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Abstract: Finding a biomarker that indicates the subject’s age is one of the most important topics
in biology. Several recent studies tried to extract a biomarker from brain imaging data including
fMRI data. However, most of them focused on MRI data, which do not provide dynamics and lack
attempts to apply recently proposed deep learning models. We propose a deep neural network
model that estimates the age of a subject from fMRI images using a recurrent neural network (RNN),
more precisely, a gated recurrent unit (GRU). However, applying neural networks is not trivial
due to the high dimensional nature of fMRI data. In this work, we propose a novel preprocessing
technique using the Automated Anatomical Labeling (AAL) atlas, which significantly reduces the
input dimension. The proposed dimension reduction technique allows us to train our model with
640 training and validation samples from different projects under mean squared error (MSE). Finally,
we obtain the correlation value of 0.905 between the predicted age and the actual age on 155 test
samples. The proposed model estimates the age within the range of ±12 on most of the test samples.
Our model is written in Python and is freely available for download.

Keywords: age estimation; functional magnetic resonance imaging; recurrent neural network;
transformer

1. Introduction

Understanding human aging and anti-aging are important topics in biology [1–5]. One
way of understanding aging is finding a biomarker that indicates the physical age of subjects.
Many studies have been conducted to try to estimate age using biological data [6–11].
Among various sources of biological data, the brain is one of the most complex and critical
parts of human beings. Since the structure of the brain also varies with age [12–16], it is
natural to extract a biomarker from brain-related data [17,18]. Recently, the research on the
brain has mainly focused on neuroimaging technology [19–26]. In particular, functional
magnetic resonance imaging (fMRI) is widely used [27–29] because it provides a time series
of 3D images in a non-invasive manner [30,31].

The relationship between the brain and age through neuroimages has been explored [32–36].
Franke et al. [37] showed the relationship between the human brain and age through MRI data,
which is a static image of the brain. The authors used principal component analysis to reduce
the size of the MRI data and performed regression analysis by training the relevance vector
machine (RVM) to estimate the age of the subject. Recently, deep learning networks have been
used to analyze MRI images. Huang et al. used the VGGNet [38] to extract features from MRI
images [39]. Qi et al. proposed a 3D convolutional neural network (CNN) for the 3D level of MRI
images [40]. Jiang et al. conducted a comparative study of T1-weighted brain images at different
parts (gray matter, white matter, and cerebrospinal fluid) through a DenseNet [41] based on
transfer learning [42]. However, the authors used a still image of the brain at rest and did not
consider the brain function network dynamics over time.

Brain function network dynamics suggest that human brain activity is not only an
activity of a single functional brain area but also a time-varying interaction between
multiple areas [43,44]. Furthermore, fMRI is more sensitive to detecting aging-related
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neurodegenerative diseases [45]. Thus, an age estimation based on fMRI has an advantage
over structural MRI. Yao et al. showed the relationship between the entropy of the brain and
age [46] including time-varying dynamics. The authors first divided the fMRI image into
90 regions using the Automated Anatomical Labeling atlas (AAL) [47], then transformed
the fMRI image to time series data. Finally, they extracted correlation coefficients among
all the pairs of the time series and computed the entropy of the empirical distribution of
coefficients. However, the correlation between the entropy and the actual age is not strong,
and it is hard to interpret the meaning of the entropy of coefficients.

Another area related to time series data is natural language processing (NLP). Re-
current neural networks (RNN) [48], long short-term memory (LSTM) [49], and gated
recurrent units (GRU) [50] dominated the field due to their structure being similar to time
series. Later, Transformer [51], based on a simple and clear attention structure [52,53],
was proposed, which showed more concise and efficient performance than traditional
deep networks. Transformer achieves better results due to its ability to capture long-term
dependencies.

In this paper, we propose a deep neural network (DNN) model to estimate the age
from fMRI. Since fMRI data can be viewed as a time series of 3D images, it is natural to use
network models from NLP, such as recurrent neural networks (RNN) or Transformer. The
proposed model is based on GRU since fMRI data have weaker long-term dependencies.

