
����������
�������

Citation: Zeng, M.; Li, S.; Li, R.; Lu, J.;

Xu, K.; Li, X.; Wang, Y.; Du, J.

A Hierarchical Sparse Discriminant

Autoencoder for Bearing Fault

Diagnosis. Appl. Sci. 2022, 12, 818.

https://doi.org/10.3390/

app12020818

Academic Editor: Luis Javier Garcia

Villalba

Received: 18 December 2021

Accepted: 6 January 2022

Published: 13 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

A Hierarchical Sparse Discriminant Autoencoder for Bearing
Fault Diagnosis
Mengjie Zeng 1 , Shunming Li 1,*, Ranran Li 1, Jiantao Lu 1 , Kun Xu 1 , Xianglian Li 1, Yanfeng Wang 2

and Jun Du 2

1 College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics,
Nanjing 210016, China; mjzeng@nuaa.edu.cn (M.Z.); liranran1016@gmail.com (R.L.); lujt@nuaa.edu.cn (J.L.);
kunxu.nuaa@gmail.com (K.X.); lxle@nuaa.edu.cn (X.L.)

2 Sichuan Gas Turbine Research Institute of AECC, Mianyang 621000, China; wanlrmeng@gmail.com (Y.W.);
gtemy@cgte.com.cn (J.D.)

* Correspondence: smli@nuaa.edu.cn

Abstract: Although some traditional autoencoders and their extensions have been widely used in the
research of intelligent fault diagnosis of rotating parts, their feature extraction capabilities are limited
without label information. In response to this problem, this research proposes a hierarchical sparse
discriminant autoencoder (HSDAE) method for fault diagnosis of rotating components, which is a new
semi-supervised autoencoder structure. By considering the sparsity of autoencoders, a hierarchical
sparsity strategy was proposed to improve the stacked sparsity autoencoders, and the particle swarm
optimization algorithm was used to obtain the optimal sparsity parameters to improve network
performance. In order to enhance the classification of the autoencoder, a class aggregation and class
separability strategy was used, which is an additional discriminative distance that was added as
a penalty term in the loss function to enhance the feature extraction ability of the network. Finally,
the reliability of the proposed method was verified on the bearing data set of Case Western Reserve
University and the bearing data set of the laboratory test platform. The results of comparison with
other methods show that the HSDAE method can enhance the feature extraction ability of the network
and has reliability and stability for different data sets.

Keywords: hierarchical sparse strategy; class aggregation and class separability strategy; intelligent
fault diagnosis; auto encoder; particle swarm optimization

1. Introduction

It is necessary to monitor the health of rotating parts and diagnose faults in complex
working conditions because the working environment of high-speed rotating machinery is
usually very harsh and complicated [1,2]. However, the artificially extracted features of
traditional fault diagnosis methods are usually shallow features. Therefore, the research of
intelligent fault diagnosis methods based on deep learning methods has received more and
more attention. As an important branch of deep learning methods, supervised learning
models with powerful feature extraction capabilities and data analysis capabilities have
been applied to fault diagnosis [3,4]. Lin H et al. [5] used the strong non-mapping and
self-learning ability of the neural network to build a BP neural network model to adapt to
the state detection and fault diagnosis of rolling bearings and achieved satisfactory fault
classification results. Tch CK et al. [6] studied the use of the ELM algorithm to classify
bearing faults, and experiments show that the performance of the ELM algorithm is better
than the BP algorithm. However, many studies have shown that simple supervised models
are greatly affected by parameter adjustments and data input. In order to dig deeper into
the deep rules of data, unsupervised learning models have begun to be widely studied.

Through the transformation of the original data to characterize the deep features of
the sample, the common unsupervised learning network is used for feature extraction and

Appl. Sci. 2022, 12, 818. https://doi.org/10.3390/app12020818 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12020818
https://doi.org/10.3390/app12020818
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-7815-9586
https://orcid.org/0000-0002-9674-165X
https://orcid.org/0000-0001-7827-2637
https://doi.org/10.3390/app12020818
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12020818?type=check_update&version=1


Appl. Sci. 2022, 12, 818 2 of 18

data analysis [7]. In order to obtain good classification performance, the unsupervised
model is often combined with the supervised model to form a semi-supervised model
to achieve the purpose of adjusting the performance of the unsupervised model with
the help of label information to obtain a reliable classification model. Wang FT et al. [8]
proposed an enhanced depth feature extraction method based on Gaussian radial basis
kernel function and autoencoder. The advantage of this method is that it can obtain higher
test accuracy based on fewer iterations, but the disadvantage is that it requires manual
experience to adjust network parameters. Zhu J et al. [9] proposed a new intelligent
fault diagnosis method based on principal component analysis and deep belief network,
which can realize reliable fault analysis based on original vibration data, but it is prone
to overfitting.

