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Abstract: A situation where the set of initial solutions lies near the position of the true optimality
(most favourable or desirable solution) by chance can increase the probability of finding the true
optimality and significantly reduce the search efforts. In optimisation problems, the location of
the global optimum solution is unknown a priori, and initialisation is a stochastic process. In
addition, the population size is equally important; if there are problems with high dimensions, a
small population size may lie sparsely in unpromising regions, and may return suboptimal solutions
with bias. In addition, the different distributions used as position vectors for the initial population
may have different sampling emphasis; hence, different degrees of diversity. The initialisation control
parameters of population-based metaheuristic algorithms play a significant role in improving the
performance of the algorithms. Researchers have identified this significance, and they have put
much effort into finding various distribution schemes that will enhance the diversity of the initial
populations of the algorithms, and obtain the correct balance of the population size and number of
iterations which will guarantee optimal solutions for a given problem set. Despite the affirmation
of the role initialisation plays, to our knowledge few studies or surveys have been conducted on
this subject area. Therefore, this paper presents a comprehensive survey of different initialisation
schemes to improve the quality of solutions obtained by most metaheuristic optimisers for a given
problem set. Popular schemes used to improve the diversity of the population can be categorised into
random numbers, quasirandom sequences, chaos theory, probability distributions, hybrids of other
heuristic or metaheuristic algorithms, Lévy, and others. We discuss the different levels of success of
these schemes and identify their limitations. Similarly, we identify gaps and present useful insights
for future research directions. Finally, we present a comparison of the effect of population size, the
maximum number of iterations, and ten (10) different initialisation methods on the performance
of three (3) population-based metaheuristic optimizers: bat algorithm (BA), Grey Wolf Optimizer
(GWO), and butterfly optimization algorithm (BOA).

Keywords: initialisation; metaheuristics; metaheuristics optimisers; population size

1. Introduction

The primary concern of optimisation is finding either the minima or maxima of the
objective function, subject to some given constraints. Optimisation problems naturally
occur in machine learning, artificial intelligence, computer science, and operations research.
Optimisation has been used to improve processes in all human endeavours. A wide
variety of techniques for optimisation exist. These techniques include linear programming,
quadratic programming, convex optimization, interior-point method, trust-region method,
conjugate-gradient methods, evolutionary algorithms, heuristics, and metaheuristics [1].
The era of artificial intelligence ushered in techniques for optimisation that are capable
of finding near-optimal solutions to challenging and complex real-world optimisation
problems. Then came the nature-inspired and bio-inspired metaheuristic optimization era,
with huge successes recorded and increasing popularity over the past four decades.
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Many attributed the popularity of nature-inspired and bio-inspired metaheuristics
optimization algorithms to their ability to find near-optimal solutions [2]. This success
can be attributed to how these nature-inspired and bio-inspired metaheuristics optimizers
mimic natural phenomena [3]. These natural phenomena have inspired the development of
almost all of the metaheuristic algorithms. Evolutionary techniques are gaining popularity
in the same vein, too, with many novel techniques developed regularly. The performance
of evolutionary techniques matches the nature-inspired or bio-inspired algorithms [4].

The successes of these metaheuristic optimizers on real-world problems come with
tremendous challenges. These challenges arise from the fact that real-world optimisation
problems are complex and have multiple nonlinear constraints. The ability of optimisers
to navigate these challenges and achieve optimality depends heavily on how the initial
population is distributed, especially for gradient-based optimizers [5]. Though meta-
heuristic optimizers are gradient-free, they must also be initialised; thus, they are greatly
influenced by the nature of the initial population, especially the large-scale multimodal
problems. Population-based metaheuristic algorithms show varying abilities to reach a
global optimum when the initialisation scheme is varied [6].

Interestingly, in the last decade, there has been an exponential growth in the number
of proposed nature-inspired optimisation algorithms. Furthermore, there has been a cor-
responding claim of novelty and solid capability of the algorithms serving as powerful
optimisation tools. Unfortunately, most algorithms do not seem to draw inspiration from
nature or incorporate any successful methodology that mimics natural phenomena or sys-
tems [7]. From the concept of the theorem of No Free Lunch, many real-world optimisation
problems still require new approaches or methods to be solved perfectly or optimally. The
theorem proved that any method could solve a problem efficiently, but no single method
can effectively solve all problems. Studies have shown the popularity and successes of
proposing algorithms that mimic the behaviours of animals to solve optimisation problems
with reasonable accuracy.

The commonly used distribution for initialisation by most metaheuristic algorithms
is the random number generator, which generates sequences (used as position vectors)
that follow the uniform probability distribution. However, these sequences do not have
low discrepancies, or are not equidistributed in a given search area, and do not efficiently
cover the search space [8]. On the other hand, quasirandom numbers can be generated
with low discrepancy; these have been proven to have optimal discrepancy because they
tend to cover the search space better and are helpful in optimisation [9]. Low discrepancy
sequences, like Van der Corput, Sobol, Faure, and Halton, are potent computational method
tools and have been used to improve the performance of optimisation algorithms. Many
other approaches exist in the literature, and these are presented in this paper.

A situation where the set of initial solutions lies near the position of the true optimality
by chance, can increase the probability of finding the true optimality and significantly
reduce the search efforts. In optimisation problems, the location of the true optimality is
unknown a priori, and initialisation is a stochastic process. Additionally, the population
size is equally important and when considering problems with high dimensions, small
population size may lie sparsely in unpromising regions, and can return suboptimal
solutions with bias. In addition, the different distributions used as position vectors for the
initial population may have a different sampling emphasis and hence different degrees of
diversity.

To demonstrate the importance of initialisation, consider the Bukin N. 6 function
shown in Figure 1. We assumed a search space of [−20, 0]× [−8, 4]. The advanced arith-
metic optimization algorithm (nAOA) [10] was initialised with beta distribution, and the
distribution of the population after the first iteration is shown in Figure 2. The blue dots
represent the current location of the population, the red asterisk (*) represents the current
best solution, and the red star (F) denotes the global optimal solution of the Bukin function.
The nAOA converged towards the optimal solution after a few iterations, as shown in
Figure 3. Similarly, the nAOA was initialised with the random number, and the distribution
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of the population after the first iteration is shown in Figure 4. The distribution of the
population of nAOA quickly falls into a local optimum after a few iterations, as shown in
Figure 5.
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Although initialisation plays a significant role in the performance of most metaheuris-
tic optimizers, few studies or surveys have been conducted on the subject area. A search
using the keywords survey OR review, initialisation (initialization), and metaheuristics,
yielded no comprehensive review or survey articles in the literature. However, in discussing
PSO variants, ref. [11] provide a paragraph on attempts to improve PSO performance using
different initialisation schemes. The authors discuss how low discrepancy sequences and
variants of opposition-based learning enhance the initial swarm population. Another
attempt using GA was presented by [12], where the effect of three initialisation functions,
namely, nearest neighbour (NN), insertion (In), and Solomon’s heuristic, were studied. Li,
Liu, and Yang [13] evaluated the effect of 22 different probability distribution initialisation
methods on the convergence and accuracy of five optimisation algorithms. In this regard,
we formulate the research question given below to accomplish our work:

What literature modified the initialisation control parameters comprising size and
diversity of population and the maximum number of iterations to improve the algorithms’
performance?

The following questions are formulated to answer the main research question:

i. What research exists that used distributions other than the random number for
initialisation of the population to improve the performance of metaheuristic algo-
rithms?

ii. What study exists that fine-tuned the population size and the number of iterations
of different algorithms?

iii. What are the major initialisation distributions used by the population-based algo-
rithm?
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iv. What problems were solved by the modified algorithms?
v. What are other challenges yet to be explored by researchers in the research area?

To the best of our knowledge, no survey or review article focuses on general efforts to
improve the performances of different metaheuristic optimizers using different initialisa-
tion schemes in the literature, which motivates the current research contribution. Therefore,
this study presents a comprehensive survey of different initialisation methods employed
by metaheuristic algorithm designers and optimisation enthusiasts to improve the per-
formance of the different metaheuristic optimizers available in the literature. The study
covers articles published between 2000–2021, and the specific contributions of this paper
are summarised as follows:

i. We present a comprehensive review of the different distributions used to improve
the diversity of the initial population of population-based metaheuristic algorithms.

ii. We categorise the schemes into random numbers, quasirandom sequences, chaos
theory, probability distributions, hybrids of other heuristic or metaheuristic algo-
rithms, Lévy, and others.

iii. We also discuss the different levels of success of these schemes and identify their
limitations.

iv. An in-depth highlight of the glossary of efforts to improve the performance of meta-
heuristic algorithms using several initialisation schemes is presented. Metaheuristic
research enthusiasts can easily reference this glossary.

v. Finally, we provide the research gaps, useful insights, and future directions.

The rest of the paper is organised as follows. In Section 2, we provide the method-
ology used for collecting papers. The major initialisation methods used to improve the
performance of the algorithms are presented in Section 3. In Section 4, we discuss the
various application areas of the present study. Results and discussion of findings from our
experiment are presented in Section 5. Finally, Section 6 presents the concluding remarks.

2. Methodology and Paper Collection Technique

This section discussed the procedure used for paper selection, collection, and review.
Search keywords, search techniques, data sources, databases, plus inclusion and exclusion
criteria are explained. We followed the systematic literature review procedure provided in
the work of [14], and we were guided by the work of [15].

2.1. Keywords

In order to retrieve relevant articles to achieve our review goal, we carefully selected
some useful keywords, that we used to search the database: initialization (initialisation),
metaheuristic, optimization (optimisation), OR algorithm. The initial search for these
articles was carried out between 20 to 24 September 2020, and the final search was carried
out between 25 to 30 October 2021. Articles retrieved based on the keywords searched were
perused during each search in order to collect more related articles from their citations and
references sections.

2.2. Academic Databases

The keywords selected were used to search and retrieve relevant works from the body
of literature. We targeted only articles that are published in reputable peer-review journals,
edited books, and conference proceedings indexed in two (2) academic databases. The
Web of Science (WoS) and Scopus repositories are the academic databases that we used
to extract articles. These are repositories with high-quality articles that are published in
SCI-indexed journals and ranked international conferences. We performed a search based
on the above keywords in these repositories up to 2021.

2.3. Inclusion/Exclusion Criteria

We formulated some inclusion and exclusion criteria in order to collect solely relevant
literature examples. The collected articles are either included or excluded based on some
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criteria after perusing their titles, abstracts, conclusions and, in some cases, the complete
content. The selected criteria are given in Table 1.

Table 1. Inclusion/Exclusion Criteria.

