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Abstract: Manufacturing firms face great pressure to reduce downtime as well as maintenance
costs. Condition-based maintenance (CBM) can be used to effectively manage operations and
maintenance by monitoring detailed machine health information. CBM policies and the development
of the mathematical models have been growing recently. This paper provides a review of the
theoretical and practical development in the field of condition-based maintenance and its current
advancements. Standard CBM platform could make it effective and efficient in implementation and
performance improvement.
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1. Introduction

Condition monitoring is the process of observing a set of parameters and/or variables
that indicate that the state of the system under investigation. It plays a significant role
in the maintenance, management, and sustainable operations of various sectors, such as
manufacturing industries [1–4], transportation [5,6], energy [7–9], natural resources [10–13],
both natural and human-made disasters [14,15], and healthcare [16,17]. In most cases,
sensors and/or micro-controllers are widely used to perform condition monitoring [18,19].
In particular, in this paper, our focus is to provide a comprehensive review on various
condition monitoring approaches and their applications in the maintenance in manufactur-
ing industries.

In terms of manufacturing industries, condition monitoring generally recommends
a set of maintenance requirements in the event of failure or malfunctioning of the vital
devices or equipment of the system concerned; thus, the entire process can also be termed
as condition-based maintenance (CBM) [20–22]. It can be viewed as (i) a mechanism of
preventive maintenance, thus effective in planning maintenance scheduling; (ii) a compre-
hensive tool for assessing both of the diagnostic and prognostic conditions; (iii) an assistive
method in configuring system requirements and also enhancing the capability of conduct-
ing regular evaluation and/or maintenance operations; and (iv) a technique to optimize
the operational availability of devices, equipment, and modules of various systems [23,24].
In general, it provides several advantages, such as (i) reducing downtime and maintenance
expense by eliminating unnecessary maintenance; (ii) providing an early failure detection
to increase asset availability, avoiding unnecessary downtime; (iii) supporting continu-
ous improvement ensuring accurate and consistent response to developing conditions;
(iv) providing better decision making for operations, engineering, and maintenance staff;
(v) providing integration of control, safety, and maintenance environments; (vi) facilitating
the opening of an operator’s time to manage assets; (vii) enabling an organization to turn
data into actionable and valuable information; (viii) evaluating the equipment activities
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and statistics, not normally maintained in repair logs; (ix) providing a repository to cap-
ture the conditions, rules, and other tacit knowledge; (x) allowing the organization to
retain intellectual property as the workforce changes; (xi) supporting safety and security
to avoid major catastrophic disasters; and (xii) improving morale of the workforces and
users [25–27]. Despite the above-mentioned advantages, it has some drawbacks, such as
(i) the initial installation costs being even higher than the system under monitoring, and
(ii) uncertainty associated with the failure of the condition monitoring devices [27–29].

The concept of CBM was developed in the 1940s; however, its significant utilization has
been observed since the late 1990s [30]. It is also related to the technological advancements
(in particular to electronics and communication) in the condition monitoring devices and
propagation of the information to the system analyst [31,32]. It has become increasingly
more important along with the progress in the field of automation engineering [33]. In order
to synthesize the progress of CBM, we provide a literature review in Section 2, CBM-related
research activities in the post-secondary institutes in Section 3, and finally concluding
remarks and future research in Section 4.

2. Literature Review

The implementation of CBM is to be found in various applications, such as vibration
modeling, sensor performance, signal processing, noise control, thermodynamic perfor-
mance monitoring, lubricant oil, corrosion monitoring, non-destructive test, and inspection
techniques (e.g., magnetic particle inspection, alternating current potential difference,
ultrasonic, eddy current, radiography, acoustic emission) [34–37]. The selection of an ap-
propriate CBM (and its optimization techniques) is always challenging and highly depends
upon the system. We provide description of some of the commonly used such optimization
techniques in CBM in the following sub-sections.

In general, a generic CBM system consists of three basic components: (i) data ac-
quisition, (ii) data processing, and (iii) decision-making process [27,38]. Data are usu-
ally acquired by means of various sensors (e.g., electrical, electronic, mechanical, electro-
mechanical). The acquired data are then processed in order to determine the health of
the system under investigation. Numerous techniques are available, including the use of
wavelet, neural network, feature recognition, statistical approaches, signal processing, and
artificial intelligence [39]. Upon processing the data, it is then used in the decision-making
process, such as in determining/predicting (i) remaining useful life, (ii) the confidence
level, (iii) failure analysis, (iv) proactive maintenance steps, (v) cost/benefit analysis,
(vi) downtime reduction, (vii) performance improvement strategy, (viii) maintenance
scheduling, and (ix) health condition [40,41]. In some of the instances, a CBM system may
not be effective, e.g., (i) unavailability of the data required in assessing the state of the
system, and (ii) in some cases, the acquired data may be qualitative rather than quantitative
in nature, which makes the assessment more complex.

