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Abstract: Uncertainties and disturbances widely exist in electrohydraulic lifting mechanisms of
launcher systems, which may worsen the rapid-erection tracking accuracy and even make the
system unstable. To deal with the issue, an asymptotic tracking control framework is developed
for electrohydraulic lifting mechanisms of launcher systems. Firstly, the dynamic equations and
state-space forms of the electrohydraulic lifting mechanism are modeled. Based on the system
model, a nonlinear rapid-erection robust controller is constructed to achieve the improvement of the
system control performance, in which a nonlinear feedback term is employed to remove the effects
of uncertainties and disturbances on tracking performance. Compared to the existing results, the
asymptotic tracking stability of the closed-loop system can be assured based on the Lyapunov theory
analysis. In the end, the simulation example of an actual electrohydraulic lifting mechanism of the
launcher system is done to validate the effectiveness with the proposed controller.

Keywords: electrohydraulic lifting mechanism; launcher system; uncertainties and disturbances;
robust control; asymptotic stability

1. Introduction

Electrohydraulic lifting mechanisms have been increasingly used in launcher sys-
tems [1–5] in terms of their merits containing large force/torque output, high response and
small size-to-power ratio. Nevertheless, due to strong nonlinearities (i.e., flow nonlinear-
ity, friction nonlinearity and mechanism nonlinearity) and unmodeled uncertainties (i.e.,
unmodeled friction, parametric uncertainties and extern disturbances) in electrohydraulic
lifting mechanisms of launcher systems, the achievement of high-accuracy tracking control
for electrohydraulic lifting mechanisms of launcher systems is challenging [6–10]. Thus,
to address this issue and achieve the improvement of control performance for electrohy-
draulic lifting mechanisms of launcher systems, it is necessary to investigate some efficient
control methods.

In the last few years, a lot of advanced controllers have been adopted to attain high-
performance tracking for electrohydraulic actuator systems. Feedback linearization control
found in [11,12] was used to dispose of dynamic nonlinearities by utilizing the feedforward
compensation method. To handle parametric uncertainties in electrohydraulic actuator
systems, adaptive control was employed in [13], while it could not suppress unmodeled
disturbances [14]. Adaptive robust control investigated in [14] could deal with paramet-
ric uncertainties and extern disturbances simultaneously and has been broadly adopted
in practice [15–19]. Nonetheless, the theoretical analysis of this controller shows that
bounded tracking performance was achieved in the presence of time-variant disturbances.
By integrating a robust integral of the sign of the error feedback (RISE) [20] and backstep-
ping method, a RISE-based backstepping controller was developed for hydraulic systems
in [21,22] to get an asymptotic stability while existing smooth disturbances. In addition,
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sliding mode control was used in [23] to suppress disturbances and improve control perfor-
mance for hydraulic systems. A super-twisting controller (STC) is proposed in [24] to attain
a finite-time stability. However, to suppress heavy disturbances, the achievable tracking
performance in [21–24] was pledged in a high-frequency/high-gain feedback way. That
is, by this way, high-frequency dynamics might be stimulated and then the system might
get unstable.

To remove the effect of strong disturbances on control accuracy and improve the
tracking performance, many disturbance estimators/observers have been developed. An
extended state observer (ESO) in [25] was employed to estimate mismatched and matched
disturbances and compensate them in a feedforward way. However, the asymptotic control
performance of the system would be destroyed while facing time-variant disturbances. An
unknown system dynamic estimator [26] was employed to dispose of unknown dynamics
and modeling uncertainties for servo mechanisms, which only pledged a bounded stability
when existing changing dynamics. Recently, an efficient sliding mode observer developed
in [27] was used to dispose of pressure dynamics and force dynamics in hydraulic systems.
In this way, an asymptotic stability was expected. However, the existence of the standard
sign function could lead to serve chattering and even make the system unstable. Moreover,
a distributed control framework presented in [28,29] were adopted to dispose of various
uncertainties for robot arms, which achieved the improvement of the control performance.
In addition, compared to the above-mentioned control approaches for hydraulic actuators,
the rapid-erection controller design of the electrohydraulic lifting mechanism in launcher
systems considered in this paper is more complex due to its inherent mechanism nonlin-
earities. Consequently, how to design an asymptotic rapid-erection robust control method
for the electrohydraulic lifting mechanism of the launcher system still is an open issue and
deserve to study.

