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Abstract: The detection and identification of non-random patterns is an important task in statistical
process control (SPC). When a non-random pattern appears on a control chart, it means that there
are assignable causes which will gradually deteriorate the process quality. In addition to the study
of a single pattern, many researchers have also studied concurrent non-random patterns. Although
concurrent patterns have multiple characteristics from different basic patterns, most studies have
treated them as a special pattern and used the multi-class classifier to perform the classification work.
This study proposed a new method that uses a multi-label convolutional neural network to construct
a classifier for concurrent patterns of a control chart. This study used data from previous studies to
evaluate the effectiveness of the proposed method with appropriate multi-label classification metrics.
The results of the study show that the recognition performance of multi-label convolutional neural
network is better than traditional machine learning algorithms. This study also used real-world data
to demonstrate the applicability of the proposed method to online monitoring. This study aids in the
further realization of smart SPC.

Keywords: multi-label convolutional neural network; concurrent patterns; control chart

1. Introduction

Control charts are a statistical process control (SPC) tool used to determine if a man-
ufacturing or business process is behaving as intended. When a non-random pattern
appears on the control chart, it suggests that there exist one or more assignable causes
which will gradually deteriorate the process/product quality. The presence of assignable
causes requires instant investigation of the process, including the identification of root
causes and implementing corrective actions. It was recognized that non-random patterns
can provide relevant information about process diagnosis. Montgomery [1] pointed out
that every non-random pattern is mapped to a set of assignable causes. Therefore, if the
pattern type can be correctly recognized and identified, it will help to diagnose the possible
causes of the manufacturing process problem.

The statistical quality control manual of the Western Electric Company [2] first de-
scribed the non-random patterns that often appeared on control charts, and proposed a set
of zone tests for analyzing the patterns. Figure 1 illustrates several representative exam-
ples of control chart patterns. A normal pattern (NOR) only exhibits random variations
(Figure 1a). In stratification (STRA), the points tend to cluster around the center line.
Figure 1b illustrates an example of stratification. In systematic variations (SYS), a high
point is always followed by a low one or vice versa (Figure 1c). A cycle (CYC) can be recog-
nized by a series of high portions or peaks interspersed with low portions or troughs. A
typical example is shown in Figure 1d. A trend is characterized by a continuous movement
in one direction. Figure 1e illustrates an upward trend (UT) and Figure 1f a downward
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trend (DT). A shift is a sudden or abrupt change in the average of the process. Figure 1g
depicts an upward shift (US) and Figure 1h a downward shift (DS). In a mixture (MIX)
pattern, the points tend to fall near the high and low edge of the pattern with an absence of
points near the center (Figure 1i). A mixture is caused by the combination of data from two
or more distributions.
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Nelson [3,4] also proposed a set of runs rules for analyzing non-random patterns of
control charts. Zone tests and runs rules are usually referred to as sensitizing rules or
supplementary rules [1]. These rules are easy to use and have been adopted in many statis-
tical packages (e.g., Minitab). However, the application of the aforementioned sensitizing
rules is not without its drawbacks, because no one-to-one mapping between the rules and
non-random patterns exists [5].

In response to the limitations of the sensitizing rules, many researchers have applied
pattern recognition to the analysis of control chart patterns [5–8]. In the past, researchers
have used machine learning (ML) algorithms to build pattern classifiers to identify non-
random patterns in manufacturing process data. The task is commonly referred to as control
chart pattern recognition (CCPR). Zorriassatine and Tannock [9] comprehensively reviewed
the literature on the application of neural networks to SPC. Perry and Pignatiello [10]
and Barghash [11] reviewed the literature on the application of neural networks in CCPR.
Hachicha and Ghorbel [12] discussed recent research on control chart patterns and pro-
posed some directions for future research. With the development of the industrial internet
of things (IIOTs) and artificial intelligence (AI), collecting process data and applying in-
telligent decision-making models for analysis have become more feasible than before.
Researchers have focused on using advanced methods to improve the accuracy of CCPR.
In the following, we provide a summary and analysis of the relevant publications on the
topic of control chart pattern recognition.

In research on CCPR, the pattern can be expressed in the form of original data or
features [12]. Most methods that use features have relied on hand-crafted features, in-
cluding shape features [13–15], multi-resolution wavelet features [16] and statistical fea-
tures [17]. Classification methods include rule-based methods [6], decision trees [18,19],
neural networks [5,20,21], and support vector machines [22,23]. Recently, deep learning
(DL) techniques have demonstrated strong capabilities in time series classification, and
many studies have begun to focus on the application of deep learning techniques to the
classification of control chart patterns [24–28].

Studies have focused on the identification of basic non-random patterns and, in-
creasingly, on the identification of concurrent patterns (which are combinations of two
or more basic patterns appearing simultaneously) [21,23,29–31]. A concurrent pattern
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indicates that the manufacturing process is affected by multiple assignable causes. To
identify concurrent non-random patterns, researchers have often performed pre-processing
to smooth the data or extract features. Some examples of pre-processing methods include a
wavelet analysis [29,32,33], independent component analysis [34], and singular spectrum
analysis [35,36].

