed over a continuous period of 3 min on different distances and
poses. The RSSI range difference of sitting and standing poses is evident at 3 ft. However, it
is not distinct at 15 ft—the RSSI of sitting and standing at 15 ft stabilized in a similar range.
The RSSI of sitting and standing postures is clearly distinguished at 3 ft. RSSI content is
almost identical with different poses at 15 ft. The RSSI of stand poses fluctuates mainly
between −50 dBm and −55 dBm in the range of 0 to 1000 in the horizontal coordinate of
3 ft. In that range, the RSSI fluctuation interval of the sitting poses is two: One is in the
horizontal coordinate of 0 to 500 range where the RSSI fluctuation interval is −55 dBm
to −70 dBm. The other is in the horizontal coordinate of the 500 to 1000 range; the RSSI
fluctuation interval is −50 dBm to −55 dBm. That is to say that in a specific time range of a
close distance case, there is a significant difference in RSSI for various poses, and in the long-
distance case, this difference gradually decreases. From the above analysis, we conclude
that as distance increases, the difference in RSSI at various poses gradually decreases.
Mean and skewness features for distinguishing different poses gradually disappear. In
the case of close distance, the RSSI of different poses have various fluctuation intervals in
different periods.

This study performs autocorrelation analysis in order to determine how correlated
RSSI values are over time. The equation for autocorrelation is as follows.

R(k) =
1

(n − k)σ2 ∑n−k
t=1 (xt − µ)(xt+k − µ) (1)

Exploring the autocorrelation of RSSI focuses on measuring the relationship between
RSSI at the current moment and the next moment. However, the relationship between the
individual and RSSI also needs to be considered. Therefore, variance and mean are also
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included in the calculation. σ is variance, and µ is mean. xt is the RSSI at time t, and xt + k is
the RSSI at time t + k.

This study assumes that RSSI is time-dependent. The correlograms are plotted in
Figure 7. Figure 7 depicts similar shapes for 3 ft and 15 ft in sitting and standing pose. Note
that the 15 ft (Sit and Stand) plot in Figure 7 has much smaller correlation coefficients at more
considerable time lags, which indicated that dependences of RSSI sample reduced faster in
15 ft. This implies a faster signal change resulting from rapid change in the distance.
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Meanwhile, the RSSI of the standing pose correlation coefficients at the same distance
had smaller values than the sitting pose. The visual tests for this sample suggest the
possibility of a stationary process. The higher the distance, the larger the autocorrelation co-
efficient, and the smaller the distance, the smaller the autocorrelation coefficient, according
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to the correlogram. The influence of different postures on the autocorrelation coefficient
is relatively minimal from the standpoint of the posture. The autocorrelation coefficient
of the standing posture is slightly lower than that of the sitting posture. In other words,
regardless of whether you sit or stand, the RSSI autocorrelation coefficient does not change
appreciably. Note that since autocorrelations in the plots are significantly non-zero, the
RSSI does have a strong correlation between consecutive samples as an assumption.

4.3. Visualize RSSI Patterns in Different Poses

Figure 8 shows two-dimensional plots of RSSI patterns from different poses at the
same distance. The x-axis represents the RSSI of the sitting posture. The y-axis represents
the RSSI of the standing posture. Note that the pattern of RSSIs of different poses cannot be
grouped into clusters. The degree of separation does not increase as distance changes from
3 ft to 15 ft at different poses. This observation suggests that signals with more significant
standard deviations (or variance) will make it more challenging to perform proximity
detection. The 3-feet distance, as shown in Figure 9, has a substantially more distinct
patterns than the other lengths. As a result, RSSI data from sitting and standing poses may
be combined to obtain a 3-feet distance marker. On the other hand, the different distances
produce no discernible pattern change. The RSSs of the sitting and standing poses for the
3-feet distance is closer simultaneously, but the RSSs of the two poses for the other ranges
are further away.
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The overlap between the patterns becomes a bigger problem for proximity detection as
the number of distances increases. This can be depicted in Figure 9 when plotting the three
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dimensions for RSSI patterns. The density of the y-axis is the kernel density estimation
(KDE) [33]. KDE is a non-parametric method used for estimating a random variable
probability density function. The RSSI value can be considered as a point. The density of
issues can be calculated to reveal the degree of clustering points. This degree of aggregation
can form a pattern. Under different conditions, different degrees of the collection show
different designs. KDE can visualize RSSI patterns. The formula is as follows:

fh(x) =
1

nh

n

∑
i=1

K
(

x − xi
h

)
(2)

where K is the kernel (a non-negative function), and h is the bandwidth’s smoothing
parameter (h > 0). x is any given RSSI. n is the number of RSSI. Figure 9 shows that the two
RSSI patterns are easier to classify at 3 ft. However, the overlap between the patterns occurs
at 8 ft and 15 ft. In general, the increasing number of RSSI data is one method of separating
different distances. The effect of peoples’ poses on the RSSI signal gradually decreases
with distance [34]. Note that it is difficult to illustrate the frequency of each pattern at 3 ft,
but we may deduce that the highest frequency of occurrence will be at the center of each
cluster. In the case of long distances, the effect of the different poses of people producing
different patterns of RSSI becomes smaller. In real situations, this intermittence of received
signals can result in incomplete or censored RSSI patterns during the proximity detection
phase [35]. This affects proximity detection performance when matching a preliminary
RSSI pattern to proximity detection.

