
����������
�������

Citation: Kallel, A.Y.; Hu, Z.; Kanoun,

O. Comparative Study of AC Signal

Analysis Methods for Impedance

Spectroscopy Implementation in

Embedded Systems. Appl. Sci. 2022,

12, 591. https://doi.org/10.3390/

app12020591

Academic Editor: Douglas

O’Shaughnessy

Received: 10 December 2021

Accepted: 29 December 2021

Published: 7 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Comparative Study of AC Signal Analysis Methods for
Impedance Spectroscopy Implementation in
Embedded Systems
Ahmed Yahia Kallel , Zheng Hu and Olfa Kanoun *

Measurement and Sensor Technology, Technische Universität Chemnitz, 09126 Chemnitz, Germany;
ahmed-yahia.kallel@etit.tu-chemnitz.de (A.Y.K.); zheng.hu@etit.tu-chemnitz.de (Z.H.)
* Correspondence: olfa.kanoun@etit.tu-chemnitz.de

Abstract: For embedded impedance spectroscopy, a suitable method for analyzing AC signals needs
to be carefully chosen to overcome limited processing capability and memory availability. This paper
compares various methods, including the fast Fourier transform (FFT), the FFT with barycenter
correction, the FFT with windowing, the Goertzel filter, the discrete-time Fourier transform (DTFT),
and sine fitting using linear or nonlinear least squares, and cross-correlation, for analyzing AC
signals in terms of speed, memory requirements, amplitude measurement accuracy, and phase
measurement accuracy. These methods are implemented in reference systems with and without
hardware acceleration for validation. The investigation results show that the Goertzel algorithm
has the best overall performance when hardware acceleration is excluded or in the case of memory
constraints. In implementations with hardware acceleration, the FFT with barycentre correction stands
out. The linear sine fitting method provides the most accurate amplitude and phase determinations
at the expense of speed and memory requirements.

Keywords: AC signal processing; embedded impedance spectroscopy; impedance spectroscopy;
multisine; Fast-Fourier transform; Goertzel algorithm; curve-fitting

1. Introduction

Alternating Current (AC) Signal analysis plays a key role in signal processing, filtering,
and system identification. It is also very important for impedance spectroscopy, including
human body tissue diagnosis [1], battery diagnosis [2], and cable diagnosis [3]. In this
method, the impedance of a device-under-test (DUT) is measured at different frequencies.
For this purpose, an excitation signal consists of a single frequency voltage sinewave
or a current sinewave. The typical response of a linear time-invariant DUT is a current
sinewave, respectively, a voltage sinewave, sharing the same frequency but having a
different amplitude and phase. The impedance is calculated based on the amplitudes and
phases of both voltage and the current. Conventionally, a sine frequency sweep and a
magnitude-phase detector are used to calculate the impedance spectrum. However, this can
be very time-consuming. Alternative excitation signals such as a multisine signal, i.e., the
sum of multiple sinewaves, are used instead. It enables a shorter measurement time at
the expense of more complex signal analysis [4]. Thereby, identifying the amplitude and
phases of all the signals within the excitation and response signals can become challenging.

To determine the amplitude and phase spectrum, Fourier-Transform-based methods,
such as the Discrete Fourier Transform (DFT), are typically used [4–8]. Fast-Fourier Trans-
form (FFT) [4,9] is implemented to accelerate calculation of DFT [10]. Other approaches
include Ordinary Least Squares, commonly known as Sinewave fit [11–13], Discrete-Time
Fourier Transform (DTFT) [14], cross-correlation [15], non-linear data fitting. However,
these approaches are computationally complex, and their efficiency for use and perfor-

Appl. Sci. 2022, 12, 591. https://doi.org/10.3390/app12020591 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12020591
https://doi.org/10.3390/app12020591
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3689-6518
https://orcid.org/0000-0003-3911-5692
https://orcid.org/0000-0002-7166-1266
https://doi.org/10.3390/app12020591
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12020591?type=check_update&version=2

Appl. Sci. 2022, 12, 591 2 of 23

mance in nowadays’ embedded systems for impedance spectroscopy is still questionable
as these devices come with limited resources, i.e., memory and processing capacity.

This paper compares AC signal analysis methods based on their processing time,
memory consumption, precision, and accuracy against signal interference and signal in-
completeness, i.e., spectral leakage, for embedded implementation. The second section
presents the theoretical part and implementation details of the methods. The third section
features a theoretical comparison of the processing time, memory usage, accuracy, and am-
plitude and phase determination precision. The signals are implemented in a reference
Windows PC system for validation, using MATLAB, and C program using Visual C++
compiler. These results are compared with the STM32H743 implementation featuring Arm
Cortex-M7 microprocessor running a native C program, a hardware-accelerated STM32
program, and a “Native” Teensyduino C code on Teensy 3.6. Although this work targeted
two particular STM32 and Teensy microcontrollers models, the results can be generalized
to single-board computers and microcontrollers with similar specifications.

2. Overview of AC Analysis Methods
2.1. Discrete Fourier-Transform-Based Methods

Discrete-Fourier Transform (DFT) is the discrete-time, discrete-frequency counterpart
of Fourier-Transform, conceived for use with discrete signals. It aims to decompose the
signal into a sum of discrete sinewave signals. Due to its discrete nature, the frequencies of
the elementary sinewaves are chosen according to the available frequency bins to which
their amplitudes and phases are determined in the transformation process. For instance,
given a signal x[k] with a sampling frequency Fs and length N, the returned complex AC
DFT Analysis component X[n] at the nth. frequency bin fbin[n] = n Fs

N is given in (1):

X[n] =
N−1

∑
k=0

x[k]exp
(
−i2πk

N
n
)

=
N−1

∑
k=0

x[k]cos
(
−2πk

N
n
)

+ i
N−1

∑
k=0

x[k]sin
(
−2πk

N
n
)

(1)

where i =
√
−1. We recall that “exp

(
−i2πk

N n
)

” and its equivalent Euler cos-sin terms are
called DFT coefficients or a twiddle factors. Here the magnitude and angle of X[n] define,
respectively, the non-normalized magnitude and the phase of the cosine signal at the nth

frequency bin. The extraction of the single-sided amplitude spectra values of the sinewaves
at frequency index n is done by normalizing the DFT amplitude to half the signal length
N/2, as shown in (2). The phase spectrum is obtained by the arctangent Formula (3).

Ak = 2

∥∥∥X[k]
∥∥∥

N
(2)

ϕk = atan2(=(X[k]),<(X[k])) +
π

2
(3)

The calculation of DFT components can be performed according to (1). Various
algorithms are used to speed up the calculation, such as Fast-Fourier Transform (FFT).
Other algorithms embed the DFT in a filter to save memory, such as Goertzel Filter. Both
techniques are documented in this section.

2.1.1. Fast Fourier Transform (FFT)

Fast-Fourier Transform algorithms speed up the computation of DFT values repre-
sented in (1), by removing computational redundancy and splitting the DFT calculation into

Appl. Sci. 2022, 12, 591 3 of 23

smaller blocks that can be executed simultaneously. By default, it returns the results of FFT
analysis for all frequencies within the available frequency bins of the input signal. One of
the most known FFT methods is the Cooley-Tukey algorithm [16], which uses a divide-and-
conquer strategy to decompose the calculation of a signal with smaller blocks, provided the
number of samples is not a prime number. If the number of the samples is a power of two or
four, Radix-2 [10,17], respectively, Radix-4 could be used [10,18], which are among the most
popular implementations of Cooley-Tukey algorithms. Other algorithms for the FFT are the
Prime-Factor algorithm (Good-Thomas) [19,20], the Rader algorithm [21], and the Bluestein
algorithm, also called Chirp-Z Transform [22]. Nevertheless, Cooley-Tukey performs better
in general-purpose computing, DSPs, and vector-based microprocessors, with Radix-4 and
Radix-2 showing an advantage over the other methods [10], due to the binary nature of
digital computing, but also lower complexity, parallelism ability, and efficient memory
access (i.e., storing and loading) frequency and addressing of the algorithm [10,23].

As our main interest is the computation of DFT components using embedded and/or
general computing and given a number of samples of 2048, Radix-2 is considered in this
paper, unless otherwise stated. The analysis using Matlab was performed using the FFTW3
library [24]. The determination of amplitude and phases is done according to (2) and (3).

2.1.2. Goertzel Filter

Goertzel filter [25] implements the Discrete-Fourier Transform in the form of a second-
order Infinite Impulse Response Filter [26,27]. Unlike FFT, each filter operates on a single
frequency bin k. The principle of the algorithm runs on the computation of an intermediate
sequence y[k] as shown in Algorithm 1, from which the real and imaginary DFT components
are extracted when the number of iterations reaches the number of samples N. The Goertzel
filter is known to not only speed up computations but also reduce memory consumption.
The determination of amplitude and phases is done according to (2) and (3).