This study proposed a novel method of classifying single and concurrent non-random
patterns on control charts through the use of a convolutional neural network (CNN) to
build a multi-label classifier. To the best of our knowledge, this study is the first to apply a
multi-label CNN classifier to control chart concurrent pattern classification. The main ideas
of using multi-label CNN are explained as follows.

CNNs are most commonly applied to computer vision [37–39]. Recently, researchers
have demonstrated that it is possible to apply CNNs not only to image recognition tasks but
also to time series classification tasks [40,41], which is called one-dimensional convolutional
neural network (1D CNN). The primary advantage of CNNs is their ability to automatically
learn the important features of a dataset without any hand-crafted feature extraction. The
end-to-end classification system performs feature extraction jointly with classification.
More importantly, CNN has the ability to learn the translation invariance features from the
input [42,43]. For CCPR, the translation invariance means that the classifier can recognize
the pattern regardless of where it appears in the window. This characteristic is extremely
important when considering the dynamic nature of the non-random patterns [12].

In previous work, researchers have generally applied multi-class classifiers to concur-
rent CCPR. This is because a concurrent pattern is treated as a single pattern class. Because
a concurrent pattern possesses multiple features, the classification algorithm must allow
each sample to have more than one class label. The introduction of multi-label classification
into concurrent CCPR is advantageous because the multi-label classification algorithm can
predict more than one class label and has a chance of being partially correct; at least one
nonrandom pattern being reported is preferable to no pattern being reported.

In this study, a multi-label 1D CNN was developed to analyze control chart patterns,
and a series of experiments were conducted to assess the performance of the multi-label
1D CNN. The CNN was evaluated using real-world data and datasets from previous
studies against traditional classifiers. The method presented here may contribute to the
implementation of smart SPC.

The organization of the paper is as follows. Section 2 presents the proposed end-to-
end multi-label 1D CNN architecture and a brief description of the traditional classifiers
evaluated in this study. Subsequently, a set of performance metrics suitable for multi-label
classification is given. Section 3 details the evaluation of the proposed approach against
traditional classifiers. Section 4 presents the application of the proposed approach to real-
world data from industry. Finally, the study is concluded and directions for future research
are discussed.

2. Methods

This section describes the multi-label convolutional neural network used in this study
and various performance metrics for evaluating multi-label classification. For the purpose
of comparison, a brief review of traditional classifiers is also provided.

2.1. Convolutional Neural Network (CNN)

A typical CNN comprises of a convolution layer, a pooling layer, and one or more fully
connected (FC) layers. The convolution layer is the key element in the CNN architecture.
Its function is to perform feature extraction, including linear and non-linear operations
(i.e., convolution operations and activation functions). The combination of convolution
layer, activation layer, and pooling layer is usually referred to as the convolution block.
In brief, the CNN network extracts features using the convolution blocks and performs
classification using the fully connected layers. They join to form an end-to-end classifier
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that can reduce traditional feature engineering demands. Figure 2 illustrates a typical CNN
architecture.
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In the convolution block, the 1D convolution layer is used to extract feature maps
and different numbers of 1D convolution filters of the same size are applied in each layer.
Deeper convolution blocks have more convolution filters. The distance between two
consecutive filter positions is called a stride and is usually set to 1. During the convolution
operation, zero padding is typically used to avoid the loss of spatial dimensions. When a
convolution layer is applied, the hyperparameters that must be determined include filter
size and filter number.

The output of the convolution operation is passed to a non-linear activation function.
Some commonly used functions include the identity, sigmoid, hyperbolic tangent (tanH),
and rectified linear unit (ReLU) functions. The pooling layer is equivalent to a non-linear
form of down sampling. Pooling comes in many forms, of which max pooling with a
size of 1× 2 and a stride of 2 is most commonly used. The pooling layer can reduce the
dimensionality of the feature map, and thus can exhibit translation invariance for small
offsets and deformations.

The output feature map of the last convolutional layer or pooling layer is flattened,
that is, it is converted into a 1D vector and connected to one or more fully connected
layers. The number of neurons in a fully connected layer is typically determined through
experimentation. In a classification problem, the number of neurons in the last layer of
the network is equal to the number of classes. Softmax is usually chosen as the activation
function of the last layer of the model. The Softmax function normalizes output values
from the last fully connected layer to target class probabilities, where each value ranges
between 0 and 1 and all values sum to 1. Each value in the output of the Softmax function
can be interpreted as the probability of membership for each class. The class label of the
maximum probability is selected as the output. The predicted output can be written as
follows:

ŷ = arg max
i

(
ezi

∑C
j=1 ezj

)
(1)

where z is the activation value of the last layer neurons, the activation value of neuron i is
zi, C is the number of classes and the number of last layer neurons, and ŷ is the label of the
predicted class.

