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Abstract: The use of digital technologies such as Internet of Things (IoT) and smart meters induces
a huge data stack in facility management (FM). However, the use of data analysis techniques has
remained limited to converting available data into information within activities performed in FM.
In this context, business intelligence and analytics (BI&A) techniques can provide a promising
opportunity to elaborate facility performance and discover measurable new FM key performance
indicators (KPIs) since existing KPIs are too crude to discover actual performance of facilities. Beside
this, there is no comprehensive study that covers BI&A activities and their importance level for
healthcare FM. Therefore, this study aims to identify healthcare FM KPIs and their importance levels
for the Turkish healthcare FM industry with the use of the AHP integrated PROMETHEE method.
As a result of the study, ninety-eight healthcare FM KPIs, which are categorized under six categories,
were found. The comparison of the findings with the literature review showed that there are some
similarities and differences between countries’ FM healthcare ranks. Within this context, differences
between countries can be related to the consideration of limited FM KPIs in the existing studies.
Therefore, the proposed FM KPIs under this study are very comprehensive and detailed to measure
and discover healthcare FM performance. This study can help professionals perform more detailed
building performance analyses in FM. Additionally, findings from this study will pave the way for
new developments in FM software and effective use of available data to enable lean FM processes in
healthcare facilities.

Keywords: facility management; key performance indicators; business intelligence and analytics;
healthcare facilities

1. Introduction

Business intelligence and analytics (BI&A) is an umbrella term that refers to infor-
mation systems to transform raw data into meaningful information and help reduce un-
certainty in decision-making [1]. It enables one to retrieve critical business information
from the data stack. This helps organizations to obtain a competitive advantage against
counterparts [2]. Therefore, BI&A activities have become one of the main activities per-
formed in companies. Nowadays, the necessity for data analytic activities is increasing with
the advancement in technology such as the use of cloud technologies, databases, and IT-
oriented technologies in the architectural, engineering, and construction (AEC) industry [3].
Expectations from IT-oriented technologies in AEC are automation, workflow, business
process improvement, acquiring knowledge about systems and devices, and analytics and
forecasting solutions, which require more BI&A implementation [4].

FM is the most costly phase in the building life cycle, which is the phase of building
the life cycle corresponding to 60% of the expenditures of lifecycle costs [5,6]. Furthermore,
30% of world energy is consumed by buildings [7]. The statistics show that building energy
consumption will have increased “another 70% by 2050” [8]. Furthermore, approximately
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16% more energy is consumed by buildings when compared with design data [9]. Irregular
or poor maintenance activities induce more energy consumption (30%) in commercial
buildings [10]. In FM, fault detection and diagnostics (FDD), which includes data mining
usage, can enable 5–30% energy savings [9]. To eliminate high expenditures, technical
inspections can be performed in facilities. However, the technical inspections are not
comprehensive in identifying the real condition of assets and minor faults, which causes
more severe problems in the ongoing processes. Mawed and Al-Hajj [11] explicitly stated
that the wrong decision given by service providers in the FM industry induced thinning
margins. Therefore, the use of available data from computerized maintenance systems
(CMMS), electronic document management systems (EDMS), energy management systems
(EMS), energy management control systems (EMCS), building information modeling (BIM),
and building automation systems (BAS) is crucial to perform preventive actions in facili-
ties [9,12–14]. For example, BAS records raw data from the building environment at a short
time (30 s or 1 min) [15]. Researchers believe that the use of these systems would increase
efficiency; decrease the issues confronted such as energy management, FDD, and control
optimization; and eliminate personal judgement in the built environment [15,16]. Available
data can be used to evaluate and improve facility performance [13,17].

Mechanical, electrical, and plumbing (MEP) systems also have approximately 40%
proportion of total construction costs. In addition to this, prices of maintenance activities
of built MEP systems consist of 60% of maintenance costs [18]. FDD systems present
an excellent opportunity to find out FM issues. However, FDD has a lack of capability
in terms of functional and behavioral interaction between systems, user comfort, and
components [9]. O’Neill et al. [9] stated that the interconnected complexity and sheer
volume from the operation and maintenance stage induce an overwhelming decision-
making process. Therefore, the usage of data analytic activities in the operation and
maintenance stage is essential to eliminate severe impacts on costs and ensure safety of
building services.

Hopland and Kvamsdal [19] stated that FM consists of complex operations and ac-
tivities. Therefore, the authors emphasized that facility managers need proper tools to
manage scarce resources. However, the proposed FM systems in the literature or available
commercial systems are either query-based or present limited data analytic opportunities
or limited data availability depending on lack of average values (rule-based systems) or
a specific area such as energy and maintenance or need for an external analysis solution
such as Python, R, or Weka in terms of particular data sources (such as BIM) [15,17,20–27].
Therefore, data-driven decisions cannot be performed during FM. Ahmed et al. [3] stated
that bigger datasets are created during the building project lifecycle. However, value from
these data sources is hidden. Authors expressed that BI&A can be used to analyze or
predict project KPIs. In parallel to the study of Ahmed et al., Lavy et al. [28] reported that
data analytics could be used in analyzing relationships and impacts of FM key performance
indicators (KPIs). Moreover, Dutta et al. [29] and Gunay et al. [17] stated that available
performance metrics consider only one aspect of performance and undermine new technol-
ogy and progress in data analytics. Within this context, data analytic activities present a
promising feature to discover more detailed facility performance and new KPIs for FM.

Although there are some studies that use individual BI&A solutions for FM problems
and their usage in the assessment of building performance in the literature, there is no
comprehensive study that combines all necessary FM KPIs. A few studies focused only
on determination and ranking of FM KPIs for healthcare facilities. However, these studies
do not consider the power of data analytics. Therefore, although high-tech systems are
used in healthcare FM, discovery of new KPIs is limited in these studies. Additionally,
lack of determination of data analytic activities in FM induces hidden value in or non-
measurement of data and depends on non-availability data. That is why performance
benchmarking has been limited to crude metrics. As a result of non-data-driven decisions,
FM results in cost inefficiencies, inadequacy, unsuitability of facilities for future needs,
and non-contribution to the organization’s mission [17,30]. Therefore, this study aims to:
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(i) identify and determine FM KPIs for the management of healthcare facilities throughout
their service life; and (ii) prioritize FM KPIs for the Turkish healthcare industry.

Thus, the contribution of the study is to reveal measurable FM KPIs to enable detailed
performance analysis and strategic decision-making in healthcare facilities. With an empiri-
cal investigation, the study contributes to the practice with the identification of FM KPIs
that help increase awareness of facility managers in terms of data analytic activities in FM
and identification of requirements or expectations of healthcare facility managers.