As a typical unsupervised learning network, autoencoders have received extensive
attention [10,11]. Zhao ZH et al. [12] proposed a frequency domain feature extraction
autoencoder network, which uses an asymmetric autoencoder to learn the mapping rela-
tionship between time-domain signals and frequency-domain signals and obtains a better
clustering effect on bearing data. Li K et al. [13] proposed a rolling bearing fault diagno-
sis method based on the sparse and nearest neighbor preservation theory deep extreme
learning machine, which can unsupervised the deep law of data mining and supervised
learning to solve the least square classification diagnosis. The results show that sparsity
has a good ability to improve neural network performance. In addition, many studies
have also shown that improving the sparsity of the autoencoder can enhance its network
performance [14,15]. Moreover, the introduction of category information into the feature
extractor can also enhance the effect of autoencoder feature extraction [16,17], but most of
the existing research still does not consider this approach [18–22].

Due to the characteristics of deep neural networks, the selection of hyperparameters
in the model is still very important [23–25]. To this end, genetic algorithm [26], cuckoo
algorithm [27], gray wolf algorithm [28] and other methods have been used for hyperpa-
rameter optimization to improve the performance of neural networks. Zhou J et al. [29]
researched and proposed a GA-SVM rolling bearing intelligent evaluation method based
on feature optimization. The optimal parameter optimization model was obtained through
a genetic algorithm, and high diagnostic accuracy was achieved. Chen J et al. [30] intro-
duced the gray wolf optimization algorithm to optimize the key parameter smoothing
factor of the model to obtain an ideal classification model. The results show that this method
can achieve an effective diagnosis of bearing faults under different working conditions
under a small sample training set. The above research shows that selecting appropriate
hyperparameter optimization algorithms for different network structures can effectively
improve the performance of the network model.

This study fully considers the sparsity, classification and hyperparameter selection
of autoencoders and proposes a hierarchical sparse discriminant autoencoder (HSDAE)
method. The proposed HSDAE method can improve the feature extraction performance of
autoencoders from the aspects of network sparsity and classification and is used for fault
diagnosis of rotating components under complex working conditions. A novel hierarchical
sparse strategy was used to enhance the sparse connection between deep network layers,
and at the same time, was combined with particle swarm optimization to obtain the
optimal sparse hyperparameters to improve network sparsity. Class aggregation and class
separability strategy were used as discriminative distance to enhance the classification
ability of the network, thereby enhancing the feature extraction ability of the improved
autoencoder. The proposed method was compared and analyzed with a variety of existing
similar methods, and the results show the superiority of the proposed method.

The main innovations and contributions are as follows:

(1) In this paper, a novel semi-supervised autoencoder (hierarchical sparse discriminant
autoencoder) is proposed to extract features for fault diagnosis;
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(2) A novel hierarchical sparsity strategy is proposed to enhance the sparsity of au-
toencoder networks, combining class aggregation and class separability strategy to
improve feature extraction performance;

(3) Experimental comparative analysis verifies that the proposed method can achieve
reliable fault diagnosis for rotating parts under complex working conditions;

The rest of this article is organized as follows: Firstly, Section 2 introduces the basic
principles of stacked sparse autoencoders and particle swarm optimization algorithms.
Secondly, Section 3 introduces the improvement of the original method in this study and
the specific process of the proposed method. Section 4 then introduces the experimental
results and verifies the effectiveness of the proposed method on the CWRU bearing data
set and private-bearing data set. Finally, Section 5 is the conclusion.

2. Theoretical Background
2.1. Stacked Sparse Autoencoder

Autoencoder (AE) is a three-layer unsupervised neural network model, which is
composed of an input layer, a hidden layer and an output layer, as shown in Figure 1.
The core principle of AE is to make the output y equal to the input x and find a brief
representation of the deep law of the original data through the encoding and decoding
transformation of the hidden layer. The reconstruction error EAE of AE, whose input layer
is m-dimensional, is expressed as:

EAE =
1
m

m

∑
i=1
‖x(i)− y(i)‖2 (1)

Figure 1. The structure diagram of AE model.

Different from traditional autoencoders, the Sparse Auto Encoder (SAE) network
adds KL divergence during the training process to limit the sparseness of the network to
enhance the performance of the autoencoder [31]. Most of the nodes in the hidden layer are
restricted by sparseness to suppress their activity, and only a small number of nodes are
activated to explore the potential characteristics of the data. Hj(xi) indicates the activation
level of the j-th neuron in the hidden layer, and the average activation level ρ̂j of m neurons
in the hidden layer can be expressed as:

ρ̂j =
1
m

m

∑
i=1

[Hj(xi)] (2)

In order to better optimize the average activation degree, KL divergence was added to
the SAE model. The KL divergence formula is as follows:

KL(ρ ‖ ρ̂j) = ρ log
ρ

ρ̂j
+ (1− ρ) log

1− ρ

1− ρ̂j
(3)

Then the loss function ESAE of traditional SAE is:

ESAE =
1
m

m

∑
i=1
‖x(i)− y(i)‖2 + β

n

∑
j=1

KL(ρ ‖ ρ̂j) (4)
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where m is the dimension of the input data, n is the number of neurons in the hidden layer
and β is the sparse penalty coefficient.