Inclusion Exclusion

Articles that used different initialisation
schemes to improve the performance of

metaheuristic algorithm

While we discussed the commonly used
pseudo-random number initialization scheme,
we excluded algorithms that used the scheme.
Including these articles would mean reviewing
the entire metaheuristic algorithms, which is

outside the scope of this work

Articles published in reputable peer-review
journals, conference proceedings, and edited

books

Articles published as part of textbooks,
abstracts, editorials, and keynote speeches

Articles that are written in the English
language

Articles that are written in other languages
besides English

2.4. Eligibility

We applied the inclusion and exclusion criteria to determine the eligibility of the
selected articles. A total of 99 articles were returned by WoS and 58 articles were returned
by Scopus repositories, respectively. Figure 6 shows the document type of distribution
from the WoS repository, where 83 articles, 16 conference proceedings, five (5) early access,
and one book chapter have been published. Similarly, Figure 7 shows the distribution
of document types from Scopus, with 39 articles, 17 conference papers, one book, and
one conference review, respectively. Both figures show that more articles are published in
journals than in conferences and book chapters.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 31 
 

we used to extract articles. These are repositories with high-quality articles that are pub-
lished in SCI-indexed journals and ranked international conferences. We performed a 
search based on the above keywords in these repositories up to 2021. 

2.3. Inclusion/Exclusion Criteria 
We formulated some inclusion and exclusion criteria in order to collect solely rele-

vant literature examples. The collected articles are either included or excluded based on 
some criteria after perusing their titles, abstracts, conclusions and, in some cases, the com-
plete content. The selected criteria are given in Table 1. 

Table 1. Inclusion/Exclusion Criteria. 

Inclusion  Exclusion 

Articles that used different initialisation schemes to im-
prove the performance of metaheuristic algorithm 

While we discussed the commonly used pseudo-random 
number initialization scheme, we excluded algorithms that 
used the scheme. Including these articles would mean re-
viewing the entire metaheuristic algorithms, which is out-

side the scope of this work  
Articles published in reputable peer-review journals, con-

ference proceedings, and edited books 
Articles published as part of textbooks, abstracts, editori-

als, and keynote speeches 
Articles that are written in the English language Articles that are written in other languages besides English 

2.4. Eligibility 
We applied the inclusion and exclusion criteria to determine the eligibility of the se-

lected articles. A total of 99 articles were returned by WoS and 58 articles were returned 
by Scopus repositories, respectively. Figure 6 shows the document type of distribution 
from the WoS repository, where 83 articles, 16 conference proceedings, five (5) early ac-
cess, and one book chapter have been published. Similarly, Figure 7 shows the distribu-
tion of document types from Scopus, with 39 articles, 17 conference papers, one book, and 
one conference review, respectively. Both figures show that more articles are published in 
journals than in conferences and book chapters. 

 
Figure 6. Document Type Distribution from WoS. 

Art icles Conference 
Proceedings

Early Access Book Chapter
0

10

20

30

40

50

60

70

80

90
83

16

5
1

Nu
m

be
r o

f P
ub

lic
at

ion
s

Figure 6. Document Type Distribution from WoS.



Appl. Sci. 2022, 12, 896 7 of 34Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 31 
 

 
Figure 7. Document Type Distribution from Scopus. 

After cross-referencing the two repositories, we found many papers that intersect 
both, and we excluded these articles from the other repository. In addition, we found ar-
ticles that were included in the search because they contained the keyword “initializa-
tion”, but they did not relate to our research; hence, we also excluded them. A total of 52 
articles were selected for this survey, after applying the inclusion criteria 

3. Major Initialisation Methods 
This section discusses the updated efforts on improving the initial condition of the 

population of metaheuristic algorithms. This provided an answer to our research ques-
tion, what research examples exist that used distributions other than the random number 
for initialisation of the population, to improve the performance of metaheuristic algo-
rithms? The different initialisation schemes identified in the literature were summarised 
or categorised into pseudo-random number or Monte Carlo methods, quasirandom meth-
ods, probability distributions, hybrid, chaos theory, Lévy, and ad hoc knowledge of the 
domain, and others. The categorisation was performed to aid our discussion of the 
schemes that we identified. 

3.1. Pseudo-Random Number or Monte Carlo Methods 
By default, the random number generation or Monte Carlo method is the most used 

initialisation scheme for most metaheuristic algorithms. It uses the uniform probability 
distribution to generate uniform pseudo-random number sequences that are used as lo-
cation vectors for the population. Many population-based metaheuristic algorithms use 
this scheme, and interested readers can refer to the respective optimisers for details. The 
role of the random number generation, as an essential part of the initialisation process, 
has been greatly emphasised [16,17]. Despite its popularity, the random number sequence 
suffers because its discrepancy is not low and does not efficiently cover the search space 
[8]. The discrepancy of the random number greatly influences how genuinely random the 
resulting randomly generated solutions are within the solution search spaces [18]. Re-
search works, such as those by [19,20], have shown that the random number does not 
result in an optimal discrepancy that will aid the convergence of the algorithms. Figure 8 
shows how the random numbers tend to form clusters after several iterations, instead of 
filling up the search space. This is a significant disadvantage of using random number 
generators to initialise the population of the metaheuristic algorithms. 

Art icles Conference 
Proceedings

Conference Review Book Chapter
0

5

10

15

20

25

30

35

40

45

39

17

1 1

Nu
m

be
r o

f P
ub

lic
at

ion
s

Figure 7. Document Type Distribution from Scopus.

After cross-referencing the two repositories, we found many papers that intersect both,
and we excluded these articles from the other repository. In addition, we found articles
that were included in the search because they contained the keyword “initialization”, but
they did not relate to our research; hence, we also excluded them. A total of 52 articles were
selected for this survey, after applying the inclusion criteria.

3. Major Initialisation Methods

This section discusses the updated efforts on improving the initial condition of the
population of metaheuristic algorithms. This provided an answer to our research question,
what research examples exist that used distributions other than the random number for ini-
tialisation of the population, to improve the performance of metaheuristic algorithms? The
different initialisation schemes identified in the literature were summarised or categorised
into pseudo-random number or Monte Carlo methods, quasirandom methods, probability
distributions, hybrid, chaos theory, Lévy, and ad hoc knowledge of the domain, and others.
The categorisation was performed to aid our discussion of the schemes that we identified.

3.1. Pseudo-Random Number or Monte Carlo Methods

By default, the random number generation or Monte Carlo method is the most used
initialisation scheme for most metaheuristic algorithms. It uses the uniform probability
distribution to generate uniform pseudo-random number sequences that are used as
location vectors for the population. Many population-based metaheuristic algorithms use
this scheme, and interested readers can refer to the respective optimisers for details. The
role of the random number generation, as an essential part of the initialisation process,
has been greatly emphasised [16,17]. Despite its popularity, the random number sequence
suffers because its discrepancy is not low and does not efficiently cover the search space [8].
The discrepancy of the random number greatly influences how genuinely random the
resulting randomly generated solutions are within the solution search spaces [18]. Research
works, such as those by [19,20], have shown that the random number does not result in
an optimal discrepancy that will aid the convergence of the algorithms. Figure 8 shows
how the random numbers tend to form clusters after several iterations, instead of filling up
the search space. This is a significant disadvantage of using random number generators to
initialise the population of the metaheuristic algorithms.
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We did not include a table for this category because most existing metaheuristic
algorithms belong here. A table for this would be huge, and there is no area of application
that this scheme has not been applied to.

3.2. Quasirandom Methods

Quasirandom number generators are known to generate sequences that are proven to
have low discrepancy [9]. Low discrepancy sequences, like Van der Corput, Sobol, Faure,
and Halton, are potent computational method tools, which have been used to improve the
performance of optimisation algorithms. Quasirandom numbers are effective initialisation
mechanisms for metaheuristic algorithms to uniformly cover the search space in order
to obtain the optimal solution. The particle swarm population in the work of [21] was
initialised using the randomized low discrepancy sequences of Halton, Sobol, and Faure.
The three modified PSO were applied to the benchmark test functions, and results were then
compared with the global best PSO. This showed that PSO was significantly improved with
Sobol, while the results showed a varying improvement with Faure and Halton. Similarly,
the Van der Corput and Sobol sequences were used to initialise the PSO and were then
applied to solve the benchmark functions [8]. The results obtained were promising when
compared to the original PSO.

The krill population in the KH algorithm was initialised using the Faure, Sobol,
and Var der Corptut sequences [22]. The benchmark test functions were used to test
the efficacy of the modified KH. Our findings revealed significant improvements in the
performance of the KH algorithm when initialised using Faure, Sobol, and Var der Corptut
low-discrepancy sequences, which was also the case with the guaranteed convergence
particle swarm optimization (GCPSO) algorithm, using the Niching methods to initialise
the swarm population [23]; the Niching methods are based on the Faure low-discrepancy
sequence, and the benchmark test functions were used to evaluate the performance of
GCPSO, with promising results.

The initialisation schemes that were implemented using low-discrepancy sequences
are known to perform poorly, as the problem dimension or graph size scales up. Figure 9
shows how the Halton sequence spreads and fills the search space at the 1000th iteration,
improving the convergence of algorithms. We have noted authors [24] who use the Halton
sequence to initialise the search agents of the Wingsuit Flying Search (WFS) algorithm.
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Table 2 summarises the glossary of efforts that used low discrepancy sequences (quasir-
andom numbers) to initialise the population of some metaheuristic optimizers. Interested
readers can refer to the references for more details about the efforts. In all the papers
reviewed in this section, the authors claimed that fine-tuning the initialisation control
parameters (population size and diversity and maximum number of iterations or function
evaluations) improved the performance of the algorithm.

Table 2. Summary of quasirandom methods.

Reference Year Initialisation Scheme Optimisation Problem

[21] 2007 Halton, Sobol, and Faure Benchmark test functions

[8] 2008 Van der Corput and Sobol sequences Benchmark test functions

[25] 2018 A quasirandom sequence Torus Benchmark test function

[22] 2020 Van der Corput Faure and Sobol
sequences Benchmark test function

[26] 2005 Halton low-discrepancy sequence Benchmark function

[27] 2005 Sobol and Halton sequences Benchmark function

[23] 2002 Faure sequences Benchmark functions

[28] 2009 Sobol sequence Benchmark functions

[29] 2021 Halton, Sobol, and Torus Benchmark functions

[30] 2012 Sobol sequences Image Segmentation

[31] 2017 Latin hypercube sampling (LHS) Optimisation of structural
components under Fatigue

3.3. Probability Distributions

The probability distribution describes the possible values and likelihood that a random
number is effective within a defined interval. Different probability distributions and their
rigorous statistical properties can be used to initialise the population of metaheuristic
algorithms. Li, Liu, and Yang [13] used variants of Beta distribution, uniform distribution,
normal distribution, logarithmic normal distribution, exponential distribution, Rayleigh
distribution, Weibull distribution, and Latin hypercube sampling [31] to form 22 different
initialisation schemes in order to evaluate PSO, CS, DE, ABC, and GA. The variants of the
probability distributions are as follows:

• Beta distribution

The Beta distribution is a continuous probability distribution over the interval (0,1).
It can be written as X ∼ Be(a, b). Varying the values of a and b resulted in a variant of
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the Beta distribution, generating sequences with different behaviours in the search space.
Three variants of the Beta distribution were used,

• Uniform distribution

A uniform distribution is defined over the interval [a, b], and it is usually written as
X ∼ U(a, b). One variant of the normal distribution was used.