Algorithm 1: Goertzel Filter for DFT
Input : k: Frequency Bin Index, N: Number of samples
Output : X: Complex DFT Analysis at frequency bin k
a← cos(2πk

N) ;
b← sin(2πk

N) ;

y[k]← s + 2a·y[k − 1] − y[k − 2] ;

X← Complex(a·y[k − 1] − y[k − 2], b.y[k − 1]) ;

2.1.3. Spectral Leakage Correction

An essential property of the DFT is the discretization of the frequency vector. Assum-
ing a large number of samples N and a sufficient resolution frequency Fs, the frequency
resolution fres =

Fs
N can provide a frequency bin fbin[k] = k · fres that is equal or close to

the desired frequency in which the AC signal analysis is desired. However, if this is not
the case, a spectral leakage will occur (see Figure 1). Here both the amplitude and the
frequency values split into two or more adjacent frequency bins.

Spectral leakage means that the assumed periodic signal in the time domain does not
complete an exact integer period and loses its original periodicity. It can be approximated
as the distance ratio to the closest frequency bin according to (4)

sl = 2× (0.5− |0.5−
(
tmeas · f − btmeas · f c

)
|) (4)

where b.c is the floor function and tmeas is the total measurement time or signal duration.
f is the frequency of the signal. Mathematically described, a truncated signal is a signal
multiplied by a rectangular window [28], which is leaky if the periods are not complete
(See Section 3.3.1). Therefore, at the frequency domain, a convolution of the results to
a sinc is expected. By choosing two direct neighbor frequencies fbin[k] and fbin[k + 1],

Appl. Sci. 2022, 12, 591 4 of 23

with respective spectrum amplitude y[k] and y[k + 1], the corrected frequency can be
calculated via the barycenter method can be obtained using Equation (5) [28], which
corresponds to the virtual non-integer frequency index q shown in (6):

fcorr =
fbin[k] · y[k] + fbin[k + 1] · y[k + 1]

y[k] + y[k + 1]
(5)

q =
k · y[k] + (k + 1) · y[k + 1]

y[k] + y[k + 1]
(6)

9 10 11 12 13 14

Frequency in kHz

0

0.2

0.4

0.6

0.8

1

|F
F

T
|
/

N

Complete Periods

52% spectral leakage

98% spectral leakage

Figure 1. Influence of Incomplete Signal on the Single-side Discrete Fourier Analysis for a Sam-
ple 11 kHz Signal with a Complete Last Period, Quarter-complete Period (52% Spectral Leakage),
and Half-complete Period (98% Spectral Leakage).

Therefore, the relative distance δm between the center frequency to the nearest fre-
quency bin is as shown in (7)

δm = q− bqc (7)

The quantity δm corresponds to 1
2 sl for the frequency fcorr, as defined in (4). The cor-

rected amplitude Acorr and corrected phase ϕcorr for the frequency fcorr are respectively
given in (8) and (9) [28]:

Acorr =
2πδm · y[k]
sin(πδm)

(8)

ϕcorr = ∠Y[k]− δmπ (9)

with Y[k] being the complex value of spectrum at bin index k. ∠Y[k] is evaluated as
arctan2(=(Y[k]),<(Y[k])).

2.2. Discrete-Time Fourier Transform

Discrete-Time Fourier Transform (DTFT) performs a Fourier transform on discrete-
time “continuous” frequency signals [29]. Like DFT, it decomposes the signal into a sum
of elementary sinewaves. Theoretically, f should be a continuous value ranging from
DC to the sampling frequency Fs, but arbitrary frequencies are often chosen in practice.
The extraction of the single-side spectrum amplitude and phase values using DTFT can be
considered as a special case of finite impulse response filter, where a moving average is
performed at the end of each iteration, as shown in (11) and detailed in [14].

Appl. Sci. 2022, 12, 591 5 of 23

DTFT can be explained as follows: Given a signal x[k] = A · sin(2π f kδt + ϕ) whose
AC signal analysis, i.e., amplitude A and phase ϕ, is desired is multiplied by 2 signals.
The first is a cosine (quadrature-phase) signal with the same frequency c = cos(2π f kδt),
and the second is a sine signal (in-phase) s = sin(2π f kδt). Alternatively, DTFT could be
considered as a complex multiplication with the twiddle factor exp(2iπ f kδt). Averaging
the output yields the real-part <(Y) and imaginary-part =(Y) as shown in (10) and (11),
respectively:

=(Y) = A
cos(ϕ)

2

− A
sin(2πN f δt)

2Nsin(2π f δt)
cos(2π f (N − 1)δt + ϕ)︸ ︷︷ ︸

nullified when N→ ∞ or when an integer period is fulfilled

(10)

<(Y) = A
sin(ϕ)

2

+ A
sin(2πN f δt)

2Nsin(2π f δt)
sin(2π f (N − 1)δt + ϕ)︸ ︷︷ ︸

nullified when N→ ∞ or when an integer period is fulfilled

(11)

Here δt = 1/Fs is the sampling period. In fact, by giving a very high number of
samples, or by calculating the DTFT when the signal fulfills an integer number of periods,
the real and imaginary parts will have the least influence from the spectral leakage as
shown in Section 2.1.3.

2.3. Cross-Correlation (X-Corr)

Cross-correlation, abbreviated as x-corr or x-correlation, calculates the similarity be-
tween the input signal x and a reference signal y, by forming a new signal Rxy. The newly

formed signal has its peak
∥∥∥Rxy

∥∥∥
∞
= Rxy[l] at the time instance l, said to be the lag time at

which maximum similarity between the two signals is observed. This time instance is the
time shift between the two signals.

By using a reference sinewave signal with unitary amplitude, no initial phase, and with
a frequency of choice f , the cross-correlation to a signal sharing the same frequency but a
different amplitude and phases x[k] = Asin(2π f δtk + ϕ) returns a cross-correlation signal
Rxy signal which can be used to determine the phase and the amplitude of the signal. In this

case,
∥∥∥Rxy

∥∥∥
∞

at time instance l is evaluated as (12).

Rxy[l] = A
N
2

cos(ϕ + 2π f lδt) (12)

− A
2

sin(2π f Nδt)
sin(2π f δt)

cos(2π f δt(N − 1− l) + ϕ)︸ ︷︷ ︸
≈0

where δt is the sampling time. Next, Rxy[l] is normalized by N
2 and an integer number of

periods of the signal are used to nullify the second expression. It is important to have a
good phase precision when using cross-correlation to cancel ϕ + 2π f lδt. This corresponds
to the existence of an integer l that verifies −ϕ Fs

2π f . More details are given in Section 3.3.
Finally, the phase can be extracted from (13).

ϕ = 2πlags[l]δt f (mod 2π) (13)

where lags = {−Nδt, (−N + 1)δt, . . . , (N − 1)δt}. Like DTFT, cross-correlation can only
work with one frequency, and multi-frequency analysis requires a multiplication of the
algorithm for each desired frequency.

Appl. Sci. 2022, 12, 591 6 of 23

2.4. Linear Least Squares Sine-Fit (LSQ)

Linear least squares for spectral analysis, also known as Vanicek method [12] and
Sinewave-fit [13,30] uses linear regression, also known as ordinary least-squares to approxi-
mate the signal as the sum of sine and cosine signals. For a signal x[k] = A · sin(2π f kδt+ ϕ),
to which the amplitude and the phase of the frequencies { f1, . . . , fN f } are desired, the linear
algebra system describing the sum of sine could be written as follows:

ALSQ p = X (14)

where ALSQ is a N × 2N f matrix, which contains the trigonometric coefficients, as shown
in (15), X is a column vector of N elements containing the measurements and p is a column
vector of 2N f elements containing the linear combination coefficients of the cosine and sine
signals, whose sum equals to the signal, which is analogous to the real and imaginary part
of the spectrum.

ALSQ =

cos(2π f1δt) sin(2π f1δt) . . . cos(2π fN f δt) sin(2π fN f δt)
cos(4π f1δt) sin(4π f1δt) . . . cos(4π fN f δt) sin(4π fN f δt)

...
...

...
...

...
cos(2Nπ f1δt) sin(2Nπ f1δt) . . . cos(2Nπ fN f δt) sin(2Nπ fN f δt)

 (15)

In this case, resolving p could be according to (16)

p = (AT
LSQ ALSQ)

−1 AT
LSQX (16)

As we are using the multsine as the sum of sine, i.e., not cosines, the amplitudes and
phase components of a frequency fk could be defined according to (17) and (18)

Ak =
√

p[2k]2 + p[2k + 1]2) (17)

Ak = atan2(p[2k], p[2k + 1])) (18)

2.5. Non-Linear Least Squares Sinewave Fitting (NLSQ)

Linear and non-linear least-squares curve fitting algorithms have been used for AC
signal analysis to reduce random noise and eliminate the effects of systematic distortions
that could affect the amplitude and phase spectrum, as depicted in [31]. A major difference
from the previous paragraph is the use of a non-linear model for the sinewave fitting. Here
the model is assumed as the sum of N f sinewaves, with amplitudes Ak and phases ϕk as
shown in (19)

x f it[n] =
N f

∑
k=1

Aksin(2π fkn · δt + ϕk) (19)

By setting a variable vector β at iteration (i), β(i) =
[

A1 . . . AN f ϕ1 . . . ϕN f

]
,

(19) becomes (20)

x(i), f it[n] =
N f

∑
k=1

β(i)[k]sin(2π fkn · δt + β(i)[k + N f]) (20)

By iterating (21) several times until a maximum number of iterations MAX_ITER is
reached, or until a convergence criterion (25) is achieved, the final value of β(i) stores the
values of the amplitudes and phases.