The Stacked Sparse Autoencoder (SSAE) connects multiple SAE structures by stacking,
making full use of the characteristics of SAE to remove high-dimensional interference and
extract low-dimensional features, enhancing the robustness of the autoencoder network, as
shown in Figure 2 [32,33].

Figure 2. The structure diagram of SSAE model.

2.2. Particle Swarm Optimization

The particle swarm optimization algorithm (PSO) is also called the bird swarm
algorithm [34]. Its core principle is to obtain the best position of the bird swarm by simulat-
ing the predation behavior of the bird swarm. The algorithm designs a massless particle to
simulate individuals in a flock of birds. Each particle has only two attributes: speed and
position. Speed indicates the speed of the particle’s movement, and position indicates the
direction of the particle’s movement. At the beginning of the predation behavior, the speed
and position of each particle are random, and the fitness function is used as the basis for
determining the optimal position during the movement.

Assuming that N particles are foraging together, the velocity vn and displacement xn
of the n-th particle in the iterative process will be updated by Formulas (5) and (6):

vn(t + 1) = ωvn(t) + c1rd(pbn − xn(t)) + c2rd(gbn − xn(t)) (5)

xn(t + 1) = xn(t) + vn(t + 1) (6)

where ω is a non-negative inertia factor used to balance the local and global optimization
capabilities of particles. c1 and c2 are learning factors, which mainly control the influence of
the individual extreme value and the global extreme value of the particle on the change in
velocity. rd represents the random factor whose value is between 0 and 1, which enhances
the particle’s ability to remove the local optimum with the help of perturbation. While pbn
and gbn represent the local optimal position and the global optimal position of the particle
swarm currently, respectively.

3. Proposed Methodology
3.1. Hierarchical Sparse Parameter Strategy

The loss function is very important in the training of the neural network. Choosing
an appropriate neural network loss function can make the neural network model parame-
ters converge to a value that can better describe the characteristics of the trained model [35].
The loss function is mainly divided into regression loss function and classification loss
function, and different loss functions have different convergence characteristics. Therefore,
the appropriate neural network loss function should be selected according to the purpose
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and nature of the neural network. Since the purpose of this research is to achieve classifica-
tion, combined with the unsupervised nature of the autoencoder, the mean square error
is selected as the basic loss function of the autoencoder. The traditional SSAE connects
multiple identical SAE in series and uses the output of the previous SAE as the output of
the next SAE. The loss function ESSAE of traditional SSAE is:

ESSAE =
1
m

m

∑
i=1
‖x(i)− x̂(i)‖2 + β

N

∑
k=1

nk

∑
j=1

KL(ρ ‖ ρ̂j) (7)

In the formula, N is the number of stacked layers of SSAE and nk represents the
number of neurons in the k-th layer.

It can be deduced from the formula that the traditional SSAE sparsity strategy is to
give each layer of neurons the same expected activation ρ and the same sparsity parameter
weight β, as shown in Figure 3a. Although it is impossible to reach the activation state
shown in the figure during the training process, the figure shows the desired state of the
network. This same sparse expectation may limit the learning ability of the deep sparse
network to a certain extent.

Figure 3. The visual interpretation of hierarchical sparse strategy. (a) The schematic diagram of SSAE
ordinary sparse strategy; (b) the schematic diagram of SSAE hierarchical sparse strategy.

However, considering that the number of neurons in each layer of a sparse network
is usually not the same, the same sparse activation and sparse weight are not the optimal
parameter selection. By aiming at this problem, a hierarchical sparsity strategy is proposed
to randomize the sparsity activation and sparsity weights to expand the sparsity of the
sparse network, as shown in Figure 3b. The loss function EHS of the improved SSAE using
the hierarchical sparse strategy is:

EHS =
1
m

m

∑
i=1
‖x(i)− x̂(i)‖2 +

N

∑
k=1

nk

∑
j=1

βkKL(ρk ‖ ρ̂j) (8)

where βk is the sparse weight of the k-th layer of neurons and ρk is the expected activation
degree of the k-th layer.

Since the hierarchical sparse strategy is equivalent to increasing the randomness
between hyperparameters, it is difficult to achieve the best results in manual tuning.
Therefore, combined with the particle swarm optimization algorithm, the network sparsity
is adaptively optimized to obtain reliable, optimal sparsity parameters.