2. Background for Healthcare Facility Management KPIs

Nowadays, demand for healthcare services is increasing, depending on population
growth, the aging of the population, epidemics, and change in consumer behavior [31].
Additionally, healthcare facilities are different from other business ventures, since: (i) the
healthcare facility is open 24 h; (ii) the given services are very complex; and (iii) if wrong
decisions or failures happen in the FM, it can result in loss of the patients’ life. Within this
context, identification and measurement of KPIs for healthcare facilities are vital to improve
performance of healthcare facilities and healthcare services. However, healthcare facilities
are under financial pressure, since FM costs correspond to 20–30% of expenditure [31,32].

In the literature, many studies were performed to measure performance of healthcare
facilities. Shohet and Lavy [31] used 15 KPIs, which generally focus on performance and
maintenance of healthcare facilities for the evaluation of the Israeli healthcare system.
Lavy et al. [33] identified 34 indicators and categorized FM KPIs under four categories
(financial, functional, physical, and user satisfaction) to narrow them so they became more
quantifiable and measurable [34]. However, some of these presented KPIs are information
rather than KPI, since they do not enable benchmarking by considering building charac-
teristics such as site and location, appearance, etc. Lai and Yuen [35] identified 11 FM
KPIs under four categories (physical, financial, environmental and health, safety and legal)
for healthcare facilities with the usage of analytical network process (ANP) to identify
the relative importance of KPIs by considering their impacts on each other. However, the
study includes only literature review and research methodology. Róka-Madarász et al. [36]
used the CAFM database to enable FM performance benchmarking. Authors focused on
operation and maintenance costs and identification of variables that affect operational
and maintenance costs such as age and number of users to determine long-term strategic
decisions. Talib et al. [37] ranked healthcare KPIs in terms of quality, impact, and function.
Identified FM KPIs are very different from other studies, since the study considers physical
characteristics of the buildings and the soft aspect of FM such as “there is good access
from and within the building to another building, the approach and access for ambulances
is appropriately provided etc.”. Shohet [38] identified 11 KPIs under asset development,
organization and management, performance management, and maintenance efficiency for
strategic healthcare FM and the identified parameters helped to benchmark them as inter-
and intra-organizational. Lai and Yuen [35] investigated healthcare FM KPIs for Hong
Kong that fell into six aspects: namely, safety, financial, physical, patient experience, envi-
ronmental, and functional. In the study, 61 healthcare FM KPIs were found in a literature
review. To create a shortlist of FM KPIs, the authors performed a focus group meeting.
Identified FM KPIs were categorized under six aspects: safety, financial, physical, patient
experience, environmental, and functional. After identification of these KPIs, identified
KPIs were voted on by experts. As a result of the study, 18 FM KPIs were found. In another
study, the importance level of 18 healthcare FM KPIs was found in terms of job nature, job
role, job level, and work experience, and the comparison was made [39].

However, the defined KPIs in the literature do not comprehensively use available
data effectively in the management and decision-making processes of healthcare facilities.
Therefore, data analytics activities, which are performed in FM, were investigated and used
with the prior identified KPIs in this study.
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3. Business Intelligence and Analytics in Facility Management

Facility managers perform many activities to organize interaction between stakehold-
ers, management activities, and works. Depending on information and communication
systems, massive data are produced in daily operations. These data resources provide an
opportunity to increase or improve performance of FM activities [24]. However, data (raw
numbers and symbols), which need to be converted into knowledge to take action in the
building environment, cannot be used in FM because of some hindrance factors [40]. For
example, Srivastava et al. [25] stated that the managers, who are responsible for energy
management, have a lack of energy background. To overcome the lack of background,
BI&A and their simple use with user interfaces gain more importance to derive more
profound knowledge and decisions from data sources [25].

Business intelligence (BI) enables the information-oriented decision-making process
by transforming raw data into useful information with applications of “a set of methods,
processes, architectures, applications, and technologies” [4,41]. Recent BI depends on data
analytic activities. Therefore, it was combined with data analytic, and it has been called
business intelligence and analytics (BI&A) [42]. Data analytic is an umbrella term to refer to
different analytics and analysis [43]. Therefore, the data analytic component of BI consists
of: (i) descriptive analysis; (ii) operational queries; (iii) multidimensional analysis such as
online analytical processing (OLAP); (iv) statistical analysis; (v) data mining techniques
including predictive modeling; (vi) visual analytics such as scorecards and dashboards;
(vii) text mining such as natural language process; (viii) BDA; (ix) network analytics such
as link mining between stakeholders; (x) web mining; (xi) sentiment analysis (revealing
feelings); and (xii) social media analytics [27,30–32]. Some of the components have an
intersection with each other. As a limitation, BI&A data mining techniques, visual analytics,
BDA, and text mining, which are frequently used in BI&A, were investigated within the
context of this study [41,44,45].

• Data Mining: Data mining activities are performed to produce useful information
from obtained data sources such as databases [46]. Data mining (DM) in the FM
industry is essential to generate actionable information in the facility environment [47].
Ahmet et al. [3] and Fan et al. [15] stated that data mining activities can be classified
under supervised learning and unsupervised learning. While supervised learning
aims to produce predictions by using data, unsupervised learning is used in group
identification and to discover new knowledge from historical data. Ioannidis et al. [46]
and Yafooz et al. [43] mentioned five commonly used DM categories; “anomaly de-
tection/outlier detection, association rule learning, clustering analysis, classification
analysis, and regression analysis”. In anomaly detection, the outliers are identified by
comparing expected patterns. In association rule learning, the relationship between
variables is discovered within the large database. In clustering analysis, similar ob-
jects are grouped under the same group. In the classification group, observations are
categorized by considering trained models. In regression analysis, the relationship
between variables is discovered. However, the size of variables and data volume is,
respectively, very small against association rule learning. In the DM activities, the DM
models are used to reveal the mathematical relationship between observed factors.
These DM models are trained with historical data and predictions for similar problems
are revealed [47]. Historical data also help to improve and optimize operations in the
facility.

• Visual Analytics: Visual analytics such as histograms can be used in data explo-
ration [48]. Visual analytics combine analysis techniques with visualization tools.
Therefore, the understanding and reasoning processes of decision-makers are easy
and effective with the utilization of visual analytics [49]. Visual analytics contain
informative answers for “what is happening”, “what happened” and “what will hap-
pen” [45]. Ioannidis et al. [46] identified nine visualization techniques from literature;
“1D to 3D graphics, geometric techniques, pixel oriented techniques, iconographic
techniques, topic-based methods, feature-based methods, graph layout techniques,



Appl. Sci. 2022, 12, 651 5 of 27

clutter reduction methods, and combinations”. The authors expressed that the visu-
alization techniques allow users to explore data more effectively and efficiently than
DM results, which are very complex to infer information from for facility managers.

• Text Mining: Text mining activities are frequently used on maintenance records be-
cause maintenance-related tasks are heavily based on text-based inspection reports,
maintenance reports, and historical data [49]. The most significant difference of text
mining activities from data mining activities is that unstructured data (text, speeches,
etc.) are handled in text mining activities. Afterward, the text is converted into nu-
meric attributes that enable the processing of text in data mining activities [13]. In
the second step, the clustering activity is performed. Therefore, FM components,
which are investigated in data mining, are identified. In the last step, associated words
are selected [10]. After that, a more detailed analysis can be performed on retrieved
data [50]. Naïve Bayes, decision tree, logistic regression, and support vector machine
can be used in text mining [50].