We would like to emphasize that applying an existing DNN model is not trivial,
mainly due to the data shortage issue. The cost of collecting fMRI data is high, and it is hard
to obtain a sufficient amount of data to train the DNN model. Moreover, the dimension of
fMRI data is huge (e.g., 64× 64× 34× 100) compared to the number of trainable data. To
overcome the data shortage, we propose a new dimension reduction technique for fMRI
data. More precisely, we use fMRI data from 795 publicly available samples. We first apply
the clustering algorithm to the data to reduce the dimension. This provides time series
data that are a 94 dimension vector at each repetition time point. Then, we train DNN
models that estimate the age, where the input is preprocessed fMRI data. We compare
the proposed model with other DNN models including vanilla RNN, Transformer, and
multilayer perceptron (MLP). The correlation coefficient between the estimated age and the
actual age is r = 0.905, which outperforms the other DNN models.

The paper is organized as follows. In Section 2, we provide detailed information about
fMRI samples and introduce the preprocessing step that reduces the input dimension. The
proposed recurrent neural network-based model is described in Section 3. We provide an
experimental setup and results in Section 4. In Section 5, we investigate the overall contribution
of components to the proposed model, and we conclude the paper in Section 6.

2. Methods
2.1. Data Acquisition

We collect a total of 1450 human brain fMRI samples from 26 publicly available projects,
where informed consent was obtained from all subjects. Defective samples are removed
including samples with no age information and samples with incomplete data. Finally, we
use a total of 795 samples of fMRI data consisting of 437 women and 358 men. The range of
ages is from 10 to 80. Table 1 provides the statistics of data.

SALD project has 369 samples from the Southwest University Adult Lifespan Dataset
(SALD) [54]. The sample includes 229 women and 140 men, who are students and residents
from the Southwest University of China. All other projects are from the 1000 Functional
Connectomes Project (http://fcon1000.projects.nitrc.org, accessed on 20 November 2021),
with a total of 426 brain samples, including 208 women and 218 men.

Since the data are obtained from various projects, some inconsistencies are hard to be
normalized. Specifically, the repetition times (TR) vary from 1 to 3 s. Among 795 samples,
629 samples have a TR of 2 s, and the majority of the remaining samples have TRs close to
2 s. Since most of them have similar TRs, we ignore the impact of TR differences in this work.

http://fcon1000.projects.nitrc.org
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For the positional variation, we normalize the data, which is described in the following
section.

Table 1. Detailed information of data collection. (M: Male; F: Female; NTR: the number of repetition
time points).

Project Subjects Age M F NTR

AnnArbor_a 18 13–40 17 1 283
Baltimore 12 30–40 6 6 111

Bangor 3 19 3 0 253
Beijing_Zang 39 18–24 21 18 213

Berlin_Margulies 14 23–44 7 7 183
Cambridge_Buckner 81 18-30 30 51 107

Dallas 14 20–71 8 6 103
ICBM 35 19–79 15 20 116

Leiden_2180 3 20–27 3 0 203
Leiden_2200 4 18–25 4 0 203

Leipzig 15 22–42 7 8 183
Milwaukee_b 46 44–65 15 31 163

Newark 7 21–39 4 3 123
NewHaven_a 2 18–38 2 0 237
NewHaven_b 6 18–42 4 2 169
NewYork_a 37 10–49 20 17 180

NewYork_a_ADHD 16 24–50 15 1 180
NewYork_b 11 18–46 7 4 163
Orangeburg 14 31–55 11 3 153

Oulu 17 21–22 4 13 233
Oxford 8 30–35 6 2 163

PaloAlto 12 26–46 1 11 223
Pittsburgh 1 27 1 0 263

Queensland 6 21–34 4 2 178
SaintLouis 5 21–28 3 2 115

SALD 369 19–80 140 229 230

2.2. Data Preprocessing

The fMRI scanner often performs environmental adaptation at the beginning of the scan.
It is also unstable during the adaptation, which may provide inconsistent data. To avoid this
issue, we discard the earliest part of fMRI data (the first 10 repetition time points).