β(i) = β(i−1) + (JT
(i|i−1) J(i|i−1))

−1 JT
(i|i−1)r(i) (21)

Appl. Sci. 2022, 12, 591 7 of 23

with J(i|i− 1) is the Jacobian Matrix in iteration (i) which takes the following form (22):

J(i|i−1) =

∂r(i) [1]

∂A1
. . .

∂r(i) [1]
∂ANf

∂r(i) [1]
∂ϕ1

. . .
∂r(i) [1]
∂ϕNf

...
...

...
...

∂r(i) [N]

∂A1
. . .

∂r(i) [N]

∂ANf

∂r(i) [N]

∂ϕ1
. . .

∂r(i) [N]

∂ϕNf

 (22)

and r(i)[n] = x(i)[n]− x(i), f it[n] is the residual at time instance n to the actual data, at itera-
tion (i). Their partial derivative at time n with respect to the amplitude Ak and phase ϕk
are depicted in Equations (23) and (24), respectively.

∂r(i)[n]
∂Ak

= −sin(2π fknδt + ϕk) (23)

= −sin(2π fknδt + β(i−1)[N f + k])

∂r(i)[n]
∂ϕk

= −Akcos(2π fknδt + ϕk) (24)

= −β(i−1)[k]cos(2π fknδt + β(i−1)[N f + k]))

The algorithm would achieve either a maximum number of iterations MAX_ITER or the
convergence criterion shown in (25):∥∥∥β(i−1) − β(i)

∥∥∥ < ε (25)

3. Comparison among Different AC Signal Analysis Methods
3.1. Processing Time

Analysis time or processing time is a particularly principal factor that determines
the speed of AC signal analysis. However, with today’s progress, the comparison of
the algorithms has become very practical and hardware/software-specific as hardware
acceleration chips are being integrated into both generic computers and embedded systems
to speed up analysis.

Among existing hardware accelerations are data-level parallelism, such as Single-
Instruction Multiple-Data, where a large amount of data is processed simultaneously.
Alternatively, instructions are parallelized, to execute concurrently or interleaved depend-
ing on the microprocessor’s architecture; For a single-core microprocessor, the instructions
are executed interleaved to assure finishing the tasks at the same time. For multi-core
multiprocessors, the instructions are split into different cores and are executed in parallel.

These accelerations are typically determined by a combination of program code which
should target these hardware optimizations, compiler settings, and hardware capabilities.
In this section and as a first step, we focus on the theoretical processing time of each AC
signal analysis for generic computing without hardware acceleration. Then, in the second
part, we discuss the possible hardware acceleration for each AC method in detail.

3.1.1. Theoretical Algorithm Complexity

In this section, we define the complexity of the algorithm according to two factors: N
is the number of samples to be processed and N f is the number of frequency components
whose associated amplitudes and phases are desired. This complexity gives information
about the expected asymptotic time response per number of samples and the double of
the number of frequency components (Double, due to amplitude and phase, or real and
imaginary part determination).

All algorithms are described in Table 1. Theoretically, DTFT and Goertzel would have
similar times as they both have the least complexity among the algorithms compared. Most
of the computation consists of multiplication and accumulation, operating on the desired

Appl. Sci. 2022, 12, 591 8 of 23

frequencies only, which makes them linear to both N and 2N f . For a small number of
frequencies N f , they may outperform FFT (Radix-2, or Radix-4, or Radix-8). However,
from an approximate of N f > log2(N), FFT provides similar or lower computation times.
In Figure 2a, the visualization of the better algorithm as a function of time complexity is
shown. In this graph, the boundary line N f > log2(N) separates the two regions where
Goertzel/DTFT are expected to have slightly lower complexity (red shades colors) and
the regions where FFT has lower complexity (purple shades). Clear red and purple define
ambiguous regions, in which one may out perform the other. Finally, DTFT and Goertzel’s
performances are not the same: While Goertzel uses a constant twiddle, requiring 6N f
operation per iteration, DTFT requires the twiddle to be calculated for each point. Therefore,
a coefficient lookup table for DTFT may be required to obtain 6N f operations per iteration,
otherwise, 14N f operations per iteration are required. In addition, if 2π is not set as
a constant, or if time information, i.e., nδt, is not calculated beforehand, an additional
2N f + 2N f operation for DTFT per iteration should be included.

(a) (b)

Figure 2. (a) Time complexity of DTFT/Goertzel vs. FFT as a function of N and N f . (b) Time
complexity of Sine-fit (linear) vs. FFT as a function of N and N f .

Table 1. Comparison between Computation Complexity of Several Methods of AC signal analysis
per Number of Samples and Number of Frequency Components.

Method Type Comp. Complexity n. op/Iteration

FFT (Radix-2/4/8) Transform O(Nlog2N) -
Goertzel Filter O(2NN f) 6 N f

Cross-Correlation Transform O(2N f N2) -
Sine-fit (linear) Transform O(((2N f)

3 + (2N f)
2N + 2N f N)) -

Sine-fit (non-linear) Transform O(niter((2N f)
3 + (2N f)

2N + 2N f N + N)) -
DTFT Filter/Transform O(2NN f) 6N f or 14 N f

Cross-correlation is done by the multiplication and addition of the reference signal
that is shifted in time to the input signals, requires for all the samples. It, therefore,
has a complexity of O(2N2N f). Next are the sine-fit methods. For linear least-squares
sine-fit, the multiplication of Amat to its conjugate has a time complexity of O((2N f)

2N).
The inversion can be done using cofactor or adjoint matrix, one taking O((2N f + 1)!)
while the other O((2N f)3), assuming adjoint method is used for inversion as it provides
better performance for small N f , a complexity O((2N f)3) is required for matrix inversion.
Last are two multiplications with respective complexity of O((2N f)

2N) and O(2N f N).
Therefore, the overall complexity could be estimated to O((2N f)

2N + (2N f)
3 + 2N f N).

Appl. Sci. 2022, 12, 591 9 of 23

Compared to FFT and shown in Figure 2b, the time complexity of linear least-squares sine-
fit is less than FFT if there is only one frequency component. Otherwise, FFT has a slight
advantage for N f < 100, as indicated by light bluish-purple in the graph. On the other
hand, the turquoise region shows a clear advantage of FFT over the linear least-squares in
terms of time complexity, when N f > 100.

Next is the non-linear least square sine fitting, which has similar requirements as
linear least-squares, since it is based on linearization process through gradient operator,
in addition to multiple iterations niter needed to achieve the goal. In addition, the signal
reconstruction requires NN f iterations, and an additional N subtraction operations are
also required for the calculation of the parameters. Summing together, the overall time
asymptotic complexity of non-linear sine-fit is O([(2N f)

2N + (2N f)
3 + 2N f N + N]niter).

3.1.2. Possible Hardware Acceleration

Although hardware acceleration is possible for all AC signal analysis methods, only
some hardware acceleration methods could be relevant due to the computational overhead
required before parallelization, such as filling arrays, etc. Other methods require more time
to set up the context per each thread or transfer data to the dedicated units, negating the
efficiency of the parallelism.

In Table 2, we summarize the optimal acceleration methods for the AC signal analysis,
whether data-level or instruction-level parallelism is relevant to the considered method.

Table 2. Efficient Hardware Acceleration Methods for AC signal analysis Methods Treated in
this paper.

Method
Possible Parallelism Method

Data-Level Instruction-Level

FFT (Radix-2/4/8) x x
Goertzel x x

Cross-Correlation x x
Sine-fit x
DTFT x x

First, and for FFT (Radix-2, or Radix-4, or Radix-8), block calculation can be accelerated
by either using data-level or instruction-level parallelism or both. Data-level parallelization
provides a more efficient way to compute the twiddle coefficients. It can also be used to
evaluate the expressions within each radix block calculation or by concatenating them
into a single vector. Alternatively, each radix block can be evaluated within one thread.
Second, Both of Goertzel filter and DTFT computation can be parallelized at either data
or instruction level to parallelize the calculation of each frequency component. When
possible, concatenating all calculations in single or multiple vectors allows for more efficient
parallelization. Third, Cross-correlation computation can be accelerated at the data level
by concatenating all computation in a single vector or multiple vectors. Alternatively,
parallelization can be performed at the instruction level for each frequency component.
Fourth, Sine fitting can exploit data-level parallelism to calculate the novel signal. However,
due to the sequence of its steps, parallelizing instructions is not efficient.