In this paper, a rapid-erection backstepping tracking controller for the electrohydraulic
lifting mechanism of the launcher system with asymptotic stability is developed. To deal
with the work, firstly, the dynamic equations and state-space forms of the electrohydraulic
lifting mechanism of the launcher system are modeled. Based on the state-space system
function, a nonlinear robust controller is constructed to achieve the improvement of the
system control performance, in which a nonlinear feedback term is employed to remove
the effects of uncertainties and disturbances on tracking performance. In the meanwhile,
based on the Lyapunov theory analysis, the asymptotic tracking stability of the closed-loop
system can be assured. In the end, the simulation example of an actual electrohydraulic
lifting mechanism of the launcher system is carried out to validate the effectiveness with
the proposed controller.

The main contributions of this article include the following aspects. (1) A rapid-
erection backstepping robust control with asymptotic tracking performance is developed
for the electrohydraulic lifting mechanism of launcher systems subject to mechanism
nonlinearities, friction nonlinearities and time-variant disturbances. (2) A continuous
nonlinear feedback term is adopted to strengthen the robustness of the system and realize
the improvement of the control accuracy. (3) The control merits of the presented control
method are tested by corresponding simulation results when compared to the existing
controllers containing feedback linearization control in [11], robust control and proportional-
integral control.

The arrangement of this paper is provided as follows: System modeling of the electro-
hydraulic lifting mechanism of the launcher system can be seen in Section 2. The controller
design and its theoretical analysis are provided in Section 3. Simulation results are found
from Section 4. The simulation results uncover the validity of the developed control method.
The conclusion is made in Section 5.
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2. System Modeling

The considered electrohydraulic lifting mechanism with two motion states can be seen
from Figure 1, where one state of the lifting mechanism lies in a horizontal position and the
other lies in any motion position.
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Figure 1. The schematic diagram of the lifting mechanism.

2.1. The Dynamics of the Lifting Mechanism

As observer from Figure 1, O denotes the gyration center; O1 and O3 stand for rotation
centers of the lower and upper ears of the hydraulic cylinder severally; O2 denotes the
barycenter of the lifting mechanism; θ stands for the rotary angle of the lifting mechanism
arm, whose range is 0~90◦; u stands for the control input; Q1 and Q2 stand for the return
flow and supplied flow of the hydraulic cylinder severally; Pr and Ps stand for the return
pressure and supply pressure severally; G and F stand for the force acting on the arm
and the gravity of the arm severally. In addition, define OO1 = d1, OO2 = d4, OO3 = d3,
O1O3 = d2, O1O3′ = d, ∠O3OO2′ = θ, ∠O3OO1 = θ0, ∠O3OO2 = β0 and ∠O1O3′O = α.

The dynamics of the lifting mechanism is expressed by

J
..
θ = Fd3 sin(α)−mgd4 cos(β0 + θ)− A f S f (

.
θ)− B

.
θ + ∆(t) (1)

where J stands for the rotary inertia; m stands for the mass of the lifting mechanism arm;
F = A1P1 − A2P2, where P1 and P2 stand for the pressure values of two chambers in the
hydraulic cylinder severally, A1 and A2 stand for the effective areas of two chambers in the
hydraulic cylinder severally; Af and Sf stand for the amplitude and approximated shape
function of the Coulomb friction; B stands for the viscous friction coefficient; ∆(t) stands
for the unmodelled disturbances.