Since we collect the data from various projects, each project may have its own setups
or imaging parameters. In other words, each project may have its own bias, and therefore
we need to remove the bias from each project. Moreover, each subject may have different
sizes of brains, and the brain positions might vary while scanning. These variations in the
sample can impact our model since the size of the dataset is not large enough. To resolve
the issue, we apply a normalization technique for the individual data.

First, we use the FMRIB software library (FSL) to preprocess fMRI data. FSL is a widely
used tool for brain imaging data [55,56]. More precisely, we employ the FEAT toolbox in
the FSL software library to normalize the fMRI data. To remove the bias of the project, we
extract imaging parameters from each project and center the images of the project with
corresponding parameters.

The second part of the preprocessing is the registration of the normalized image.
The registration step clusters the image to several regions accordingly and provides a
“mask” that indicates the coverage of regions. Among various registration methods, we use
AAL2 from the Montreal Institute of Neurology (MNI) brain space Automated Anatomical
Labeling atlas (AAL) [57]. FMRIB Linear Image Registration Tool (FLIRT) is used for
registration, which is an automation tool for brain image registration in the FSL software
library. This registration step divides the brain into 94 regions of interest (ROI). Note that
the above steps do not reduce the dimension of data and the original data can be recovered
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by reversing the process. An example of normalization and registration of fMRI images is
shown in Figure 1.

(a) (b) (c)

Figure 1. An example of normalization and registration of an fMRI image. (a) Original fMRI image
of sub12855 in the Berlin_Margulies project; (b) normalized fMRI image; (c) registered fMRI image
after normalization, where each color represents the clustered brain region.

After the registration step, we average the voxel values of each region to reduce
the dimension of data. Thus, after the preprocessing, we obtain a time series data X of
length t. More precisely, let C be the fMRI sample and fpre be the preprocessing procedure
including normalization, registration, and averaging. Then, we obtain the time series
data X = (x1, x2, · · · , xt) = fpre(C) ∈ R94×t, where the preprocessed brain image at the
i-th repetition time point Xi ∈ R94 is a 94-dimensional vector. Note that fMRI data from
different projects may have different repetition time points. The whole preprocessing steps
are depicted in Figure 2.

Figure 2. Data preprocessing procedures. We use FEAT to normalize the fMRI data (4D data), and
then use FLIRT to register the data. Finally, we average voxel values for each 94 brain region.

3. Age Estimation
3.1. Preliminaries

Since the preprocessed data is a time series that reflects brain function network dynam-
ics, it is natural to consider the neural network (NN) models designed for sequence data,
such as recurrent neural networks (RNN) and Transformer. RNN recursively summarizes
the sequential data and analyzes its dynamic behavior [48]. However, RNN has vanishing
and exploding gradient issues. Long short-term memory (LSTM) introduced gates to solve
this issue [49,58]. The gated recurrent unit (GRU) is a variant of the LSTM network, which
has a simpler and more effective structure [50,59]. We propose a GRU-based model for
age estimation. We also provide several other DNN models for baseline. In Section 4, we
provide a comparison between the proposed model and the other baseline models.

3.2. Proposed Model

The proposed GRU-based model takes an input X, where the last GRU is followed
by fully connected (FC) layers, including a batch normalization (BN) layer and ReLU
activation. We describe the structure of the proposed model in Figure 3a. The model
hyperparameters, including the number of layers and hidden dimensions, are optimized as
described in Section 4.
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Figure 3. Schematic diagram of the model structure. (a) The proposed GRU-based model. The GRU
module takes the preprocessed data X = (x1, x2, . . . , xt) sequentially as an input. The output of
the last GRU module is connected to an FC layer, which is followed by the BN layer and the ReLU
activation. Finally, the last FC layer estimates the age y ∈ R. All other RNN-based models have the
same structure. (b) The Transformer-based model structure.