3.2. Class Aggregation and Class Separability Strategy

The accuracy of the classifier in machine learning is largely affected by the extracted
features. Furthermore, the more obvious the difference between the features, the better the
classification effect. Thus, to improve the feature extraction capability of the autoencoder,
a class aggregation and class separability strategy are introduced to limit feature mining
from the data level to achieve better classification results.
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The class aggregation and class separability strategy mean that the data points of
each class are as compact as possible, and the distance between classes is as far as possible.
Assuming that the same type of data point is drawn on a two-dimensional plane in the
form of scattered points, there is usually a circle with the smallest radius to live all the data
points. At this time, the center of this circle can be regarded as the fitting center point δ of
this type of data, and the radius of this circle can be called the class radius r of this data type.
According to this idea, assuming that there are N classes and the i-th class has ni group
data di, the class fitting center point δi and class radius ri of the i-th class are defined as:

δi =
1
ni

ni

∑
k=1

dik (9)

ri =
1
ni

ni

∑
k=1
‖dik − δi‖2 (10)

At the same time, when there are N classes in total, the radius Rc between classes and
distance Dc between classes is defined as:

Rc =
1
N

N

∑
i=1

ri (11)

Dc =
2

N(N − 1)

N−1

∑
i=1

N

∑
j=i+1

∥∥δi − δj
∥∥2 (12)

When plotting data points of different classes on the same plane, the larger the distance
between the fitting center points of each class, the better the class separation. Meanwhile,
the smaller the class radius of each data class, the better the class aggregation. When the
data points are distributed under these two conditions, it can be considered that the feature
extraction effect is enhanced, as shown in Figure 4.

Figure 4. The schematic diagram of class aggregation and class separability strategy.

The loss functions Ec of class aggregation and class separability strategy are as follows:

Ec = Rc − Dc + γ‖d‖2 (13)

where γ‖d‖2 is the regular term and γ is the regular term coefficient. In the optimization
process, ensure that Ec takes the minimum value. In order to avoid negative optimization,
the regular term can play a balancing role.

3.3. Parameter Optimization Strategy
3.3.1. Hierarchical Sparse Parameter Optimization with PSO

Using traditional PSO to optimize the hierarchical sparse parameters is easy to fall into
the local optimum, so it is necessary to make some hyperparameters of PSO dynamic. The
most important hyperparameters in PSO are the inertia factor ω and the learning factors
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c1 and c2. ω mainly affects the range of optimizing ability, c1 mainly affects self-learning
ability and c2 mainly affects group learning ability. In this regard, use the following formula
to make the inertia factor and the learning factor dynamic.

ω = (ω0 −ωend)(T − t)/T + ωend (14)

c1 = cmax − (cmax − cmin) sin(90t/T) (15)

c2 = cmax + (cmax − cmin) sin(90t/T) (16)

where T is the total number of iteration steps, t is the number of current iteration steps, ω0
is the initial inertia factor, ωend is the final inertia factor and ω is found to change linearly
with the iteration process. cmax and cmin are the maximum learning factors and minimum
learning factors in the iteration process, respectively.

3.3.2. Dynamic Optimization of Learning Rate

The learning rate mainly affects the convergence speed and direction of the loss
function in the deep neural network training process. In order to solve the optimization
problem of the learning rate lr, this paper adopts the inverse time learning rate decay
method to optimize the learning rate dynamically, and the specific expression is as follows:

lr = 0.01/(1 + 10× (t/T))0.75 (17)

where T is the total number of iteration steps, and t is the current number of iteration steps.

3.4. HSDAE

The proposed HSDAE method combines SSAE with hierarchical sparsity strategy,
class aggregation and class separability strategy and uses PSO to obtain the optimal sparsity
hyperparameters. Its complete structure is shown in Figure 5.

Figure 5. The complete framework of the proposed method.

Unlike ordinary unsupervised autoencoders, HSDAE connects a layer of Softmax
classifier after the last hidden layer to form a semi-supervised model. The loss function
EsemAE of the semi-supervised autoencoder model is as follows:

EsemAE =
1

m1

m1

∑
i=1
‖xi − x̂i‖2 − 1

m2

m2

∑
i=1

yi ∗ log ŷi (18)

where m1 refers to the dimension of the input data and m2 refers to the dimension of the
classification layer. The first half of the formula is the reconstruction function of the autoen-
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coder, which retains the unique data reconstruction ability of the autoencoder; the second
half of the formula is the cross-entropy function, which combines the label information
with the unsupervised autoencoder to improve the network classification ability.

The loss function EHSDAE of the improved autoencoder after combining the above
two strategies is:

EHSDAE =
λ1

m1

m1

∑
i=1
‖xi − x̂i‖2 − λ2

m2

m2

∑
i=1

yi ∗ log ŷi +
N

∑
k=1

nk

∑
j=1

βkKL(ρk ‖ ρ̂j) + λ3·Ec (19)

in the formula, λ is the weighting factor to be set.

3.5. Overview of the Algorithm

In this study, the complete process is mainly divided into three parts, namely the PSO
process, the training process and the testing process. Figure 6 is a complete flow chart of
the proposed method. It should be noted that PSO is only used to optimize the sparse
parameters to ensure network sparsity and speed up the optimization.

Figure 6. The detailed flow chart of the proposed method.