During training, the network finds the weights of the filter and the weights in the fully
connected layer to minimize the difference between the true class label of the sample in the
training set and the predicted value of the network. The most critical elements of training
are the loss function and the optimization algorithm. Classification loss is calculated
by comparing the class probabilities (pi) and true labels of samples (yi). For multi-class
classification, the loss calculated by the commonly used categorical cross-entropy loss
function can be expressed as follows:

Loss = −∑C
i=1 yi log(pi) (2)

Gradient descent is often used as an optimization algorithm to iteratively update the
learnable parameters (referring to the weights of the filter and the weights of the fully
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connected layer) in the network to minimize the loss. Some commonly used optimization
algorithms include Stochastic Gradient Descent (SGD), RMSprop (Root Mean Square Prop)
and Adam (Adaptive Moment Estimation) [44].

Overfitting is an important problem in machine learning. Several methods have been
proposed to minimize overfitting [45]. Increasing the number of samples is one means
of reducing overfitting. Other solutions include regularization with dropout or weight
decay, batch normalization, and data augmentation, as well as the reduction in architectural
complexity.

Data augmentation involves the random transformation of the original training data.
Batch normalization normalizes the input of each layer according to the statistics obtained
from the batch of data. This approach enables the use of a larger learning rate, while also
reducing dependence on the initial value of the network weight. Dropout is a regularization
method. During training, the randomly selected activations are set to zero, which can
make the model less sensitive to specific weights in the network. Weight decay is also
called L2 regularization. The L2 norm of the weights is added to the loss function. This
penalizes the larger weights in a model and prompts the model to use smaller weights
to reduce overfitting. Reducing the complexity of the model is also a feasible means to
lessen overfitting. This can be performed by removing the layers or reducing the number
of neurons.

2.2. Multi-Label Convolutional Neural Network

Multi-label classification is a classification problem in which multiple target labels
can be assigned to each sample (instance). In multi-class classification, each sample can
only be assigned to a single class. Researchers have proposed various methods to deal
with multi-label classification problems, including the problem transformation method and
algorithm adaptation [46]. The present study considers the latter method.

The multi-label classification problem is equivalent to building a model to map the
input vector x to a binary value vector y. Each element of the vector y is assigned a value
of 0 or 1, which represents whether the label appears. In multi-label classification, a data
sample can belong to multiple classes. With slight modification, a multi-class CNN can be
applied to a multi-label classification problem.

One element that must be modified is the activation function of the last layer of the
network. In multi-class classification, the Softmax function is generally used. However, the
Softmax function considers the scores of the last layer of neurons, and then converts the
scores into probabilities that sum to one. In multi-label classification, to make the output
of each class independent, the sigmoid function must be used as the activation function
for the last layer of neurons. The sigmoid function converts the score of the last layer of
neurons to a value between 0 and 1 independently, without being affected by the scores of
other neurons. If the output of a certain class is greater than the preset threshold (usually
0.5), the sample data are classified into that class. Because several classes may have outputs
greater than the threshold, the sample data can be classified into more than one class.

Another element that must be changed is the type of loss function. In multi-class
classification, the categorical cross-entropy is typically chosen as the loss function. In the
multi-label classification, the use of binary cross-entropy allows the network to indepen-
dently optimize the loss of each class.

2.3. Traditional Machine Learning Algorithms
2.3.1. Support Vector Machines

Support vector machines (SVMs) are a set of supervised learning methods that can be
used for solving both classification and regression problems [47]. The algorithm used for
classification is usually referred to as SVC and that used for regression is called SVR. In this
section, we introduce the principles of SVC, which is relevant to this research. SVC is based
on the margin maximization principle. It performs structural risk minimization, which
improves the complexity of the classifier with the aim of achieving excellent generalization



Appl. Sci. 2022, 12, 787 6 of 18

performance. The basic objective of this technique is to project nonlinear separable samples
onto another higher dimensional space by using different types of kernel functions. The
SVC algorithm accomplishes the classification task by constructing an optimal hyperplane
that separates the data into categories in a higher dimensional space. SVC was first designed
for binary classification. Nevertheless, it can be adapted for multi-class classification using
the one-vs-one or one-vs-rest (OVR) method [48]. OVR is a heuristic approach for using
binary classification algorithms in performing multi-class classification. It involves splitting
the multi-class dataset into multiple binary classification problems. The one-vs-one strategy
splits a multi-class classification into one binary classification problem per each pair of
classes. To optimize classification performance, the SVC classifier parameters, kernel width
γ, and regularization constant C must be properly chosen.

2.3.2. Random Forest

Random forest (RF) is a machine learning technique that can be used to solve regres-
sion and classification problems [49]. It utilizes ensemble learning, which is a technique
that combines many classifiers to provide solutions to complex problems. RF involves
constructing numerous decision trees using bootstrap samples from the training dataset.
RF also involves selecting a subset of input features at each split point in the construction
of trees. For regression problems, prediction is the average prediction across the decision
trees. A prediction on a classification problem is the majority vote for the class label across
the trees in the ensemble.