• Normal distribution

The Gaussian Normal distribution is usually written as X ∼ N
(
µ, σ2). In addition,

varying the values of µ and σ2 resulted in three (3) variants of the normal distribution,
which generates sequences with different behaviours in the search space.

• Logarithmic normal distribution

The logarithmic normal distribution is often written as lnX ∼ N
(
µ, σ2). Four (4)

variants of the logarithmic normal distribution were created by varying the values of
µ and σ2.

• Exponential distribution

An exponential distribution is asymmetric with a long tail and can be written as
X ∼ exp(λ). Varying λ, resulted in three variants of the distribution which were used to
initialise the population of the five algorithms.

• Rayleigh distribution

The Rayleigh distribution can be written as X ∼ Rayleigh(σ). Three (3) variants of
the distribution were created by varying the value of σ.

• Weibull distribution

This distribution can be considered as a generalisation of a few other distributions. It
can be written as X ∼ Weibull(λ, k). For example, k = 1 corresponds to an exponential
distribution, while k = 2 leads to the Rayleigh distribution. In the same vein, three variants
of the distribution were created.

The convergence and accuracy of five metaheuristic optimizers were evaluated on
the benchmark test functions and the CEC2020 test functions. These optimisers are then
initialised using 22 different initialization schemes [13]. The findings of those authors
showed that PSO and CS are more sensitive to the initialisation scheme used, whereas
DE was less susceptible to the initialisation scheme used. In addition, PSO relies on a
greater population size, whereas CS requires a lesser population size. DE does well with
an increased number of iterations. The Beta, Rayleigh, and exponential distributions are
great performers as the results showed that they greatly influence the convergence of the
optimisers used.

Georgioudakis, Lagaros, and Papadrakakis [31] incorporated Latin hypercube sam-
pling (LHS) to initialise four (4) optimisers; namely, the evolution strategies (ES), covariance
matrix adaptation (CMA), elitist covariance matrix adaptation (ECMA) and differential
evolution (DE). They use these optimisers to investigate the relation between the geometry
of the structural components, and their service life. They aimed to improve the service
life of structural components under fatigue. Their choice of LHS instead of the random
Monte Carlo simulation optimised the number of samples needed to calculate the problem
regarding the formulation of the statistical quantities.

The stochastic fractal search (SFS) technique was used in the work of [32] to improve
the performance of the multi-layer perceptron neural network. It was used to obtain the
optimal set of weights and threshold parameters. The hybrid approach was tested on EEE
14- and 118-bus systems, and the results were compared with other non-optimized MLP
(optimized MLP based on genetic algorithm (MLP-GA) and Particle Swarm Optimization
(MLP-PSO)). The precision was up by 20–50%, and the computational time was down by
30–50%. However, SFS tends to ignore local search; the correct balance between the global
and local search is desired. Similarly, the levy-flight was replaced by stochastic random
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sampling of simpler fat-tailed distributions enhanced with scaled-chaotic sequences to boost
cuckoo search (CS) performance in solving the complex wellbore trajectories problem [33].

Probability distributions generally suffer from issues such as equiprobable disjunct
intervals and errors in correlations between variables. We summarise efforts in this category
in Table 3.

Table 3. Summary of PDF category.

Reference Year Initialisation Scheme Optimisation Problem

[32] 2017 Stochastic fractal search technique Dynamic state estimation (DSE)
problem at the filtering stage

[13] 2020

Variants of Beta distribution, uniform distribution,
normal distribution, logarithmic normal distribution,
exponential distribution, Rayleigh distribution, Weibull
distribution, and Latin hypercube Ssmpling

Benchmark function

[31] 2017 Latin hypercube sampling Structural components under
fatigue

[34] 2011 Stochastic demands Vehicle routing problem

[35] 2012 Smart sampling Benchmark functions

[36] 2018 Log logistic Training of artificial neural
network

[37] 2016 Neural fuzzy inference Flood susceptibility modeling

[38] 2019 Adaptive neuro-fuzzy inference Groundwater potential mapping

[33] 2016 Stochastic random a sampling of simpler fat-tailed
distributions enhanced with scaled-chaotic sequences Complex wellbore trajectories

3.4. Hybrid with Other Metaheuristic Algorithms

Most researchers used another metaheuristic algorithm to find an optimal solution for
the initial position of the population in this approach. Metaheuristic algorithms with a high
convergence rate in a specific problem domain are often used to find an initial solution.
These solutions are then fed into the other metaheuristic algorithms as the initial conditions.
A hybridization of ABC and TS was proposed in the work of [39], where the bee population
was initialised using the randomized breadth-first search. The performance of their hybrid
was better than the algorithms they compared it with; however, it suffers from the time
complexity problem of BFS. The authors [40] initialised the monarch butterfly algorithm by
equally partitioning the search space and in the F and T random distribution to mutate the
divided population. The results showed significant improvements. The Krill in the work
of [41] were initialised using the pairwise linear optimisation, which uses fuzzy rules to
create clusters that are used as the initial point for the KH. However, the results showed
that this improvement would only suit systems based on fuzzy approximators. The CRO
was improved using the VNS algorithm with a new processor selection model for the
initialisation. The results are promising; however, parameter sensitivity still needs to be
resolved [42].

The cuckoo population was initialised using quasi-opposition-based learning
(QOBL) [43]. Reaching the optimal search is enhanced by considering a guess and its
quasi-opposite guess. The initialisation schemes of BA are improved using a quasirandom
sequence with low discrepancy called Torus [25]. Their results were good; however, the
results were not evaluated for higher-dimensional problems. Four (4) different dispatching
rules (DR)-based initialisation strategies were used by [44], with varying advantages and
disadvantages. The best result was obtained when all of the strategies were used together,
which means that the diversity of the population contributed less to the algorithm’s overall
performance. In [45], a scheme inspired by SAM was developed, and it is a simplified
heuristic model that begins the swarm search with an initial set of high-quality solutions.
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ABC was used to find the optimal cluster centre of the FCM [46]. An improved
ABC was also proposed to solve the vehicle routing problem (VRP) [47]. Among other
improvements, the bees were initialised using push forward insertion. An improved DE,
named the enhanced differential evolution algorithm (EDE), used the opposition-based
learning for the initialisation, along with other improvements, in order to enhance the
performance of DE [48]. The optimised stream clustering algorithm (OpStream) used an
optimal solution of a metaheuristic algorithm to initialise the first set of the cluster [49].
The optimal solution of the optimal shortening of covering arrays (OSCAR) problem was
used as the initialisation function of a metaheuristic algorithm [50].

Mandal, Chatterjee, and Maitra [51] used the PSO to solve the problem that hampered
the Chan and Vese algorithm for image segmentation problems, which is low-performance
if the contours are not well initialised; the contours are initialised simultaneously with the
population. Their hybrid solution made contour initialisation irrelevant to the performance
of the algorithm. Another effort was presented by [52], where a scheme to initialise the
fuzzy c-means (FCM) clustering algorithm using the PSO was proposed. Finding the
optimal cluster centres was set as the objective function of the PSO.

A memetic algorithm that uses the greedy randomized adaptive search procedure
(GRASP) metaheuristic and path relinking to initialise and mutate the population was
proposed [53]. However, the scalability of the MA was untested. The authors [54] proposed
an initialisation scheme that used both the Metropolis-Hastings (MH) and function domain
contraction technique (FDCT). MH is helpful when generating the direct sequence of a PD
that is difficult. However, MH is best for high multidimensional complex optimisations, as
these are problem-dependent. In such a situation, the FDCT is then employed. The FDCT
is a sequential three-step solution starting with a random solution generator; and if this is
not feasible, then the GBEST PSO generator is applied. If the previous two fail, then the
search space reduction technique (SSRT) is applied. These steps ensure that the initialised
population leads to a better solution.

Competitive swarm optimizer (CSO) is a variant of PSO used by [55] to improve the
extreme learning machines (ELM) network by depending on the individual competition of
the particles, which optimise its weights and structure. Although the results show great
promise, it took more training time to generate effective models. Sawant, Prabukumar,
and Samiappan [56] evaluated an approach to initialise the cuckoo nest based on the
correlation between the spectral band of the nest that was proposed. The goal is to ensure
convergence by making sure the location of the nest does not repeat. The k-means clustering
algorithm is used to select specific clusters on the band based on their correlation coefficient.
Another approach is presented to resolve the lack of diversity of PSO and its sensitivity
to initialisation, which quickly leads to premature convergence. The crown jewel defence
(CJD) is used to escape being stocked in the local optima by relocating and reinitialising the
global and local best position. However, the performance of this improvement is not tested
in higher dimensions [57].

The DE and local search were combined to improve or enhance the chances of an
optimal solution to the hybrid flow-shop scheduling problem [58]. The brainstorm opti-
misation (BSO) was improved in the work of [59] by implementing a scheme that allows
for a reinitialisation scheme to be triggered, based on the current population. In the work
of [60], those authors used FA to detect the maxima and number of image clusters through
a histogram-based segmentation; the maxima are then used to initialise the parameter
estimates of the Gaussian mixture model (GMM). In the work [61], the authors proposed
a scheme that enhances the initial conditions of an algorithm by considering these initial
conditions to be a sub-optimisation problem where the initial conditions are the parameters
to be optimised by the MLA. Their obtained results showed improvements compared to
the other algorithms used. The FA was also used in the work of [62] as an optimiser to
obtain the initial location of the translation parameters for WNNs. This led to a reduction
in the number of hidden nodes of WNN and significantly increased the simultaneous
generalisation capability of WNNs.
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However, time and computational complexity may be a problem for this approach.
In addition, a lack of a proven way to hybridise these algorithms greatly depends on the
experience of the researcher. A summary of research efforts in this category is given in
Table 4.

Table 4. Summary of hybrid methods.

Reference Year Initialisation Scheme Optimisation Problem

[51] 2014 PSO Image segmentation

[53] 2015 GRASP Far from most string problem (FFMSP)

[55] 2020 Competitive swarm optimizer (CSO) Train single hidden layer feed forward
Networks (SLFN)

[56] 2019 K-Means clustering algorithm Band selection of hyperspectral images

[60] 2018 Firefly algorithm Greyscale image segmentation

[52] 2013 PSO Mahalanobis distance and
post-segmentationCorrection

[46] 2014 ABC Geo-demographic analysis

[62] 2017 Firefly algorithm Wavelet neural networks (WNNs)

[49] 2019 Metaheuristic algorithm Dynamic Data Streams

[63] 2017 Hyper-heuristic Benchmark test functions

[64] 2020 Hybrid of fuzzy metaheuristics (e.g., FATPSO) and the
base TsC algorithms Different areas

[65] 2015 Heuristic initialization strategies Dynamic flexible job shop scheduling
problems

[66] 2014 Opposition-based learning Benchmark test function

[42] 2015 VNS Task Scheduling

[48] 2015 Opposition-based learning Benchmark function

[43] 2018 Quasi-opposition based learning (QOBL) Parameter estimation of photovoltaic
(PV) models

[57] 2012 Crown jewel defense (CJD) Benchmark test functions

[58] 2020 DE combined with local search Hybrid flow-shop scheduling problem

[41] 2017 Pairwise linear optimization Takagi-Sugeno fuzzy systems

[67] 2018 Greedy algorithm Multi-skill resource-constrained project
scheduling problem

[68] 2020 Nawaz-Enscore-Ham (NEH) algorithm Slabs and beams manufacturing

3.5. Chaos Theory

Chaos theory describes the unpredictability of systems, and over the years, many ad-
vances have been made in this area. Chaotic sequences follow these properties: sensitive to
initial conditions, ergodicity, and randomicity. This type of sequence has the advantages of
introducing chaos or unpredictability into the optimisation, increasing the range of chaotic
motion, and using these chaotic induced variables to search the space effectively [69].