The specific steps are as follows:

1. Obtain the vibration signals of rotating machinery components, perform data prepro-
cessing, convert them into frequency domain data and randomly divide the frequency
domain data set into a training set and a testing set;

2. Initialize HSDAE parameters and set key hyperparameters, such as the number of
neurons in each layer, batch size, number of iterations, etc.;

3. PSO parameter initialization, set the optimization boundary, inertia factor, learning
factor, total number of particles and number of iterations;

4. The HSDAE network uses the training set for pre-training to obtain the initial values
of the variables in the network;

5. Use the hierarchical sparse loss function as the fitness function of PSO to obtain the
optimal sparse parameters. Use the optimal sparse parameters to train the HSDAE
and calculate the accuracy. If the accuracy does not meet the conditions, return to
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step 4 to continue iterating until the accuracy threshold is met, and then the optimal
sparsity parameter is output;

6. Use the optimal sparse parameters to train the HSDAE, use the testing set to cross-
validate, stop training and save the model when the accuracy meets the threshold;

7. Use the testing set to test the model and output the diagnosis result.

4. Experimental Verification
4.1. Experimental Test 1

In order to verify the role of the HSDAE method in fault diagnosis of rotating ma-
chinery components, the rolling bearing public data set (CWRU) of Case Western Reserve
University in the United States was selected for verification. The test platform is shown
in Figure 7. In this study, the driving end signal with a sampling frequency of 48kHz was
selected as the test data.

Figure 7. The CWRU data set experiment platform.

The data under four load conditions of HP0, HP1, HP2 and HP3 are used in the CWRU
data set. There are 10 types of faults in each load condition, including normal conditions.
The experiment uses data augmentation to increase the number of samples, which means
overlapping sampling with a smaller sample length. There are 600 groups of each type of
failure sample, and each group has a sample length of 600. Half of the data are randomly
selected as the testing set, and the remaining half is divided into the training set. The
detailed division of the data set is shown in Table 1. The parameters of the PSO algorithm
are consistent in this experiment; the optimization boundary is [0.0050, 0.4000], [ω0, ωend,
c1, c2] are set to [0.1, 0.01, 1.5, 1.5], respectively, the total number of particles is 20 and the
number of iteration steps N is 100. For hierarchical sparse parameters [ρ1, ρ2, ρ3, β1, β2,
β3], the optimized dimension is 6, and for non-hierarchical sparse parameters [ρ, β], the
optimized dimension is 2. The parameter settings of HDSAE are shown in Table 2.

Table 1. The test 1 data set detailed partition table.

Data Set Load (HP) Type of Failure Depth of Failure (mm) Number of Samples Label

A/B/C/D 0/1/2/3

IF1 0.5334 600/600/600/600 0
IF2 0.3556 600/600/600/600 1
IF3 0.1778 600/600/600/600 2
OF1 0.5334 600/600/600/600 3
OF2 0.3556 600/600/600/600 4
OF3 0.1778 600/600/600/600 5
RF1 0.5334 600/600/600/600 6
RF2 0.3556 600/600/600/600 7
RF3 0.1778 600/600/600/600 8
N 0 600/600/600/600 9



Appl. Sci. 2022, 12, 818 10 of 18

Table 2. The parameter settings of HDSAE in the CWRU data set.

Parameter
Name

Number of Hidden
Layer Neurons

Activation
Function

Compression
Layer

Learning
Rate

Number of
Iterations γ λ1 λ2 λ3

HSDAE 512-256-128 Sigmoid-Tanh-
Sigmoid 10(ReLU) Formula (17) 300 0.01 0.5 1 1

4.1.1. Sparsity Verification

In order to verify the influence of the hierarchical sparsity strategy on the sparsity
of the proposed method network neurons, the HSDAE method was tested on the above
four data sets. The test experiment adopts the controlled variable method, one group
uses hierarchical sparse parameters, and the other group uses non-hierarchical sparse
parameters. The optimal sparsity parameter calculated by PSO is applied to the two groups,
and finally, the KL divergence is used to measure the sparsity of each layer of neurons.
Further, the smaller the KL divergence value, the smaller the average activation of neurons
in the layer and the higher the sparsity. In order to ensure the reliability of the data, the
average value of 20 test data is used for comparative analysis. Among them, the optimal
hierarchical sparse parameter is [0.0679, 0.0448, 0.0396, 0.0398, 0.0336, 0.0522], and the
optimal non-hierarchical sparse parameter is [0.1064, 0.0592].

The experimental results of HSDAE with hierarchical strategy and non-hierarchical
strategy in data sets A, B, C and D are shown in Figure 8. Among them, KLx in Figure 8a
represents the KL divergence of the neurons in the x-th hidden layer. From the results in
the figure, the hierarchical sparsity strategy has a significant impact on the sparsity of the
first layer of neurons and the second layer of neurons because the KL divergence value of
the hierarchical strategy is smaller than that of the non-hierarchical strategy. Although the
KL divergence values of neurons in the third layer have little difference, the overall KL
loss hierarchical strategy is smaller than that of the non-hierarchical strategy, as shown in
Figure 8b. In short, the measurement results of the sparsity of neurons in each layer show
that the hierarchical sparsity strategy can adjust the sparsity of each layer of a multi-layer
network and enhance the sparsity of the network.