In general, RSSI distance calculation is performed with a log-distance path loss model.
However, only one RSSI value can be entered into this model. A single RSSI value is
usually a representative RSSI value over time. This can be mean, median, mode, minimum,
and maximum, and it can be different for the same distance due to the effects of the pose
on RSSI distribution. This can cause a mistake in distance calculation. This mistake can
reduce the accuracy of trilateral localization. Fingerprint profiles are also produced by
using representative RSSI values, resulting in errors when comparing fingerprint profiles.

While the pose impacts the RSSI distribution, this impact is constant over time. While
the RSSI distribution for each position is different for the same distance, this difference can
be used as a feature. In other words, RSSI can be marked in advance by pose and distance.
For each posture and distance, the RSSI distribution is calculated. The RSSI distribution is
collected from the user’s device during user positioning phases, and it is calculated. The
most similar distribution is then compared in order to reduce errors caused by the pose’s
effect on RSSI. The basic principle is identical to a fingerprint map, except that the RSSI
data are replaced with distribution data.

5. Conclusions

The shut-off spatial environment of ships facilitates the spread of viruses. The most
critical aspect of pandemic preparation is the timely detection of close contacts on board.
Proximity detection of smartphones can identify close contacts. Essential data for proximity
detection include the Bluetooth RSSI signal. In this paper, a statistical analysis compares
publicly available Bluetooth RSSI signal data in sitting and standing poses.

The proximity detection error is lower than in medium, mode, minimum and maxi-
mum with the mean RSSI value. If only RSSI dispersion is considered, reducing the error
is difficult to achieve. The RSSI values in the majority of cases are almost all left-skewed.
The mean and skewness of RSSI are combined with other features. The current pose, either
sitting or standing, of the person on board can be determined based on the mean and
skewness of RSSI in the event of a close distance.

The difference of RSSI in different poses decreases as distance increases. The feature
of mean and skewness gradually disappears for longer distances. RSSIs of the two poses
in various periods have different but closer fluctuation intervals. These characteristics
enhance the precise detection of proximity and, under certain conditions, determine the
ship passenger’s pose. In order to prevent the further spread of COVID-19 between ship
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passengers, this method can be used to precisely identify close contacts with high-precision
proximity detection.

Author Contributions: Conceptualization, Q.L.; methodology, Q.L.; software, Q.L.; validation, Q.L.;
formal analysis, Q.L.; investigation, Q.L.; resources, Q.L.; data curation, Q.L.; writing—original draft
preparation, Q.L.; writing—review and editing, J.S.; visualization, Q.L.; supervision, J.S.; project
administration, J.S.; funding acquisition, J.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported by the Basic Science Research Program through the Na-
tional Research Foundation of Korea (NRF) funded by the Ministry of Education (grant number:
2021R1I1A3056125).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Klein, N. International law perspectives on cruise ships and COVID-19. J. Int. Humanit. Leg. Stud. 2020, 11, 282–294. [CrossRef]
2. Batista, B.; Dickenson, D.; Gurski, K.; Kebe, M.; Rankin, N. Minimizing disease spread on a quarantined cruise ship: A model of

COVID-19 with asymptomatic infections. Math. Biosci. 2020, 329, 108442. [CrossRef] [PubMed]
3. Fanoy, E.; Ummels, A.E.; Schokkenbroek, V.; Van Dijk, B.; Wiegmans, S.; Veenstra, T.; Van Der Eijk, A.; Sikkema, R.; De Raad, A.