Using the logistic chaotic function, ref. [70] proposed novel improvements on the
CS, and one of these improvements is the use of the logistic chaotic function to initialise
the population. While their results are promising, they suffer from high computational
complexity. The same scheme was used in the work of [71] to improve BA, where the
bat population was initialised using chaotic sequences, instead of the random number
generator. In addition, the bacterial population of BFO was initialised using chaotic
sequences that were generated using logistic mapping [72]. Similarly, the butterflies in the
work of [73] were initialised using the homogenous chaotic sequence which were adapted
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to the ultraviolet changes. Among other improvements proposed in the work of [74],
the chaotic initialisation strategy was used to initialise the whales in the multi-strategy
ensemble whale optimization algorithm (MSWOA).

The chaos theory was used to initialise the moth-flame optimization (MFO) [75], firefly
algorithm (FA) [76], artificial bee colony (ABC) [77], biogeography based optimization
(BBO) [78]), krill herd (KH) [79], water cycle algorithm (WCA) [80], and grey wolf optimizer
(GWO) [81]. In all, the authors claimed superiority of their results over other algorithms;
however, high computational complexity remains an issue for this category, and we provide
a summary of efforts in Table 5.

Table 5. Summary of chaotic based methods.

Reference Year Initialisation Scheme Optimisation Problem

[71] 2014 Chaotic Sequence Benchmark function

[70] 2017 Logistic Chaotic Function Enhancement of satellite images

[72] 2018 Chaotic Sequence Benchmark test functions

[73] 2019 Chaotic Sequence Synthesis and structure optimization of antenna arrays

[74] 2020 Chaotic Theory Analog circuits intelligent fault diagnosis

[75] 2017 Chaotic Theory Medical diagnoses

[76] 2013 Chaotic Theory Benchmark test function

[77] 2011 Chaotic Theory Benchmark test function

[78] 2014 Chaotic Theory Benchmark test function

[79] 2014 Chaotic Theory Benchmark test function

[80] 2017 Chaotic Theory Benchmark test function

[82] 2018 Chaotic Theory Global optimization and feature selection

[83] 2020 Chaotic Theory Medical diagnosis problems

[84] 2014 Chaotic Theory Truss structures

[85] 2012 Chaotic Theory Image matching

[81] 2018 Chaotic Theory Benchmark test function

3.6. Ad Hoc Knowledge of the Domain

In the ad hoc knowledge of the domain approach, the authors used background
knowledge of the domain to design the initialisation scheme of an algorithm. The nature
of the problem is what influences the diversity and spread of the initial population. The
scheme proposed in the work of [86] used this scheme to generate initial solutions, serving
as the initial point for the metaheuristic method. Their results were better and, in some
cases, competitive; however, we believe that this method is excessively problem-dependent
as such a generalisation is impossible. In the same vein, ref. [87] proposed the initialisation
of the bats method, based on ad hoc knowledge of the PV domain. Precisely, they used
the peaks with similar duty ratios that occur at the power versus duty ratio of the boost
converter curve. Yao et al. [88] used the objective function to minimise the wear and tear of
the actuators when initialising the population.

The clans in EHO [89] were initialised by considering the acoustic decay model that is
used to obtain the distance between the sensor and the noise source. Depending on the
noise level, the intersection of the source coordinates will be at the radii, which is less likely
to be single. The clans are initialised, while being based at the centre of the intersection.
The technique suffers from being problem-dependent and requires much adaptation before
being used in other domains. Finally, a scheme to help PSO avoid reinitialisation to capture
the global peaks, when PSO changes its position and value in the P-V curve, was developed
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by [90]. Particles are sent to areas of anticipated peaks; once located, particles are sent there
to cater for them. Table 6 gives a summary of this approach.

Table 6. Summary of methods based on ad hoc knowledge.

Reference Year Initialisation Scheme Optimisation Problem

[86] 2017 Ad hoc knowledge Energy market
Participation portfolios

[88] 2020 Ad hoc knowledge Morphing aircraft

[54] 2019 Metropolis–Hastings (MH) and function domain
contraction technique (FDCT) Reservoir drainage plan optimisation problem

[91] 2020 Imaging the search space Black box setting called COCO

[87] 2020 Ad hoc knowledge Photovoltaic energy
systems under dynamic partial shading

[89] 2020 Ad hoc knowledge Energy-based acoustic localization

[92] 2020 Ad hoc knowledge Nonconvex economic dispatch problem

[90] 2020 Ad hoc knowledge PV Systems

3.7. Lévy Flights

A two-way approach to improving the initialisation scheme for the bees algorithm
was also proposed [93]. The patch environment and levy motion imitate the natural food
environment and the foraging motion of the bees, respectively. Although the patch concept
is used in the original Bees algorithm for the neighbourhood search, its use for initialisation
and the levy motion greatly improved its performance. In addition, the performance of the
GWO algorithm [94] was enhanced using the Lévy flight (LF) and greedy selection. An
improved modified GWO algorithm is proposed to solve global or real-world optimisation
problems. In order to boost the efficacy of GWO, strategies are integrated with the modified
hunting phases. However, no test was carried out on a specific optimisation domain; hence,
no comparison was made. A glossary of efforts on the use of this approach is given in
Table 7, and authors claimed superiority of their results over other algorithms.

Table 7. Summary of levy flight methods.

Reference Year Initialisation Scheme Optimisation Problem

[94] 2017 Lévy flight (LF) and greedy selection Benchmark test function

[95] 2012 Chaotic Lévy Motion Nonlinear dynamic biological
systems

[96] 2016 Lévy Motion Steel space frames

[97] 2018 Lévy Motion Neural network training

[98] 2020 Lévy Motion Benchmark

[99] 2018 Lévy Motion Engineering design problems

[100] 2019 Lévy Motion Data clustering problems

[101] 2016 Lévy Motion Global optimization

[93] 2013 Lévy Motion Benchmark test function

3.8. Others

Other approaches to improve the diversity, spread, and optimality of the initial popu-
lation of metaheuristic algorithms exist in the literature. This category includes approaches
that used mathematical and statistical functions to aid the initial population in an exhaus-
tive search.
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A nonlinear simplex method was used to initialise the swarms [102]. Their results
showed that the particles gravitated better towards the excellent quality solutions. An
approach where a particle is placed in the centre, and the rest of the particles are spread
around it in the search space was considered by [103]. Their result is promising; however,
it is not entirely without bias. The use of complex-valued encoding for metaheuristic
optimization research is gaining attention from researchers. A comprehensive and extensive
overview of this approach is presented in [104].

The complex-valued encoding metaheuristic algorithms have been applied signif-
icantly in function optimization, engineering optimization design, and combinatorial
optimization. The regular metaheuristic algorithms are based on continuous or discrete
encoding. The advantage of the complex-valued encoding metaheuristic algorithm is that
it expands the search region and efficiently avoids falling into the local minimum. Finally,
eight metaheuristic algorithms were enhanced using the complex-valued encoding, and
they were tested using 29 benchmark test functions and five engineering optimisation
design problems. The superiority of complex-valued encoding was proved by analysing
and comparing the results with statistical significance, and the complex-valued encoding
metaheuristic algorithm returned the best performances. We present a summary of what
authors have done in this category in Table 8.

Table 8. Other approaches to improving initialising schemes.

Reference Year Initialisation Scheme Optimisation Problem

[61] 2015 Multi-Layer Line
Search Methods Benchmark test function

[40] 2017 Equal Partition and F/T Mutation Benchmark test function

[44] 2019 Dispatching Rules Benchmark test function

[47] 2020 Push-Forward Insertion
Heuristic Vehicle routing problem

[45] 2017 Siemens Approximation Method (SAM) Discrete time-cost trade-off problem

[105] 2020 Angle Probability List strategy 3-D protein structure prediction problem

[106] 2010 Sequential Constructive Crossover Operator Travelling salesman problem

[107] 2016 Mathematical Programming, Constraint Programming and
Machine Learning Benchmark function

[39] 2013 Randomized Breadth-First Search Cyclic antibandwidth problem

4. Areas of Application

Much of the research that improved the performance of metaheuristic algorithms,
by improving the nature and diversity of the initial population of the algorithms, have
been applied in different areas of human endeavour, with significant successes recorded.
Figure 10 gives the various application areas of the articles that were found in the literature.
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Figure 10. Application areas reported in the literature.

4.1. Computer Science

Figure 10 shows the computer science subcategory as having the highest number of
publications, and this can be attributed to the fact that the optimisation problems naturally
occur in this area, with over 43 articles published in this area in journals indexed in
Scopus and over 60 articles published in journals indexed in WoS. This means that the vast
majority of these improvements are applied to solve optimisation problems in computer
science, particularly in the area of artificial intelligence. The area of artificial intelligence
alone has about 40 articles that are indexed in WoS; this is the most researched area in
computer science. The most cited paper in this area is that of [67], who proposed a hybrid
of differential evolution and greedy algorithm to exploit the advantages of both methods to
improve initialisation, among other improvements. This was used in solving the multi-skill
resource-constrained project scheduling problem, and it has been cited 30 times. The hybrid
of metaheuristic algorithms is the most common initialisation approach used, apart from
the random number generator. The chaos theory and low discrepancy sequences are also
popular in this area of application.
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4.2. Engineering

Optimisation problems naturally occur in engineering with many metaheuristic algo-
rithms being used to solve problems in this domain; further, this area has the second-highest
number of publications. WoS subdivided this category into electrical, electronic, multidisci-
plinary, industrial, manufacturing, telecommunication, and mechanical categories, whereas
Scopus combined them into one category. The sub-area of electrical electronics is the most
researched area, with over 25 articles indexed in WoS. A total of 12 articles are indexed
in Scopus and over 30 articles in WoS. The most cited article in this category is by [65],
in which the authors developed a multi-objective evolutionary algorithm (MOEA)-based
proactive-reactive method. This introduced a stability objective, and heuristic initialisation
strategies used for the initial solution, and the decision-making approach are also validated.
The article was cited 105 times. The area of telecommunications is also well researched and
it has nine articles indexed in the repository.