By applying the cosine law, it yields

d =
√

d2
1 + d2

3 − 2d1d3 cos(θ0 + θ) (2)

Defining the cylinder displacement as xs = d− d2, one has

∂xs

∂θ
=

d1d3 sin(θ0 + θ)√
d2

1 + d2
3 − 2d1d3 cos(θ0 + θ)

(3)
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Based on the sine law, there is

d1

sin(α)
=

d
sin(θ0 + θ)

(4)

Involving the Equations (1)–(4), it is easy to obtain that

J
..
θ =

∂xs

∂θ
(A1P1–A2P2)−mgd4 cos(β0 + θ)− A f S f (

.
θ)− B

.
θ + ∆(t) (5)

2.2. The Dynamics of the Electrohydraulic Actuator

Taking the oil compressibility into consideration, the pressure dynamics of the electro-
hydraulic actuator is written as [30,31]

V1
βe

.
P1 = Q1 − A1

∂xs
∂θ

.
θ − C(P1 − P2) + q1(t)

V2
βe

.
P2 = −Q2 + A2

∂xs
∂θ

.
θ + C(P1 − P2)− q2(t)

(6)

where V1 = V01 + A1xs and V2 = V02 − A2xs stand for the volumes of the two chambers
severally; V01 and V02 stand for the original volumes of the two chambers severally; βe
stands for the effective oil bulk modulus; C stands for the internal leakage coefficient; q1(t)
and q2(t) stand for the unmodelled disturbances.

Given that a high-performance proportional valve is utilized in this paper, the servo
valve dynamics can be omitted. Consequently, the control input u is assumed to be
proportional to the valve spool displacement. The flows Q1 and Q2 thus are modeled
as [32]

Q1 = ktu
[
sig(u)

√
|Ps − P1|+ sig(−u)

√
|P1 − Pr|

]
Q2 = ktu

[
sig(u)

√
|P2 − Pr|+ sig(−u)

√
|Ps − P2|

] (7)

where kt stands for the flow gain; sig(u) is defined as

sig(u) =

{
1, i f u ≥ 0

0, i f u < 0
(8)

From (6), it has

A1
.
P1 − A2

.
P2=

A1βe

V1

[
Q1 − A1

∂xs

∂θ

.
θ − C(P1 − P2) + q1(t)

]
−A2βe

V2

[
−Q2 + A2

∂xs

∂θ

.
θ + C(P1 − P2)− q2(t)

]
= βe

(
A1

V1
Q1 +

A2

V2
Q2

)
− βe

(
A2

1
V1

+
A2

2
V2

)
∂xs

∂θ

.
θ

−βe

(
A1

V1
+

A2

V2

)
C(P1 − P2) + βe

[
A1

V1
q1(t) +

A2

V2
q2(t)

]
(9)

Putting (7) into (9), it leads to

A1
.
P1 − A2

.
P2 = βekt(

A1
V1

s1 +
A2
V2

s2)u− βe(
A2

1
V1

+
A2

2
V2
) ∂xs

∂θ

.
θ

−βe(
A1
V1

+ A2
V2
)C(P1 − P2) + βe

[
A1
V1

q1(t) +
A2
V2

q2(t)
] (10)

in which
s1 = sig(u)

√
|Ps − P1|+ sig(−u)

√
|P1 − Pr|

s2 = sig(u)
√
|P2 − Pr|+ sig(−u)

√
|Ps − P2|

(11)
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2.3. System State-Space Form

Constructing the state variables x = [x1; x2; x3] =
[
θ;

.
θ; A1P1 − A2P2

]
, the system

state-space form by using (5) and (10) is
.
x1 = x2

J
.
x2 = ∂xs

∂x1
x3 −mgd4 cos(β0 + x1)− A f S f (x2)− Bx2 + ∆(t)

.
x3 = ϕ1u− ϕ2 + q(t)

(12)

in which 
ϕ1 = βekt(

A1
V1

s1 +
A2
V2

s2)

ϕ2 = βe(
A2

1
V1

+
A2

2
V2
) ∂xs

∂x1
x2 + βe(

A1
V1

+ A2
V2
)C(P1 − P2)

q(t) = βe

[
A1
V1

q1(t) +
A2
V2

q2(t)
] (13)

We attempt to let the tracking error converge to zero by using the developed control
approach on basis of two assumptions:

Assumption 1. The terms ∆(t) and q(t) in (12) satisfy.

|∆(t)| ≤ c1, |q(t)| ≤ c2 (14)

where ci (i = 1, 2) are known positive constants.