Figure 8. The effect of hierarchical sparsity strategy on network sparsity. (a) KL divergence of neurons
in each layer of different data sets; (b) KL divergence total loss for different data sets.

4.1.2. Class Aggregation and Class Separability Verification

In order to test the effects of class aggregation and class separability strategy, the t-SNE
method is used to visualize the dimensionality reduction in the feature layer extracted by
the model. The test methods are the complete HSDAE method and the HSDAE method
without discriminant distance, using the optimal hierarchical sparse parameters. Then, the
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experimental results of the above two methods in data set C are selected and visualized by
the t-SNE method. In Figure 9a, the original data overlaps and is chaotic, and the classifica-
tion effect is not good. The HSDAE method without discriminant distance in Figure 9b can
effectively separate all classes, and only a small amount of data is misclassified, but the uni-
formity and aggregation of the data points are poor. The HSDAE method in Figure 9c can
not only separate all classes but also enhance the aggregation of each class. The data points
are more evenly distributed and have good feature extraction capabilities. In summary, the
class aggregation and class separation strategy can effectively enhance the aggregation of
data classes and increase the distance between data classes. The experimental results reflect
the excellent classification performance of the HSDAE method.

Figure 9. Comparison of t-SNE diagrams of experimental results on data set C. (a) The t-SNE graph
of data set C; (b) the t-SNE diagram of HSDAE features without discriminant distance; (c) the t-SNE
diagram of HSDAE features.

4.1.3. Comparison Results of Different Methods

In order to analyze the performance of the HSDAE method, the proposed method
was compared with the methods in the different literature for performance testing. The
comparison methods mainly include the following four methods: LGSSAE [36], FDSAE [37],
DisAE [38] and BNAE [39]. By considering the contingency of a single experiment, the
following experimental results are the average results of 20 experiments.

It can be summarized from Table 3 that in the four data sets, the HSDAE method has
the highest average diagnostic accuracy compared with other methods, and the highest
average test accuracy can reach 99.39%. Because the load and speed of the four data sets
are different, the comparison method shows different diagnostic performances on the four
data sets, and the average test accuracy fluctuates more than 1%. The proposed method has
a more stable performance on the four data sets, and the average test accuracy fluctuates
less than 0.3%, indicating that it has a certain degree of robustness. Among the comparison
methods, BNAE performed the worst, with an average accuracy of about 80%; LGSSAE and
FDSAE achieved good results in data set A, but they did not perform well on data sets B, C
and D; DisAE has achieved high test accuracy on multiple data sets, but the stability is not
as good as HSDAE. In addition, from the standard deviation of the 20 experimental results,
the standard deviation of the HSDAE method is the smallest, and its maximum standard
deviation is only 0.0040, which shows strong stability compared with other methods.

To further illustrate the stability of the proposed method, 20 experimental results
of data set D are selected, and a box plot is drawn, as shown in Figure 10. Moreover,
the smaller the length of the blue box, the smaller the data fluctuation. Therefore, the
LGSSAE, DisAE and HSDAE methods are more stable. However, the red “+” in the figure
indicates the abnormal value in the data. Thus, the LGSSAE method and the DisAE method
occasionally lose their diagnostic level. In general, the proposed method shows the best
stability among all methods.
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Table 3. The experimental results of different comparison methods in the CWRU data set.

Data Sets A B C D

LGSSAE
Average accuracy 90.23% 87.31% 87.86% 88.11%

Standard deviation 0.0477 0.0452 0.0375 0.0382

FDSAE
Average accuracy 95.51% 89.24% 88.94% 88.61%

Standard deviation 0.0230 0.0501 0.0423 0.0328

DisAE
Average accuracy 96.12% 93.81% 94.73% 92.80%

Standard deviation 0.0276 0.0246 0.0099 0.0340

BNAE
Average accuracy 83.25% 80.80% 79.93% 81.86%

Standard deviation 0.0524 0.0518 0.0548 0.0523

HSDAE
Average accuracy 99.39% 99.11% 99.11% 99.09%

Standard deviation 0.0040 0.0036 0.0030 0.0031

Figure 10. Comparison of experimental results of different methods in data set D.