4.3. Mathematics

The area of mathematics has provided the foundation for optimisation techniques
used by metaheuristic algorithms. Over 28 articles indexed in Scopus are related to this
area, and WoS further divided this category into multidisciplinary, computational biology,
interdisciplinary, and applied mathematics. This area intersects with engineering and
computer science, and many articles in this category are also classified under these other
categories.

4.4. Others

We categorise all the areas with five publications into the category: others. This cate-
gory comprises automation control systems, remote sensing, robotics, acoustics, chemistry,
environmental sciences, management, transportation science technology, energy, neuro-
science, and social sciences. Clearly, we see that 90% of articles published in this subject
area and indexed in WoS or Scopus are primarily applied or solved problems in the area
of computer science and engineering. Great diversity in the application areas can also be
alluded to, as can be seen in pockets of research that fall under other categories with few
publications.

5. Experiment, Result, and Discussion
5.1. Experimental Setup

This section presents the three (3) different metaheuristic algorithms and ten (10)
initialisation schemes used in our work. The choice of these algorithms and initialisation
methods is based on their performances in solving optimisation problems, the availability
of codes online, and part of many other algorithms and initialisation methods we are using
in our current research projects. Table 9 summarises these algorithms, including the year
the article was first published, the authors, and the application area of the first publication.
Tables 10 and 11 summarise the ten initialisation schemes and the control parameters of the
algorithms as were used for the experiments, respectively.

Table 9. Summary of algorithms used.

S/N Algorithm Authors and Year
of Publication

Application Area (When the Algorithm Was
First Published/Proposed)

1 BA [108] Benchmark test function

2 GWO [109]
Benchmark test function, tension/compression
spring, welded beam, pressure vessel designs,
and optical engineering

3 BOA [110] Benchmark test functions, spring design,
welded beam design, and gear train design
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Table 10. Initialisation schemes.

S/N Initialization Scheme Function

1 Random rand

2 Beta Betarnd(3, 2)

3 Beta Betarnd(2.5, 2.5)

4 Uniform Unifrnd(0, 1)

5 Logarithmic normal Lognrnd(0, 0.5)

6 Exponential Exprnd(0.5)

7 Rayleigh Raylrnd(0.4)

8 Weibull Wblrnd(1, 1)

9 Latin hypercube sampling lhsdesign

10 Sobol Sobol

Table 11. Algorithm-specific parameters.

S/N Algorithm Parameters

1 BA A = rand(N,1), r = rand(N,1), alpha = 0.5, gamma = 0.5, and ro = 0.001.

2 GWO Alpha_pos = zeros (1, dim), Alpha_score = inf, Beta_pos = zeros (1, dim),
Beta_score = inf, Delta_pos = zeros (1, dim), and Delta_score = inf.

3 BOA Probability switch (p) = 0.8, power_exponent = 0.1, and
sensory_modality = 0.01

The variation of the population size and number of iterations are as given in Table 12.
The variation is such that a large population size goes with a small number of iterations
and vice versa. We also included situations where the two are relatively even.

Table 12. Population size and number of iterations.

Initialization Parameters Values

Population size 10 20 30 50 100 300 500 1000

Number of iterations 1000 900 800 600 500 300 100 10

We also conducted a series of experiments to evaluate the effect of the initialisation
schemes presented in Table 10 on the three metaheuristic algorithms. We carried out the
experiments on ten classical test functions, namely: sphere, quartic, Zakharov, Schwefel
1.2, Booth, Michalewicz, Rastrigin, Rosenbrock, Griewank, and Ackley, consisting of a
wide variety of separable, unimodal, non-separable multimodal, numbers of local optima,
and multi-dimensional problems. F1 and F2 are unimodal and separable benchmark
functions with dimension (D) set at 30. Additionally, F3 and F4 have dimensions set at 30D
and are unimodal and non-separable benchmark functions. Similarly, F5, F6, and F7 are
multimodal and separable benchmark functions with dimensions set at 2D, 10D, and 30D,
respectively. The multimodal and non-separable benchmark functions are F8, F9, and F10,
with dimensions set to 30D.

All algorithms were implemented in MATLAB R2019a, and the experiments were
conducted using Windows 10 OS, Intel Core i7-8550U CPU, 16G RAM. The number of
maximum iterations is set at 1000, and the number of independent runs is set at 20. We
round up any solution value less than 10−8 to zero, and the results are reported using the
following performance indicators: best, worst, mean, standard deviation, and the algorithm
mean runtime. We then statistically compared the results from the experiments using
Friedman’s test and post-hoc analysis, based on the Wilcoxon signed ranks test.
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5.2. Results and Discussion

The experiment results on the effect of population size and the maximum number of
iterations on the metaheuristic algorithms considered are presented in Tables 13–15. The
Friedman test results for all of the results are given in Table 16. This showed a statistically
significant difference in the effect of population size and number of iterations for all
algorithms tested. The chi-square and p-value as shown in Table 16, and all the p-values
are less than the tolerance level of 0.05. Post hoc analysis with Wilcoxon signed-rank tests
was conducted with a Bonferroni correction applied, resulting in a significance level set at
p < 0.001.

The test results for BA are shown in Table 13. We noted that the best results are
returned when the population size is 1000, the number of iterations is 10, and it has the
lowest mean rank, as shown in the corresponding column in Table 16. Further post hoc
results confirmed that a significant difference occurred between this comparison. The
implication is that BA performed better with larger population sizes. Similarly, the results
for GWO are given in Table 14, and it can be seen that GWO failed to return the optimal
solution for Rosenbrock. However, it performed optimally when the population size was 50,
the number of iterations was 600, and the lowest mean rank was recorded in this category. A
further post hoc test confirmed that GWO performed better when the number of iterations
was greater. The results for BOA are presented in Table 15, and we noted that excellent
results are returned for small population sizes. The least mean rank is returned when the
population size is 30, and the number of iterations is 800. The post hoc test confirmed that
BOA performs optimally for a greater number of iterations.

Table 13. Result for Bat Algorithm.

Function Value

Bat Algorithm

Pop = 10 Pop = 20 Pop = 30 Pop = 50 Pop = 100 Pop = 300 Pop = 500 Pop = 1000

Iter = 1000 Iter = 900 Iter = 800 Iter = 600 Iter = 500 Iter = 300 Iter = 100 Iter = 10

Sphere

Mean 1.94E+04 1.68E+04 1.59E+04 1.55E+04 1.43E+04 1.1882E+04 1.1242E+04 1.0300E+04

Stand.Div 1.98E+04 1.72E+04 1.64E+04 1.61E+04 1.46E+04 1.2227E+04 1.1441E+04 1.0369E+04

Best 1.15E+04 7.26E+03 1.05E+04 9.01E+03 8.02E+03 5.5988E+03 7.3909E+03 7.0207E+03

Worst 2.78E+04 2.38E+04 2.46E+04 2.42E+04 1.98E+04 1.6507E+04 1.6244E+04 1.1869E+04

MeanRunTimes 1.53E+00 2.86E+00 7.23E+00 8.54E+00 1.64E+01 1.1428E+01 12.8373 6.8391

Rastrigin

Mean 3.16E+02 3.04E+02 2.90E+02 2.83E+02 2.77E+02 2.7082E+02 264.1494 252.9087

Stand.Div 3.18E+02 3.05E+02 2.91E+02 2.84E+02 2.78E+02 2.7126E+02 264.4724 253.7484

Best 2.15E+02 2.73E+02 2.43E+02 2.43E+02 2.16E+02 2.3388E+02 238.5740 206.2512

Worst 3.73E+02 3.59E+02 3.36E+02 3.14E+02 3.29E+02 2.9137E+02 285.5669 289.4242

MeanRunTimes 1.85E+00 3.22E+00 4.54E+00 6.18E+00 9.79E+00 1.1708E+01 13.1386 6.9371

Rosenbrock

Mean 2.96E+07 2.26E+07 1.76E+07 1.40E+07 1.52E+07 9.0472E+06 7.6228E+06 6.7477E+06

Stand.Div 3.40E+07 2.42E+07 2.00E+07 1.51E+07 1.59E+07 9.8445E+06 8.0408E+06 6.9390E+06

Best 1.09E+07 6.00E+06 6.26E+06 2.39E+06 5.92E+06 2.5159E+06 3.8750E+06 3.8616E+06

Worst 7.99E+07 4.30E+07 4.11E+07 2.49E+07 2.55E+07 1.6890E+07 1.3239E+07 9.3581E+06

MeanRunTimes 1.45E+00 3.09E+00 6.45E+00 4.81E+00 1.14E+01 1.1363E+01 12.6469 6.7982

Griewank

Mean 1.94E+02 1.67E+02 1.54E+02 1.43E+02 1.18E+02 1.1163E+02 93.7006 94.5310

Stand.Div 2.01E+02 1.71E+02 1.57E+02 1.46E+02 1.21E+02 1.1527E+02 95.0456 97.1846

Best 1.09E+02 1.09E+02 7.05E+01 9.88E+01 7.94E+01 4.0860E+01 65.6311 49.3315

Worst 3.16E+02 2.51E+02 2.09E+02 2.01E+02 1.76E+02 1.6464E+02 134.4593 139.8530

MeanRunTimes 1.94E+00 3.54E+00 7.19E+00 8.81E+00 1.66E+01 1.6149E+01 13.4474 7.1280
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Table 14. Result for Grey Wolf Optimizer.