• Big Data Analytics: Big data analytics (BDA) is another BI&A term that enables one to
analyze variability and its root causes from datasets [11]. With the application of IoT
and smart meter devices in building environments, data obtained from these real-time
data sources increase the necessity for the BDA applications [51]. BDA is used if the
data have features like enormous volume, variety, and velocity. In other words, when
datasets are difficult to manage with existing technologies, the creation, organization,
analysis, and visualization of a dataset is called big data [52]. The success of BDA
comes from the capability of processing structured, unstructured, and semi-structured
data [53]. FM is one of the BDA areas in which BDA helps to analyze data obtained
from FM systems to render possible effective management [11]. BDA is a more com-
prehensive approach. It involves “Databases, Knowledge Discovery in Databases,
Data Mining” and “text mining”. It also has an intersection with “Statistics, Pattern
Recognition, Machine Learning, Artificial Intelligence, and Computational Neuro-
science” [54,55]. The use of BDA in the smart energy meter enables identification of
energy-saving and potential savings, estimation of costs, and pattern recognition [56].

Identification of Information Requirements of FM Key Performance Indicators (KPIs)

While the literature review was performed to discover FM KPIs, information require-
ments for the calculation and analysis of FM KPIs were revealed with the literature review.
The findings showed that while data analytics are performed on data sources, many in-
formation systems are used and integrated to discover hidden values and performance
metrics.

Briefly, building information modeling (BIM), building energy performance simula-
tions, camera systems, FM systems, healthcare patient database, account system, human
resources database, inventory database, mobile devices, document systems, RFID systems,
Wi-Fi-enabled devices, and regulations are required information resources to perform BI&A
in FM KPIs. The studies related to BIM showed that BIM can be used as a host system
for many data sources. These data are asset depreciation, building data, building material
data, competent personnel data, complaints/work orders, condition index, construction
costs, emergency management data, energy consumption data (with the integration of
FM systems, smart meters, and smart plugs), equipment/system list, equipment/system
operation schedule (with the integration of FM systems), fault detection and diagnostics,
asset appraisal, risks, inspection reports, location, maintenance history, simulation results
(with the integration of BEPS software or use of EnergyPlus module in Revit), occupant
comforts (with the usage of CFD analysis), real-time operation parameters (with the in-
tegration of sensors: temperature, lux, air velocity, etc., actuators), indoor navigation or
occupant location detection (with the integration of RFID, Wi-Fi-enabled devices, and
mobile devices), space information, system/equipment performance data, the sequence of
operation, and useful life determination for assets [57,58].
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4. Research Methodology

The study aims to identify and rank FM KPIs and barriers for the implementation of
BI&A in healthcare FM. Therefore, AHP-PROMETHEE (multi-criteria decision-making—
MCDM) method was considered as a research method to reveal orders. In the literature,
there are many MCDM methods such as analytic hierarchy process (AHP), analytic network
process (ANP), technique for order of preference by similarity to ideal solution (TOPSIS),
elimination and choice translating reality English (ELECTRE), and preference ranking
organization method for enrichment evaluations (PROMETHEE) [59]. The author stated
that there is no superior method amongst these methods. However, the research method
needs to be chosen according to the research aim. According to Macharis et al. [60],
PROMETHEE GAIA analysis enables one to evaluate actions by considering different
criteria or paired criteria, and to visualize the analysis results. However, the disadvantage
of PROMETHEE analysis is the inability to calculate weights of criteria. Therefore, AHP
and PROMETHEE methods were merged in the literature [61]. The concept map of the
study is shown in Figure 1. In this study, AHP-PROMETHEE analysis is employed to
obtain complete ranking of healthcare FM.

The AHP method finds the widest application areas in decision-making, resource
allocation, and conflict resolution studies. It is basically a theory of measurement to deliver
ratio of scales through the paired comparison of continuous and discrete numbers. The
paired comparison is performed with the actual measurements or relative strengths of
preferences [62].

The PROMETHEE method was developed by B. Roy [63], who introduced the
PROMETHEE method as a new class of outranking method. In the method, criteria are used
to discover outranking relationships between alternatives. Partial-order (PROMETHEE
I) and complete order (PROMETHEE II) are possible with the PROMETHEE method. In
PROMETHEE I, the collected data from the decision-maker is compared specific to each
criterion. In PROMETHEE, there are six preference functions; usual function, U-shape
function, V-shape function, level function, linear function, and Gaussian function. These
functions are the powerful side of PROMETHEE since the method allows the decision-
maker to use different types of preference functions for different criteria [59]. In this study,
three conflicting criteria were considered to find out the importance level of defined FM
KPIs. These criteria are:

• Time: Depending on aging population and population growth, demands for healthcare
services have increased [63]. Therefore, the length of patient care has decreased.
Moreover, uninterrupted service in healthcare facilities is important, since services
such as surgery activities can be interrupted or postponed [64,65].

• Cost: Operational expenditure is five times more costly than capital expenditure [66,67].
Lavy and Shohet [68] stated that hospitals are under financial pressures and one-
third of hospitals have negative margins. Accordingly, FM budgets have been cut in
hospitals. Therefore, cost criteria are important to decide activities that are performed
in healthcare FM.

• Quality: Patients are susceptible to indoor conditions in healthcare facilities. Therefore,
patient curing quality needs to be handled with FM services quality [69]; patient
preference for healthcare facilities is affected by FM quality.

AHP integrated PROMETHEE method introduced by Dağdeviren [59] was followed
due to simplicity, clearness and stability [62]. It aims to rank alternatives by considering
conflicting criteria [59,70]. In a hybrid method, AHP is used to reveal weights of criteria.
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Figure 1. The concept map of the study.

Results from AHP are used in the PROMETHEE method to refine the rank of alter-
natives. In addition to the PROMETHEE method, geometrical analysis for interactive aid
(GAIA) was used to enable more understandable graphical representation of alternatives
for FM decision-makers [71]. This helps to identify conflict amongst the criteria and to
group the alternatives (the combination of BI&A data analytic activities and KPIs in this
study) [59]. The strongest side of the PROMETHEE method is to enable considering dif-
ferent functions to evaluate each criterion. The schematic representation of the followed
process for the ranking of FM KPIs is given in Figure 2.
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Figure 2. The research process plan for the determination of FM KPIs (adapted from [59]).

For the calculations, PROMETHEE&GAIA Software developed by Decision Lab was
used in the study [72]. Analysis results are summarized in Section 4.2.