Outbreak of COVID-19 on an industrial ship. Int. Marit. Health 2021, 72, 87–92. [CrossRef] [PubMed]
4. Von Münster, T.; Kleine-Kampmann, S.; Hewelt, E.; Boldt, M.; Schlaich, C.; Strölin, P.; Oldenburg, M.; Dirksen-Fischer, M.;

Harth, V. When the ship comes in–COVID-19 Ausbrüche an Bord von Frachtschiffen im Hamburger Hafen. Flugmed. Trop.
Reisemedizin-FTR 2021, 28, 13–24. [CrossRef]

5. Plucinski, M.M.; Wallace, M.; Uehara, A.; Kurbatova, E.V.; Tobolowsky, F.A.; Schneider, Z.D.; Ishizumi, A.; Bozio, C.H. Coronavirus
disease 2019 (COVID-19) in Americans aboard the Diamond Princess cruise ship. Clin. Infect. Dis. 2021, 72, 448–457. [CrossRef]

6. Azimi, P.; Keshavarz, Z.; Laurent, J.G.C. Mechanistic transmission modeling of COVID-19 on the Diamond Princess cruise ship
demonstrates the importance of aerosol transmission. Proc. Natl. Acad. Sci. USA 2021, 118, e2015482118. [CrossRef]

7. Battineni, G.; Sagaro, G.G.; Chintalapudi, N.; Di Canio, M. Assessment of awareness and knowledge on novel coronavirus
(COVID-19) pandemic among seafarers. Healthcare 2021, 9, 120. [CrossRef]

8. Chen, C.M.; Jyan, H.W.; Chien, S.C.; Jen, H.H. Containing COVID-19 among 627,386 persons in contact with the Diamond
Princess cruise ship passengers who disembarked in Taiwan: Big data analytics. J. Med. Internet Res. 2020, 22, e19540. [CrossRef]

9. Hatke, G.F.; Montanari, M.; Appadwedula, S.; Wentz, M. Using Bluetooth Low Energy (BLE) signal strength estimation to
facilitate contact tracing for COVID-19. arXiv 2020, arXiv:2006.15711.

10. Meklenburg, J.; Specter, M.; Wentz, M.; Balakrishnan, H.; Chandrakasan, A.; Cohn, J. An Ultrasonic Ranging Method for the
Private Automated Contact Tracing (PACT) Protocol. arXiv 2012, arXiv:2012.04770.

11. Londner, T.; Saunders, J.; Schuldt, D.W.; Streilein, B. Simulated Automatic Exposure Notification (SimAEN): Exploring the Effects
of Interventions on the Spread of COVID. Priv. Autom. Contact Tracing 2020, 1, 1–23.

12. Alekseyev, J.; Dixon, E.; Woltz, V.L.A.; Weitzner, D. Realizing the Promise of Automated Exposure Notification (AEN) Technology
to Control the Spread of COVID-19: Recommendations for Smartphone App Deployment, Use, and Iterative Assessmen. arXiv
2020, arXiv:2012.09232.

13. Mariscotti, A. Experimental determination of the propagation of wireless signals on board a cruise ship. Measurement 2011, 44,
743–749. [CrossRef]

14. Zhou, C.; Yuan, J.; Liu, H.; Qiu, J. Bluetooth indoor positioning based on RSSI and Kalman filter. Wirel. Pers. Commun. 2017, 96,
4115–4130. [CrossRef]

15. Namie, H.; Suzuki, O. Indoor Location Estimation by Bluetooth Low Energy for Pedestrian Navigation. IEEJ J. Ind. Appl. 2020,
1, 20003604. [CrossRef]

16. Kaemarungsi, K.; Krishnamurthy, P. Properties of indoor received signal strength for WLAN location fingerprinting. In
Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services, Boston,
MA, USA, 22–26 August 2004.

17. Using Machine Learning to Perform Proximity Detection-Classifying Bluetooth Beacon RSSI Values. Available online: https:
//www.preprints.org/manuscript/202009.0508/v1 (accessed on 12 November 2020).

18. Madani, B.; Alagi, H.; Hein, B.; Arntzen, A.A. Machine Learning for Capacitive Proximity Sensor Data. In Proceedings of the
SDPS 22nd International Conference on Emerging Trends and Technologies in Convergence Solutions, Birmingham, AL, USA,
5–9 November 2017.

http://doi.org/10.1163/18781527-bja10003
http://doi.org/10.1016/j.mbs.2020.108442
http://www.ncbi.nlm.nih.gov/pubmed/32777227
http://doi.org/10.5603/IMH.2021.0016
http://www.ncbi.nlm.nih.gov/pubmed/34212347
http://doi.org/10.1055/a-1337-1831
http://doi.org/10.1093/cid/ciaa1180
http://doi.org/10.1073/pnas.2015482118
http://doi.org/10.3390/healthcare9020120
http://doi.org/10.2196/19540
http://doi.org/10.1016/j.measurement.2011.01.002
http://doi.org/10.1007/s11277-017-4371-4
http://doi.org/10.1541/ieejjia.20003604
https://www.preprints.org/manuscript/202009.0508/v1
https://www.preprints.org/manuscript/202009.0508/v1


Appl. Sci. 2022, 12, 517 14 of 14

19. Su, Z.; Pahlavan, K.; Agu, E. Performance Evaluation of COVID-19 Proximity Detection Using Bluetooth LE Signal. IEEE Access
2021, 9, 38891–38906. [CrossRef] [PubMed]

20. Rivest, R.L.; Callas, J.; Canetti, R.; Esvelt, K.; Gillmor, D.K.; Kalai, Y.T. The PACT Protocol Specification; Private Automated Contact
Tracing Team: Cambridge, MA, USA, 2020.