Assumption 2. The reference trajectory x1d ∈ C3 and is bounded.

3. Controller Design
3.1. Controller Design

For simplifying the controller development, by using the backstepping method, several
variables are designed as below

ξ1 = x1 − x1d

ξ2 = k1ξ1 +
.
ξ1 = x2 − x2d

x2d =
.
x1d − k1ξ1

ξ3 = x3 − x3d

(15)

where k1 is non-negative; ξ1 stands for the tracking error; x2d denotes the virtual control
law of the state x2; ξ2 stands for the discrepancy between the actual state x2 and the virtual
control x2d; x3d denotes the virtual control law of the state x3; ξ3 stands for the discrepancy
between the actual state x3 and the virtual control x3d.

Step 1: On basis of the Formulas (12) and (15) and differentiating ξ2, there is

J
.
ξ2 = J

.
x2 − J

.
x2d

= ∂xs
∂x1

x3 −mgd4 cos(β0 + x1)− A f S f (x2)− Bx2 + ∆(t)− J
.
x2d

= ∂xs
∂x1

(ξ3 + x3d)−mgd4 cos(β0 + x1)− A f S f (x2)− Bx2 + ∆(t)− J
.
x2d

(16)

From (16), the virtual control x3d is constructed as
x3d =

(
∂xs
∂x1

)−1
(x3da + x3ds), x3ds = x3ds1 + x3ds2

x3da = mgd4 cos(β0 + x1) + A f S f (x2) + Bx2 + J
.
x2d − ξ1

x3ds1 = −k2ξ2, x3ds2 =
−k2sξ2c2

1
k2sξ2c1tanh(ξ2/b1(t))+b1(t)

(17)
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where k2 and k2s are positive constants; b1(t) > 0 and
∫ t

0 b1(v)dv ≤ τ1 < +∞, with τ1
being positive.

In (17), x3da stands for the model-based feedforward compensation term that is utilized
to achieve accurate model compensation and then improve the tracking performance. x3ds
consisting of the linear feedback term x3ds1 and the nonlinear feedback term x3ds2 denotes
the robust control law that is employed to remove the impact of external disturbances on
the tracking performance.

Putting (17) into (16), one has

J
.
ξ2 = ∂xs

∂x1
ξ3 + x3da + x3ds + mgd4 cos(β0 + x1)− A f S f (x2)− Bx2 + ∆(t)− J

.
x2d

= ∂xs
∂x1

ξ3 + mgd4 cos(β0 + x1) + A f S f (x2) + Bx2 + J
.
x2d − ξ1 − k2ξ2 + x3ds2

+mgd4 cos(β0 + x1)− A f S f (x2)− Bx2 + ∆(t)− J
.
x2d

= ∂xs
∂x1

ξ3 − ξ1 − k2ξ2 −
k2sξ2c2

1
k2sξ2c1tanh(ξ2/b1(t))+b1(t)

+ ∆(t)

(18)

Step 2: On basis of the Formulas (12) and (15) and differentiating ξ3, there is

.
ξ3 =

.
x3 −

.
x3d

= ϕ1u− ϕ2 + q(t)− .
x3d

(19)

Hence, the controller input is designed as below
u = (ua+us)

ϕ1
, us = us1 + us2

ua = ϕ2 +
.
x3d − ∂xs

∂x1
ξ2

us1 = −k3ξ3, us2 = − k3sξ3c2
2

k3sξ3c2tanh(ξ3/b2(t))+b2(t)

(20)

where k3 and k3s are positive constants; b2(t) > 0 and
∫ t

0 b2(v)dv ≤ τ2 < +∞, with τ2
being positive.

In (20), ua stands for the model-based feedforward compensation term that is utilized
to achieve accurate model compensation and then improve the tracking performance. us
consisting of the linear feedback term us1 and the nonlinear feedback term us2 denotes the
robust control law that is employed to remove the impact of external disturbances on the
tracking performance.