4.1.4. Visual Analysis of the Proposed Method

The confusion matrix can directly reflect the diagnosis results of the intelligent fault
diagnosis method, so the confusion matrix is selected to analyze the HSDAE method
further. It is the confusion matrix diagram of the 20th trial of the HSDAE method on
data set A, as shown in Figure 11. It can be seen from the figure that, for the data of ten
types of failures, the diagnostic accuracy of 99.27% can be achieved on the training set,
and diagnostic accuracy of 99.1% can be achieved on the testing set. In the training set,
categories 2, 4, 5, 6 and 9 all achieve 100% diagnostic accuracy, and the remaining categories
have a small amount of misclassification. In the testing set, categories 1, 4, 6 and 9 achieved
100% diagnostic accuracy; except for categories 0 and 3, the number of misclassifications
was very small. In conclusion, the diagnosis results show that the proposed method can
achieve accurate fault diagnosis of rolling bearings.

4.2. Experimental Test 2

In order to verify the diagnostic capabilities of the network model proposed in this
paper, four sets of rolling bearing data with different speeds from the same private test
platform in the author’s laboratory are selected for verification testing. In this study, the
signal with a sampling frequency of 25.6 kHz was selected as the test data. The test platform
is shown in Figure 12.

Similar to test one, the four types of fault data, including normal conditions under
the conditions of rotation speed 900 rpm, 1100 rpm, 1300 rpm and 1500 rpm, are obtained,
respectively. The length of each group of samples is 600, and the ratio of the testing set
to the training set is the same as that of test one. The specific data set division is shown
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in Table 4. The test data also uses the frequency domain data processed by the data
enhancement method. The PSO hyperparameter settings are the same as in experiment
one. The parameters of HDSAE are shown in Table 5.

Figure 11. Confusion matrix of the 20th experiment of HSDAE model on data set A. (a) The confusion
matrix of the HSDAE model in the training set; (b) the confusion matrix of the HSDAE model in the
testing set.

Figure 12. The private data set experiment platform.

Table 4. The test 2 data set detailed partition table.

Data Set Load (rpm) Type of Failure Depth of Failure (mm) Number of Samples Label

E/F/G/H 900/1100/1300/1500

IF 0.500 1500/1500/1500/1500 0
OF 0.500 1500/1500/1500/1500 1
RF 0.500 1500/1500/1500/1500 2
N 0 1500/1500/1500/1500 3

Table 5. The parameter settings of HDSAE in the private data set.

Parameter
Name

Number of Hidden
Layer Neurons

Activation
Function

Compression
Layer

Learning
Rate

Number of
Iterations γ λ1 λ2 λ3

HSDAE 512-256-128 Sigmoid-Tanh-
Sigmoid 4(ReLU) Formula

(17) 300 0.01 0.5 1 1

4.2.1. Sparsity Verification

Same as test one, the HSDAE method is used to verify the performance of the hierar-
chical sparsity strategy. With the help of the comparison results on the four data sets of
E, F, G and H, the average KL divergence value of each layer of neurons is analyzed to
verify the impact of the hierarchical sparsity strategy on sparsity. The data in the figure
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are the average of 20 trials to eliminate the randomness of the data. Among them, the
optimal hierarchical sparse parameter is [0.0888, 0.1011, 0.1069, 0.1060, 0.0570, 0.0304], and
the optimal non-hierarchical sparse parameter is [0.0561, 0.1009].

Figure 13 shows the experimental results of the network using the hierarchical sparse
strategy and the network not using the hierarchical sparse strategy in the data sets E, F, G
and H. Based on the observation of Figure 13a, the KL divergence values of the first layer
of neurons and the third layer of neurons are significantly reduced under the action of the
hierarchical sparse strategy. Although on the four data sets of E, F, G and H, the sparsity of
the second layer of neurons is not affected by the hierarchical sparsity strategy. However,
Figure 13b shows that the hierarchical sparse strategy has obvious sparse optimization
for the overall HSDAE network. In summary, the experimental results of four sets of data
show that the hierarchical sparsity strategy can indeed reduce the correlation between the
sparsity of neuron layers and the number of layers in the multi-layer network.

Figure 13. The effect of hierarchical sparsity strategy on network sparsity. (a) KL divergence of
neurons in each layer of different data sets; (b) KL divergence total loss for different data sets.

4.2.2. Class Aggregation and Class Separability Verification

Similarly, the t-SNE method is adopted to reduce the dimensionality of the feature
layer and visualize it. The whole test process is the same as experiment one, and the optimal
sparse parameter is still selected for the sparse parameter. The t-SNE comparison chart of
a certain experimental result on the data set G is shown in Figure 14. Figure 14a illustrates
that although the four types of faults in the original data set can be basically separated, each
category still has a certain degree of dispersion; HSDAE without discriminant distance can
extract the features of the original data, as shown in Figure 14b shows that the distance
between the class and the class is obviously increased, but the aggregation within the class
is slightly worse, and the data point distribution is messy. The HSDAE method has good
class aggregation and class separability, as shown in Figure 14c; the distance between the
class and the class center is large, and the data points are well-distributed. In summary,
the t-SNE graph can reflect the class aggregation and class separability strategy, which
can enhance the distance between classes, indicating that the proposed method has good
feature extraction capabilities.