21. Son, J.; Lin, Q. Precision location tracking and data mining on IoT-based ships for safety and public hygiene of large ship occupants, In the
report of Science & Technology Planning Project; Busan Innovation Institute of Industry: Busan, Korea, 2020; pp. 1–86.

22. Del Portillo, I.; Cameron, B.G.; Crawley, E.F. A technical comparison of three low earth orbit satellite constellation systems to
provide global broadband. Acta Astronaut. 2019, 159, 123–135. [CrossRef]

23. Lovett, T.; Briers, M.; Charalambides, M.; Jersakova, R.; Lomax, J.; Holmes, C. Inferring proximity from bluetooth low energy rssi
with unscented Kalman smoothers. arXiv 2020, arXiv:2007.05057.

24. Sheikh, M.U.; Badihi, B.; Ruttik, K.; Jäntti, R. Adaptive Physical Layer Selection for Bluetooth 5: Measurements and Simulations.
Wirel. Commun. Mob. Comput. 2021, 2021, 8842919. [CrossRef]

25. Liu, S.; Jiang, Y.; Striegel, A. Face-to-face proximity estimationusing bluetooth on smartphones. IEEE Trans. Mob. Comput. 2013,
13, 811–823. [CrossRef]

26. Naghdi, S.; O’Keefe, K. Trilateration with BLE RSSI accounting for pathloss due to human obstacles. In Proceedings of the 2019
International Conference on Indoor Positioning and Indoor Navigation (IPIN), Pisa, Italy, 30 September–3 October 2019.

27. Park, S.; Choi, Y. Bluetooth Beacon-Based Mine Production Management Application to Support Ore Haulage Operations in
Underground Mines. Sustainability 2021, 13, 2281. [CrossRef]

28. Sansano-Sansano, E.; Aranda, F.J.; Montoliu, R.; Álvarez, F.J. BLE-GSpeed: A new BLE-based dataset to estimate user gait speed.
Data 2020, 5, 115. [CrossRef]

29. Cominelli, M.; Patras, P.; Gringoli, F. Dead on arrival: An empirical study of the Bluetooth 5.1 positioning system. In Proceedings
of the 13th International Workshop on Wireless Network Testbeds, Los Cabos, Mexico, 25 October 2019.

30. Suryavanshi, N.B.; Reddy, K.V.; Chandrika, V.R. Direction finding capability in Bluetooth 5.1 standard. In Proceedings of the
International Conference on Ubiquitous Communications and Network Computing, Bangalore, India, 8–10 February 2019.

31. Lymberopoulos, D.; Liu, J.; Yang, X. A realistic evaluation and comparison of indoor location technologies: Experiences and
lessons learned. In Proceedings of the 14th International Conference on Information Processing in Sensor Networks, Seattle, WA,
USA, 13–16 April 2015.

32. Faragher, R.; Harle, R. An analysis of the accuracy of Bluetooth low energy for indoor positioning applications. In Proceedings of the
27th International Technical Meeting of the Satellite Division of the Institute of Navigation, Tampa, FL, USA, 8–12 September 2014.

33. Kuk, G. Strategic interaction and knowledge sharing in the KDE developer mailing list. Manag. Sci. 2006, 52, 1031–1042.
[CrossRef]

34. Guo, Y.; Zheng, J.; Zhu, W. iBeacon Indoor Positioning Method Combined with Real-Time Anomaly Rate to Determine Weight
Matrix. Sensors 2021, 21, 120. [CrossRef] [PubMed]

35. Liu, L.; Li, B.; Yang, L. Real-time indoor positioning approach using iBeacons and smartphone sensors. Appl. Sci. 2020, 10, 2003.
[CrossRef]

http://doi.org/10.1109/ACCESS.2021.3064323
http://www.ncbi.nlm.nih.gov/pubmed/34812383
http://doi.org/10.1016/j.actaastro.2019.03.040
http://doi.org/10.1155/2021/8842919
http://doi.org/10.1109/TMC.2013.44
http://doi.org/10.3390/su13042281
http://doi.org/10.3390/data5040115
http://doi.org/10.1287/mnsc.1060.0551
http://doi.org/10.3390/s21010120
http://www.ncbi.nlm.nih.gov/pubmed/33375503
http://doi.org/10.3390/app10062003

	Introduction 
	Related Works 
	The PACT Proximity Datasets 
	Impact of Quantization of Bluetooth RSSI Values 
	Statistical Analysis 
	Autocorrelation Analysis 
	Visualize RSSI Patterns in Different Poses 

	Conclusions 
	References