Other Baseline Models

Another estimator we considered is a Transformer, which shows extraordinary per-
formances in NLP such as translation. The Transformer generally includes two parts. The
”encoder” takes an input sequence then maps to a vector where the “decoder” outputs a
sequence based on the encoded vector. Since we want to estimate age (real number), we are
only interested in the Transformer encoder. Similar to Transformer-based models in NLP,
we first map the preprocessed data X to a vector using positional encoding. Then, we apply
multiple Transformer encoder layers that consist of self-attention and feed-forward layers.
The final fully connected layers estimate the age. The structure of Transformer-based model
is described in Figure 3a.

We also considered the other RNN-based models, including vanilla RNN and LSTM,
where vanilla RNN and LSTM also have similar structures to the GRU-based model.

Finally, we constructed a multilayer perceptron (MLP) that consists of FC layers only.
We treat the preprocessed fMRI data as data with two dimensions: time series and brain
regions. We constructed a multi-layer model learning data with the same structure. Each
layer contains an FC layer, a batch normalization (BN) layer, a ReLU activation, and a
dropout [60].

4. Experiments
4.1. Model Parameters

Hyperparameters of models are optimized via cross-validation as described in Section 4.2.
The proposed GRU-based model has three internal layers where each recurrent unit has
300 hidden states, and the width of the final FC layer is 300. The Transformer network consists
of three Transformer encoder layers, where each layer consists of two sub-layers. The first
is the multi-head self-attention mechanism: we set the number of heads to 2. The second
is a position-wise feed-forward layer that sets its network dimension to 8 times the input
dimension. We optimize other RNN-based models (vanilla RNN and LSTM) and achieve
the same hyperparameters as the GRU-based model. The MLP network consists of three FC
layers. Standard dropout probability p = 0.5 is used in RNN- and MLP-based models. In the
Transformer model, the dropout probability of p = 0.1 is used in the positional encoding and
the encoder layer.
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4.2. Training

The data are divided into three independent sets: training, validation, and test sets.
We first divide all the data into two parts, with a ratio of 8 to 2 as shown in Table 2. In all,
20% of the total data, namely 155 samples, are assigned for the test. The remaining 80% of
the total data, namely 640 samples, are used for training and validation.

Table 2. Data volume distribution of training, validation, and test datasets.

Training/Validation Test

640 155

We use k-fold cross-validation with k = 10 due to an insufficient amount of data. The
data except for the test set (total 640 data points) are divided into 10 subsets, one subset is
used as the validation dataset and the other 9 subsets are used as the training dataset. This
procedure is repeated 10 times, then the average performance is computed. We choose the
model hyperparameters that provide the best average performance.

For model training, we use the Adam optimizer with learning rate attenuation. The
initial learning rate value is set to 0.001 for the GRU model and 0.0001 for the Transformer
model. The learning rate is attenuated by 0.99 every 100 steps. In our experiment, the
training batch size is set to 144 where the number of epochs is 10,000. The mean squared
error (MSE) is employed to compute the loss while training

MSE =
1
n

n

∑
i=1

( fNN(X(i))− y(i))2

where (X(1), y(1)), . . . , (X(n), y(n)) denotes the preprocessed data sample and label pair, and
fNN(·) denotes a proposed neural network. Thus, the training is to minimize MSE.

4.3. Implementations

Our neural network model and data preprocessing procedures are implemented in
Python, which is freely available for download at https://github.com/gyfbianhuanyun/
brain-data-with-age (accessed on 20 November 2021). The machine used to perform
the experiments has the following specifications: 8 GB RAM, Intel(R) Core(TM) i5-8400
@2.80GHz CPU processor, and Nvidia Geforce GTX 1050 graphics card.

4.4. Results

Table 3 shows the performance of the proposed model and other baseline models on
the test dataset (155 data points). It provides the correlation between estimated age and the
actual age. In addition to MSE, we compute the mean absolute error (MAE) to measure the
accuracy of age estimation

MAE =
1
n

n

∑
i=1
| fNN(X(i) − y(i)|

We also provide the intraclass correlation coefficient (ICC) to evaluate the model’s perfor-
mance. The ICC evaluates the consistency of the same number of measurement results measured
by multiple observers. Here, we take the actual age and the predicted age as two measurement
results and judge the prediction model’s performance by the degree of consistency.