The most important hyperparameter to tune for the RF is the number of random
features to consider at each split point. In the regression context, Breiman [49] suggests
setting the number of random features to be one-third of the number of predictors. For
classification problems, Breiman [49] recommends setting this hyperparameter to be the
square root of the number of features. The number of trees is another key hyperparameter to
configure for the RF. Typically, the number of trees is increased until the model performance
stabilizes. A final key hyperparameter is the maximum depth of decision trees used in
the ensemble. Although the use of deeper trees increases accuracy, it also increases the
likelihood of overfitting.

2.4. Performance Metrics

The performance metrics for multi-label classification models are different from those
for multi-class classification problems. A recent survey of multi-label metrics and unified
view of them is given by Wu and Zhou [50]. In this subsection, the metrics used in this
study are reviewed. Let yi be the true set of labels for instance i, ŷi be the predicted set of
labels. Suppose m is the number of instances. The symbol |·| represents the 0 norm (L0
norm), which refers to the number of non-zero elements in the vector. All of the following
evaluation metrics are defined on a per instance basis and the aggregate value is an average
over all instances.

a. Hamming loss

Hamming loss is the fraction of the incorrect labels to the total number of labels, i.e.,

1
mL ∑m

i=1 ∑L
j=1 I(yij 6= ŷij) (3)

where yij and ŷij are the jth element of the true label set and predicted label set for the ith
instance, respectively. I is the indicator function. The quantity L is the total number of
classes. The smaller the value of Hamming loss, the better the performance of the learning
algorithm. The optimal value of Hamming loss function is 0. Figure 3 illustrates an example
of Hamming loss. The loss in this example is calculated as 4/20. It can be interpreted as the
fraction of wrong labels to the total number of labels.
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b. Jaccard index

The Jaccard index is defined as the number of correctly predicted labels divided by the
union of the true and the predicted labels. It ranges from 0 to 1, and 1 is the perfect score.

1
m ∑m

i=1
|yi ∩ ŷi|
|yi ∪ ŷi|

(4)

c. Precision and recall

Precision is defined as follows:

1
m ∑m

i=1
|yi ∩ ŷi|
|ŷi|

(5)

Recall is defined as follows:

1
m ∑m

i=1
|yi ∩ ŷi|
|yi|

(6)

d. Fβ score

The harmonic mean of precision and recall is called the F1 score. The metric of
classification accuracy can be used when the number of samples in each class is balanced.
For an unbalanced dataset, F1 score is more suitable for evaluating the performance of a
model, which is defined as follows:

F1 =
2

1
precision + 1

recall

(7)

Another indicator is the Fβ metric, which is defined as follows:

Fβ =
(

1 + β2
)
× precision× recall

(β2 × precision) + recall
(8)

A higher β value indicates that “recall” is more important than “precision”. When
β = 1, it means that “recall” and “precision” are equally important. When β = 0, Fβ is
equivalent to “precision”, and when β = ∞, Fβ is equivalent to “recall”. For multi-label
classification problems, the number of labels is not necessarily equal; therefore, the Fβ

metric is more suitable for evaluating the performance of the model than the classification
accuracy. The most commonly used β value is 2 (hereinafter referred to as F2), which means
that the importance of “recall” is twice that of “precision”.

e. Exact match

Exact match is also known as subset accuracy (hereinafter abbreviated as Acc.). It is
the most rigorous performance indicator and represents the fraction at which the labels of
each instance can be correctly classified:

1
m ∑m

i=1 I(yi = ŷi) (9)
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where I is the indicator function. Figure 4 illustrates an example of the accuracy of the
subset. In this case, the accuracy is calculated to be 1/4.
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3. Experimental Analysis

In this study, a series of experiments were conducted to illustrate the benefits of the
proposed method. The performance of the proposed method was compared with various
traditional classification algorithms.