2.1. Analytical Hierarchical Approach

The analytical hierarchical approach (AHP) is a structural approach that is one of the
frequently used techniques. For example, (i) Bevilacqua and Braglia [42] developed an AHP
in determining the maintenance strategy selection in an Italian oil refinery with five possible
possibilities of preventive, predictive, condition-based, corrective, and opportunistic main-
tenance. The best maintenance policy was selected for each facility of the plants including
sensitivity analysis to improve the effectiveness. Due to the subjectivity associated with
AHP, it might fail to capture detailed uncertainties of the system. (ii) Li and Brown [43]
showed an approach to minimize the weighted average system reliability index (WASRI)
by ranking maintenance tasks on the basis of their marginal benefit-to-cost ratios, wherein
the benefit was defined as improvement in WASRI. A prioritizing approach was used to
achieve component and system reliability. (iii) Waeyenbergh and Pintelon [44] demon-
strated a framework for integrating all of the available information within a company,
including experience of maintenance workers to capture data through modern information
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and communication technology (ICT) by considering both of the computerized information
and knowledge. However, the details about both the implementation and validation of
the proposed framework were not described. (iv) Swanson [45] reported the relationship
between maintenance strategies and performance and used factor analysis for developing
maintenance strategies. Lastly, (v) Wang et al. [46] developed a two-stage prognosis model
for optimum maintenance strategies that is based on a fuzzy AHP to evaluate different
maintenance strategies (i.e., corrective maintenance, time-based preventive maintenance,
condition-based maintenance, and predictive maintenance) for different types of equipment.
In general, the applicability of AHP might be useful in selecting the maintenance process
but limited in predicting the uncertainty associated with the system under surveillance.

2.2. Markov Chain

In general, failure is random in nature, and thus it is quite challenging to model. In
this context, one of the most frequently used techniques is to employ the Markov chain
(MC) method, which is even effective in modelling failure where such indications are
not clear in the historical dataset. It is often used in different applications where greater
uncertainties are generally expected. In [47], a semi-Markov decision process (SMDP)
was developed for the maintenance policy optimization of condition-based preventive
maintenance problems, demonstrating that the deterioration rate at each failure stage
was the same, thus suggesting an optimal policy was a sort of dynamic threshold-type
scheme. In [48], a MC-based algorithm was proposed for a deteriorating system for
simultaneous optimization of parameters of condition-based preventive maintenance with
an accumulated deterioration random failure. In a similar study, Hontelez et al. [49]
developed optimum CBM policies using a discrete Markov decision method. In [50], a
MC-based model using relevant condition predictor was proposed for reliability prediction
for systems under condition-based maintenance.

2.3. Feature-Based (Signal Processing) Approach and Wavelet and Model-Based Approaches

Complex structures and/or systems often undergo damage/failure profiles that re-
quire non-stationary analysis techniques in order to be capable of detecting them [51–53].
It is of critical interest to monitor these dynamic signals from inherent structural energy
changes and vibration that reflect due to the damage/failure itself. Traditional Fourier
series analysis models are not appropriate since they require stationary data. Multi-scale,
time-frequency analysis techniques such as wavelets can be applied to provide a robust
framework for efficient analysis of such non-stationary processes [54,55]. Wavelet trans-
forms have been studied since the 1950s by mathematicians, but it has only been in the last
10 years that they have made huge advancements in the engineering and signal processing
community [6]. The wavelet transform is an operation that transforms a signal of interest
with scaled and delayed from original signal to threshold signal [51]. Wavelet transfor-
mations are used for time-frequency representation of the signals for uncertainly/non-
stationary using respective sampling theory. In signal monitoring and analysis, wavelet is
also a very useful tool for failure prediction. On the basis of the signal from the sources, the
different models could be realized for failure prediction. Wavelet and model/feature-based
approaches are commonly used for failure prediction/condition-based monitoring and
maintenance on the basis of the sensor and/or controller data.

In another application of wavelet, an innovative scheme for the machinery condition
monitoring was presented on the basis of the wavelet modulus maxima representation [56].
Signal decomposition technique is applied to extract gear motion signal, and then wavelet
transform modulus maxima is utilized to define fault growth parameter (FGP). CBM with
the vibration management enhancement program is used by the U.S. Army National Guard,
U.S. Army Special Operations, and U.S. Army TMDE demonstration program [57]. In
another study, Wang et al. developed robust health evaluation of gearbox for tooth failure
with wavelet decomposition. A study was conducted for CBM in punching–blanking of
sheet metal using statistical, artificial intelligence (AI), and model-based approaches [58,59].



Appl. Sci. 2022, 12, 688 4 of 18

Special attention was given to inherent assumptions and other sources of inaccuracy,
demonstrating how the signature of the force–displacement relation changes significantly
with increasing tool wear in a typical configuration of sheet steel blanking. Kuravsky
et al. [60] shows capability of wavelet transforms including relaxation neural networks for
technical diagnostics and monitoring.