Putting (17) into (16), one has

.
ξ3 = ua + us − ϕ2 + q(t)− .

x3d

= ϕ2 +
.
x3d − ∂xs

∂x1
ξ2 − k3ξ3 −

k3sξ3c2
2

k3sξ3c2tanh(ξ3/b2(t))+b2(t)
− ϕ2 + q(t)− .

x3d

= −k3ξ3 − ∂xs
∂x1

ξ2 −
k3sξ3c2

2
k3sξ3c2tanh(ξ3/b2(t))+b2(t)

+ q(t)

(21)

The control diagram of the lifting mechanism is provided in Figure 2 below.

3.2. Stability Analysis

The main result in this paper is reduced as below.

Theorem 1. With the Assumptions 1 and 2 and the control law (20), by picking up the proper
control parameters k1, k2, k2s, k3 and k3s, it can be inferred that all signals are bounded in the closed
loop system and asymptotic tracking performance is then realized, i.e., ξ1 → 0 as t→ +∞ .
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Proof of Theorem 1. Construct a Lyapunov function as below

L =
1
2

ξ2
1 +

1
2

ξ2
2 +

1
2

ξ2
3 (22)

According to (15), (18) and (21), the derivative of L is

.
L= ξ1

.
ξ1 + ξ2

.
ξ2 + ξ3

.
ξ3

= ξ1(ξ2 − k1ξ1) + ξ2

[
∂xs

∂x1
ξ3 − ξ1 − k2ξ2 −

k2sξ2c2
1

k2sξ2c1 tanh(ξ2/b1(t)) + b1(t)
+ ∆(t)

]

+ξ3

[
−k3ξ3 −

∂xs

∂x1
ξ2 −

k3sξ3c2
2

k3sξ3c2 tanh(ξ3/b2(t)) + b2(t)
+ q(t)

]

= −k1ξ2
1 + ξ1ξ2 − k2ξ2

2 +
∂xs

∂x1
ξ2ξ3 − ξ1ξ2 +

[
−

k2sξ2
2c2

1
k2sξ2c1 tanh(ξ2/b1(t)) + b1(t)

+ ξ2∆(t)

]

− ∂xs

∂x1
ξ2ξ3 − k3ξ2

3 +

[
−

k3sξ2
33c2

2
k3sξ3c2 tanh(ξ3/b2(t)) + b2(t)

+ ξ3q(t)

]

= −k1ξ2
1 − k2ξ2

2 +

[
−

k2sξ2
2c2

1
k2sξ2c1 tanh(ξ2/b1(t)) + b1(t)

+ ξ2∆(t)

]

−k3ξ2
3 +

[
−

k3sξ2
33c2

2
k3sξ3c2 tanh(ξ3/b2(t)) + b2(t)

+ ξ3q(t)

]
(23)

Noting that
0 ≤ ξ2tanh[ξ2/b1(t)] ≤ |ξ2|
0 ≤ ξ3tanh[ξ3/b2(t)] ≤ |ξ3|

(24)

It results in
− k2sξ2

2c2
1

k2sξ2c1tanh(ξ2/b1(t))+b1(t)
≤ − k2sξ2

2c2
1

k2s |ξ2|c1+b1(t)

− k3sξ2
33c2

2
k3sξ3c2tanh(ξ3/b2(t))+b2(t)

≤ − k3sξ2
33c2

2
k3s |ξ3|c2+b2(t)

(25)
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Substituting (25) into (23), one has

.
L ≤ −k1ξ2

1 − k2ξ2
2 +

[
− k2sξ2

2c2
1

k2s |ξ2|c1+b1(t)
+ ξ2∆(t)

]
− k3ξ2

3 +

[
− k3sξ2

33c2
2

k3s |ξ3|c2+b2(t)
+ ξ3q(t)

]
≤ −k1ξ2

1 − k2ξ2
2 −

k2sξ2
2c2

1
k2s |ξ2|c1+b1(t)

+ |ξ2|c1 − k3ξ2
3 +−

k3sξ2
33c2

2
k3s |ξ3|c2+b2(t)