4.1. Identification of FM Key Performance Indicators (KPIs)

The BI&A activities are important to measure and evaluate the performance of facil-
ities and they will help to perform benchmarking by using available data. The existing
FM KPIs in the literature are straightforward in revealing the actual performance of the
facility and underlying reasons between facility performances since there are lots of hidden
relationships. Data mining, text mining, visual analytics, and big data analytics can be used
to reveal them in FM. In this section, the literature review about existing FM KPIs and the
application areas of data mining, text mining, visual analytics, and BDA, which can be used
as FM KPIs, is introduced.

Studies showed that energy consumption in buildings is one of the most investigated
areas in FM. After the literature review, thirteen “FM KPIs for environmental aspect in
healthcare facilities” were identified (Table 1).
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Table 1. Identification of FM KPIs for environmental aspect in healthcare facilities (O: operational, T:
tactical, S: strategic).

No Environmental Aspect in
Healthcare Facilities O T S No Environmental Aspect in

Healthcare Facilities O T S

E1

Resource/Energy consumption with
respect to working days and
non-working days (with motif
discovery, clustering analysis, etc.)

X X E8

Prediction of
Resource/Energy
consumption by
considering daylighting

X

E2
Resource/Energy consumption with
respect to seasons (with motif
discovery, clustering analysis, etc.)

X X E9

Prediction of
Resource/Energy
consumption by
considering occupant
schedule

X X

E3
Identification of Resource/Energy
load profile (plug loads, lighting,
heating, cooling, water, etc.)

X X E10 Resource/Energy use
intensity X X

E4
Prediction of Resource/Energy load
profile (plug loads, lighting, heating,
cooling, water, etc.)

X X E11
Green energy’s ratio with
respect to energy
consumption

X X

E5 Resource/Energy consumption with
respect to the number of staff X X E12

Greenhouse gas emissions
per building area/number
of patient/patient bed

X X

E6 Resource/Energy consumption with
respect to the number of beds X X E13 Energy/Resource

efficiency X X

E7 Resource/Energy consumption with
respect to zone/spaces (area) X X

Sources: [4,9,11,12,15–18,22,24–27,29,31,33–39,41,46,47,51,56,69–128]

User behavior and user comfort are among the most important aspects for FM. Identi-
fied FM KPIs for user aspect in healthcare facilities are given in Table 2.

Table 2. FM KPIs for user aspect in healthcare facilities (O: operational, T: tactical, S: strategic).

No User Aspect in Healthcare
Facilities O T S No User Aspect in Healthcare

Facilities O T S

U1 Indoor air quality X X U10 Catering satisfaction X X

U2 Prediction of indoor air parameters
and indoor quality X X U11 Security satisfaction X X

U3 Number of patient/worker
complaints per year X U12 Maintenance satisfaction X X

U4 Complaint intensity per floor area X U13 Care satisfaction X X

U5 Categorical and spatial breakdown
of the complaints per area X U14 Identification of space

occupancy X X

U6 Percentage patient/worker
dissatisfied X U15 Identification of visit

frequency of facility X X

U7 Predictive mean vote (Thermal) X X U16
Identification of facility
impact on user
productivity

X X

U8 Predictive percentage dissatisfied
(Thermal) X X U17 Accessibility for disabled X

U9 Cleaning satisfaction X X U18 Adjust treatment index X X

Sources: [4,10,13,15–17,24,25,27,29–31,33–39,46,73,76,79,81,86–90,96,100,103,105,106,115–117,126–138]

Fifteen FM KPIs for emergency and safety management in healthcare facilities were
identified (Table 3).
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Table 3. FM KPIs for emergency and safety management in healthcare facilities (O: operational, T:
tactical, S: strategic).

No
Emergency and Safety
Management in Healthcare
Facilities

O T S No
Emergency and Safety
Management in
Healthcare Facilities

O T S

S1 Gross floor area under safety and
security patrol X S4 Number of lost work days

per year X X

S2 Number of accidents per year X S5

Identification of the
number of alarm activation
depending on emergency
situation within the facility

X

S3 Number of health and safety
complaints per year X S6 Number of security

incidents per year X

Sources: [11,24,31,33–39,51,69,126,127,139–141]

Maintenance and repair activities are important to maintain production or service
processes, which are performed under facilities. Identified FM KPIs for maintenance and
repair in healthcare facilities are given in Table 4.

Table 4. FM KPIs for maintenance and repair in healthcare facilities (O: operational, T: tactical, S:
strategic).

No Maintenance and Repair in
Healthcare Facilities O T S No Maintenance and Repair

in Healthcare Facilities O T S

M1 Work request response rate X M13 Schedule compliance X X
M2 Scheduling intensity X X M14 Work order turnover X

M3 Manpower utilization rate X X M15 Corrective maintenance
time X

M4 Manpower efficiency X X M16 Preventive maintenance
time X

M5 Manpower utilization index X X M17 Average response time for
maintenance X X

M6 Preventive maintenance ratio X M18 Backlog size X X

M7 Percentage/Number of corrective
work X M19

Number of
maintenance-induced
interruptions

X

M8 Percentage/Number of preventive
work X M20 Mean time between failures X

M9 Percentage/Number of predictive
maintenance work X M21

Number of usage classified
maintenance data for the
solution of maintenance
activity

X

M10 Percentage/Number of
improvement work X M22

Number of replaced or
repaired spare parts and
needed spare parts for
maintenance activities

X X

M11 Number of completed work orders
per staff X M23 Downtime analysis to

detect rate loss X

M12 Schedule realization rate X X M24 Outsourcing ratio X

Sources: [4,9–11,13–15,17,18,24,26,27,29–31,33–39,41,49,50,74,79,82–
84,92,93,97,102,114,116,118,121,126,127,130,139,140,142–169]

Eight FM KPIs for the physical aspect of healthcare facilities were identified (Table 5).
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Table 5. FM KPIs for physical aspect of healthcare facilities (O: operational, T: tactical, S: strategic).

No Physical Aspect of Healthcare
Facilities O T S No Physical Aspect of

Healthcare Facilities O T S

P1
System-equipment availability
(including lift, and fire services
system)

X P5 Condition index X

P2 Useful-life determination for
equipment/system X X P6 Space utilization X X

P3 Identification of annualized
failure rate for equipment X X P7 Beds per 1000 people X

P4 Average age X P8 Theatres per 10,000
people X

Sources: [9,14,15,17,26,29–31,33–39,46,73,76,81,84,100,105,106,114,118,119,126,127,149,156,165,169–173]

Twenty-nine FM KPIs for lifecycle cost in healthcare facilities were identified (Table 6).

Table 6. FM KPIs for lifecycle cost in healthcare facilities (O: operational, T: tactical, S: strategic).