Different types of signal processing are also used for data processing from the sensor
system. A comparative study of various classification algorithms was carried out for fault
diagnosis of electric motors using different types of signals [61]. Experimental evaluation
with the relative performances of five classifiers using five types of steady-state signals
were conducted on the basis of three kinds of performance evaluation strategies: training-
test, cross-validation, and similar measure. The raw signals are collected, and features
are extracted from the collected signals; the extracted features are classified using the five
classification algorithms, and an overall comparison of the five classifiers is discussed. In
another study, a multi-criteria decision model is presented to determine inspection inter-
vals of condition monitoring based on delay time analyses to simultaneously determine
inspection intervals for condition monitoring regarding the failure behavior of equipment
to reduce cost and downtime [62]. A decision model application in an electric power distri-
bution company was presented. This application highlighted the suitability and practicality
of the model. A tool condition monitoring approach is demonstrated in an end-milling
operation based on the vibration signal collected through a low-cost, microcontroller-based
data acquisition system [63]. Marinescu et al. used a time-frequency acoustic emission
(AE)-based monitoring technique to identify work piece surface malfunctions in milling
with multiple teeth cutting simultaneously [64]. New methods for supervising cutting
processes were proposed with multiple teeth cutting simultaneously by use of AE signals
backed-up by force data. Sometimes, hybrid approaches are used since single approach
might not represent all uncertainties/non-stationary processes of the system or product.
These wavelet-based models are very powerful in terms of modelling failure behavior if
the proper signal could be collected with necessary accuracy.

2.4. Artificial Intelligence

Since failures involve uncertainties/non-stationary processes, various artificial tech-
niques (i.e., neural network, genetic algorithm, fuzzy logics, expert systems) are frequently
used for condition assessment and decision making. Applications of artificial intelligence
to CBM to widen the scope of expert systems and to use it for machine diagnosis have been
presented [65], and when administered properly through AI, can prevent accidents and
increase the resale value of machines.

Hasan et al. [66] proposed an explainable AI-based approach for bearing fault di-
agnosis under variable speed and load conditions. A five-stage scheme is suggested to
identify faults in the observed bearing signals: fast discrete orthogonal Stockwell transfor-
mation (FDOST) wrapper-based feature selector—Boruta, the Spearman’s rank correlation
coefficient (SRCC), the k-nearest neighbor (k-NN) algorithm, and the Shapley additive
explanation (SHAP) for model interpretation.

Garcia et al. [67] provided the SIMAP Intelligent System for predictive maintenance
to the health condition monitoring of a wind-turbine gearbox by taking account the in-
formation coming in real time from different sensors and other information sources. It is
concluded that artificial intelligence and modelling techniques are adequate for reaching
the main goals of the predictive maintenance strategy. Kothamasu et al. [68] presents an
approach for incorporating population characteristic information and suspended condi-
tion trending data of historical units into prognosis using a feed-forward neural network,
Kaplan–Meier estimator, and a degradation-based failure probability density function
(PDF) estimator. The comparative model is used with a conventional time series prediction
model to predict more accurately further ahead than similar methods that do not include
population characteristics and/or suspended data in prognosis. In another combinational
modeling (qualitative physics and product modeling) for product maintenance, model-
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based maintenance in terms of inspection, monitoring, diagnosis, and planning based on
functional, behavioral, and state-of-the-art models are discussed. Effective integration on
AI in CBM will enhance usability and predictability of the failure systems. Jiang et al. [69]
proposed a novel method based on improved convolution bearing fault diagnosis using
neural network and transfer learning. The transfer learning (TL)-based framework can
save a significant amount of time in the course of task completion [70,71]. This method
was adopted by Hasan et al. [72] to identify bearing faults under certain fault sizes. Zheng
et al. [73] used multi-synchro squeezing S-transform for fault diagnosis in rolling bearings.