In the first experiment, the data of non-random patterns were generated based on the
pattern parameter settings of Hong et al. [24]. They set the analysis window size to 32, and
explored 16 patterns, including 7 single patterns and 9 concurrent patterns (Figure 5). In
the training set, there were 5000 samples for each pattern, and in the test dataset, there
were 1250 samples for each pattern.
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In the present study, Keras [44] was used to build a multi-label convolutional neural
network. To identify an optimized 1D CNN architecture, various structural and learning
parameters were needed, such as the number of filters in each convolution layer, the filter
size, the stride, and the number of neurons in the fully connected layers. The input data
were a 1D vector containing 32 observations, and the output layer contained 7 neurons
corresponding to 7 single pattern types. Since the amount of data for training was limited,
it was not feasible to use deeper architectures without causing significant overfitting. The
proposed 1D CNN had two convolution layers. The first convolution layer had 16 filters
of size 1× 5, and the second convolution layer had 32 filters of size 1× 3. A large filter
size was used in the first convolutional layer because it was assumed that the first layer
should have a higher-level view of the control chart data. The convolution stride in the
network was fixed to 1. The padding type was set to “same” (zero padding) to avoid
the loss of spatial dimensions. The size of the max pooling window was 1× 2 with a
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stride of 2. Dropout was added to each convolution layer to reduce model complexity and
prevent overfitting. The proposed end-to-end 1D CNN included one fully connected layer.
The fully connected layer had 32 neurons that were chosen after trial and error. Figure 6
illustrates the effect of the number of neurons on accuracy. Dropout was also added to the
fully connected layer. The ReLU activation function ( f (x) = max(x, 0)) was used for all
layers, except for the output layer where a sigmoid activation function was used. The CNN
architecture is summarized in Table 1.
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Table 1. Convolutional neural network architecture for experiment 1.

Layer Type Filter Size #Filters Stride Padding

1 Convolution/ReLU 1× 5 16 1 same
2 Max pooling 1× 2 1 2 -
3 Dropout (10%) - - - -
4 Convolution/ReLU 1× 3 32 1 same
5 Max pooling 1× 2 1 2 -
6 Dropout (10%) - - - -
7 Fully connected (32) - - - -
8 Dropout (10%) - - - -
9 Sigmoid (7) - - - -

The Adam optimization algorithm and cross-entropy loss function were used to train
the 1D CNN with a batch size of 16. The 1D CNN was trained up to 100 epochs with a
learning rate of 0.001. To avoid overfitting, an early stopping procedure was employed;
specifically, the loss value of the validation set was monitored in each epoch and the training
procedure was halted if training yielded no improvements within the previous 10 epochs.

This study selected RF [49] and SVC [47] as the competing methods, both of which
can support multi-label classification problems. In this study, a one-vs-the-rest (OVR)
multi-label classifier was established based on SVC. OVR is also called one-vs-all, which
is to build a binary classifier for each class. The above-mentioned classifiers were built in
Python with scikit-learn v0.24.1 [48].

For RF, the maximum depth of each tree was not restricted. The number of features
used for each decision split was set to the square root of the total feature number. The
number of trees (n_estimators) was identified by evaluating the results for a range of values.
Figure 7 illustrates the performance of RF when the number of individual decision trees
were varied. From Figure 7, it follows that increasing the number of trees beyond 1450
would result in minor improvement of accuracy. Therefore, 1450 trees were used to reduce
the computation time.
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For SVC, this study chose the radial basis function (RBF) as the kernel function. The
hyperparameters C and γ of SVC were chosen using the grid search method. Figure 8
illustrates the performance of SVC with different parameter settings. The C value had a
small effect on the accuracy rate (or F2 score). The best performance of SVC was achieved
when the parameters C and γ were set to 4 and 0.03125, respectively. The best γ value
(0.03125) obtained from the grid search was equivalent to 1/the number of input features,
which was 1/32.
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Figure 8. Effect of parameters on support vector classification performance.

Because RF and CNN are stochastic, this study took the average of multiple runs
(10 times) when evaluating model performance. The randomness of CNN comes from
the influence of initial weights. The randomness of RF arises from bootstrap sampling
and feature selection. The performance measures are summarized in terms of the mean
and standard deviation across all runs. All performance metrics presented hereafter are
expressed in decimal form.

Table 2 summarizes the performance of the multi-label CNN classifier and other
traditional classifiers. The multi-class CNN developed by Hong et al. [26] achieved an
accuracy of 0.9235. The proposed multi-label CNN was the best performing classifier. Of
the traditional classifiers evaluated, SVC performed better than RF. The recall rate and
precision of RF were somewhat different, but other classifiers had very similar recall rates
and precision. When partially correct matches were considered, CNN achieved the lowest
Hamming loss (0.0198), indicating its superiority in classification.
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Table 2. Classification performance in experiment 1.

Metric\Algorithm RF SVC CNN

Accuracy 0.8019 (0.0023) * 0.9008 0.9256 (0.0003)
Recall 0.8752 (0.0019) 0.9508 0.9563 (0.0005)

Precision 0.9228 (0.0019) 0.9521 0.9588 (0.0006)
F1 0.8910 (0.0019) 0.9491 0.9568 (0.0004)
F2 0.8805 (0.0019) 0.9496 0.9563 (0.0005)

Hamming loss 0.0383 (0.0005) 0.0228 0.0198 (0.0001)
Jaccard_score 0.8355 (0.0019) 0.9027 0.9150 (0.0005)

*: Numbers in parentheses are standard deviations.