Function Value

Grey Wolf Optimizer

Pop = 10 Pop = 20 Pop = 30 Pop = 50 Pop = 100 Pop = 300 Pop = 500 Pop = 1000

Iter = 1000 Iter = 900 Iter = 800 Iter = 600 Iter = 500 Iter = 300 Iter = 100 Iter = 10

Sphere

Mean 0 0 0 0 0 0 2.3000E-06 50.3358

Stand.Div 0 0 0 0 0 0 2.7289E-06 53.0968

Best 0 0 0 0 0 0 5.6828E-07 21.0005

Worst 0 0 0 0 0 0 5.6884E-06 91.1243

MeanRunTimes 1.59E+00 2.91E+00 6.88E+00 6.50E+00 9.91E+00 4.5197E+00 3.6921 1.4936

Rastrigin

Mean 0 0 0 0 0 5.0086E+00 14.6950 84.8322

Stand.Div 0 0 0 0 0 6.7312E+00 15.1616 86.5337

Best 0 0 0 0 0 2.6057E-08 8.6052 53.7818

Worst 0 0 0 0 0 1.4721E+01 20.8869 115.8360

MeanRunTimes 1.73E+00 2.87E+00 3.88E+00 4.31E+00 5.75E+00 4.6616E+00 3.9513 1.6358

Rosenbrock

Mean 2.56E+01 2.56E+01 2.56E+01 2.52E+01 2.54E+01 2.5108E+01 26.5188 1.3708E+03

Stand.Div 2.56E+01 2.56E+01 2.56E+01 2.52E+01 2.54E+01 2.5115E+01 26.5425 1.6446E+03

Best 2.41E+01 2.42E+01 2.41E+01 2.40E+01 2.42E+01 2.4025E+01 25.0393 429.0925

Worst 2.62E+01 2.62E+01 2.70E+01 2.61E+01 2.62E+01 2.6104E+01 28.7730 4.0747E+03

MeanRunTimes 1.52E+00 3.23E+00 5.52E+00 3.80E+00 6.96E+00 4.4560E+00 3.5834 1.4551

Griewank

Mean 3.76E-04 6.21E-04 9.90E-04 0 0 6.0142E-03 0.0056 1.4594

Stand.Div 1.68E-03 2.78E-03 3.13E-03 0 0 1.4804E-02 0.0092 1.4767

Best 0 0 0 0 0 0 1.6031E-06 1.1595

Worst 7.52E-03 1.24E-02 9.91E-03 0 0 6.0169E-02 0.0211 1.9960

MeanRunTimes 1.73E+00 3.02E+00 5.34E+00 6.25E+00 9.52E+00 6.3599E+00 3.8414 1.7894

The results of experiments that were conducted to show the effect of 10 different
initialisation schemes on the algorithms are presented, and the findings in the experiments
are discussed. The best, worst, mean, standard deviation, and the mean runtime results
obtained from the experiments are shown in Tables 17–19. It can be seen from the results,
that the ten different initialisation schemes have a different effect on the performance of
the algorithms. For some functions, the results are better than others. For some functions,
the results appeared to be inconsistent because, while the best value is accurate, the mean
value seemed to be inaccurate. The inconsistency could mean that the initial population
is close to the global optimum when the best value was returned. It could also mean that
the diversity is best suited to the function, hence, its ability to yield a good result. In other
cases, more iterations might be needed, or a different diverse population might be used to
achieve the desired result.
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Table 15. Result for Butterfly Optimization Algorithm.

Function Value

Butterfly Optimization Algorithm

Pop = 10 Pop = 20 Pop = 30 Pop = 50 Pop = 100 Pop = 300 Pop = 500 Pop = 1000

Iter = 1000 Iter = 900 Iter = 800 Iter = 600 Iter = 500 Iter = 300 Iter = 100 Iter = 10

Sphere

Mean 0 0 0 0 0 1.6922E-08 4.9084E-05 7.6957E-06

Stand.Div 0 0 0 0 0 1.7860E-08 5.0361E-05 1.3852E-05

Best 0 0 0 0 0 1.0376E-08 3.0436E-05 3.0197E-07

Worst 0 0 0 0 0 3.2348E-08 7.5007E-05 5.0646E-05

MeanRunTimes 1.06E+00 2.71E+00 7.82E+00 1.11E+01 2.68E+01 2.2878E+01 29.6371 22.1779

Rastrigin

Mean 0 0 0 0 0 4.7966E-06 0.0028 1.5485

Stand.Div 0 0 0 0 0 5.3872E-06 0.0029 1.5518

Best 0 0 0 0 0 1.5685E-06 0.0013 1.3340

Worst 0 0 0 0 0 1.1829E-05 0.0041 1.7193

MeanRunTimes 1.33E+00 3.02E+00 5.16E+00 7.31E+00 1.78E+01 2.3616E+01 29.8871 22.4889

Rosenbrock

Mean 2.89E+01 2.89E+01 2.88E+01 2.88E+01 2.88E+01 2.8787E+01 28.7735 28.9139

Stand.Div 2.89E+01 2.89E+01 2.88E+01 2.88E+01 2.88E+01 2.8787E+01 28.7735 28.9139

Best 2.88E+01 2.88E+01 2.88E+01 2.88E+01 2.87E+01 2.8750E+01 28.7340 28.8728

Worst 2.89E+01 2.89E+01 2.89E+01 2.89E+01 2.89E+01 2.8832E+01 28.8062 28.9504

MeanRunTimes 9.82E-01 2.85E+00 6.86E+00 6.82E+00 1.91E+01 2.3152E+01 31.1730 22.1920

Griewank

Mean 0 0 0 0 0 5.7050E-06 0.0068 1.1715

Stand.Div 0 0 0 0 0 5.7511E-06 0.0068 1.1715

Best 0 0 0 0 0 4.0656E-06 0.0059 1.1497

Worst 0 0 0 0 0 6.9312E-06 0.0079 1.1881

MeanRunTimes 1.29E+00 3.06E+00 7.07E+00 1.09E+01 2.58E+01 3.8891E+01 31.5429 22.5601

Table 16. Friedman test result.

BA GWO BOA

Pop = 10
Iter = 1000 7.11 5.04 4.89

Pop = 20
Iter = 900 6.30 4.07 4.22

Pop = 30
Iter = 800 5.59 4.63 3.26

Pop = 50
Iter = 600 5.19 3.65 3.67

Pop = 100
Iter = 500 4.30 3.91 3.35

Pop = 300
Iter = 300 3.30 3.70 4.43

Pop = 500
Iter = 100 2.70 5.13 5.67

Pop = 1000
Iter = 10 1.52 5.87 6.52

N 10 10 10

Chi-Square 113.914 29.445 49.249

df 7 7 7

Asymp. Sig. 0.000 0.000 0.000



Appl. Sci. 2022, 12, 896 23 of 34

Table 17. Results for BA.

Function Value Rand Betarnd(3,2) Betarnd(2.5,2.5) Unifrnd(0,1) Lognrnd(0,0.5) Exprnd(0.5) Raylrnd(0.4) Wblrnd(1,1) Lhsdesign() Sobol()

F1

Mean 9.79E+03 4.94E+03 4.57E+03 9.51E+03 2.53E+04 1.78E+04 6.78E+03 3.43E+04 9.35E+03 3.02E+03

Stand.Div 9.93E+03 5.04E+03 4.65E+03 9.75E+03 2.60E+04 1.80E+04 6.91E+03 3.47E+04 9.56E+03 3.12E+03

Best 6.89E+03 3.44E+03 3.23E+03 5.93E+03 1.28E+04 1.26E+04 4.05E+03 2.34E+04 4.85E+03 9.86E+02

Worst 1.43E+04 6.85E+03 6.47E+03 1.35E+04 3.82E+04 2.14E+04 9.18E+03 4.34E+04 1.14E+04 4.45E+03

MeanRunTimes 6.79E+00 6.86E+00 6.87E+00 6.82E+00 8.20E+00 7.64E+00 6.84E+00 8.16E+00 9.98E+00 6.79E+00

F2

Mean 4.93E+00 1.20E+00 1.26E+00 4.65E+00 1.37E+01 1.18E+01 2.43E+00 4.22E+01 5.65E+00 8.74E-01

Stand.Div 5.26E+00 1.28E+00 1.34E+00 5.14E+00 1.49E+01 1.30E+01 2.58E+00 4.59E+01 6.21E+00 1.04E+00

Best 1.33E+00 3.75E-01 3.22E-01 1.46E+00 5.48E+00 5.24E+00 9.30E-01 1.26E+01 2.27E+00 1.61E-01

Worst 8.00E+00 1.88E+00 2.04E+00 9.69E+00 2.88E+01 2.41E+01 3.73E+00 7.73E+01 1.10E+01 2.39E+00

MeanRunTimes 7.89E+00 7.97E+00 8.04E+00 7.95E+00 9.37E+00 9.15E+00 8.07E+00 9.29E+00 1.12E+01 7.88E+00

F3

Mean 2.03E+01 4.50E+01 1.23E+01 2.11E+01 1.35E+02 2.05E+01 1.18E+01 6.27E+01 2.20E+01 5.54E+01

Stand.Div 2.12E+01 4.93E+01 1.29E+01 2.22E+01 1.44E+02 2.18E+01 1.27E+01 6.59E+01 2.37E+01 6.63E+01

Best 7.76E+00 1.65E+01 4.65E+00 1.10E+01 5.61E+01 7.22E+00 3.91E+00 3.13E+01 1.04E+01 1.72E+01

Worst 3.41E+01 8.45E+01 2.32E+01 3.61E+01 2.49E+02 3.24E+01 2.27E+01 1.22E+02 4.43E+01 1.71E+02

MeanRunTimes 9.68E-01 9.75E-01 9.83E-01 9.91E-01 1.13E+00 1.05E+00 9.77E-01 1.11E+00 1.28E+00 9.94E-01

F4

Mean 1.61E+04 1.64E+04 7.44E+03 1.77E+04 5.91E+05 3.53E+04 1.08E+04 6.20E+04 1.83E+04 1.56E+04

Stand.Div 1.65E+04 1.69E+04 7.61E+03 1.79E+04 6.68E+05 3.61E+04 1.10E+04 6.57E+04 1.89E+04 1.98E+04

Best 6.73E+03 6.15E+03 5.21E+03 1.21E+04 1.83E+05 2.19E+04 6.90E+03 2.15E+04 9.53E+03 6.28E+03

Worst 2.26E+04 2.33E+04 1.05E+04 2.33E+04 1.69E+06 4.86E+04 1.59E+04 1.02E+05 2.66E+04 5.95E+04

MeanRunTimes 1.13E+01 1.13E+01 1.13E+01 1.13E+01 1.26E+01 1.17E+01 1.14E+01 1.25E+01 1.49E+01 1.14E+01

F5

Mean 1.99E-02 1.80E-02 2.85E-02 5.89E-02 8.43E-02 5.46E-02 2.62E-02 8.63E-02 5.15E-02 4.24E-01

Stand.Div 2.86E-02 2.74E-02 5.32E-02 9.10E-02 1.28E-01 8.41E-02 6.90E-02 1.58E-01 8.19E-02 8.22E-01

Best 1.21E-04 2.95E-04 3.61E-06 9.74E-04 6.15E-04 2.58E-04 1.41E-04 2.31E-05 1.45E-04 1.62E-04

Worst 8.47E-02 9.53E-02 1.70E-01 2.66E-01 3.59E-01 2.49E-01 2.96E-01 5.17E-01 1.89E-01 2.50E+00

MeanRunTimes 8.48E-02 8.51E-02 8.72E-02 8.84E-02 9.44E-02 8.82E-02 8.59E-02 9.13E-02 1.02E-01 8.77E-02
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Table 17. Cont.