Genetic algorithms and fuzzy logic are used to model uncertainties/non-stationary
processes. Since there are lot of uncertainties in the maintenance systems and sometimes the
systems are not well structured, the fuzzy techniques would be more applicable for failure
prediction and condition assessment [74,75]. Optimizing maintenance and repair policies
were presented with a combination of genetic algorithms and Monte Carlo simulation
within the context of plant logistic management on the choice of maintenance and repair
strategies for an industrial plant, in the face of reliability and economic constraints. Monte
Carlo simulation was used for economic analysis [76]. In another study, Marseguerra et al.
came up with a similar hybrid technique with stress-dependent degradation processes for
load sharing components and of a reduced number of maintenance workers available on
site [77]. Sharma uses an approach based on fuzzy linguistic modeling to select the most
effective and efficient maintenance strategy with three input parameters (historical data,
present data, and competence of data). Although it uses a fuzzy set and rule-based system,
it may not provide a complete scenario [78]. A fuzzy multiple criteria decision-making
(MCDM) evaluation methodology is used for the cost-effective maintenance approach [79].
A neuro-fuzzy modelling approach for CBM to focus on model comprehensibility with
effective decision aid for domain experts with Kullback–Leibler mean information to eval-
uate and refine tuned rules with a couple of real-world applications in bearing failure
and aircraft engine failure [66]. A condition-based preventive maintenance arrangement
was presented for thermal power plants using a hybrid Petri net modelling method cou-
pled with fault-tree analysis and parameter trend to perform early failure detection and
isolation [80]. In a similar study, a procedure for diagnosis and CBM was provided for
power transformers [81]. Recurrent neural nets and the neuro-fuzzy systems approach
were developed for managing the CBM of a combined-cycle power plant at a medium-sized
Italian refinery. In some situations, genetic algorithms and/or fuzzy logic could be used
for condition mentoring and maintenance. There are no certain guidelines when it should
be used. Although artificial intelligence is used frequently for condition monitoring and
prediction, there are some reservations in applications [82]. To improve the anti-noise
performance of the fault diagnosis model and the denoising performance, ref [83] studied a
joint learning mechanism. Researchers have relied on several signal processing techniques,
such as fast Fourier transformation (FFT) [84], empirical mode decomposition (EMD) [85],
energy entropy (EE) [86], wavelet packet decomposition (WPD) [87], empirical wavelet
transformation (EWT) [88], variation mode decomposition (VMD) [89].

2.5. Remaining Useful Life

Remaining useful life (RUL) is used both in theory and applications. Engineers use it
mostly when they have to decide whether to perform maintenance or to delay it due to
production requirements [90]. Most often, RUL is used for later life of equipment in wear-
out period. Condition assessment is used commonly to predict remaining useful life (RUL)
of the equipment or systems. A prognostic approach is presented to estimate the remaining
useful life of gas turbine engines before their next major overhaul based on historical health
information [91,92]. A combined regression including both linear and quadratic models is
proposed to predict the remaining useful life. Two-stage prognostic model is used for the
life of a piece of production equipment, with the first stage as the normal working stage and
the second stage as the failure delay period [93–96]. With the help of condition monitoring,
the equipment hidden defects may be detected for maintenance planning purposes; the
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prediction of the second stage; and, more importantly, the residual life. Artificial neural
network-based prediction methodology has been developed for remaining useful life of
rotating machinery [97]. Tian et al. developed a neural network approach for remaining
useful life prediction, utilizing both failure and suspension histories of age and condition-
monitoring data from the equipment [98]. In another methodology, Technical Condition
Index (TCI) is used for remaining useful life of natural gas export compressors [99]. There
are greater challenges to select or develop appropriate prediction algorithm since it is on a
case-by-case basis and environment-related.

2.6. Deteriorating Systems

Deterioration is a process where a system deteriorates continuously due to usage
or age. Important parameters of the system gradually worsen if left unattended, and
the process leads to deterioration failure [100]. Since deterioration is unpreventable, an
efficient maintenance policy can reduce the system failure. Many studies have been con-
ducted for condition-based maintenance in deteriorating systems. Much of the focus of
these investigations has been in the failure prediction using different methodologies. A
CBM policy for stochastically deteriorating systems was proposed to focus on analytical
modelling of a condition-based inspection/replacement policy for the same [101]. A math-
ematical model was derived for the maintained system cost, supported by the existence
of a stationary law for the maintained system state. In another study, a condition-based
maintenance policy for a two-unit deteriorating system was presented [102]. Each unit’s
gradual deterioration and monitoring was based on sequential non-periodic inspections
with a stochastic model for optimal maintenance performance. Closed-form expressions of
system availability are derived when the device undergoes both deterioration and Poisson
failures with a polynomial to solve for the optimal inspection interval [103]. A quantitative
approach for maintenance inspection scheduling and planning was presented with three
main modules: risk estimation module, risk evaluation module, and maintenance planning
module [104,105]. A condition-based replacement and spare provisioning policy is pre-
sented for deteriorating systems with uncertain deterioration to failure with a simulation
method and the genetic algorithm for minimizing the cost rate. A case study is provided
for optimizing the maintenance scheme of haul truck motors and the order of the spare
motors at Cardinal River Coals in Canada. Lin et al. [106] presented a simulation model for
maintaining equipment performance with integrated equipment CBM and field activity
of an elevator service provider. A simulation modelling of repairable multi component
deteriorating systems was developed for on-condition maintenance optimization [107] to
minimize the expected total system cost over a given mission time. A non-repairable single
component, subjected to stochastic degradation, was first considered, and the degrada-
tion model was then generalized to multi-component repairable systems. The modeling
techniques of failure prediction are varied on the basis of the rate of the failures and sur-
rounding parameters. Although a statistically based methodology is commonly used, the
integrated modeling approach with different methods might be more suitable to address
real-world uncertainties.