The second experiment was based on the work of Zhang and Cheng [51]. The authors
developed an SVM-based classifier for CCPR. Six basic patterns and four concurrent
patterns were investigated. They set the analysis window size to 40. In the training and test
datasets, 50 samples were used for each pattern class and 13 statistical and shape features
were used as inputs for the SVM. The SVM was optimized using genetic algorithms. Table 3
summarizes the architecture of the proposed CNN. The training process was similar to that
used in the first experiment.

Table 3. Convolutional neural network architecture for experiment 2.

Layer Type Filter Size #Filters Stride Padding

1 Convolution/ReLU 1× 5 32 1 same
2 Max pooling 1× 2 1 2 -
3 Convolution/ReLU 1× 3 128 1 same
4 Max pooling 1× 2 1 2 -
5 Dropout (30%) - - - -
6 Convolution/ReLU 1× 3 256 1 same
7 Max pooling 1× 2 1 2 -
8 Dropout (30%) - - - -
9 Fully connected (128) - - - -

10 Dropout (30%) - - - -
11 Sigmoid (6) - - - -

Using the procedure described in experiment 1, the number of trees for RF was 900.
SVC used RBF kernel function. After a grid search study, the parameters C and γ were
set to 16.0 and 2−4, respectively. Table 4 summarizes the classification results for the
second experiment. According to the results in Table 4, CNN achieved the highest overall
classification accuracy (0.9876), followed by SVC (0.9760) and RF (0.8652). The SVC method
used in this study obtained the same classification accuracy as that reported by Zhang and
Cheng [51]. The proposed multi-label CNN still performed the best in terms of the other
metrics.

Table 4. Classification performance in experiment 2.

Metric\Algorithm RF SVC CNN

Accuracy 0.8652 (0.0034) * 0.9760 0.9876 (0.0016)
Recall 0.8888 (0.0030) 0.9877 0.9930 (0.0016)

Precision 0.9073 (0.0039) 0.9910 0.9937 (0.0018)
F1 0.8953 (0.0032) 0.9882 0.9927 (0.0011)
F2 0.8910 (0.0031) 0.9876 0.9927 (0.0012)

Hamming loss 0.0232 (0.0007) 0.0047 0.0032 (0.0008)
Jaccard_score 0.9073 (0.0028) 0.9814 0.9917 (0.0008)

*: Numbers in parentheses are standard deviations.

Table 5 provides a detailed comparison between the proposed multi-label CNN and
the feature-based SVC developed by Zhang and Cheng [51]. It is clear that the proposed
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multi-label CNN outperformed the feature-based SVC in classifying the concurrent pattern
which is composed of cycle, upward trend and downward shift. It seems that multi-label
CNN has the advantage of classifying complex concurrent patterns.

Table 5. A detailed comparison between the proposed multi-label CNN and the feature-based SVC
developed by Zhang and Cheng [51].

Zhang and Cheng [51] This Work

Pattern Accuracy Label Accuracy

NOR 1.0 (1,0,0,0,0,0) 1.0
CYC 0.98 (0,1,0,0,0,0) 1.0
UT 0.98 (0,0,1,0,0,0) 1.0
DT 1.0 (0,0,0,1,0,0) 1.0
US 1.0 (0,0,0,0,1,0) 0.98
DS 0.98 (0,0,0,0,0,1) 0.98

CYC+UT 0.98 (0,1,1,0,0,0) 1.0
CYC+DS 1.0 (0,1,0,0,0,1) 0.98
UT+DS 0.96 (0,0,1,0,0,1) 0.98

CYC+UT+DS 0.88 (0,1,1,0,0,1) 0.96

The advantages of using a multi-label classification model instead of a multi-class
model for concurrent CCPR can be illustrated with the following example. The original
paper [51] only considered a concurrent pattern of cycles and upward trends. Therefore, the
concurrent pattern of cycles and downward trends can be considered an unknown pattern.
Restricted by the predefined pattern classes of the multi-class model, in the best case, this
concurrent pattern can be classified as a class label including the features of either a cycle
or a downward trend. In the worst-case scenario, it can be classified as a normal pattern
or as some other pattern. Ten additional concurrent patterns that featured a cycle and
downward trend were simulated. Figure 9 depicts these 10 concurrent patterns. The results
of the multi-label CNN are presented in Figure 10. According to the coding scheme of the
original paper, the desired output should be (0,1,0,1,0,0). As evident, only one misclassified
pattern was present. Pattern six was misclassified as a single cyclic pattern. As can be
seen in Figure 10, only the neuron corresponding to the cycle was fired. That is, the output
value was greater than the default threshold value of 0.5. As expected, the traditional
classifiers misclassified all 10 patterns. For RF, three patterns were classified as a single
downward trend and seven patterns were classified as concurrent patterns involving a
cycle and a downward shift. For SVC, all 10 patterns were misclassified as concurrent
patterns involving a cycle and a downward shift. These results indicate that the multi-class
classification models can, at best, select a class label that most resembles the unseen input
pattern as the output. This example demonstrates the benefits of using multi-label CNN in
control chart concurrent pattern recognition.