3.2. Memory Usage

This paragraph discusses the memory allocation required by each algorithm. The re-
sults reflect the expected approximate memory allocation within a generic floating-point-
enabled processor, including stack memory usage.

Table 3 shows an overview of the memory required by each algorithm without the
input signal. Here N defines the number of samples and N f the number of frequency
components. The uncertainty comes from the values from the practical Visual C++ and
STM32CubeIDE application.

Appl. Sci. 2022, 12, 591 10 of 23

Table 3. Comparison between the Memory Allocation Excluding Signal Length Required for the AC
signal analysis.

Method Required Memory Cases

FFT N or 2N, plus additional 14–50 cases

Goertzel 7N f

Cross-Correlation N f ·(N+2) + 3, plus either 1 or NN f
SIMD: (2N+2)·N f + 3 + optional 2N + 3N

Sine-fit (linear)
6NN f + 8 N2

f + 2 N f

• Cofactor/Adjoint, determinant, transpose require up to
4N2

f + 8 cases

Sine-fit (non-linear)
6NN f + 2 N + 8 N2

f + 2 N f + 2
• SIMD requires N for intermediate calculations

• Cofactor/Adjoint, determinant, transpose require up to
4N2

f + 8 cases

DTFT 4N f , plus either 2 or 2NN f

FFT can be performed in-place or out-of-place. In the case of in-place FFT, a complex
format of the signal on which the FFT is performed is required and therefore additional
N cases is required, as signals mostly real. For the out-of-place FFT algorithms, 2N cases
are necessary to compute the values of the single-sided spectrum analysis. During the
calculation in the in-place or out-of-place implementation, several cases are required for
storing intermediate results, DFT twiddles/coefficients, and for bit reversing. Those cases
may be around 14 to 50 cases depending on the chosen radix and the implementation
method. The Goertzel filter requires 3 cases per frequency component to store the results,
in addition to 2 more cases per frequency component for the coefficients, which could be
replaced by 2 local memory cases. At the end of the processing, 2 more cases are needed to
calculate the DFT values per frequency component.

The memory requirement of cross-correlation is dependent on the reference signal and
the output size. If half of the output is desired and the reference signal is the same length
as the input signal, the total required memory to store the results is NN f . To store the
position of the absolute value as well as its index, at least 2 additional cases per frequency
component are necessary. For each frequency component, an additional memory case or
a lookup table of N is needed. For the loop iterators, 3 more cases are needed. Typically,
Standard and SIMD Cross-correlation require 2N to store the data, in addition to optional
2N cases to calculate absolute values. The largest absolute value and its index require 2N f
cases. 3N buffer cases may be required to store intermediate results needed to construct
the reference signal per each frequency component and to square the signal to prepare for
energy calculation. The latter also requires one more case for the sum. Iterators require two
further cases.

Sine fitting requires the assignment of many matrices during the calculation. For linear
least-squares sine fitting, 2 matrices 2N f × N, 1 matrix N × 2N f and 2 matrices 2N f × 2N f

are required, in addition of the variable vector 2N f . For the matrix inversion, 4N2
f + 8 more

cases are required. The non-linear sine-fit adds to the requirements needed in sine-fitting a
vector containing the currently estimated signal with N elements, and the residual vector
2N f . 2 N intermediate memory cases may be required to store signal after each iteration.
At least 2 more cases for loop iterators are needed in addition.

DTFT requires 2 memory cases per frequency component to store the result. A 2NN f
lookup table is required for the DTFT coefficients, which could be replaced by 2 local
memory cases. Eventually, 2 more cases are required to calculate the final single-sided
spectrum amplitude values.

Appl. Sci. 2022, 12, 591 11 of 23

When these results are visualized, it is shown that Goertzel, then DTFT is advantageous
in most of the cases, as compared to FFT as shown in Figure 3a. Although, on the other
hand, FFT requires less memory than sine fitting (linear/non-linear) and cross-correlation,
the asymptotic memory usage of Sine-fit linear, non-linear, and cross-correlation is similar.
Therefore only one example (Sine-fit) was visualized in Figure 3b in comparison to FFT.
In this graph, the FFT has a slight advantage in the light purple area and a landslide
advantage in the turquoise area.

(a) (b)

Figure 3. (a) Memory usage of DTFT/Goertzel vs. FFT as a function of N and N f . (b) Memory usage
of Sine-fit (linear) vs. FFT as a function of N and N f

3.3. Influence of Spectral Leakage on the Accuracy of the Amplitude and Phase

In this section, we also consider the general sinewave response signal x[k] = A · sin(2π f t+ ϕ)
with a length of N as an example for the theoretical part. An exemplary signal of 11 kHz
with amplitude A = 1V and phase ϕ = π

6 , sampled at a rate of Fs = 500 kHz, is used as a
test scenario. The number of samples is 2048, the spectral leakage is 11.2%, and the distance
to the nearest frequency bin k = 45, corresponding to fbin[45] = 10,986.328Hz, is δm = 0.05.
In the first part, we study the accuracy and precision of the amplitude values, while in the
second part, we consider the accuracy and precision of the phase values. We note that DFT
in this section represents both FFT and Goertzel.

3.3.1. Amplitude AC Signal Analysis Accuracy

Theoretically, all the AC signal analysis methods project the signals into an orthogonal
Fourier basis formed by trigonometric reference signals, hence, no signal interference is ex-
pected, if the signal is a multisine. In practice, the signals are finite, hence, truncated. In the
point-of-view of Fourier analysis, this truncation is none other than multiplication with a
rectangular window in the time-domain and a convolution by sinc in the frequency domain.
For incomplete signals, not only the desired frequency but also nearby frequencies are influ-
enced. For example, for DTFT, the extra coefficients (10) and (11) become remarkable and
are not nullified. The same problem is also spotted in DFT; Considering a distance to the
closest frequency bin δm, its amplitude deviation is, therefore, A(1− sinc(δm)). The use of
window function, such as Hanning window function [32], for example, minimizes, but does
not eliminate, the deviation to A(1− sinc(δm)

1−δm2) [28]. Similarly for DTFT, the deviation for-

mula is demonstrated in Appendix A and depicted in (26) where R = sin(2π f Ndt)
sin(2π f dt) .

‖XDTFT‖ = A

1−

√
1 +

(
R
N

)2
− 2

R
N

cos(2ϕ + 2π f (N − 1)δt)

 (26)

Appl. Sci. 2022, 12, 591 12 of 23

However, this expression is not predictable when the initial phase is unknown. There-
fore, assuming the worst case, it can be simplified to (27)∥∥∥XDTFT,simp.

∥∥∥ = A
sin(2π f Nδt)
Nsin(2π f dt)

≈ A
sin(2πδm)

Nsin(2π f dt)
(27)

Since the FFT correction based on Section 2.1.3 generates a new frequency that emulates
the DTFT, its behavior could be modeled as in (26), but with a different R-expression, since
it inherits the behavior of the rectangular window from the original FFT. R then becomes
R = sinc(δm)sin(2π f Ndt)

sin(2π f dt) . The expression of the simplified corrected FFT for the worst case is

then A sinc(δm)sin(2πδm)
Nsin(2π f dt) .

Cross-correlation loses its accuracy if the amplitudes from the AC signal analysis
are very different due to the use of L∞ norm for amplitude and phase determination.
In addition, it is also affected by the signal incompleteness, as shown in (12), as well as the
resolution of the ϕ phase. To obtain accurate results, two conditions must be met: For the
frequency in question, an integer number of periods; and an adequate phase resolution are
required to satisfy the existence of an integer time l that satisfies l = −ϕ Fs

2π f . This means

that Fs
f should be as low as possible. The maximum amplitude deviation expression, given

a good phase resolution, could be simplified to the same expression as for DTFT (27), albeit
with a negative sign.

Finally, sine-fitting methods show little to no sensitivity to spectral leakage due to
both of them being solutions to inverse algebra problems.

For the exemplary signal and as shown in Figure 4b and summarized in Table 4,
the sine-fitting methods show no uncertainty. The second best is DFT with correction with
a maximum deviation of 0.08%, then cross-correlation with a maximum deviation of 0.27%,
then DTFT with a maximum deviation of 0.32%. Although the windowing allowed a lower
maximum deviation of 15%, it is still considered high. The strongest influence is seen with
the DFT algorithm without correction, with a maximum deviation of 36%.

Table 4. Comparison between the sensitivity of the amplitude AC signal analysis methods to
interference and to spectral leakage.

Method Sensitivity to
Interference

Sensitivity to
Spectral Leakage

Approx. Max. amp.
Deviation Formula.