2.7. Oil Condition Monitoring

Oil condition monitoring is used to measure engine oils, lubricating oils, and other
fluids for detection of lubricant engine wear and related problems to reduce downtime [108].
Continuous oil condition monitoring in machineries and rotary systems is one of the rapidly
growing areas for both predicting and preventing their failure. Ahmadi and Mollazade [109]
demonstrated the effectiveness of oil condition monitoring techniques in determining
the best oil for Dump Truck HD325-5 (used in transportation of minerals). Similar oil
condition monitoring systems are available in the literature [110–112]. Du and Zhe [113]
used a high-throughput inductive pulse sensor for online oil debris monitoring. In another
study, Xia and Huo [114] developed oil monitoring methods based on information theory.
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Mackos et al. [115] developed a fluid quality sensor to monitor the oil quality applicable
for commercial, military, and off-highway vehicles.

2.8. Early Warning

Early warning system is used to send warnings for the problem at the beginning or at
more serious stages. Such a system can have an enormous impact where higher safety is
involved, e.g., nuclear power plants. Some examples include: (i) Zhang et al. [116], who
developed an early warning system using “asymptotical local” approach and applied it to a
CBM system. It was based on characterizing a system through an identified model and then
monitoring its changes. This approach demonstrated its effectiveness for detecting small
changes, and also its robustness with respect to the bias of nominal model identification.
However, sometimes it would not be possible to have knowledge about the system param-
eter to detecting changes; thus, a nominal model could be employed instead. (ii) A robust
condition monitoring for early detection was developed of broken rotor bars in induction
motors [117]. (iii) A statistical approach was used in process control as part of early defect
identification [118,119]. (iv) Early warning systems using failure modes analysis was used
for dam safety monitoring [120–122], etc.

2.9. K-Out-of-N System

K-out-of-N is used when there is uncertainty of the lifetime. If at least K numbers
of components are in good condition out of N components in a system, this is known
as a K-out-of-N system. Smidt-Destombes et al. [123] suggested maintenance operation
if the quantity of good components were less than K, wherein all of the components
were identical and repairable as well. Another study focused on the methodology of a
condition-based preventive maintenance as part of the overall asset management strategy.
A maintenance monitoring system subject to false alarms and failure to alarm used K-out-
of-N systems with multiple dependent monitors on the basis of the probability matrix
being weak MLR (weak multivariate monotone likelihood ratio) [124]. On the basis of
their optimal procedure of a monitoring system, a K-out-of-N system can identify an
optimal decision quickly. There have been studies conducted for maintenance, spare part
inventories, and repair capacity with their interaction for a K-out-of-N system with wear-
out [125]. Order-restricted hypothesis tests are considered for making the decision about
the usual K-out-of-N model or the general sequential K-out-of-N model for given data [126].
Simultaneous maximum likelihood estimation is considered for the model parameters and
the distribution parameters with a flexible location-scale family. Many researchers have
extended the concept of binary K-out-of-N system to multi-state K-out-of-N systems.

2.10. Reliability-Centered Predictive Maintenance

Reliability-centered maintenance (RCM) is a systematic approach to ensure effective
and efficient use of the assets in the designed operating conditions. It focuses on effective
and cost-efficient preventive and predictive maintenance programs. A reliability-centered
predictive maintenance (CBPM) policy is proposed for a continuously monitored system
subject to degradation due to the imperfect maintenance [127]. It is assumed that the system
hazard rate is a known function of the system condition and then can be derived directly
through CBPM. A hybrid hazard rate recursion rule based on the concept of age reduction
factor and hazard rate increase factor is built up to predict the evolution of the system
reliability in different maintenance cycles. The optimal reliability threshold is determined
by minimizing the cumulative maintenance cost per unit time in the residual life of the
system, which is based on simulation. In another study, a reliability-centered maintenance
strategy was used on the basis of maintenance-free operating period philosophy and total
lifetime operating cost analysis for the aero industry [128]. RCM can also address the life
cycle cost. A design of operational vehicle maintenance program based on life cycle cost
and reliability-centered maintenance is proposed in military applications [129]. The cost-
based performance measured was used in another study wherein a prototype cost model of
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functional check decisions was used in reliability-centered maintenance [130]. RCM is more
commonly applied, being oriented with large number of details of personal involvement.