+ |ξ3|c2

≤ −k1ξ2
1 − k2ξ2

2 +
|ξ2|c1b1(t)

k2s |ξ2|c1+b1(t)
− k3ξ2

3 +
|ξ3|c2b2(t)

k3s |ξ3|c2+b2(t)

(26)
Considering b1(t) > 0 and b2(t) > 0, it leads to

.
L < −k1ξ2

1 − k2ξ2
2 +

|ξ2|c1b1(t)
k2s |ξ2|c1

− k3ξ2
3 +

|ξ3|c2b2(t)
k3s |ξ3|c2

≤ −k1ξ2
1 − k2ξ2

2 +
b1(t)
k2s
− k3ξ2

3 +
b2(t)
k3s

(27)

Then, it is easy to get

.
L ≤ −κ(ξ2

1 + ξ2
2 + ξ2

3) +
b1(t)
k2s

+ b2(t)
k3s

, −κL1 +
b1(t)
k2s

+ b2(t)
k3s

(28)

where κ = min{k1, k2, k3}, L1 , ξ2
1 + ξ2

2 + ξ2
3.

Integrating two sides of the inequality (28), one gets

L(t) +
∫ t

0 κL1(ν)dν ≤ L(0) +
∫ t

0

[
b1(ν)

k2s
+ b2(ν)

k3s

]
dν

≤ L(0) + τ1
k2s

+ τ2
k3s

(29)

Hence, L ∈ L∞, L1 ∈ L2 and the boundness of all the system signals holds. Thus, it is
reduced that L1 is uniformly continuous. By applying the Barbalat’s lemma [33], L1 → 0
as t→ ∞ . Consequently, the tracking error asymptotically converges to zero and, thus,
Theorem 1 holds. �

4. Simulation Results

The actual parameters of the electrohydraulic lifting mechanism of the launcher system
can be observed from Table 1. The lifting mechanism is drove by the hydraulic cylinder.
The function is defined as S f (x2) = 2arctan(1000x2)/π The sample time is set as 0.5 ms.

Table 1. Physical parameters of the EHA system.

Parameter Value Parameter Value

m (kg) 10,000 B (N ·m · s/rad ) 2.5 × 105

J
(
kg ·m2 ) 1.5 × 105 A f (N ·m ) 3 × 103

Ps (Pa) 2.1 × 106 kt
(
m4/(s ·V ·

√
N
)
) 7.937 × 10−8

Pr (Pa) 0 βe (Pa) 7 × 108

A1 (m2) 3.14 × 10−2 Ct
(
m5/(s · N) ) 9.6 × 10−13

A2 (m2) 1.6 × 10−2 d1 (m) 1.6
V01 (m3) 3.1416 × 10−4 d2 (m) 2
V02 (m3) 3.04 × 10−2 d3 (m) 3.5
g (m/s2) 9.8 d4 (m) 3
θ0 (rad) 0.2648 β0 (rad) 0.2618
D (mm) 200 d (mm) 140
Lc (mm) 1900

Where D and d stand for the cylinder diameter and the piston rod diameter, respectively; Lc stands for the
cylinder stroke.
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Four controllers are compared to validate the effectiveness of the developed controller
in the article.

(1) NRC: The nonlinear robust controller is proposed in Section 3, whose controller
parameters are provided by k1 = 100, k2 = 50, k2s = 10, k3 = 50, k3s = 30, c1 = 10 and
c2 = 30. In addition, b1(t) = b2(t) = 1

t2+500 .
(2) FLC: This is the feedback linearization controller introduced in [11], whose control

law is
x3d =

(
∂xs
∂x1

)−1
(x3da + x3ds)

x3da = mgd4 cos(β0 + x1) + A f S f (x2) + Bx2 + J
.
x2d − ξ1, x3ds = −k2ξ2

u = (ua+us)
ϕ1

, ua = ϕ2 +
.
x3d − ∂xs

∂x1
ξ2, us = −k3ξ3

(30)

The deference between NRC and FLC is that the nonlinear feedback terms are not
introduced into FLC. That is, k2s = 0 and k3s = 0 in FLC. The other control parameters are
same as NRC.