No Lifecycle Cost in Healthcare
Facilities O T S No Lifecycle Cost in

Healthcare Facilities O T S

L1 Percentage of personnel cost X L16
Security expenditure
per building area/per
person

X

L2 Percentage of subcontractor cost X L17

O&M cost (including
depreciation and
amortization costs) per
building area/per
patient bed

X X

L3 Percentage of contractor cost X L18 Grounds-keeping costs X

L4 Actual costs within budgeted
costs X X L19 Maintenance efficiency

index X

L5
Maintenance cost per building
area/per patient bed/by
functional area

X X L20 Spending percentage on
deferred maintenance X X

L6 Annual maintenance cost per
patient bed X L21 Cleaning/hygiene costs X X

L7 Breakdown severity X X L22
Healthcare income per
building area/number
of patient

X

L8 Percentage of maintenance
material cost X L23 Ratio of total O&M cost

to healthcare income X

L9 Percentage/Average of
downtime cost X L24 Current replacement

value X X

L10 Percentage/Average of
corrective maintenance cost X L25

Resource/Energy
expenditure per
building area/per
person

X X

L11 Percentage/Average of
preventive maintenance cost X L26 Cost efficiency score X

L12 Percentage/Average of
predictive maintenance cost X L27 Backlog maintenance

cost per area X

L13 Direct maintenance cost
(corrective, preventive) X L28 Total maintenance

backlog cost per GIA X

L14 Total operating cost X X L29 Cost of materials used
per year X

L15 Total safety and security
expenditure X X

Sources: [4,11,17,24,30,31,33–39,41,48,75,76,80,81,102,114,126–128,140,151,165,174–176]
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4.2. Analysis and Results

FM KPIs were evaluated by ten healthcare facility managers. Respondents have 6, 9,
14, 16, 17, 23, 24, 26, 26, and 27 years of experience, respectively. In MCDM methods like
AHP, the sample size does not need to be as big as in statistical analysis. Additionally, these
methods can be applied even with one respondent if the respondent profile represents a
group of representatives [177]. Moreover, this type of method depends on expert judge-
ments. If a large sample size is preferred in studies, it can cause cold-called issues (arbitrary
evaluation) in data. Therefore, when the number of respondents is compared with other
studies, ten experts are within the acceptable limit [178,179].

Before analysis of FM KPIs to obtain importance levels, FM KPIs were evaluated by the
experts in terms of usability in healthcare FM. As a result of evaluation, FM KPIs that were
voted on by over half of the participants were considered in AHP integrated PROMETHEE
calculations. Eliminated FM KPIs are given below according to their factor groups.

• Environmental Aspect in Healthcare Facilities: After usability analysis with respon-
ders, “Resource/Energy consumption with respect to geographical location”, “Re-
source/Energy consumption with respect to weather condition”, “Resource/Energy
consumption with respect to the number of hospital discharges”, “Resource/Energy
consumption with respect to user behavior”, “Resource/Energy consumption with
respect to occupancy schedule”, “Resource/Energy consumption in emergency con-
dition”, “Resource/Energy consumption with respect to user profile”, “Prediction of
Resource/Energy consumption by considering occupant comfort”, “Resource/Energy
optimization ratio by considering occupant comfort”, “Resource/Energy optimiza-
tion ratio by considering indoor daylight”, “Resource/Energy optimization ratio by
considering occupancy schedule”, “Resource/Energy optimization ratio by consider-
ing control strategies”, “Identification of parameters having an impact on system or
equipment load”, “Percentage of the estate with an energy consumption of 410 kWh
per area or less”, and “Measurement of exergy” were eliminated, since they were not
found important. Therefore, thirteen indicators were identified.

• User Aspect in Healthcare Facilities: As a result of usability analysis, “Predictive
patient/worker complaint’s frequencies”, “Indoor environmental quality”, “Tempo-
ral distribution of complaints”, “Aural comfort”, “Recognition of patient/worker
behavior pattern”, “Utilization index”, “Predictive space occupancy schedule”, and
“Occupancy/density coefficients” indicators were eliminated. Therefore, eighteen
indicators were used in the analysis.

• Emergency and Safety Management in Healthcare Facilities: Usability analysis showed
that, “Number of legal cases per year”, “Percentage of the estate that is required to
take action with the current plan to comply with relevant guidance and statutory
requirements”, “Amount of compensation paid per year”, “Number of detection of
trapped victims”, “Identification of emergency rate”, “Number of false fire incidents
calls per gross internal area (GIA)”, “Number of usage of historical data for the solution
of health and safety incidents”, “Overall percentage compliance score from Statutory
Compliance Audit and Risk Tool”, and “Number of compensation cases per year” are
not important for Turkish healthcare facility management.

• Maintenance and Repair in Healthcare Facilities: As a result of literature analysis, forty-
three indicators were identified. However, usability analysis showed that “Predicted
maintenance ratio”, “Percentage/Number of condition-based maintenance work”,
“Number of man hours per capacity of installation”, “Urgent repair request index”,
“Predicted maintenance time”, “Percentage compliance with required response time”,
“Number of deferred maintenances”, “Significant and high risk backlog maintenance
as percentage of total backlog expenditure requirement”, “Total risk adjusted backlog
maintenance”, “Maintenance overtime”, “Failure/Breakdown frequency”, “Mean time
to repair”, “Number of work orders depending on healthcare service, system and
equipment level”, “Fault pattern analysis”, “Identification of impact of maintenance
and faults on energy consumption (filters, fans, pumps, cooling tower, chillers, boilers,
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thermostats)”, “Managerial span of control”, “Identification and prediction of mainte-
nance cycle”, “Number of preventive maintenance depending on comparison of real
energy consumption with simulation results”, and “Sustain rate” are not important
for Turkish healthcare facility management performance measurement.

• Physical Aspect of Healthcare Facilities: Usability analysis showed that “Identification
of usage pattern of system-equipment in the facility”, “Physical condition change
rate for facility”, “Percentage of properties less than 50 years”, and “Age coefficient”
indicators are found to be unusable for Turkish healthcare facility management.

• Lifecycle Cost in Healthcare Facilities: As a result of the literature review, forty-three
KPIs were identified for lifecycle cost in Turkish healthcare facilities. However, “Equip-
ment replacement value”, “Maintenance stock turnover”, “O&M cost per capacity
of installation”, “Cost of equipment added or replaced”, “Custodial and janitorial
cost”, “Maintenance cost index”, “Normalized annual maintenance expenditure”,
“Replacement efficiency index”, “Prediction of maintenance costs”, “Prediction of
operational costs”, “Rates cost”, “Pottering cost per consumer week”, “Laundry and
linen cost per consumer week”, and “Waste cost per consumer week” were found to
be unusable as a result of usability analysis.

Furthermore, shortlisted FM KPIs were evaluated by the experts in terms of organiza-
tional level and measurement frequency of FM KPIs (operational, tactical, and strategic).
The results are depicted in Tables 1–6.

Analysis results show that identified FM KPIs mainly intensified in the tactical level
and strategic level. In the operational level, eighteen FM KPIs were found applicable.
For example, U1-Indoor environmental quality changes according to occupancy schedule,
outdoor weather conditions, etc. Therefore, they need to be monitored per second, per
minute, or hourly by technicians.