Appl. Sci. 2022, 12, 787 13 of 18

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 18 
 

the unseen input pattern as the output. This example demonstrates the benefits of using 

multi-label CNN in control chart concurrent pattern recognition. 

 

Figure 9. Test patterns for experiment 2. 

 

Figure 10. The results of the multi-label 1D CNN. 

The third experiment addressed cases in which the basic constituents of concurrent 

patterns may have different change points (cases in which multiple non-random patterns 

do not appear at the same time). Little research has been conducted on such cases [24,32]. 

Zhang and Cheng [51] set the change point of the non-random patterns to a fixed point in 

time. The shift position (𝑃) of shift patterns was set to be 2; shift patterns were present 

when 𝑡 > 𝑃 and other non-random patterns started from 𝑡 = 1. In the present experi-

ment, shifts can occur at different locations in the window. The shift position was set to 

𝑃 ∈ {2, 6, 10, 14, 18}. With this setting, a concurrent pattern that involves a shift may have 

different change points.  

Figure 9. Test patterns for experiment 2.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 18 
 

the unseen input pattern as the output. This example demonstrates the benefits of using 

multi-label CNN in control chart concurrent pattern recognition. 

 

Figure 9. Test patterns for experiment 2. 

 

Figure 10. The results of the multi-label 1D CNN. 

The third experiment addressed cases in which the basic constituents of concurrent 

patterns may have different change points (cases in which multiple non-random patterns 

do not appear at the same time). Little research has been conducted on such cases [24,32]. 

Zhang and Cheng [51] set the change point of the non-random patterns to a fixed point in 

time. The shift position (𝑃) of shift patterns was set to be 2; shift patterns were present 

when 𝑡 > 𝑃 and other non-random patterns started from 𝑡 = 1. In the present experi-

ment, shifts can occur at different locations in the window. The shift position was set to 

𝑃 ∈ {2, 6, 10, 14, 18}. With this setting, a concurrent pattern that involves a shift may have 

different change points.  

Figure 10. The results of the multi-label 1D CNN.

The third experiment addressed cases in which the basic constituents of concurrent
patterns may have different change points (cases in which multiple non-random patterns
do not appear at the same time). Little research has been conducted on such cases [24,32].
Zhang and Cheng [51] set the change point of the non-random patterns to a fixed point
in time. The shift position (P) of shift patterns was set to be 2; shift patterns were present
when t > P and other non-random patterns started from t = 1. In the present experi-
ment, shifts can occur at different locations in the window. The shift position was set to
P ∈ {2, 6, 10, 14, 18}. With this setting, a concurrent pattern that involves a shift may
have different change points.

Table 6 summarizes the results of each classification model. The hyperparameters and
the training process were similar to those used in the second experiment. A comparison
of the results in Tables 4 and 6 reveals that the performance of traditional classifiers
decreased dramatically. It can be seen from the table that CNN’s classification accuracy and
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other performance metrics were better than those of traditional classifiers. What makes
CNN different from other classification algorithms is its translation invariance property.
The results demonstrate that CNN maintains high accuracy when basic constituents of
concurrent patterns may not appear at the same point in time.

Table 6. Classification performance in experiment 3.

Metric\Algorithm RF SVC CNN

Accuracy 0.7652 (0.0039) * 0.9100 0.9406 (0.0031)
Recall 0.7945 (0.0026) 0.9273 0.9557 (0.0043)

Precision 0.8131 (0.0031) 0.9287 0.9546 (0.0041)
F1 0.8005 (0.0029) 0.9259 0.9539 (0.0037)
F2 0.7964 (0.0027) 0.9262 0.9546 (0.0039)

Hamming loss 0.0481 (0.0011) 0.0210 0.0159 (0.0013)
Jaccard_score 0.8143 (0.0036) 0.9185 0.9383 (0.0050)

*: Numbers in parentheses are standard deviations.

The final experiment explored a more rigorous evaluation of the proposed method
using a different setting of P in the training set and the test set. For the training dataset,
the shift position was P ∈ {2, 6, 10}; for the test dataset, it was P ∈ {10, 14, 18}. By
manipulating the shift position P, the non-random patterns encountered in the test stage
can differ from those learned in the training stage. The hyperparameters and the training
process were determined using the same method as that used in the second experiment.
Table 7 summarizes the results of each classification model. A degradation of performance
for all classifiers can be observed. Performance degradation might be due to the setting
of the shift position P. Different settings for P creates variants that are not seen in the
training stage. As evident in Table 7, CNN still performed the best among the classifiers
that were compared. To extent the analysis, this study swapped the training and testing
sets. As indicated in Table 8, CNN outperformed other classifiers in all evaluation metrics.
This experiment reveals that CNN is much more resilient against the variation in change
points of the basic constituents of concurrent patterns. RF performed the worst out of all
the methods. This is because RF takes raw data as inputs and each observation is treated as
an individual feature. This makes RF very sensitive to the location of features.