(3) RC: This is the robust controller, whose control law is x3d =
(

∂xs
∂x1

)−1
(J

.
x2d − k2ξ2)

u = (
.
x3d−k3ξ3)

ϕ1

(31)

The deference between FLC and RC is that the model-based compensation terms are
not introduced into RC. The other control parameters are the same as FLC.

(4) PI: This is a proportional-integral controller that is widely applied in practice.
The controller parameters are set as kp = 10 and ki = 10, in which kp and ki stand for
proportional gain and integral gain, respectively.

Case 1: First the reference tracking signal presented in Figure 3 is employed to test
the control performance of the developed contr ol method. As seen from Figure 3, the
reference tracking signal is a point–point tracking trajectory, whose velocity and acceleration
values are at most 2◦/s and 2◦/s2, respectively. The tracking trajectory of NRC can be
found in Figure 3. The corresponding control errors of the four controllers is collected
in Figure 4. It is easy to observe that NRC proposed in this paper can attain the best
control performance among the four controllers in terms of the transient and steady-state
tracking performance. This is contributed to the model-based feedforward compensation
and the nonlinear feedback terms introduced in NRC. Owing to the same model-based
feedforward compensation technique, FLC can obtain the better control performance than
RC. However, the control accuracy of FLC is worse when comparing with NRC, which
indicates the validity of the nonlinear feedback terms in NRC. In addition, it can be seen
the control performance of PI is superior to that of RC, which reveals that PI has the
certain robust ability against uncertainties and disturbances by adopting proper feedback
gains. However, for the lack of the model-based feedforward compensation method, PI can
achieve the worse tracking performance when compared to NRC and FLC. That shows the
effectiveness of the model-based feedforward compensation method. In the meanwhile, it
can be deduced that the high feedback gains in NRC and FLC can be shunned via using
the model-based feedforward compensation method. In addition, the control input of NRC
is presented in Figure 5, which is regular. The pressure values of two chambers in NRC
and cylinder force can be observed in Figures 6 and 7.
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Case 2: To further test the control performance of the developed control method, a
fast reference tracking signal presented in Figure 8 is employed. As seen from Figure 8,
the new reference tracking signal is a point–point tracking trajectory, whose velocity and
acceleration values are at most 3◦/s and 3◦/s2, respectively. The tracking trajectory of
NRC can be found in Figure 9. The corresponding control errors of the three controllers is
collected in Figure 8, in which RC is omitted due to its low control accuracy. It is easy to
observe that NRC proposed in this paper can attain the best control performance among
the three controllers in terms of the transient and steady-state tracking performance. This
is contributed to the model-based feedforward compensation and the nonlinear feedback
terms introduced in NRC. In addition, the control accuracy of FLC is worse when comparing
with NRC, which indicates the validity of the nonlinear feedback terms in NRC. However,
similar to the case 1, for the lack of the model-based feedforward compensation method, PI
can achieve the worse tracking performance when compared to NRC and FLC. That shows
the effectiveness of the model-based feedforward compensation method. In addition, the
control input of NRC is presented in Figure 10, which is regular and bounded. The pressure
values of two chambers in NRC and cylinder force can be observed in Figures 11 and 12.
They are also bounded. Consequently, the merits of the presented control method are
verified by Case 2 once again.
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5. Conclusions

In this paper, the asymptotic tracking problem is investigated for electrohydraulic
lifting mechanisms of launcher systems. To complete the work, the dynamic equations
and state-space forms of the electrohydraulic lifting mechanism are firstly modeled. Based
on the system model, a nonlinear robust controller is developed, in which a continuous
nonlinear feedback term is used to remove the effects of uncertainties and disturbances
on tracking performance. By applying the Lyapunov function, the asymptotic tracking
stability of the closed-loop system is pledged. At the end, the simulation example of an
actual electrohydraulic lifting mechanism of the launcher system is done to validate the
effectiveness with the proposed controller. In addition, it is worth noting that the developed
controller is designed based on the full-state feedback; however, only the position signal can
be measured in most practical cases. Hence, as our future research, it is worth developing
an output feedback based robust controller for electrohydraulic lifting mechanisms of
launcher systems.
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