Function Value Rand Betarnd(3,2) Betarnd(2.5,2.5) Unifrnd(0,1) Lognrnd(0,0.5) Exprnd(0.5) Raylrnd(0.4) Wblrnd(1,1) Lhsdesign() Sobol()

F6

Mean 4.62E+00 4.03E+00 3.86E+00 4.47E+00 5.49E+00 4.74E+00 4.26E+00 5.15E+00 4.61E+00 4.92E+00

Stand.Div 4.62E+00 4.08E+00 3.88E+00 4.49E+00 5.50E+00 4.76E+00 4.27E+00 5.17E+00 4.63E+00 4.94E+00

Best 3.85E+00 2.35E+00 3.09E+00 3.41E+00 4.94E+00 3.80E+00 3.61E+00 3.68E+00 3.69E+00 4.06E+00

Worst 5.15E+00 4.81E+00 4.46E+00 5.15E+00 5.90E+00 5.41E+00 4.84E+00 5.80E+00 5.12E+00 5.94E+00

MeanRunTimes 1.07E+00 1.08E+00 1.07E+00 1.08E+00 1.18E+00 1.11E+00 1.07E+00 1.13E+00 1.38E+00 1.09E+00

F7

Mean 2.62E+02 2.14E+02 2.13E+02 2.58E+02 4.06E+02 2.98E+02 2.29E+02 3.72E+02 2.53E+02 2.22E+02

Stand.Div 2.62E+02 2.15E+02 2.14E+02 2.58E+02 4.08E+02 2.99E+02 2.29E+02 3.72E+02 2.54E+02 2.22E+02

Best 2.35E+02 1.76E+02 1.88E+02 2.23E+02 3.26E+02 2.60E+02 2.02E+02 3.27E+02 1.94E+02 1.93E+02

Worst 2.98E+02 2.40E+02 2.50E+02 2.94E+02 4.65E+02 3.31E+02 2.55E+02 4.37E+02 2.83E+02 2.45E+02

MeanRunTimes 6.95E+00 6.92E+00 6.92E+00 7.00E+00 8.38E+00 8.08E+00 7.03E+00 8.32E+00 1.01E+01 7.04E+00

F8

Mean 6.69E+06 1.76E+06 1.29E+06 5.86E+06 5.90E+07 1.49E+07 3.33E+06 7.78E+07 5.77E+06 7.60E+05

Stand.Div 7.39E+06 1.89E+06 1.39E+06 6.25E+06 6.65E+07 1.54E+07 3.56E+06 8.29E+07 6.26E+06 8.66E+05

Best 3.00E+06 8.85E+05 3.77E+05 2.36E+06 1.49E+07 6.32E+06 1.10E+06 3.32E+07 2.24E+06 1.89E+05

Worst 1.25E+07 3.17E+06 2.31E+06 1.07E+07 1.31E+08 2.21E+07 5.41E+06 1.37E+08 1.12E+07 1.70E+06

MeanRunTimes 6.75E+00 6.86E+00 6.86E+00 6.79E+00 8.16E+00 7.97E+00 6.91E+00 8.11E+00 9.98E+00 6.81E+00

F9

Mean 8.88E+01 4.60E+01 3.74E+01 9.50E+01 2.42E+02 1.60E+02 6.30E+01 2.92E+02 9.00E+01 3.06E+01

Stand.Div 9.06E+01 4.67E+01 3.79E+01 9.73E+01 2.48E+02 1.63E+02 6.45E+01 2.95E+02 9.23E+01 3.29E+01

Best 3.99E+01 3.10E+01 2.80E+01 5.21E+01 1.48E+02 1.12E+02 3.82E+01 2.19E+02 5.93E+01 1.77E+01

Worst 1.18E+02 6.18E+01 4.67E+01 1.36E+02 3.64E+02 2.38E+02 8.79E+01 3.70E+02 1.31E+02 5.72E+01

MeanRunTimes 7.08E+00 7.14E+00 7.17E+00 7.09E+00 8.47E+00 7.94E+00 7.14E+00 8.47E+00 1.03E+01 7.13E+00

F10

Mean 1.53E+01 1.36E+01 1.27E+01 1.56E+01 2.00E+01 1.86E+01 1.39E+01 1.99E+01 1.57E+01 1.04E+01

Stand.Div 1.53E+01 1.36E+01 1.27E+01 1.56E+01 2.00E+01 1.86E+01 1.40E+01 1.99E+01 1.58E+01 1.05E+01

Best 1.38E+01 1.16E+01 1.17E+01 1.38E+01 2.00E+01 1.60E+01 1.18E+01 1.96E+01 1.44E+01 8.63E+00

Worst 1.63E+01 1.48E+01 1.40E+01 1.66E+01 2.00E+01 2.00E+01 1.51E+01 2.00E+01 1.69E+01 1.31E+01

MeanRunTimes 8.22E+00 7.84E+00 7.61E+00 8.26E+00 8.24E+00 8.25E+00 8.07E+00 8.26E+00 1.14E+01 8.24E+00
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Table 18. Results for BOA.

Function Value Rand Betarnd(3,2) Betarnd(2.5,2.5) Unifrnd(0,1) Lognrnd(0,0.5) Exprnd(0.5) Raylrnd(0.4) Wblrnd(1,1) Lhsdesign() Sobol()

F1

Mean 0 0 0 0 0 0 0 0 0 0

Stand.Div 0 0 0 0 0 0 0 0 0 0

Best 0 0 0 0 0 0 0 0 0 0

Worst 0 0 0 0 0 0 0 0 0 0

MeanRunTimes 4.01E+00 4.42E+00 4.23E+00 4.05E+00 4.24E+00 3.97E+00 4.03E+00 4.01E+00 4.26E+00 4.06E+00

F2

Mean 0 0 0 0 0 0 0 0 0 0

Stand.Div 0 0 0 0 0 0 0 0 0 0

Best 0 0 0 0 0 0 0 0 0 0

Worst 0 0 0 0 0 0 0 0 0 0

MeanRunTimes 7.35E+00 7.78E+00 7.66E+00 7.38E+00 7.65E+00 7.35E+00 7.36E+00 7.38E+00 7.59E+00 7.45E+00

F3

Mean 0 0 0 0 0 0 0 0 0 0

Stand.Div 0 0 0 0 0 0 0 0 0 0

Best 0 0 0 0 0 0 0 0 0 0

Worst 0 0 0 0 0 0 0 0 0 0

MeanRunTimes 7.31E-01 7.84E-01 7.78E-01 7.47E-01 7.84E-01 7.33E-01 7.42E-01 7.36E-01 7.69E-01 7.53E-01

F4

Mean 0 0 0 0 0 0 0 0 0 0

Stand.Div 0 0 0 0 0 0 0 0 0 0

Best 0 0 0 0 0 0 0 0 0 0

Worst 0 0 0 0 0 0 0 0 0 0

MeanRunTimes 1.63E+01 1.67E+01 1.65E+01 1.62E+01 1.66E+01 1.63E+01 1.63E+01 1.65E+01 1.72E+01 1.64E+01

F5

Mean 1.04E-07 8.27E-08 1.03E-07 9.58E-08 5.76E-08 1.18E-07 1.30E-07 9.02E-08 1.20E-07 1.02E-07

Stand.Div 1.41E-07 1.22E-07 1.42E-07 1.14E-07 7.62E-08 1.71E-07 1.97E-07 1.23E-07 1.71E-07 1.40E-07

Best 1.33E-08 0 0 0 0 1.00E-08 1.50E-08 0 0 0

Worst 3.58E-07 4.13E-07 3.11E-07 2.25E-07 1.57E-07 5.57E-07 7.05E-07 3.28E-07 5.12E-07 3.76E-07

MeanRunTimes 8.82E-02 9.21E-02 9.15E-02 9.03E-02 9.10E-02 8.95E-02 8.96E-02 8.96E-02 9.08E-02 9.02E-02
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Table 18. Cont.

Function Value Rand Betarnd(3,2) Betarnd(2.5,2.5) Unifrnd(0,1) Lognrnd(0,0.5) Exprnd(0.5) Raylrnd(0.4) Wblrnd(1,1) Lhsdesign() Sobol()

F6

Mean 1.40E+00 1.01E+00 1.33E+00 1.22E+00 1.33E+00 1.27E+00 1.24E+00 1.23E+00 1.44E+00 1.48E+00

Stand.Div 1.63E+00 1.35E+00 1.56E+00 1.36E+00 1.55E+00 1.47E+00 1.36E+00 1.41E+00 1.63E+00 1.66E+00

Best 2.64E-01 1.23E-01 5.07E-01 1.48E-01 4.09E-01 3.69E-01 2.35E-01 1.48E-01 5.29E-01 4.74E-01

Worst 3.15E+00 3.59E+00 3.38E+00 2.52E+00 3.26E+00 2.99E+00 2.31E+00 2.69E+00 3.73E+00 3.14E+00

MeanRunTimes 1.11E+00 1.18E+00 1.15E+00 1.12E+00 1.15E+00 1.12E+00 1.12E+00 1.12E+00 1.14E+00 1.13E+00

F7

Mean 0 0 0 0 0 0 0 0 0 0

Stand.Div 0 0 0 0 0 0 0 0 0 0

Best 0 0 0 0 0 0 0 0 0 0

Worst 0 0 0 0 0 0 0 0 0 0

MeanRunTimes 4.11E+00 4.51E+00 4.35E+00 4.16E+00 4.35E+00 4.09E+00 4.15E+00 4.13E+00 4.29E+00 4.20E+00

F8

Mean 2.52E+01 2.51E+01 2.53E+01 2.51E+01 2.50E+01 2.51E+01 2.52E+01 2.51E+01 2.51E+01 2.53E+01

Stand.Div 2.53E+01 2.51E+01 2.53E+01 2.51E+01 2.50E+01 2.51E+01 2.52E+01 2.52E+01 2.51E+01 2.53E+01

Best 2.37E+01 2.38E+01 2.39E+01 2.33E+01 2.36E+01 2.42E+01 2.39E+01 2.40E+01 2.42E+01 2.41E+01

Worst 2.62E+01 2.70E+01 2.62E+01 2.62E+01 2.62E+01 2.62E+01 2.62E+01 2.62E+01 2.60E+01 2.61E+01

MeanRunTimes 3.95E+00 4.35E+00 4.14E+00 3.96E+00 4.14E+00 3.92E+00 3.97E+00 3.95E+00 4.20E+00 4.00E+00

F9

Mean 0 0 0 0 0 3.73E-04 0 0 3.73E-04 0

Stand.Div 0 0 0 0 0 1.67E-03 0 0 1.67E-03 0

Best 0 0 0 0 0 0 0 0 0 0

Worst 0 0 0 0 0 7.46E-03 0 0 7.46E-03 0

MeanRunTimes 4.27E+00 4.67E+00 4.48E+00 4.28E+00 4.49E+00 4.27E+00 4.27E+00 4.33E+00 4.42E+00 4.32E+00

F10

Mean 0 0 0 0 2.02E+01 0 0 2.04E+00 0 0

Stand.Div 0 0 0 0 2.02E+01 0 0 6.44E+00 0 0

Best 0 0 0 0 2.02E+01 0 0 0 0 0

Worst 0 0 0 0 2.03E+01 0 0 2.04E+01 0 0

MeanRunTimes 4.11E+00 4.51E+00 4.33E+00 4.12E+00 4.89E+00 4.06E+00 4.14E+00 4.25E+00 4.25E+00 4.18E+00
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Table 19. Results for GWO.