The GRU model shows the best performance while the Transformer model has compa-
rable results. Figure 4a shows the performance of the GRU model where the x-axis shows
the age of the subject and the y-axis represents the estimated age by the proposed model.
The gender of the subjects are indicated where blue dots represent male subjects, and red
triangles represent female subjects. It can be seen that more than 80% of the estimations are

https://github.com/gyfbianhuanyun/brain-data-with-age
https://github.com/gyfbianhuanyun/brain-data-with-age
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within the ±12 range of the actual age. The correlation coefficient between the estimation
and the actual age is r = 0.905.

Table 3. Correlation between the estimated age and the actual age on the test dataset.

Model Name Regions Correlation MSE MAE ICC

MLP All 0.780 140.09 8.645 0.754
RNN All 0.797 110.28 7.935 0.774
LSTM All 0.858 116.48 8.627 0.812
GRU All 0.905 70.76 6.507 0.883
GRU Right 0.769 132.49 8.630 0.754
GRU Left 0.835 110.69 8.850 0.807

Transformer All 0.883 74.44 6.566 0.884

(a) GRU (MSE Loss with Dropout) (b) Transformer (c) Entropy
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Figure 4. The first line of figures are age estimation results of the proposed GRU model and Trans-
former model, and the relation between entropy and age. The x-axis represents the actual age of the
subject whereas the y-axis represents the estimated age. (a) MSE loss function with dropout; (b) use
Transformer encoder model; (c) relation between entropy and age. The solid line is the best diagonal
when the actual age matches the estimated age. The dotted line refers to the deviation line 12 years
away from the actual age. The second line of figures are the Bland–Altman (B&A) plot corresponding
to the above. (d) Bland–Altman plot of GRU; (e) Bland–Altman plot of Transformer encoder model;
(f) Bland–Altman plot of entropy. The x-axis is the average of each sample’s actual and predicted age,
and the y-axis is the difference between the exact age and the predicted age of the sample. The solid
line is the average of the difference. The dashed line is the upper and lower limits of 95% agreement,
i.e., ±1.96 standard deviations.

The training results using the Transformer model are shown in Figure 4b. These results
will be discussed in Section 4.5. Since most previous works [37,39,40,42] focus on structural
MRI input and codes are not available online, we compare our results with Yao et al. [46],
which computes a correlation between entropy and actual age based on fMRI data samples.
Figure 4c shows the relation between entropy and age. The correlation coefficient between
the entropy and the age is r = 0.292, which is weaker than the proposed estimation model.

In addition, we provide Bland–Altman plots to visualize the results. The Bland–
Altman plot shows the consistency between two different measurements. Here, we use
the actual age of the test data sets as a known measurement and the predicted age as
another measurement value. Figure 4d,e show Bland–Altman plots of the GRU model and
Transformer model. What needs attention here is the processing of the entropy results.
Since the entropy value is not an age estimation, we first find a linear regression model that
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estimates an age from the entropy value. Figure 4f shows a Bland–Altman plot of estimated
age from entropy and the actual age.

4.5. Discussion
4.5.1. Age Bias

As we can see in Figure 4a, our model tends to underestimate the age of subjects. This
is mainly due to a bias of our training dataset where we have more young subjects in the
training set, as we showed in Table 1. More precisely, the number of subjects younger than
30 is 256, which is 32.20% of the dataset, while the number of subjects older than 60 is 144,
which is 18.11% of the dataset.

4.5.2. Gender Difference

Figure 4a shows the gender difference of our model. For female subjects, the estimation
is more accurate for samples of those aged around 20, but the estimation becomes less
accurate when the age of a sample is more than 60. On the other hand, for male subjects,
the estimation loss is consistent throughout the ages. Note that Yao et al. [46] also reported
the gender difference. The authors mentioned that the functional entropy increases with
age where the mean entropy of female subjects increases slower than male subjects.