2.11. Web and Wireless in CBM

Web-enabled remote monitoring is also used for condition-based maintenance [131].
It can collect data through sensors remotely and transfer the critical information for further
processing and analysis. XML and web technology could be used to integrate remote
equipment, devices, installations, etc., for data transfer and decision making. Ali et al. [132]
introduced the emerging field of e-maintenance and its critical elements. Furthermore,
performance assessment and prediction tools are introduced for continuous assessment
and prediction of a particular product’s performance, ultimately enabling proactive main-
tenance to prevent a machine from breakdowns. Kwon et al. [133] discussed the current
trends in industry, which include an integration of information and knowledge-based
network with a manufacturing system, which coined a new term, e-manufacturing, and
focused on the accessibility to a remotely located system and having the means of respond-
ing to a changing environment. Within the framework of the web-enabled robotic system,
it focuses on the remote maintenance schemes with an emphasis on condition-based main-
tenance strategies with mathematical modelling of system availability in the subsystems of
the robot. Marquez et al. [134] developed algorithms to detect gradual failure in railway
turnout with an RCM2 approach to the management of switch and crossing maintenance
and demonstrated the approach using data from tests on a commonly found point mech-
anism by adopting a Kalman filter for pre-processing the data collected during tests. In
the same year, Pedregal et al. [135] used RCM2 predictive maintenance of railway systems
based on unobserved component models. Tiwari et al. [136] developed a wireless sensor
network for machinery condition-based maintenance (CBM) in small machinery spaces
using commercially available products. A LabVIEW graphical user interface is used for
signal processing, including FFT, various moments, and kurtosis using a wireless CBM
sensor network on a heating and air conditioning plant. Tiwari et al. [137] presented a
wireless sensor network for machinery CBM using commercially available products, in-
cluding a hardware platform, networking architecture, and medium access communication
protocol on a Heating and Air Conditioning plant. Djurdjanovic et al. [138] developed an
infotronics based prognostic approach for product performance degradation assessment
and prediction. They called it “Watchdog Agent”, and it is used for multi-sensor assessment
and prediction of machine or process performance and can be utilized to realize predictive
CBM, CPLM, and identification of components with significant remaining useful life. All
the related work on web and remote systems is limited with a firewall of information since
different applications need different types of protocols for communication. Since sensors
have the limited of transferring data, web-sensors might be helpful to transfer data from
source location to remote decision maker location. These kinds of web sensors might have
a large impact in monitoring, especially in environment-related condition monitoring.

2.12. Cluster-Based

Almomani et al. [139] advanced a cluster framework for planning preventive main-
tenance actions using the Group Technology (GT) concept. Gong et al. [140] used cluster
analysis (CA) to establish the qualitative analysis models on the basis of the two-channel
and differential dielectric spectroscopy (TD-DES) data and Fourier transform infrared
(FTIR) spectroscopy data of the in-service lubricants. Da-Silva et al. [141] utilized most of
CA techniques while clustering the chemical analysis of lubricant. In a recent study, CA
was utilized to confirm fuel dilution in an engine oil [142]. A fuzzy clustering approach
was proposed as a lubricant system fault diagnosis framework using fuzzy sets theory on
the system characteristics [143].
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2.13. Standardization of CBM Systems

Although CBM systems are well known and are used in many applications with
significant improvement, there is no consensus about universal standard. There are barriers
in platform, industry sectors, IP issues, etc., to coming up with an open system. Thurston
and Lebold [144] discussed the development of open system architecture for CBM and
defined the requirements for a general CBM architecture and the framework of the dis-
tributed architecture. It was also being evaluated for transition by both Army and Nany
programs. The changing role of maintenance is presented from the perspective of life cycle
management and identified technical issues of maintenance [145]. A generic model was
presented with the total productive maintenance (TPM) and CBM basics, in conjunction
with ecology-oriented manufacturing (EOM) and 5S f in attaining organizational equip-
ment maintenance goals [146]. A systematic implementation framework coupled with
the standard tools, techniques, and practices has been designed in a large semiconductor
manufacturing company. Another generic CBM architecture was developed across dif-
ferent domains with a combined data fusion/data mining-based architecture [147]. Data
fusion is extensively used in defense applications with an automated process of combining
information from several sources in order to make decisions regarding the state of an
object. Whereas data mining seeks unknown patterns and relationships in large datasets,
the methodology is used to support data fusion and model generation at several levels. In
the architecture, methods from both these domains analyze CBM data to determine the
overall condition or health of a machine. This information is then used by a predictive
maintenance model to determine the best course of action for maintaining critical equip-
ment. Banjevic et al. [148] used Cox’s PHM (prognostic and health management) with
a Weibull baseline hazard function, and time-dependent stochastic covariates are used
to describe the failure rate of the system with proposed structure of the decision-making
software EXAKT. Sundberg [149] provides the economical aspect of condition monitoring
and the strategically important considerations inside the maritime industry. Web and agent
technologies in condition monitoring and the maintenance of mechanical and electrical
systems are presented [150]. The OSA-CBM (Open System Architecture Condition-Based
Maintenance) layers are used for the analysis of the reviewed work. Different architectures,
methodologies, and tools are proposed by the researchers for the development of agent
systems. Few findings report the use of mobile devices. Since the mobile/handheld devices
spread markets recently, the effectiveness of those types of equipment for CBM to reduce
downtime is unaddressed. The limited methodologies are available for the applications of
mobile devices. There is a great potential to use handheld device injunction with web-based
system for wider integration and effective use for decision making. It might give easy
access remotely since the technologies are evolving faster than ever. Web-sensor open
platform could be application also.