Table 7. Classification performance in experiment 4.

Metric\Algorithm RF SVC CNN

Accuracy 0.7186 (0.0046) * 0.8480 0.8704 (0.0053)
Recall 0.7448 (0.0040) 0.8597 0.8823 (0.0049)

Precision 0.7612 (0.0046) 0.8597 0.8841 (0.0038)
F1 0.7501 (0.0043) 0.8585 0.8823 (0.0041)
F2 0.7464 (0.0041) 0.8588 0.8820 (0.0045)

Hamming loss 0.0632 (0.0008) 0.0437 0.0401 (0.0017)
Jaccard_score 0.7628 (0.0029) 0.8379 0.8509 (0.0057)

*: Numbers in parentheses are standard deviations.

Table 8. Classification performance in experiment 4 after swapping the training and test sets.

Metric\Algorithm RF SVC CNN

Accuracy 0.7574 (0.0058) * 0.8640 0.9232 (0.0019)
Recall 0.7981 (0.0049) 0.9110 0.9564 (0.0050)

Precision 0.8112 (0.0049) 0.8960 0.9461 (0.0025)
F1 0.7997 (0.0050) 0.8994 0.9486 (0.0032)
F2 0.7977 (0.0049) 0.9049 0.9523 (0.0041)

Hamming loss 0.0509 (0.0016) 0.0307 0.0175 (0.0008)
Jaccard_score 0.8052 (0.0055) 0.8840 0.9324 (0.0029)

*: Numbers in parentheses are standard deviations.
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4. Illustrative Example

In this section, the application of online monitoring is illustrated with the data col-
lected from a cleaning process in integrated circuit (IC) carrier production. The process
quality characteristic of interest is the concentration of a sodium carbonate solution. The
manufacturer applied an individual and moving range chart (I-MR Chart) with supplemen-
tary rules [2–4] to monitor the concentration of the solutions. The chemical concentration
exhibited abnormal variations that might be due to multiple assignable causes: variation
in the initial bath make-up, mistakes in dose calculations, an incorrect dosing formula,
irregular manual dosing operations, or the malfunction of the automatic dosing system.
Irregular demand can also induce abnormal variation in the concentration. The assignable
causes in this example made the data to show periodic changes and downward trends.

To implement the proposed method, the moving/sliding window size was set to 32.
At each step, the window advances to include a new observation and discard an old one.
The multi-label CNN model developed in experiment 1 was applied to this monitoring
task. In the illustration shown below, only parts of the windows are used to display the
results of online monitoring.

Figure 11a shows the 50 observations collected, all of which were standardized to have
zero mean and unit variance. The process began to exhibit a cyclic pattern and downward
trend from the 19th observation onward. Figure 11b is the first analysis window. Although
the number of cyclic pattern data only accounts for 44% (14/32) of the window size, the
CNN classifier can still correctly identify periodic changes. If the assignable cause for the
periodic changes can be correctly diagnosed and eliminated, the cyclical variation will be
no longer present. In case that the assignable causes cannot be eliminated, the downward
trend will become more noticeable as more data are collected from the process. Starting
from the 10th analysis window (Figure 11e), the identification results of the CNN model
are a cyclic pattern and downward trend. Figure 11j shows the complete concurrent pattern
data. It is evident from this figure that the non-random patterns shown in the process data
are cyclic and downward trend.
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5. Conclusions

In this study, a multi-label classification method was developed using CNN architec-
tures to classify control chart concurrent patterns. A series of experiments were conducted
using datasets from previous studies to evaluate the performance of the proposed method.
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The results reveal that a multi-label CNN performed better than other multi-label classi-
fiers that were compared. The superior performance of a multi-label CNN can be partly
explained by its translation invariance property. This feature allows CNN to maintain high
accuracy when basic constituents of concurrent patterns may not appear at the same point
in time. The traditional classifiers take raw data as inputs and each observation is treated
as an individual feature. This makes traditional classifiers very sensitive to the location
of features. This study also used a set of industry data to illustrate the applicability of the
proposed CNN to online monitoring. The results reveal that the proposed multi-label CNN
can be applied to online monitoring and can correctly identify concurrent patterns. The
results reveal that that multi-label CNN has the potential to classify concurrent control
chart patterns. The results of this study contribute to the further realization of smart SPC.

This study has several limitations that can be addressed in future research. First, the
proposed multi-label CNN was compared with traditional classifiers that used raw data as
inputs. In future work, it is worth evaluating the traditional multi-label classifiers using
features as inputs. Second, this study considered the case when the constituents of the
concurrent pattern may not appear at the same time. In practical application, the change
positions of each individual patterns may be more complicated than those considered in
this study. Future research should investigate more sophisticated situations when non-
random patterns may have different change points and change magnitudes. Finally, this
study applied a single threshold to all labels. Future research should consider applying
thresholding techniques, such as multi-thresholds, to improve the performance of multi-
label classification.
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