AHP integrated PROMETHEE calculations consist of two steps. In the first step, AHP
calculations were performed. First of all, it was requested from responders to fill the pair-
wise comparison matrix for the criteria, which are used in the identification of priority order
of the healthcare FM KPIs. Within this context, three criteria were determined; namely,
FM response time, FM expense/costs, and service quality. Therefore, 3 × 3 comparison
matrices were completed by facility managers. Collected datasets were aggregated with
geometric mean to obtain the aggregated matrix (Table 7).

Table 7. Aggregated matrix.

Time Cost Quality

Time 1.00 1.04 3.32
Cost 0.96 1.00 3.81

Quality 0.30 0.26 1.00
Sum of Columns 2.26 2.30 8.13

The normalized decision matrix was calculated as given in Table 8. After that, the
priority vector was calculated by finding the average value of the normalized decision
matrix rows. Additionally, values found in the priority vector corresponded to weights of
criteria.

Table 8. Normalized decision matrix and priority vector.

Time Cost Quality Priority Vector

Time =1.00/2.26 = 0.44 =1.04/2.30 = 0.45 0.43 =(0.44 + 0.45 + 0.43)/3 = 0.43
Cost =0.96/2.26 = 0.42 0.43 0.44 0.44

Quality =0.30/2.26 = 0.13 0.11 0.12 0.12

After that, the priority vector was multiplied with the aggregated matrix to find the
weighted sum matrix. Eigen values were calculated by dividing values of the weighted
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sum matrix values by values of the priority vector (Table 9). The average of Eigen values
(λmax) was calculated as given in Table 9.

Table 9. Weighted sum matrix and Eigen values.

Weighted Sum Matrix Eigen Values

Time =(1 × 0.43 + 1.04 × 0.44 + 3.32 × 0.12) = 1.30 =1.30/0.43 = 3.0045
Cost 1.33 3.0048

Quality 0.37 3.0013

λmax =(3.0045 + 3.0048 + 3.0013)/3 = 3.0035

CI was found as 0.00179. To find CR, CI was divided by RI (n: 3–0.58). As a result of
the analysis, CR was found as 0.00309, which is lower than 0.1.

In the second step, it was requested that responders evaluate defined FM KPIs against
defined criteria. In the evaluation, the 1–5 Likert scale (1-not important, 2-slightly important,
3-moderately important, 4-important, and 5-very important) was used. Collected data and
weights coming from AHP analysis were inputted into PROMETHEE&GAIA software.
The usual preference function was also chosen in the PROMETHEE calculations. As a
result of the analysis, the PROMETHEE flows (PROMETHEE II) and the GAIA planes were
obtained. Net flow values—PROMETHEE II (Phi values) were used to determine ranks
and importance of healthcare FM KPIs. Besides this, Decision Lab allows one to represent
the decision problem in the GAIA plane, in which actions are represented with points and
criteria are represented by vectors.

PROMETHEE II Phi values for “Environmental Aspect in Healthcare Facilities” are
given in Table 10. According to PROMETHEE II results (complete ranking), “Predic-
tion of Resource/Energy load profile (E4)”, “Energy/Resource efficiency (E13)”, and “Re-
source/Energy consumption with respect to working days and non-working days (E1)”
are the most important FM KPIs in environmental analysis, respectively. Negative flows
show how negative KPIs are dominated by the positive KPIs.

Table 10. PROMETHEE II results for environmental aspect in healthcare facilities.

Indicator Phi Values Indicator Phi Values

E4 0.7576 E9 0.0101
E13 0.6010 E10 −0.3569
E1 0.5320 E11 −0.4731
E3 0.4966 E6 −0.7012
E8 0.3788 E12 −0.7542
E2 0.3670 E5 −0.8897
E7 0.0320

PROMETHEE II analysis results for “User Aspect in Healthcare Facilities” are given in
Table 11. According to analysis results, “Prediction of indoor air parameters and indoor
quality (U2)”, “Indoor air quality (U1)”, and “Identification of space occupancy (U14)”
were thought to be the most important healthcare FM KPIs for user aspect by responders,
respectively.
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Table 11. PROMETHEE II results for user aspect in healthcare facilities.

Indicator Phi Values Indicator Phi Values

U2 0.8919 U5 −0.1218
U1 0.7219 U10 −0.1622
U14 0.6815 U9 −0.2169
U3 0.2585 U4 −0.2347
U7 0.2335 U15 −0.3060
U16 0.1943 U18 −0.3119
U11 0.1610 U17 −0.4652
U8 −0.0303 U6 −0.5389
U13 −0.1052 U12 −0.6494

PROMETHEE II results for “Emergency and Safety Management in Healthcare Fa-
cilities” are given in Table 12. According to analysis results, “Number of accidents per
year (S2)”, “Number of lost work days per year (S4)”, and “Number of health and safety
complaints per year (S3)” are the most important FM KPIs for emergency and safety
management, respectively.

Table 12. PROMETHEE II results for emergency and safety management in healthcare facilities.

Indicator Phi Values Indicator Phi Values

S2 0.9030 S1 −0.2444
S4 0.6000 S5 −0.6525
S3 0.1192 S6 −0.7253

PROMETHEE II results for “Healthcare FM KPIs for Maintenance and Repair” are
given in Table 13. According to analysis results, “Preventive maintenance ratio (M6)”,
“Schedule compliance (M13)”, and “Manpower efficiency (M4)” are the most important FM
KPIs for maintenance and repair in healthcare facilities, respectively.

Table 13. PROMETHEE II results for maintenance and repair in healthcare facilities.

Indicator Phi Values Indicator Phi Values

M6 0.7817 M5 −0.1014
M13 0.7541 M16 −0.1910
M4 0.7448 M22 −0.2921
M3 0.6605 M14 −0.3184

M12 0.5740 M18 −0.3298
M20 0.5046 M10 −0.3808
M23 0.4616 M15 −0.4695
M2 0.3882 M24 −0.4787

M21 0.3333 M1 −0.5318
M19 0.1146 M17 −0.5415
M8 0.0272 M11 −0.8437
M9 0.0272 M7 −0.8933

PROMETHEE II results for “Physical Aspect of Healthcare Facilities” are given in
Table 14. According to analysis results, “Condition index (P5)”, “System-equipment avail-
ability (including lift, and fire services system) (P1)”, and “Identification of annualized
failure rate for equipment (P3)” are the most important FM KPIs for physical aspect of
healthcare facilities, respectively.
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Table 14. PROMETHEE II results for physical aspect of healthcare facilities.

Indicator Phi Values Indicator Phi Values

P5 1.0000 P6 −0.2121
P1 0.5873 P4 −0.4978
P3 0.3276 P7 −0.7186
P2 0.2323 P8 −0.7186

PROMETHEE II results for “Healthcare FM KPIs for Lifecycle Cost Management” are
given in Table 15. According to analysis results, “O&M cost (including depreciation and
amortization costs) per building area/per patient bed (L17)”, “Resource/Energy expendi-
ture per building area/per person (L25)”, and “Maintenance cost per building area/per
patient bed/by functional area (L5)” are the most important BI&A areas in lifecycle cost
management, respectively.