Max Deviation
(Application/Figure 4a)

DFT-based Low Very High A(1− sinc(δm)) 36%

DFT-based and
windowed (Hann)

Low High A(1− sinc(δm
1−δm2) 15%

DFT-based and
corrected

Low Very Low Asinc(δm)
N

sin(2πδm)
sin(2π f δt) 0.08%

DTFT Low Low A
N

sin(2πδm)
sin(2π f δt) 0.32%

X-corr High Low − A
N

sin(2πδm)
sin(2π f δt) 0.27%

Sine-fitting Low Insensitive - 0%

3.3.2. Phase AC Signal Analysis

Spectral leakage affects the signal’s shape in the frequency domain, which eventually
affects the phases for DFT and DTFT-based methods unless a correction formula is present
for Fourier-based methods. On the other hand, the phase in the cross-correlation is mainly
affected by the L∞ norm in addition to the phase resolution, which is 2π f

Fs
. Among all the

solutions, only sine fitting solutions have the least influence by the spectral leakage during
phase determination.

Appl. Sci. 2022, 12, 591 13 of 23

0 20 40 60 80 100

Spectral Leakage in %

0.6

0.7

0.8

0.9

1

A
C

 A
m

p
lit

u
d

e
 V

a
lu

e
 i
n
 V

DFT-Based Transform/Filter

DFT-Based Transform/Filter (with Hanning Window)

DFT-Based Transform/Filter (with correction)

DTFT-Based Transform/Filter

X-corr

Sine-fit (linear)

Sine-fit (non-linear)

Theoretical Value

(a)

0 20 40 60 80 100

Spectral Leakage in %

0.998

1

1.002

1.004

A
C

 A
m

p
lit

u
d
e
 V

a
lu

e
 i
n
 V

(b)

Figure 4. (a) Full Comparison of the Different Signals. (b) A Zoom into the most Precise Methods.

Analytically, the deviation expression can be intuitive, such as in the case of DFT and
sine-fitting, but can also be convoluted in the other methods due to the non-linear behavior
of the arc tangent of imaginary and real parts used in the phase calculation. In these cases,
it is necessary to calculate the deviation in Cartesian coordinates beforehand. In DFT,
with or without windowing, the phase deviation is always δmπ. The phase analysis
using cross-correlation depends mainly on the phase resolution. Sine-fitting methods
show lower sensitivity to phase uncertainty. However, for DTFT and DFT with correction,
the Cartesian calculation is necessary to derive the phase uncertainty. For this purpose,
numerical simulations and test scenario studies are preferably used. Table 5 summarizes
these deviations.

Table 5. Comparison between the sensitivity of the phase AC signal analysis methods to interference
and to spectral leakage.

Method Sensitivity to
Interference

Sensitivity to
Spectral Leakage

Max Deviation
(Application/Figure 4a)

DFT-based Low Very High π/2 rad
DFT-based and windowed (Hann) Low Very High π/2 rad

DFT-based and corrected Low Low 0.0078 rad
DTFT Low Low 0.0029 rad
X-corr High Low 0.0293 rad

Sine-fitting Low Insensitive 1.44× 10−15 rad

Appl. Sci. 2022, 12, 591 14 of 23

When applied to the example signal for phase spectroscopy, it can be seen that sine
fitting methods give the most accurate results. The maximum deviation is in the range of
10−15 resp. 10−14. DTFT has the third-lowest maximum deviation of 0.0293 rad, followed
by DFT with correction, with 0.0078 rad. While the cross-correlation is not affected by
the spectral leakage, as shown in Figure 5a, the phase resolution defines its precision,
and therefore the constant deviation, independent of the spectral leakage, is 0.0293 rad.
Finally, both the DFT with and without windowing yielded a maximum deviation of π

2 ,
as shown in Figure 5a. A summary of the methods is shown in Table 5. The values of the
phases are plotted against spectral leakage in Figure 5a, with a closer look in Figure 5b.

0 20 40 60 80 100

Spectral Leakage in %

0

1

2

3

4

A
C

 A
n

g
le

 V
a

lu
e

 i
n

 r
a

d

DFT-Based Transform/Filter

DFT-Based Transform/Filter (with Hanning Window)

DFT-Based Transform/Filter (with correction)

DTFT-Based Transform/Filter

X-corr

Sine-fit (linear)

Sine-fit (non-linear)

Theoretical Value

(a)

0 20 40 60 80 100

Spectral Leakage in %

0.52

0.53

0.54

0.55

0.56

A
C

 A
n

g
le

 V
a

lu
e

 i
n

 r
a

d

(b)

Figure 5. (a) Full Comparison of the Different Signals. (b) A Zoom into the most Precise Methods.

Appl. Sci. 2022, 12, 591 15 of 23

4. Test Scenario: AC Signal Analysis of the Sum of 4 Sines with Arbitrary Frequencies

In this section, we apply the previously mentioned algorithms for AC signal analysis
to a multisine signal consisting of the sum of 4 sinewaves with arbitrary amplitudes and
phases based on matrix measurements of [33]. The sampling frequency is set to 500 kHz.
The properties of the signals are shown in Table 6. The number of samples is set to a
constant 2048.

Table 6. Chosen Signal Properties as a Test Scenario.

Frequency (kHz) Amplitude (V) Phase (rad) sp. lk (%)

11 0.05 0 11.2%
13 0.025 π/4 49.6%
17 0.006 π/6 73.6%
19 0.018 π/2 35.2%

The analysis follows in five different setups. The first platform is a reference to
provide information on the performance of the methods on a generic computer. It con-
sists of a generic Windows personal computer with a CPU Intel Core (TM) i7-7700HQ @
2.80 GHz and 16 GB RAM. The CPU supports several SIMD instructions, including SSE2
and AVX instructions, which provide hardware acceleration to MATLAB code thanks to
Intel Math Kernel Library (MKL) and FFTW-3.3.3-SSE2-AVX library. For a second reference,
the codes are reimplemented in C using Visual C++, which uses a compiler optimization
for the hardware.

The second platform is the STM32-based evaluation board STM32H743Zi. It features
an Arm Cortex-M7 CPU clocked at 480 MHz, which is coupled with 1MB RAM. The built-in
ADC is capable of a sampling rate of at 4 MSps, with at least sub GHz-bandwidth [34].
In this platform, two environments are used: The first one features the computation of
algorithms with double-precision floating points. The methods are written in C and
compiled in MCU GCC Compiler with no further optimization or hardware acceleration
aside from compiler’s. In a second environment, Cortex Microcontroller Software Interface
Standard (CMSIS) instructions were used to speed up the computation. The CMSIS-DSP
library for Cortex-M7 for single-precision floating points calculations was used to calculate
SIMD instructions when possible. The third platform is Teensy 3.6, which is programmed
using Teensyduino, a software package for Arduino IDE. It features a Cortex-M4 CPU
clocked at 180 MHz and 256 kB RAM. The built-in ADC is capable of a sampling rate of
sub-MHz range, with a bandwidth of sub-GHz range. It is worth noting that for both
microcontrollers and according to the Nyquist criteria, the maximum frequency should be
less than half the sampling rate.

All the decimals are stored and processed as double-precision floating points unless
otherwise noted. As CMSIS-DSP only supports single-precision floating-point, the decimals
are implemented with single-precision floating-point. In most cases in native STM32 C code,
we found that the native double-based trigonometric functions are faster than single float-
based trigonometric functions. Further implementation details are discussed in this section.

The FFT is implemented using the FFTW library in MATLAB 2021a, Radix-2 in Visual
C++, and STM32/Teensy Native code, and using a mixed-radix based on Radix-8 on
CMSIS-DSP implementation. Cross-correlation was implemented with a lookup table
(LUT) in all the implementations. Moreover, cross-correlation without LUT was proven
to be more efficient only in STM32 native C, as explained in the next sections. The curve
fitting was implemented with double precision in generic computing and both single and
double precision in STM32 native C. In CMSIS-DSP, only the supported single-precision
floating-point was used. DTFT was implemented with a LUT in generic computing and
CMSIS-DSP and both with and without it in Native C.

Finally, MATLAB and CMSIS-DSP data are always vectorized, i.e., with lookup tables
whenever possible, to enable hardware acceleration through SIMD instructions. In STM32

Appl. Sci. 2022, 12, 591 16 of 23

native C code, the trigonometric functions from the math library were used, while in
the DSP-CMSIS library, the Arm-exclusive trigonometric functions were used instead.
The methods were run multiple times. A total memory clear and removal of memory cache
was ensured between runs by restarting the program/device several times.

4.1. Processing Time

In Section 3.1, the asymptotic complexity and the expected runtime as a function of the
number of samples and frequency components were presented. However, as mentioned
before, the actual processing time may differ due to the different optimization on the
hardware/software side.