3. University Research Related to CBM

As people around the world are becoming increasingly more aware of the applications
of CBM, they are taking interest in developing new technologies and strategies and are
coming up with new management tools related to CBM. Most of this research around
the world takes place in universities and defense. In the United States, the Department
of Defense (DoD) has invested a large amount in the field of CBM. Their main focus is
to meet the warfighter expectation while making every effort to conduct cost-effective
sustainment operations. Thus, on 7 November 2007, DoD established a policy for CBM+,
which provides an integrated strategy for deployment of enabling technologies, processes,
and procedures that focus on a broad range of weapon system sustainment improvements.
CBM+ was originally developed as a DoD initiative to provide a focus for a broad variety of
maintenance improvements that would benefit both the maintainer and the warfighter [151].
It was established to expand upon condition-based maintenance (CBM) and encompasses
other technologies, processes, and procedures that enable improved maintenance and
logistics practices. The CBM+ Action Group developed a “CBM+ DoD Guidebook” as an
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information reference and tool to assist logistic managers with CBM+ project development,
implementation, and execution.

Defense Acquisition University, which provides learning and consulting for acquisition
programs and projects, provides training on CBM+ business case analysis [152]. The
Condition-Based Maintenance plus (CBM+) module provides the learner with an overview
and introduction to Depot Maintenance Management and Operations needed in DoD
systems [153]. The Applied Research Laboratory at the Pennsylvania State University (ARL
Penn State) is using a systems approach for CBM. This is done by using a hierarchical
architecture for developing and implementing health assessment systems. Here, in this
hierarchy, a system is considered right from the top level to the lowest level of components
where the failure originates. This hierarchical architecture consists of six levels: material,
element, component, subsystem, system, and plant platform. They have been working
in this field since 1994 and have established themselves as the world leader in CBM
mechanical systems. Their projects cover various CBM issues from materials to decision
support. The Systems and Operations Automation (SOA) Division of the ARL Penn
State addresses the emerging fields of condition-based maintenance (CBM) and advanced
sensing and control. The division provides valuable research and development efforts to
support the U.S. Department of Defense and U.S. industry. It uses a number of specialized
tools and facilities focused on condition-based maintenance such as mechanical diagnostic
test bed, diesel-enhanced mechanical diagnostic test bed, lubrication system test bench,
bearing prognostics test rig, torsional test rig, ball and V-ring test stand, battery prognostics
test bench, complex systems monitoring features toolbox, and systems integration and
technology transfer (SITT) facility [154].

A lot of research is being done at the University of South Carolina (USC), in which
emphasis has been given to collect and warehouse data and formulate requirements for a
move towards CBM. Their CBM Research Centre has supported the U.S. Army by conduct-
ing research to support a timely and cost-effective aircraft maintenance program. The CBM
program at USC combines comprehensive research with a multi-faceted methodology to
strive towards continued success by the U.S. Army’s aviation division. The CBM test facili-
ties include a full-scale drive train test that stands capable of testing several platforms such
as the U.S. Army Apache, Blackhawk, and Chinook helicopters [155]. At the University of
Toronto, Canada [156], the research and development in the Vibration Monitoring, Signal
Processing and CBM Laboratory focuses on the development of effective fault detection
and diagnostic schemes on the basis of analysis and modelling of vibration data for CBM
purposes. Moreover, CBM software developed at the University of Toronto, EXAKT, is
quite well known in the industry for maintenance optimization. Furthermore, at their
Centre for Maintenance Optimization and Reliability Engineering (C-MORE), they employ
proportional hazards modelling to pinpoint the risk factors that threaten the health of
the asset from all signals obtained during health monitoring. This hazard estimate (the
conditional probability of failure) is then blended with economic considerations to establish
optimal CBM decisions. A large amount of research on maintenance, predictive failure,
e-manufacturing, and industry applications with embedded system are conducted at the
NSF Industry/University Cooperative Research Center on Intelligent Maintenance Systems
with multi-campus collaboration (University of Cincinnati, University of Michigan-Ann
Arbor, and Missouri University of Science and Technology).