Table 15. PROMETHEE II results for lifecycle cost management in healthcare facilities.

Indicator Phi Values Indicator Phi Values

L17 0.5895 L27 0.0061
L25 0.5819 L11 −0.0927
L5 0.4957 L12 −0.0927

L15 0.4457 L18 −0.1140
L20 0.4372 L13 −0.1703
L7 0.4098 L19 −0.2056

L26 0.3997 L23 −0.2583
L14 0.3038 L21 −0.2670
L9 0.2702 L24 −0.2677
L6 0.2475 L8 −0.4820
L4 0.2063 L1 −0.5289
L2 0.0924 L22 −0.6342
L3 0.0887 L10 −0.6977

L29 0.0462 L16 −0.8247
L28 0.0148

In the GAIA plane, the same direction of criteria represents similar preferences. If
directions of criteria vectors are opposite to each other, it means these criteria are conflicting
criteria. The length of criteria vectors is used to measure the power of criteria on actions.
Additionally, GAIA planes are obtained as a result of principal component analysis. In
other words, n-dimensional space of criteria is converted into two-dimensional space. This
conversion can cause loss of information, which is measured by delta value [59]. The loss
of information cannot exceed 40% [180]. The convergence of action points to vector pi on
the GAIA plane (red vector) shows the most important actions.

The GAIA analysis results are given in Figure 3. Additionally, the GAIA analysis
shows that when conversion from 3D to 2D is performed, the conversion process causes:

• Approximately 8% data loss for environmental aspect FM KPIs,
• Approximately 21% data loss for user aspect FM KPIs,
• Approximately 9% data loss for emergency and safety management FM KPIs,
• Approximately 9% data loss for maintenance and repair FM KPIs,
• Approximately 2% data loss for physical aspect, and
• Approximately 17% data loss for lifecycle cost management.
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Figure 3. GAIA analysis for (a) environmental aspect in healthcare facilities, (b) user aspect in
healthcare facilities, (c) emergency and safety management in healthcare facilities, (d) maintenance
and repair in healthcare facilities, (e) physical aspect of healthcare facilities, and (f) lifecycle cost
management in healthcare facilities.

This means that delta is between the acceptable ranges.
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The GAIA plane shows that pi vector confirms the most important KPIs, which are
identified as closeness of action to pi vector, in compliance with PROMETHEE flows. In
Figure 3a–f, the convergence of action points to vector pi on the GAIA plane showed that
E4, E13, and E1 are the most important KPIs in environmental aspect in healthcare facilities
group; U2, U1, and U14 are the most important KPIs in user aspect in healthcare facilities
group; S4, S2, and S3 are the most important KPIs in emergency and safety management in
healthcare facilities group; M6, M13, and M4 are the most important KPIs in maintenance
and repair in healthcare facilities group; P5, P1, and P3 are the most important KPIs in
physical aspect of healthcare facilities group; and L17, L25, and L5 are the most important
KPIs in lifecycle cost management in healthcare facilities group.

5. Discussion

In this study, six FM KPI groups were identified, and importance orders of FM
KPIs were obtained as a result of AHP-PROMETHEE calculations. Findings as a re-
sult of AHP-PROMETHEE analysis are summarized below and compared with existing
literature [39,140] to identify the importance order of healthcare FM KPIs.

“Prediction of Resource/Energy load profile (E4)” was found to be the most important
KPI under the “Environmental Aspect in Healthcare Facilities” group. Ahmad et al. [180]
stated that the availability of the historical records and smart meters can provide optimal
resource/energy use in buildings. However, the authors expressed that lack of data
analytics induces the inability to perform reduction strategies in energy consumption.
Within this context, authors stated that prediction of building energy consumption is a
facilitator role to enable energy control and operation strategies. In parallel to literature,
results of the study showed that responders need E4 KPI to evaluate the performance
of the facility and to give a sound and reliable decision based on data and predictions.
However, in the literature, this indicator was not considered in studies of Li et al. [139] and
Lai et al. [39].

The second most important FM KPI was found to be “Energy/Resource Efficiency”.
This KPI was used by Li et al. [140] to measure healthcare FM performance in China and it
was found to be the third most important primary indicator for the evaluation of healthcare
FM performance. Similar to the China case, this indicator was found to be important for
measuring healthcare facilities’ FM performance in Turkey as well. “Resource/Energy
consumption with respect to working days and non-working days (E1)” was found to be
the third most important FM KPI. Data mining methods are helpful to discover useful
knowledge from big data sources such as BAS system, EMS, etc. For example, Fan et al. [83]
used the SAX representation to discover building power consumption according to climate
and day type (weekdays and weekends). This information can be used to compare facilities’
resource/energy consumption or discover excessive consumption or discover anomalies.
“Resource/Energy Use Intensity (E10)” or “Energy utilization index” was found to be the
sixth most important healthcare FM KPI by Lai [39]. Against the findings of Lai et al.,
healthcare facilities that are located in Turkey have a lower focus on the E10 indicator to
compare facility performance. However, the difference can be related to the consideration
of limited FM KPIs for environmental aspects in their study. Moreover, the preferences for
“Greenhouse gas emissions per building area/number of patient/patient bed (E12)” show
parallelism with the findings of Lai et al. [39], since this indicator has lower rank for the
Turkey and Hong Kong case.

“Prediction of indoor air parameters and indoor quality (U2)” and “Indoor air quality
(U1)” were found to be the two most important FM KPIs under the user aspect group
as a result of AHP-PROMETHEE analysis. Indoor air quality is especially important
for healthcare facilities. According to ASHRAE Standard 170 Design Parameters [181],
operating rooms’ relative humidity needs to be within 20 to 60% and temperature needs to
be within 68 to 75 F. Healthcare facilities give a service to patients who are very sensitive
to outside factors. For example, hyperthyroidism induces people to be more sensitive to
hot, humid conditions and heat waves. Furthermore, dry air causes particles to remain
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airborne for longer periods [181]. Similar to the ASHRAE standard, the Turkish Ministry
of Health published design criteria which include the following: indoor air quality such
as 17 ◦C temperature needs to be present in operating rooms in which, especially, heart
operations are conducted [127]. “Identification of space occupancy (U14)” is important
to figure out energy and resource consumption and development of control strategies in
facilities. However, neither indoor air quality nor space-occupancy-related FM KPIs were
considered by Li et al. [139] and Lai et al. [39]. Against the China case [139], cleaning
satisfaction, catering satisfaction, and security satisfaction have moderate impact on the
evaluation of healthcare FM performance in Turkey. However, the difference can be related
to the consideration of limited FM KPIs for environmental aspects in their study.