According to Section 3.1, the proposed scenario falls in the ambiguous region where
Goertzel, DTFT, and FFT should have similar asymptotic computations, with an advan-
tage for Goertzel and DTFT. They are then followed by linear sine-fit, nonlinear sine-fit,
and cross-correlation ranked according to their ascending computational complexity. Never-
theless, it is important to consider the number of iterations, including overhead operations
before or during the calculation process. This includes the computation of look-up tables,
twiddle factors, and the computation of in-place coefficients for each algorithm. In fact,
DTFT actually requires 14N f up to 18N f per iteration, while FFT Radix 2 only requires
5log2N. Therefore, for this test scenario, 55N operations are required for the FFT and
56N-72N operations for the DTFT. The Goertzel filter requires only 6N f operations per
iteration, resulting in 24N total operations, which should make it the fastest algorithm for
this test scenario.

As shown in Table 7, MATLAB results show that FFT is the fastest owing to the opti-
mized FFTW3 library with a total processing time of 0.51 ms, followed by Goertzel (7.92 ms),
then sine-fit linear (8.02 ms), then DTFT (10.98 ms), then cross-correlation (76.64 ms), and fi-
nally sine-fit (non-linear) (91.08 ms).

Table 7. Total AC signal analysis Processing Time as Implemented in MATLAB and Visual C++ in ms.

- MATLAB PC/C (Visual C++)

FFT 0.51 0.81
Goertzel 7.92 0.51
X-corr 76.64 377.95

Sine-fit (linear) 8.02 2.10
Sine-fit (non-linear) 91.08 70.39

DTFT 10.98 0.92

On the other hand, the results of Visual C++ match the expected theoretical results,
as Goertzel filter is the fastest with 0.51 ms processing time, followed by FFT (0.81 ms),
then DTFT (0.92 ms), then Sine-fit (2.1 ms), then sine-fit non-linear (70.39 ms), and finally
cross-correlation (377.95 ms).

Table 8 shows the comparison between the native double-precision code implemen-
tation of the algorithm in STM32, native code implementation in Teensy, and STM32
optimized using CMSIS DSP library. In STM32 native implementation, Goertzel is the
fastest algorithm with 21 ms runtime, followed by FFT with 99 ms, then DTFT with 132 ms,
then sine-fit (linear) with 638 ms, then sine-fit (non-linear) with 58 s, and finally cross-
correlation with 67 s. The same rank is seen for Teensy 3.6 implementation. However, this
rank changes when the methods are implemented using CMSIS-DSP on STM32: FFT is the
fastest with 8 ms runtime, followed by Goertzel with 18 ms, then DTFT with 28 ms, then
sine-fit (linear) with 139 ms, then cross-correlation with 4 s, and finally sine-fit (non-linear)
with 12 s.

At this point, it can be stated that the influence of hardware and software should not
be underestimated. However, for native PC (Visual C++) and embedded implementations,
the rank of each method is the same on each platform, which is consistent with the theoret-

Appl. Sci. 2022, 12, 591 17 of 23

ical values in Figure 6. For the hardware-accelerated CMSIS implementation, the mixed
radix implementation together with hardware acceleration was able to push DTFT behind
FFT. Finally, during the experimentation, we noticed that all algorithms showed a slow-
down when implemented with single-precision float functions, i.e., cosf and sinf, and that
the CMSIS DSP library provides the fastest solutions for trigonometric operations.

Table 8. Total AC signal analysis Processing Time as Implemented in Non-accelerated and Hardware-
accelerated Environment in STM32 and Teensyduino 3.6.

STM32 Teensy 3.6 STM32
(Native/Double) (Teensyduino/Double) (CMSIS/Float)

FFT 99 ms 76 ms 8 ms

Goertzel 21 ms 57 ms 18 ms
˜10 µs per iter. ˜27 µs per iter. ˜8 µs per iter.

X-corr 67 s 82 s 4 s

Sine-fit (linear) 638 ms 296 ms 139 ms

Sine-fit (non-linear) 58 s 38 s 12 s

DTFT 132 ms 280 ms 28 ms
˜64 µs per iter. ˜136 µs per iter. ˜13 µs per iter.

As a partial conclusion: For this or a similar scenario, when the number of frequencies
is small and when using a hardware-accelerated calculation, FFT is the fastest option for AC
signal analysis. Second to FFT is the Goertzel filter, which is relatively fast in both hardware-
accelerated generic and embedded computing systems and is slightly faster than DTFT.
In a native implementation scenario, i.e., with no to less hardware acceleration, Goertzel
performs the fastest, which is confirmed in both PC (Visual C++) and STM32/Teensyduino
implementations. While DTFT’s trigonometric solution is accelerated in PCs, its embedded
implementation counterpart lags behind. For this reason, DTFT is considered less efficient
than FFT for embedded systems with the same or similar specifications for this test scenario.

T
h
e
o
re

ti
ca

l

V
is

u
a
l
C

+
+

N
a
ti

v
e
 E

m
b

e
d

d
e
d

C
M

S
IS

Goertzel 1 1 1 2

DTFT

2 2
3 3

FFT

3

4

2 1

Sine-fit (Linear) 4

3

4 4
Sine-fit (Non-linear) 5 5 5 5

X-corr 6 6 6 6

Figure 6. Bump Chart of the AC signal analysis Methods Ordered by their speed in the Different Im-
plementations.

4.2. Memory Usage

In this section, we compare the memory usage required for the designed scenario.
Goertzel and DTFT (without LUT) have the lowest memory consumption, as given in
Table 9. Sorted from highest to lowest memory requirements, non-linear least squares sine-

Appl. Sci. 2022, 12, 591 18 of 23

fit requires the highest memory allocation, with around 55 k cases, then linear least-squares
sine-fit with 49 k cases, then cross-correlation (with LUT variant) with 26 k cases, then
DTFT (with LUT variant) with 16 k cases, then cross-correlation (without LUT) with 8 k
cases, then FFT with 2 k to 4 k cases. On the other hand, Goertzel requires 28 cases which
is 10 cases more than DTFT (without LUT variant). In most cases, the native embedded
and CMSIS implementation requires the same number of cases, unless otherwise noted in
Table 3. CMSIS operates on single-float precision, and therefore it requires half memory
allocation space as the native embedded.

Table 9. Comparison of the memory consumption of the AC signal analysis methods in the native C
and vectorized hardware-accelerated implementation.

Method Req. Cases
Actual Memory Use in kB

Native Embed-
ded/Double

STM32 Using
CMSIS-DSP/Float

FFT 2062–4146 32.09 kB
(4110 cases)

8.14 kB
(2086 cases)

Goertzel 28 224 bytes 112 bytes

X-corr (without LUT) 8204 64.05 kB -

X-corr (with LUT) 26,633 - 74.01 kB

Sine-fitting (linear) 49,936 390.12 kB 195.06 kB

Sine-fitting (non-linear, float) ≈55,450 208.81 kB
(55,457 c.)

216.56 kB
(55,441 c.)

Sine-fitting (non-linear, double) ≈55,450 417.14 kB
(55,457 c.) -

DTFT (without LUT) 18 132 bytes -

DTFT (with LUT) 16,402 128.13 kB 64.06 kB

4.3. AC Signal Analysis Precision

This paragraph examines the results of the analysis of the test scenario. As shown in
Tables 10 and 11, the spectral leakage has a significant impact on the accuracy of the results.
DFT-based methods are the most affected by spectral leakage. The influence of the more
significant spectral dispersion is still strong despite the corrections. This can be mainly
seen in the results of the third and fourth sine signals, as shown in Figure 7. DTFT and
cross-correlation gave very similar results, but it clearly shows that in AC signal analysis
with cross-correlation of the third sine, which has the lowest amplitude, is worse than the
other sines. On the other hand, sine-fitting methods deliver flawless amplitude results.
Overall, sine-fitting and DFT with correction are among the better solutions.

Table 10. Amplitude results returned by AC signal analysis algorithms for the considered
test scenario.

A 0.0500 0.0250 0.0060 0.0180

DFT 0.0498 0.0225 0.0049 0.0169
DFT (w. correction) 0.0500 0.0250 0.0061 0.0179

DTFT 0.0499 0.0252 0.0060 0.0175
X-corr 0.0499 0.0251 0.0065 0.0178
Sine-fit 0.0500 0.0250 0.0060 0.0180

Appl. Sci. 2022, 12, 591 19 of 23

Table 11. Phase results returned by AC signal analysis algorithms for the considered test scenario.

ϕ 0.0000 0.7854 0.5236 1.5708

DFT 0.1900 1.5867 −0.7761 1.0036
DFT (w. correction) 0.0099 0.8009 0.7393 1.6785

DTFT 0.0118 0.7568 0.4602 1.5628
X-corr −0.0000 −2.3876 −2.6389 1.5959
Sine-fit 0.0000 0.7854 0.5236 1.5708

0 5 10 15 20

Frequency in kHz

0

0.01

0.02

0.03

0.04

0.05

|F
F

T
|
/
N

DFT

Ideal

Figure 7. Amplitude spectrum using DFT on the test scenario.

