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Abstract: As a result of the development of non-invasive optical spectroscopy, the number of prospec-
tive technologies of plant monitoring is growing. Being implemented in devices with different
functions and hardware, these technologies are increasingly using the most advanced data processing
algorithms, including machine learning and more available computing power each time. Optical
spectroscopy is widely used to evaluate plant tissues, diagnose crops, and study the response of plants
to biotic and abiotic stress. Spectral methods can also assist in remote and non-invasive assessment
of the physiology of photosynthetic biofilms and the impact of plant species on biodiversity and
ecosystem stability. The emergence of high-throughput technologies for plant phenotyping and the
accompanying need for methods for rapid and non-contact assessment of plant productivity has
generated renewed interest in the application of optical spectroscopy in fundamental plant sciences
and agriculture. In this perspective paper, starting with a brief overview of the scientific and techno-
logical backgrounds of optical spectroscopy and current mainstream techniques and applications, we
foresee the future development of this family of optical spectroscopic methodologies.

Keywords: fluorescence spectroscopy; high-throughput plant phenotyping; infrared spectroscopy;
imaging spectroscopy; near-infrared spectroscopy; precision agriculture; Raman spectroscopy; point
spectral measurements; visible spectroscopy

1. Introduction

The future of humanity on Earth is dependent on plants. They provide not only the
oxygen needed to support aerobic respiration but also the food for an increasing global
population. In fact, plants and other photosynthetic organisms (e.g., algae and cyanobacte-
ria) provide all the energy that fuels the biosphere, with the exception of chemosynthetic
processes present on some bacteria. These might have local importance, such as in the
underwater volcanic hydrothermal springs, but do not contribute significantly to the bio-
sphere energy budget. Therefore, fostering progress in plant sciences must be a strategic
goal for the forthcoming decades. Formidable advances in the knowledge of plants’ molec-
ular biology have been made in the last decades, but the understanding of integrative
phenomena and their regulation at the whole-plant level have somehow lagged behind.
Fortunately, there is an increasing number of non-invasive technologies applied for monitor-
ing the physiology of plants and other photosynthetic organisms under diverse conditions,
arising from the development of optical spectroscopy techniques. They are implemented in
devices with different functionalities and hardware, assisted by the increasingly accessible
computing power and the concomitant development of machine learning techniques.

Optical spectroscopy has been used to establish the microstructure and composition
of plant tissues; to evaluate crops quality and yield; to assess plants responses to biotic and
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abiotic stress; to screen various disorders and pathologies; to determine the impact of plant
species onto the ecosystems’ biodiversity and stability; and to assess, remotely the physio-
logical status of photosynthetic biofilms. These many applications have been compiled in
various recent reviews on the research topic [1–5]. The emergence of high-throughput plant
phenotyping technologies and the concomitant need for rapid and contactless technologies
for the assessment of plant performance renewed the interest in the application of optical
spectroscopy techniques in plant sciences [6–9]. Furthermore, the new generations of earth
observation satellites brought increased attention to techniques such as the spectral analysis
of solar-induced fluorescence (SIF). Finally, various optical spectroscopic techniques have
become valuable smart tools in precision agriculture as well as in the assessment of horticul-
tural product quality across the supply chains. This has contributed to a more sustainable,
safe, traceable, and high-quality fresh commodities production [10–12]. In this perspective
paper, departing from a brief review of the scientific and technological history of optical
spectroscopy, and an overview of the current main methodologies and applications in the
fundamental plant sciences and in agriculture, we foresee future developments of this
family of optical spectroscopy techniques.

2. Historical Perspective

Although spectral phenomena such as the rainbow have been known to humans
since ancient times, spectroscopy as a science emerged in the 17th century. At that time,
experimenting with sunlight and prisms, Sir Isaac Newton first demonstrated that white
light is composed of seven visible colors [13]. Soon after, the investigations were extended
to light from stars and flames, and the first signs that the spectra are related to the chemical
composition of the burning sample were observed. Afterward, spectroscopy started to
develop more intensively, accompanying the First Industrial Revolution. The foundations
of the wave theory of light and its interference were formed. The pioneer Newtonian
setup, built around a small hole and a prism, was improved by using a slit for the light
beam formation and, later, a diffraction grating [14–16] for the light dispersion. This
enabled William Wollaston, Joseph von Fraunhofer and, later, Anders Ångström to observe
and describe the position (wavelengths) of about a thousand thin dark lines of the solar
spectrum [17–19], presently known as the Fraunhofer lines. For the accurate measurements
of the angular position of the lines, a two-prism setup and a telescope were mounted on
a precise rotation stage to observe the spectrum, turning the optical arrangement into
what we today call a spectroscope (see [20] for more details). The establishment of a
quantitative wavelength scale served as the basis for a consistent cooperative examination
and classification of spectra observed in different laboratories, from diverse sources, and
using various instruments. By examining starlight and flames with the spectroscope, it
was found that they also can emit bright spectral lines [14]. Further critical development
of spectroscopy was made by Gustav Kirchhoff and Robert Bunsen, who reinforced the
initial assumption of the relationship between spectra and chemical composition with solid
experimental data [21].