5. Ablation Study

We also trained the GRU-based model with variations.

5.1. Effect of Brain Regions

In order to analyze the influence of different brain regions on the results, we extracted
the parts with left or right hemispheres in the brain region named in the AAL2 atlas and
conducted the training. Table 3 shows the training results. We found that under the same
conditions, it is beneficial to fully utilize all the available brain regions to estimate the age
of subjects. Interestingly, we observed that the data from the left hemisphere have a higher
correlation with age.

5.2. Effect of Dropout

As we mentioned in the above section, we employ the dropout technique to prevent
overfitting. Figure 5a,d show the estimation result of the exact same model without dropout.
It can be seen that some estimations deviate from the actual ages, where the proposed method
with dropout shows a robust estimation. The correlation coefficient without dropout is
r = 0.849, which is smaller than the correlation coefficient r = 0.905 of the proposed model in
the presence of dropout. This clearly shows that the dropout suppresses the generalization
error, especially in our case where the size of the dataset is small.

5.3. Choice of Loss Function

Since the `1 loss function and the MSE (`2) loss function are relatively common loss
calculation methods, in this section, we investigate how the choice of loss function affects
the result. Figure 5b,e show the estimation result when the `1 loss function is employed.
The estimation with `1 loss is less accurate than the model with the MSE loss function. This
is because the MSE loss penalizes the large errors more while the `1 loss function computes
the absolute deviation. In particular, we can see some outliers when we train the model
with the `1 loss function. Note that the correlation coefficient of the model is r = 0.749.

5.4. Effect of Scan Time

To see the effect of time dynamics on brain imaging data, we train the model with
samples that are fixed length time series. Figure 5c,f show the estimated result when the
model uses the first 100 repetition time points only. In this case, the model correlation
coefficient is r = 0.889, which is lower than the result of using all times data. This shows
that the brain function network dynamics are indeed helpful in age estimation.
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(a) MSE Loss without Dropout (b) L1 Loss with Dropout (c) 100 TRs
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Figure 5. Ablation Study. The x-axis represents the actual age of the subject, whereas the y-axis
represents the estimated age. (a) MSE loss function without dropout; (b) `1 loss function with dropout;
(c) first 100 repetition time points only (with MSE loss function and dropout). The solid line is the
best diagonal when the actual age matches the estimated age. The dotted line refers to the deviation
line 12 years away from the actual age. The second line of figures are the Bland–Altman (B&A) plot
corresponding to the above. (d) MSE without dropout (B&A plot); (e) `1 with dropout (B&A plot);
(f) 100 TRs (B&A plot). The x-axis is the average of each sample’s actual and predicted age, and the
y-axis is the difference between the exact age and the predicted age of the sample. The solid line is
the average of the difference. The dashed line is the upper and lower limits of 95% agreement, i.e.,
±1.96 standard deviations.

6. Conclusions

To estimate the age from fMRI images, we proposed the deep learning model based
on GRU and Transformer. The preprocessing technique is also provided to reduce the data
dimension. Since we have only 795 pieces of data, we use cross-validation to determine
hyperparameters during training. Despite the lack of data, our model provides a reasonable
estimation of age compared to the previous entropy-based method. Throughout the
research, we found a relationship between brain activity and age, which can be extended to
other brain disease research.

Limitations: Since the proposed GRU-based model takes a preprocessed input, the
region extraction method is crucial. The proposed framework is based on the AAL atlas, an
anatomical (structural) parcellation. We would like to mention that other representations
such as functionally-defined brain regions of interest [61–63] might be more sensitive to
analyzing fMRI. However, our framework is universal in the sense that we can apply
the same normalization technique and GRU-based model even with functionally-defined
regions of interest. Another limitation is the diversity of data samples obtained from
different projects. Although we normalized samples during preprocessing, this may cause
inter-project errors. In future work, we plan to collect samples from controlled experiments.
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