The phase analysis, as shown in Table 11, shows similar deviation results as the
amplitude. The DFT is strongly influenced by spectral leakage, and despite the correction,
the deviations of all signals are still to be classified as high. DTFT shows better results,
in this case, thanks to the lower influence of the other signals. The phases calculated by
cross-correlation show a significant deviation from the expected ones, with all different
phases being wrong except for the first and fourth signals. The sine fitting gave perfect
results. It can be concluded that sine fitting methods are the best solution, with DTFT and
FFT (with correction) being the runners-up.

4.4. Discussion

The choice of the platform and tool comes first. The hardware-accelerated implemen-
tation not only speeds up but also enables the application of sophisticated methods such as
sine fitting in both linear and non-linear methods. In general, vectorizing the results results
in a faster execution but more memory consumption.

A comparison of the methods on an empirical scale is depicted in Figure 8. In this
graph, the experimental data from the previous section from CMSIS-STM32 hardware
acceleration are collected and are scaled with the help of log(1 + x). In this graph, smaller
bars are better. The most accurate solution is sine-fit in both amplitude and phase accuracy.
However, they suffer from long runtime. In this study, the linear least-squares sine-fit was
deemed sufficient and enough to provide good results in a reasonable runtime. Yet, both
sine-fit methods require expansive memory allocation that may not be available in all the
microcontrollers. Therefore, FFT or Goerzel, both with correction are all-rounder solutions,
could be used as an alternative, as they are both fast and memory-saving and have a good
amplitude and phase accuracy. Alternatively, when phase accuracy is the most desired,
DTFT could be used instead.

Appl. Sci. 2022, 12, 591 20 of 23

0 1 2 3 4 5 6 7

Runtime

Memory

Max Amp Dev

Max Ang. Dev

Empirical scale (smaller is better)

DTFT Sine Fit (Non-linear) Sine Fit (Linear)

X-corr Goertzel (corr) FFT (corr)

Figure 8. Methods comparison for implementation on a STM32 microcontroller with hardware
acceleration.

5. Conclusions

In this work, we compare AC signal analysis methods in terms of processing speed,
memory consumption, amplitude, and phase accuracy for embedded solutions. First, we
compare the computational complexity of all algorithms on a system without hardware
acceleration. The memory consumption of each algorithm is then assessed, along with
the expected accuracy in amplitude and phase determination. For validation, a test sce-
nario is used, including four arbitrary sine waves. The AC signal analysis methods were
first implemented in a Windows PC reference system using MATLAB and Visual C++.
The results are compared with a native C program running on the STM32 and Teensy 3.6,
with less hardware acceleration. Then a vectorized, hardware-accelerated CMSIS DSP
program is implemented in STM32. It is shown that for native solutions, the Goertzel filter
provides an all-rounder solution. In contrast, the FFT provides an all-rounder solution for
the CMSIS DSP-based solution, given complete signals or barycenter correction technique
for incomplete signals. Although, the phase accuracy lacks behind DTFT. However, when
precision is desired in the expenses of execution time, linear least-squares sine fitting is the
best solution, especially for prematurely truncated signals.

Author Contributions: Z.H. has made the concept, A.Y.K., Z.H. and O.K. proposed the methodology,
A.Y.K. realized the implementation and validation, A.Y.K. carried out the formal analysis, A.Y.K. has
prepared the original draft, Z.H. and O.K. have taken care of reviewing and editing. All authors have
read and agreed to the published version of the manuscript.

Funding: The publication of this article was funded by Chemnitz University of Technology.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Derivation of DTFT Magnitude Deviation Formula

Given a sinewave with an amplitude A, frequency f , and initial phase ϕ, at sample k,
the signal can be desribed using the following formula

x[k] = Asin(2π f kδt + ϕ) (A1)

Appl. Sci. 2022, 12, 591 21 of 23

where δt is the sampling period. In this case, the real <(Y) and imaginary part =(Y) of
Discrete Time Fourier Transform (DTFT) at frequency f take the following formula, given
N samples:

<(Y) = 1
N

N−1

∑
k=0

Asin(2π f δtk + ϕ)cos(2π f kδt) (A2)

=(Y) = 1
N

N−1

∑
k=0

Asin(2π f δtk + ϕ)sin(2π f kδt) (A3)

By expanding the imaginary part:

=(Y) = A
2N

N−1

∑
k=0

cosϕ− cos(4πkδt + ϕ) (A4)

=(Y) = Acosϕ

2
− A

2N

N−1

∑
k=0

cos(4πkδt + ϕ) (A5)

The sum expression in the previous formula can be also written as following [35]:

=(Y) = Acosϕ

2
− AR

2N
cos(ϕ + (N − 1)2π f δt) (A6)

where R = sin(2π f δtN)
sin(2π f δt) .

The same analogy could be repeated for the real part, which gives

<(Y) = Asinϕ

2
− AR

2N
sin(ϕ + (N − 1)2π f δt) (A7)

The squared magnitude of single-sided AC analysis based on DTFT‖XDTFT‖2 could
be expressed as 1

4 (<(Y)
2 +=(Y)2), which is:

4‖XDTFT‖2 = A2
(1

4
+ (

R
2N

)2 +
R

2N
(sinϕsin(ϕ + (N − 1)2π f δt)− cosϕcos(ϕ + (N − 1)2π f δt)

)
(A8)

expanding y = (sinϕsin(ϕ + (N − 1)2π f δt) − cosϕcos(ϕ + (N − 1)2π f δt) further
gives:

y =
−1
2

cos(2ϕ + (N − 1)2π f δt) +
−1
2

cos(2ϕ + (N − 1)2π f δt) (A9)

y = −cos(2ϕ + 2π f (N − 1)δt) (A10)

4‖XDTFT‖2 becomes:

4‖XDTFT‖2 = A2
(1

4
+ (

R
2N

)2 − R
2N

cos(2ϕ + 2π f (N − 1)δt)
)

(A11)

The deviation formula for‖XDTFT‖ can be expressed as A−‖XDTFT‖:

‖XDTFT‖ = A
(

1−
√

1 +
(R

N

)2
− 2R

N
cos(2ϕ + 2π f (N − 1)δt)

)
(A12)

References
1. Bouchaala, D.; Kanoun, O.; Derbel, N. High accurate and wideband current excitation for bioimpedance health monitoring

systems. Measurement 2016, 79, 339–348. [CrossRef]
2. Tröltzsch, U.; Kanoun, O.; Tränkler, H.R. Characterizing aging effects of lithium ion batteries by impedance spectroscopy.

Electrochim. Acta 2006, 51, 1664–1672. [CrossRef]
3. Shi, Q.; Kanoun, O. Wire fault location in coaxial cables by impedance spectroscopy. IEEE Sens. J. 2013, 13, 4465–4473. [CrossRef]

http://doi.org/10.1016/j.measurement.2015.07.054
http://dx.doi.org/10.1016/j.electacta.2005.02.148
http://dx.doi.org/10.1109/JSEN.2013.2269218

Appl. Sci. 2022, 12, 591 22 of 23

4. Kallel, A.; Bouchaala, D.; Kanoun, O. Critical implementation issues of excitation signals for embedded wearable bioimpedance
spectroscopy systems with limited resources. Meas. Sci. Technol. 2021, 32, 084011. [CrossRef]

5. Fairweather, A.; Foster, M.; Stone, D. Battery parameter identification with pseudo random binary sequence excitation (prbs).
J. Power Sources 2011, 196, 9398–9406. [CrossRef]

6. Sanchez, B.; Vandersteen, G.; Bragos, R.; Schoukens, J. Basics of broadband impedance spectroscopy measurements using periodic
excitations. Meas. Sci. Technol. 2012, 23, 105501. [CrossRef]

7. Arbo, M.H.; Utstumo, T.; Brekke, E.; Gravdahl, J.T. Unscented multi-point smoother for fusion of delayed displacement
measurements: Application to agricultural robots. MIC J. 2017, 38. 1–9. [CrossRef]

8. Angelis, A.D.; Buchicchio, E.; Santoni, F.; Moschitta, A.; Carbone, P. Practical broadband measurement of battery EIS. In Proceed-
ings of the 2021 IEEE International Workshop on Metrology for Automotive, MetroAutomotive 2021, Bologna, Italy, 1–2 July 2021;
pp. 25–29. [CrossRef]

9. Schoukens, J.; Pintelon, R.; Van Der Ouderaa, E.; Renneboog, J. Survey of excitation signals for FFT based signal analyzers. IEEE
Trans. Instrum. Meas. 1988, 37, 342–352. [CrossRef]

10. Duhamel, P.; Vetterli, M. Fast Fourier transforms: A tutorial review and a state of the art. Signal Process. 1990, 19, 259–299.
[CrossRef]