Function Value Rand Betarnd(3,2) Betarnd(2.5,2.5) Unifrnd(0,1) Lognrnd(0,0.5) Exprnd(0.5) Raylrnd(0.4) Wblrnd(1,1) Lhsdesign() Sobol()

F1

Mean 0 0 0 0 0 0 0 0 0 0

Stand.Div 0 0 0 0 0 0 0 0 0 0

Best 0 0 0 0 0 0 0 0 0 0

Worst 0 0 0 0 0 0 0 0 0 0

MeanRunTimes 3.76E+00 3.77E+00 3.77E+00 3.77E+00 3.78E+00 3.74E+00 3.71E+00 3.74E+00 3.75E+00 3.74E+00

F2

Mean 0 0 0 0 0 0 0 0 0 0

Stand.Div 0 0 0 0 0 0 0 0 0 0

Best 0 0 0 0 0 0 0 0 0 0

Worst 0 0 0 0 0 0 0 0 0 0

MeanRunTimes 6.49E+00 6.47E+00 6.53E+00 6.53E+00 6.52E+00 6.49E+00 6.42E+00 6.45E+00 6.50E+00 6.48E+00

F3

Mean 0 0 0 0 0 0 0 0 0 0

Stand.Div 0 0 0 0 0 0 0 0 0 0

Best 0 0 0 0 0 0 0 0 0 0

Worst 0 0 0 0 0 0 0 0 0 0

MeanRunTimes 6.24E-01 6.24E-01 6.31E-01 6.33E-01 6.37E-01 6.28E-01 6.25E-01 6.22E-01 6.31E-01 6.32E-01

F4

Mean 0 0 0 0 0 0 0 0 0 0

Stand.Div 0 0 0 0 0 0 0 0 0 0

Best 0 0 0 0 0 0 0 0 0 0

Worst 0 0 0 0 0 0 0 0 0 0

MeanRunTimes 1.36E+01 1.37E+01 1.37E+01 1.35E+01 1.38E+01 1.37E+01 1.36E+01 1.37E+01 1.43E+01 1.37E+01

F5

Mean 1.28E-03 7.20E-04 8.16E-04 8.13E-04 8.42E-04 9.36E-04 1.09E-03 1.57E-03 1.13E-03 5.43E-04

Stand.Div 2.02E-03 9.37E-04 1.09E-03 1.07E-03 1.12E-03 1.71E-03 1.67E-03 2.34E-03 1.74E-03 8.19E-04

Best 1.29E-04 5.74E-05 3.47E-05 8.95E-05 4.32E-05 2.07E-05 2.22E-05 5.83E-05 5.98E-06 2.78E-06

Worst 7.04E-03 2.35E-03 3.25E-03 3.39E-03 2.83E-03 4.76E-03 4.36E-03 6.90E-03 3.88E-03 2.68E-03

MeanRunTimes 7.42E-02 7.41E-02 7.48E-02 7.47E-02 7.48E-02 7.51E-02 7.40E-02 7.39E-02 7.58E-02 7.38E-02
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Table 19. Cont.

Function Value Rand Betarnd(3,2) Betarnd(2.5,2.5) Unifrnd(0,1) Lognrnd(0,0.5) Exprnd(0.5) Raylrnd(0.4) Wblrnd(1,1) Lhsdesign() Sobol()

F6

Mean 4.41E+00 3.89E+00 3.91E+00 4.14E+00 3.80E+00 4.67E+00 4.28E+00 4.33E+00 4.22E+00 4.25E+00

Stand.Div 4.42E+00 3.90E+00 3.92E+00 4.16E+00 3.82E+00 4.68E+00 4.29E+00 4.35E+00 4.25E+00 4.27E+00

Best 3.73E+00 3.36E+00 3.29E+00 3.34E+00 2.55E+00 3.83E+00 3.55E+00 3.60E+00 2.67E+00 3.29E+00

Worst 4.76E+00 4.53E+00 4.40E+00 4.77E+00 4.37E+00 5.37E+00 4.63E+00 5.01E+00 4.89E+00 4.84E+00

MeanRunTimes 9.23E-01 9.31E-01 9.30E-01 9.18E-01 9.44E-01 9.16E-01 9.21E-01 9.24E-01 9.27E-01 9.16E-01

F7

Mean 0 0 0 0 0 0 0 0 0 0

Stand.Div 0 0 0 0 0 0 0 0 0 0

Best 0 0 0 0 0 0 0 0 0 0

Worst 0 0 0 0 0 0 0 0 0 0

MeanRunTimes 4.14E+00 4.12E+00 4.17E+00 4.14E+00 4.15E+00 4.15E+00 4.15E+00 4.13E+00 4.15E+00 4.14E+00

F8

Mean 2.88E+01 2.87E+01 2.88E+01 2.88E+01 2.87E+01 2.89E+01 2.89E+01 2.87E+01 2.88E+01 2.88E+01

Stand.Div 2.88E+01 2.87E+01 2.88E+01 2.88E+01 2.87E+01 2.89E+01 2.89E+01 2.87E+01 2.88E+01 2.88E+01

Best 2.88E+01 2.87E+01 2.88E+01 2.88E+01 2.86E+01 2.89E+01 2.88E+01 2.87E+01 2.88E+01 2.88E+01

Worst 2.89E+01 2.87E+01 2.89E+01 2.89E+01 2.87E+01 2.89E+01 2.89E+01 2.87E+01 2.89E+01 2.89E+01

MeanRunTimes 3.69E+00 3.69E+00 3.68E+00 3.67E+00 3.70E+00 3.68E+00 3.65E+00 3.68E+00 3.69E+00 3.67E+00

F9

Mean 0 0 0 0 0 0 0 0 0 0

Stand.Div 0 0 0 0 0 0 0 0 0 0

Best 0 0 0 0 0 0 0 0 0 0

Worst 0 0 0 0 0 0 0 0 0 0

MeanRunTimes 4.20E+00 4.19E+00 4.20E+00 4.18E+00 4.19E+00 4.16E+00 4.18E+00 4.15E+00 4.19E+00 4.16E+00

F10

Mean 0 0 0 0 0 0 0 0 0 0

Stand.Div 0 0 0 0 0 0 0 0 0 0

Best 0 0 0 0 0 0 0 0 0 0

Worst 0 0 0 0 0 0 0 0 0 0

MeanRunTimes 3.97E+00 3.97E+00 3.97E+00 3.96E+00 4.04E+00 3.99E+00 3.95E+00 4.07E+00 3.97E+00 3.97E+00
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The results for experiments conducted on BA are given in Table 17. The betarnd(3,2),
betarnd(2.5,2.5), raylrnd(0.4), and sobol outperformed the rand for most functions. To
obtain the general effect of the initialisation schemes on BA, we treated the ten initiali-
sation schemes as observations for the Friedman’s test, and the summary is given in the
corresponding column in Table 20. The p-value is 0.000, which is less than α = 0.05, and
hence we rejected the hypothesis. This means that the performance of BA is sensitive to
the initialisation schemes. After a post hoc test based on the Wilcoxon signed ranks test of
all the initialisation schemes using a Bonferroni correction with a significance level set at
p < 0.001, the betarnd(2.5,2.5) returned the lowest mean and is ranked first and, therefore,
we recommended betarnd(2.5,2.5) for BA.

Table 20. Friedman’s test for classical functions.

BA BOA GWO

Mean Rank Mean Rank Mean Rank

rand 7.10 12.35 12.30
betarnd(3,2) 4.20 9.25 9.90

betarnd(2.5,2.5) 2.70 12.05 10.90
unifrnd(0,1) 8.00 9.65 11.20

lognrnd(0,0.5) 17.70 10.60 9.50
exprnd(0.5) 10.00 12.40 13.10
raylrnd(0.4) 4.90 12.25 12.40
wblrnd(1,1) 16.20 10.90 12.30
lhsdesign() 7.90 12.90 12.20

Sobol() 5.70 12.65 11.20
Test Statistics a

N 10 10 10
Chi-Square 160.917 33.892 25.217

df 22 22 22
Asymp. Sig. 0.000 0.050 0.287

a Friedman’s Test.

The result for BOA is shown in Table 18, and it showed that the betarnd(3,2) and
unifrnd(0,1) are the best performing initialisation schemes. As shown in Table 20, BOA
has a p-value of 0.050, which is equal to α = 0.05, hence we retained the hypothesis. This
means that BOA is not sensitive to the initialisation schemes. Similarly, the results for GWO
(Table 19) showed that lognrnd(0,0.5) and betarnd(3,2) are the best performing initialisation
schemes. The Friedman’s test result showed that the p-value is 0.287, which is greater than
α = 0.05, hence we retained the hypothesis. This means that BOA is not sensitive to the
initialisation schemes.

6. Conclusions

So many works exist in the literature that clearly outline the nature of the role of the
initial population in the overall performance of metaheuristic algorithms. However, despite
the role that initialisation plays and the efforts put forward by researchers in this research
area, to our knowledge, no comprehensive survey of articles on the subject area exists.
Therefore, the present study presents a comprehensive survey of different approaches to
improving performances of metaheuristic optimizers, using their initialisation scheme. We
also show the publication trends for research in this area, and the number of citations.
Finally, we provided a glossary of efforts that have been made to improve the performance
of metaheuristic algorithms using their initialisation scheme. We also include the areas of
application of these improvements for easy reference by metaheuristic research enthusiasts.

The number of articles published to date in the repositories that were discussed earlier
showed that the area which focuses on the initialisation of the population of metaheuristic
algorithms is relatively uncharted. Many of these metaheuristic algorithms have been
proposed; however, less effort has been made regarding their initialisation scheme. Most
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researchers opt for the commonly used random number generator whose disadvantages
have been significantly studied. The ease of implementation of the random number genera-
tor may have contributed to its use by researchers. On the one hand, the hybridisation of
metaheuristic algorithms has yielded great results in the literature. Authors have had a
great degree of success in using different initialisation schemes for the algorithms. We see a
promising avenue whereby researchers can explore these high-performing initialisation
schemes to assess their efficacy. The size of the population and the iteration number can
be varied along with these schemes. This can help in increasing the performance of the
algorithms.

Our experiments demonstrate that for the classical functions under consideration, BA
is sensitive to the initialisation schemes, whereas GWO and BOA are not. The sensitivity of
the algorithms is also problem-dependent, meaning that some functions were insensitive
to the initialisation scheme. The population size and number of iterations play a role in
the performance of the algorithms. We discovered that BA performed better with larger
population sizes. GWO and BOA performed better when the number of iterations was
greater. This conclusion is heavily dependent on the dimension problem; however, we
believe that good population diversity and number of iterations will most likely lead to
optimal solutions.

We also identified the need for an initialisation method for these algorithms that are
best suited to the specific problem domain with statistical backing to yield an optimal
solution for that set of problems. Unfortunately, most papers on meta-heuristics usually
perform very little statistical validation, and if they do it is only on a single problem that the
researchers describe. Benchmarking meta-heuristics with systematic and sound statistical
techniques is usually lacking from many published works in the literature. In addition,
a tuning/adaptive scheme could be developed, and this scheme should be capable of
choosing an initialisation method from a suite of initialisation schemes that will lead to
better solutions, depending on the nature of the problem encountered. This approach will
also lead to the diversity of the population.
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