“Number of accidents per year (S2)” was found to be the most important FM KPI
for emergency and safety management in healthcare facilities. This KPI was also found
to be the most important KPI in the study of Lai et al. [39] in its category. Normally, Lai
et al. [38] considered and ranked all FM KPIs together. In other words, they ordered FM
KPIs without considering categories of FM KPIs. However, it can be seen from the study
that this KPI is the most important KPI in the “Safety” category. “Number of lost work
days per year (S4)” was found to be the most important second FM KPI for the Turkey case.
This healthcare FM KPI was also considered by Lai et al. [182]. However, this indicator was
eliminated during the focus group meeting. Moreover, this indicator was not considered
by Li et al. [139]. “Number of health and safety complaints per year (S3)” indicator was
not considered by Li et al. [140] and Lai et al. [39]. Therefore, the findings from Turkey
show differences from the China and Hong Kong cases. In the study of Lai et al. [182],
statutory-related orders were found to be important for the evaluation of healthcare FM
performance. However, the relative importance was found to be very low against other FM
KPIs, since the authors ordered FM KPIs without categorization. However, in the Turkey
case, these KPIs were not shortlisted. “Identification of the number of alarm activation
depending on emergency situation within the facility (S5)” indicator was found to have a
low impact on the evaluation of healthcare FM performance. Similar indicators that took
place in studies of Li et al. [139] and Lai et al. [39] had low rank.

“Preventive maintenance ratio (M6)” is calculated by dividing man hours used for
maintenance works by man hours used for corrective maintenance [140]. This indicator
was found to be the most important FM KPI for maintenance and repair in healthcare
facilities for the Turkey case. The second most important KPI was found to be “Schedule
compliance (M13)”, which is calculated by dividing the completed number of work orders
by the total number of work orders [140]. The third most important KPI was found to be
“Manpower efficiency (M4)”, which is calculated by dividing man hours allocated by man
hours used [140]. However, these KPIs were not considered in the studies of Li et al. [139]
and Lai et al. [39]. “Average response time for maintenance”, “percentage of preventive
maintenance” [139], “work order request response rate”, and “number of completed work
orders per staff” [39] FM KPIs had lower importance levels compared to the China and
Hong Kong cases.

“Condition index (P5)” was found to be the most important FM KPI for Turkish health-
care facilities under the physical aspect group. Moreover, identification of the condition
index also helps to figure out the annual FM budget [183]. However, while this indicator
was found to be the most important indicator for Turkey, it was found to be one of the
least important healthcare FM KPIs for Hong Kong [39]. “System-equipment availability
(including lift, and fire services system) (P1)” was found to be the second most important
FM KPI for the Turkey case. Similarly, this indicator was found to be the most important
FM KPI for the Hong Kong case [39]. However, these two indicators were not considered
in the study of Li et al. [139]. “Identification of annualized failure rate for equipment (P3)”
was calculated as the third most important indicator, since this indicator is used in the
decision-making process in the procurement of healthcare equipment or systems. If this
failure rate is very high, the procurement of healthcare equipment or systems is obstructed
by the Turkish Ministry of Health. Moreover, this indicator is used to create a maintenance



Appl. Sci. 2022, 12, 651 20 of 27

contract to decide compensation for the loss of earnings. “Average age (P4)” indicator has a
low importance level for Turkish healthcare FM. However, this indicator is more important
for Hong Kong healthcare FM.

“O&M cost (including depreciation and amortization costs) per building area/per
patient bed (L17)” is calculated by dividing O&M costs by building or the number of
patient beds. As a result of AHP-PROMETHEE analysis, L17 was found to be the most
important indicator under lifecycle cost management FM KPIs. Even though this indicator
includes L17 and L25, it can be understood that the respondents try to define and compare
both total costs and their sub-items. “Resource/Energy expenditure per building area/per
person (L25)” was found to be the second most important FM KPI for the “Lifecycle Cost
Management in Healthcare Facilities” group. Musa and Pitt [184] and Naghshbandi [185]
stated that the management level of the healthcare organization needs to minimize or cut
down operational costs to enable profit from investments. Therefore, L25 FM KPI can be
useful to keep FM costs under control and to identify FM strategies. L25 and L17 were
ranked by Lai et al. [39]. According to the findings of Lai et al., “Energy cost per building
area” and “O&M cost per building area” were found at the top of the most important
indicator. Within this context, Turkey and Hong Kong healthcare facilities show similarities.
“Maintenance cost per building area/per patient bed/by functional area (L5)” was found to
be the third most important KPI in the “Lifecycle Cost Management in Healthcare Facilities”
group. Ali [186] stated that any decisions related to maintenance works have an impact on
cost, quality, duration, and resource allocation. Additionally, maintenance costs correspond
to 50% of lifecycle costs [187]. The maintenance cost of buildings is increasing as the age of
buildings increases.

6. Conclusions

FM consists of complex operations and activities. Therefore, BI&A are heavily used in
FM to find out hidden relationships and to perform more comprehensive FM performance
analysis. Although BI&A presents a promising feature to measure the success of FM,
existing healthcare FM KPIs are crude. To measure efficiency of these operations and
activities, this study aims to identify and rank healthcare FM KPIs.

In the study, a literature review was performed to identify FM KPIs. As a result of
the literature review, one hundred sixty-seven FM KPIs were identified under six groups.
These FM KPIs were shortlisted by the expert. As a result of the shortlist, ninety-eight
FM KPIs were found to be usable in healthcare FM performance benchmarking. These
FM KPIs were evaluated by ten FM experts and survey results were analyzed with the
AHP-PROMETHEE method to obtain the importance order of FM KPIs. Analysis results
showed that fifty FM KPIs are very dominant against the remaining forty-eight FM KPIs.

According to analysis results, “Prediction of Resource/Energy load profile (E4)”,
“Prediction of indoor air parameters and indoor quality (U2)”, “Number of accidents per
year (S2)”, “Preventive maintenance ratio (M6)”, “Condition index (P5)”, and “O&M cost
(including depreciation and amortization costs) per building area/per patient bed (L17)”
were found to be the most important FM KPIs under their groups. Analysis results were
also compared with existing studies. This showed that there are some similarities and
differences between China, Hong Kong, and Turkey. However, differences can be related to
the usage of limited FM KPIs in the China and Hong Kong cases.

This study provides insights about BI&A-related FM healthcare KPIs and their ranks
specific to Turkish healthcare facility management. These FM KPIs give clues about BIM
information types to perform performance management with BIM and obtain dynamic data
requirements of BIM. Furthermore, the determination of FM KPIs will increase awareness
of facility managers in the selection of FM tools for healthcare facilities.

The presented results are based on questionnaire data originating in Turkey. Moreover,
comparisons were made between China, Hong Kong, and Turkey. However, considered
KPIs that are used in the China and Hong Kong cases are lower than the number of used
KPIs in this study. Therefore, there are some limitations that are worth noting. As a further
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study, the FM platform (works with BIM, database, Big Data Engine—Hadoop) will be
developed by considering this study’s results for FM KPIs, which have positive phi value
and FM information query requirements.
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