11. Lindahl, P.A.; Cornachione, M.A.; Shaw, S.R. A time-domain least squares approach to electrochemical impedance spectroscopy.
IEEE Trans. Instrum. Meas. 2012, 61, 3303–3311. [CrossRef]

12. Vaníček, P. Further development and properties of the spectral analysis by least-squares. Astrophys. Space Sci. 1971, 12, 10–33.
[CrossRef]

13. Zhang, J.Q.; Zhao, X.; Hu, X.; Sun, J. Sinewave fit algorithm based on total least-squares method with application to ADC effective
bits measurement. IEEE Trans. Instrum. Meas. 1997, 46, 1026–1030. [CrossRef]

14. Wang, W.; Chen, D.; Yao, W.; Chen, W.; Lu, Z. Fast lock-in amplifier electrochemical impedance spectroscopy for big capacity
lead-acid battery. J. Energy Storage 2021, 40, 102693. [CrossRef]

15. Gücin, T.N.; Ovacik, L. Online impedance measurement of batteries using the cross-correlation technique. IEEE Trans. Power
Electron. 2019, 35, 4365–4375. [CrossRef]

16. Cooley, J.; Tukey, J.W. An algorithm for the machine calculation of complex Fourier series. Math. Comput. 1965, 19, 297–301.
[CrossRef]

17. Johnson, H.; Burrus, C. An in-order, in-place radix-2 fft. In Proceedings of the ICASSP’84. IEEE International Conference on
Acoustics, Speech, and Signal Processing, San Diego, CA, USA, 19–21 March 1984; Volume 9, pp. 473–476.

18. Danielson, G.C.; Lanczos, C. Some improvements in practical Fourier analysis and their application to X-ray scattering from
liquids. J. Frankl. Inst. 1942, 233, 435–452. [CrossRef]

19. Thomas, L.H. Using a computer to solve problems in physics. In Applications of Digital Computers; Freiberger, W., Prager, W., Eds.;
Ginn: Boston, MA, USA, 1963; pp. 44–45.

20. Good, I.J. The interaction algorithm and practical Fourier analysis. J. R. Stat. Soc. Ser. B 1958, 20, 361–372. [CrossRef]
21. Rader, C.M. Discrete Fourier transforms when the number of data samples is prime. Proc. IEEE 1968, 56, 1107–1108. [CrossRef]
22. Bluestein, L. A linear filtering approach to the computation of discrete Fourier transform. IEEE Trans. Audio Electroacoust. 1970,

18, 451–455. [CrossRef]
23. Pavan Kumar, K.; Priya Jain, R.K.S.; Rohith N, R.K. FFT Algorithm: A Survey. Int. J. Eng. Sci. 2013, 2, 22–26.
24. Frigo, M.; Johnson, S.G. The design and implementation of FFTW3. Proc. IEEE 2005, 93, 216–231. [CrossRef]
25. Goertzel, G. An algorithm for the evaluation of finite trigonometric series. Am. Math. Mon. 1958, 65, 34–35. [CrossRef]
26. Tchegho, A.; Gräb, H.; Schlichtmann, U.; Mattes, H.; Sattler, S. Analyse und Untersuchung der Quantisierungseffekte beim

Goertzel-Filter. Adv. Radio Sci. 2009, 7, 73–81. [CrossRef]
27. Regnacq, L.; Wu, Y.; Neshatvar, N.; Jiang, D.; Demosthenous, A. A Goertzel Filter-Based System for Fast Simultaneous

Multi-Frequency EIS. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 3133–3137. [CrossRef]
28. Biancacci, N. FFT Corrections for Tune Measurements. 2011. Available online: https://indico.cern.ch/event/132526

/contributions/128902/attachments/99707/142376/Meeting1-06-11_FFT_corrections_for_tune_measurements.pdf (accessed on
22 April 2020).

29. Oppenheim, A.V.; Schafer, R.W. Digital Signal Processing (Book); Research Supported by the Massachusetts Institute of Technology,
Bell Telephone Laboratories, and Guggenheim Foundation; Prentice-Hall: Englewood Cliffs, NJ, USA, 1975.

30. Zhang, J.Q.; Zhao, X.; Hu, X.; Sun J. Sinewave fit algorithm based on total least-squares method. In Proceedings of the Quality
Measurement: The Indispensable Bridge between Theory and Reality (No Measurements? No Science! Joint Conference-1996:
IEEE Instrumentation and Measurement Technology Conference and IMEKO Tec, Brussels, Belgium, 4–6 June 1996; Volume 2,
pp. 1436–1440.

31. Taylor, J.; Hamilton, S. Some tests of the Vaníček method of spectral analysis. Astrophys. Space Sci. 1972, 17, 357–367. [CrossRef]
32. National Instruments. 2015. Available online: https://download.ni.com/evaluation/pxi/Understanding%20FFTs%20and%20

Windowing.pdf (accessed on 22 April 2020).
33. Hu, Z.; Ramalingame, R.; Kallel, A.Y.; Wendler, F.; Fang, Z.; Kanoun, O. Calibration of an AC zero potential circuit for

two-dimensional impedimetric sensor matrices. IEEE Sens. J. 2020, 20, 5019–5025. [CrossRef]

http://dx.doi.org/10.1088/1361-6501/abf78e
http://dx.doi.org/10.1016/j.jpowsour.2011.06.072
http://dx.doi.org/10.1088/0957-0233/23/10/105501
http://dx.doi.org/10.4173/mic.2017.1.1
http://dx.doi.org/10.1109/MetroAutomotive50197.2021.9502889
http://dx.doi.org/10.1109/19.7453
http://dx.doi.org/10.1016/0165-1684(90)90158-U
http://dx.doi.org/10.1109/TIM.2012.2210457
http://dx.doi.org/10.1007/BF00656134
http://dx.doi.org/10.1109/19.650821
http://dx.doi.org/10.1016/j.est.2021.102693
http://dx.doi.org/10.1109/TPEL.2019.2939269
http://dx.doi.org/10.1090/S0025-5718-1965-0178586-1
http://dx.doi.org/10.1016/S0016-0032(42)90624-0
http://dx.doi.org/10.1111/j.2517-6161.1958.tb00300.x
http://dx.doi.org/10.1109/PROC.1968.6477
http://dx.doi.org/10.1109/TAU.1970.1162132
http://dx.doi.org/10.1109/JPROC.2004.840301
http://dx.doi.org/10.2307/2310304
http://dx.doi.org/10.5194/ars-7-73-2009
http://dx.doi.org/10.1109/TCSII.2021.3092069
https://indico.cern.ch/event/132526/contributions/128902/attachments/99707/142376/Meeting1-06-11_FFT_corrections_for_tune_measurements.pdf
https://indico.cern.ch/event/132526/contributions/128902/attachments/99707/142376/Meeting1-06-11_FFT_corrections_for_tune_measurements.pdf
http://dx.doi.org/10.1007/BF00642907
https://download.ni.com/evaluation/pxi/Understanding%20FFTs%20and%20Windowing.pdf
https://download.ni.com/evaluation/pxi/Understanding%20FFTs%20and%20Windowing.pdf
http://dx.doi.org/10.1109/JSEN.2020.2966141

Appl. Sci. 2022, 12, 591 23 of 23

34. Munjal, R.; Wendler, F.; Kanoun, O. Embedded wideband measurement system for fast impedance spectroscopy using undersam-
pling. IEEE Trans. Instrum. Meas. 2019, 69, 3461–3469. [CrossRef]

35. Brett, M. Sum of Sines and Cosines—Tutorials on Imaging, Computing and Mathematics. 2016. Available online: https:
//matthew-brett.github.io/teaching/sums_of_cosines.html (accessed on 26 December 2021).

http://dx.doi.org/10.1109/TIM.2019.2932177
https://matthew-brett.github.io/teaching/sums_of_cosines.html
https://matthew-brett.github.io/teaching/sums_of_cosines.html

	Introduction
	Overview of AC Analysis Methods
	Discrete Fourier-Transform-Based Methods
	Fast Fourier Transform (FFT)
	Goertzel Filter
	Spectral Leakage Correction

	Discrete-Time Fourier Transform
	Cross-Correlation (X-Corr)
	Linear Least Squares Sine-Fit (LSQ)
	Non-Linear Least Squares Sinewave Fitting (NLSQ)

	Comparison among Different AC Signal Analysis Methods
	Processing Time
	Theoretical Algorithm Complexity
	Possible Hardware Acceleration

	Memory Usage
	Influence of Spectral Leakage on the Accuracy of the Amplitude and Phase
	Amplitude AC Signal Analysis Accuracy
	Phase AC Signal Analysis

	Test Scenario: AC Signal Analysis of the Sum of 4 Sines with Arbitrary Frequencies
	Processing Time
	Memory Usage
	AC Signal Analysis Precision
	Discussion

	Conclusions
	Appendix A
	References