At the Robotics Research Group at the University of Texas at Austin [157], researchers
are working on a method for automatic condition-based maintenance (CBM) that is based
on decision-making criteria. This is to enhance the reliability, safety, and maintainability
of robot actuators or other variable duty cycle machines and to reduce the cost of their
overall maintenance. They are currently developing a decision making CBM (DM/CBM)
to overcome the problems of modern model-based CBM. They have created a software
test that plays an important part in the development of decision-making software that also
will be used as a guideline for future students who will perform CBM-related research. At
the Centre for Operational Research and Applied Statistics (CORAS) of the University of
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Salford, Greater Manchester University, United Kingdom, the research team is working on
CBM [158], having concentrated their attention to date on developing models of the decision
aspect of condition monitoring with the aim of optimizing a criterion function of interest.
They have used stochastic filtering and hidden Markov models to model predictions of the
residual life of monitored engineering systems, and hence to provide cost effective decision
support. The conditional residual life formulation using semi-deterministic stochastic
filtering is perhaps the first of this kind in condition-based maintenance modelling, which
has been followed by many others since. The research has closely collaborated with industry
users and engineering departments at other universities [159].

Other than the above-mentioned universities, the following is a list of a few universities
wherein over the past few years, CBM/reliability-related work has been conducted:

1. Intelligent Systems Laboratory, Department of Mechanical, Industrial, and Nuclear
Engineering, University of Cincinnati, Cincinnati, OH, USA.

2. Automation and Robotics Research Institute, Ft. Worth, Texas, USA.
3. Zhejiang University, China.
4. Luleå University of Technology, Sweden.
5. Malardalen University, Sweden.
6. University of Groningen, Groningen, The Netherlands.
7. Wichita State University, USA.
8. National Institute of Technology, Tiruchirappalli, India.
9. Reliability Engineering Centre, Indian Institute of Technology, Kharagpur, West Ben-

gal, India.
10. Department of Agricultural Machinery, Faculty of Biosystems Engineering, University

of Tehran, Iran.
11. Vaxjo University, School of Technology and Design, Sweden.
12. School of engineering, Cranfield University, Cranfield, England, United Kingdom.
13. Division of Industrial and Information Systems Engineering, Ajou University, South Korea.
14. Queensland University of Technology, Brisbane, Queensland, Australia.
15. Federal University of Rio Grande do Norte, Rio Grande do Norte, Brazil.
16. University of Teeside, Middlesbrough, United Kingdom.
17. Department of Industrial Engineering, University at Buffalo (SUNY), Amherst, USA.
18. NSF I/U Center for Intelligent Maintenance System, University of Cincinnati, Univer-

sity of Michigan-Ann Arbor and Missouri University of Science and Technology, USA.
19. Dipartimento di Energetica, Universita Politecnica delle Marche, via Brecce Bianche,

Ancona, Italy.
20. Universidad Pontificia Comillas, Instituto de Investigacion Tecnologica, Santa Cruz

de Marcenado, Spain.
21. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China.
22. University of Wisconsin, Milwaukee, USA.
23. Department of Industrial and Systems Engineering, The Hong Kong Polytechnic

University, Hong Kong.
24. Rensselaer Polytechnic Institute, Troy, New York, USA.
25. The Logistics and Maintenance Applied Research Center (LandMARC), Georgia Tech.
26. Reliability and Maintainability Center, University of Tennessee, Knoxville.
27. Center for Risk and Reliability (CRR), and The Center for Advanced Life Cycle

Engineering (CALCE), University of Maryland College Park.
28. The Industry/University Cooperative Center for Quality and Reliability Engineering

Research with Rutgers University, Arizona State University, and University of Arizona.
29. University of Iowa, USA.
30. Wind Energy Center, University of Massachusetts Amherst, USA.

4. Concluding Remarks and Future Research

This paper presents a review of different methods and applications on condition-based
maintenance. The main purpose of this paper is to enlighten the field of CBM by providing
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a holistic view of the global approach to CBM. Even though CBM requires sophisticated
technologies, there is a large amount of research being done as people are starting to realize
its importance. However, there is still much more that can be done. This includes lagging
in open architecture, limited mobile applications, barrier in industry-to-industry sectors,
limited censuses on unique CBM platform, etc. By only determining the states for which the
unit is replaced in order to gain the maximum maintenance cost (Markov decision process)
or by modelling the system deterioration, which is stochastic and continuous, people are
looking at a specific part of the system, not the system as a whole. A holistic view is more
important than complex models and techniques. Figure 1 shows a generic CBM platform
supervisory control and data acquisition (SCADA) proposed by [160]. Figure 2 shows a
generic failure prediction approach.
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be performed well up front to address different issues while implementing CBM. These
are the issues a proper business case must address. As we are approaching the end of
the first decade of the 21st century, computers are becoming faster and a highly efficient
electronic equipment, such as sensors are available in the market. There is a lot that we can
be used from this industry that can be well implemented in the CBM field. A more focused
approach is needed towards application of embedded electronics in CBM. The advancement
in web technologies allows remotely located robots to be programmed, operated upon,
and monitored for maintenance. However, the findings show that e-maintenance is still
in its infancy stage. Artificial intelligence offers a number of methods and techniques that
provide potential benefits if harnessed properly.
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