4.2.3. Comparison Results of Different Methods

Same as test 1, the proposed method with LGSSAE, FDSAE, DisAE, BNAE on four
data sets of E, F, G and H are compared. Table 6 includes the average accuracy and standard
deviation of the 20 experimental results of different methods on the above four data sets.
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Figure 14. Comparison of t-SNE diagrams of experimental results on data set G. (a) T-SNE graph of
data set G; (b) the t-SNE diagram of HSDAE features without discriminant distance; (c) the t-SNE
diagram of HSDAE features.

Table 6. The experimental results of different comparison methods in the private data set.

Data Sets E F G H

LGSSAE
Average accuracy 81.06% 85.23% 88.30% 89.52%

Standard deviation 0.0572 0.0484 0.0215 0.0638

FDSAE
Average accuracy 97.66% 98.71% 98.73% 99.01%

Standard deviation 0.0066 0.0085 0.0109 0.0125

DisAE
Average accuracy 92.38% 94.96% 96.59% 98.10%

Standard deviation 0.0485 0.0116 0.0060 0.0031

BNAE
Average accuracy 71.85% 74.11% 76.96% 85.43%

Standard deviation 0.0346 0.0386 0.0368 0.0261

HSDAE
Average accuracy 99.32% 99.60% 99.78% 99.88%

Standard deviation 0.0021 0.0012 0.0008 0.0006

It can be obtained from the table that the HSDAE method shows the best performance
compared with other methods. On the private data set, BNAE performed the worst. It did
not achieve 80% accuracy on the three data sets, and the maximum difference in average test
accuracy reached 13.58%. The maximum difference in average accuracy between LGSSAE
and DisAE is similar, but the overall accuracy of DisAE is higher than that of LGSSAE.
FDSAE showed superior performance on the four data sets. The average accuracy is greater
than 97.5%, and the maximum difference in average accuracy is only 1.35%. However, from
the perspective of average test accuracy and standard deviation, the reliability and stability
of FDSAE are still lower than the HSDAE method.

To further analyze the performance of HSDAE, select 20 experimental results of
different methods on data set E and draw a box plot, as shown in Figure 15. It can be
concluded from the figure that the stability of FDSAE, DisAE and HSDAE methods is
significantly better than that of LGSSAE and BNAE methods. Although the median line of
the FDSAE is similar to that of the HSDAE, its blue box is longer than that of the HSDAE,
indicating that the stability of FDSAE is not as good as that of HSDAE. Therefore, HSDAE
also shows excellent stability and reliability on private data sets.

4.2.4. Visual Analysis of the Proposed Method

Similarly, a confusion matrix is used to analyze the fault diagnosis capability of the
proposed method visually. Figure 16 is a confusion matrix diagram of the 20th trial of
the HSDAE method on the data set H. It can be seen from the figure that for the four
types of fault data, 100% diagnosis accuracy can be achieved on the training set and 99.87%
diagnosis accuracy on the testing set. In the testing set, category 0, category 1 and category 3
achieve 100% accuracy, category 2 has four sets of data misclassification, and the recognition
accuracy rate is 99.46%. In conclusion, the diagnosis results show that the proposed method
can achieve accurate fault diagnosis of rolling bearings.



Appl. Sci. 2022, 12, 818 16 of 18

Figure 15. Comparison of experimental results of different methods in data set E.

Figure 16. Confusion matrix of the 20th experiment of HSDAE model on data set H. (a) The confusion
matrix of the HSDAE model in the training set; (b) the confusion matrix of the HSDAE model in the
testing set.

5. Conclusions

This paper proposes a hierarchical sparse discrimination autoencoder method for the
intelligent diagnosis of rotating mechanical component faults. Through the experimental
verification and analysis of the CWRU data sets and the private data sets, the following
conclusions can be drawn:

(1) The proposed hierarchical sparse strategy is used to optimize the SSAE, giving differ-
ent sparse activation and sparse regularization weights to the neurons in each layer of
SSAE, which enhances the randomness of the network sparseness and achieves better
the diagnostic effect. Using the PSO to obtain the best sparse parameters adaptively
driven by data can improve network sparseness and avoid the complexity of manual
parameter selection;

(2) The class aggregation and class separability strategy can effectively enhance the
classification ability of the autoencoder network. It is proved from the side that the
proposed method can optimize the feature extraction performance of the autoencoder;

(3) Compared with other methods, the standard deviation of the HSDAE method pro-
posed in this paper is small, and the fault diagnosis accuracy is high, which reflects
the effectiveness, reliability and stability of the HSDAE method in fault diagnosis.

Regarding the future work direction, in this study, the hierarchical sparse strategy
and discriminative distance are combined as the loss penalty term of the loss function.
Therefore, specifying a better strategy is an important direction of subsequent research.
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In addition, the method proposed in this paper can only perform accurate fault diagnosis
for the same distributed data set. In the future, the domain adaptive method will be
further studied based on this method to realize the fault diagnosis for different distributed
data sets.
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