By the beginning of the 21st century, the ever-increasing progress in the manufacture
of optical components—together with the development of each time more sensitive and
accurate photodetection techniques and devices—formed the foundations of spectroscopy
as we know it today. The rhythm of this progress in the field of specialized instrumentation,
such as fiber optics, gratings, and CCD, is well tracked in a number of fast-paced online
publications [22].

It grew into a broad and one of the most important fields of physics and chemistry,
going beyond the framework of optics and inorganic chemical analysis. Since then, spec-
troscopy has evolved using different strategic physical concepts, including such exotic ones
as acoustic spectroscopy and dynamic mechanical analysis [23]. The study of radiation
remains the predominant area of activity; however, radiation has been considered in its
broadest sense, giving rise to microwave, terahertz, traditional optical (i.e., far/near/mid-
infrared, visible-light, and ultraviolet), X-ray, and gamma spectroscopy. Spectroscopic
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methods can also be classified in accordance with the nature of the interactions between
radiation and materials [24]. Here, along with the simplest elastic-scattering and reflection
techniques, one can distinguish several others, based on more complex light-matter interac-
tions, including, absorption, emission, Raman, Brioullin, coherent and nuclear spectroscopy.
The interested reader is referred to the extensive treatise [25], and other vast literature on
the subject.

In plant sciences, the spectroscopic methods are applied to the solution of a wide
range of problems, from plant tissues and composition analysis to the detection and charac-
terization of motile species and biofilms. In view of the great diversity of these problems,
the plant scientists use a wide arsenal of spectroscopic methods covering nearly all spectral
ranges of electromagnetic radiation and various types of its interaction with matter [22,24],
from simple reflectance up to laser ablation inductively coupled plasma mass spectrometry.
Within the limited frame of this perspective article, the discussion will be restricted to the
most widely used and promising techniques and applications, namely, the non-invasive
visible/near/mid-infrared spectroscopy (“point” spectral and imaging techniques), spa-
tially and time resolved spectroscopy, Raman spectroscopy and fluorescence.

In the larger picture, these spectroscopic techniques have contributed largely to the
knowledge warranted to intervene as soon as possible in the ecosystems and the supply
chains of major crops and avoid detrimental effects on plants’ growth, yield, survival and
biodiversity, resulting in higher yield, quality, sustainability, and food safety, as envisaged
in the Sustainable Development Goals (SDGs) of the UN Agenda 2030 (https://www.undp.
org/sustainable-development-goals; accessed on 20 September 2021).

3. Main Techniques

Various branches of spectroscopy provide the researcher with different opportuni-
ties, perspectives, and observations—resonance frequencies, spectral amplitudes, and line
shapes, etc. In this section, we present the most interesting traditional and novel tech-
niques of optical spectroscopy for plant science that have demonstrated significant recent
achievements. The general basic principles of the most common spectroscopic techniques
are described below and depicted in Figure 1.

3.1. Elastic Spectroscopy

Elastic scattering represents the simplest and most efficient interaction between pho-
tons and matter. Thus, elastic spectroscopy has found numerous applications in various
domains of biology [24]. Essentially, this methodology examines the spectrum of photons
scattered elastically, that is, without changing the energy and wavelength, reflected from
the sample under study (Figure 1). The incident and reflected spectra differ because part of
the photons is extinguished in the path between source and detector. Photon extinction is
due to wavelength-dependent absorption and scattering. The light input is obtained from
an illuminator that emits a continuous or line spectrum in the range of interest. The active
setups use broadband light sources based on flames, high-temperature filaments (e.g., tung-
sten lightbulbs), discharges (arc lamps) or tunable (dye, semiconductor, free-electron, etc.)
lasers. The passive setups use external broadband light sources, primarily solar radiation.

Usually, active setups are chosen for the in situ and/or “point” spectral measurements
on both plants and fruit, where a specific site is targeted, producing an average spectrum
for that site only. Otherwise, multi- and hyperspectral (MHS) imaging, applied to plant or
fruit sections, may use both active (indoors) and passive (outdoors) setups. MHS produces
a “cube” of data, the three dimensions corresponding to the 2D pixel matrix times the 1D
spectral component. This cube may be sectioned along a plane of constant wavelength to
create an image of the measured areas/sections at that wavelength band or along constant x
or y to create a spatially resolved reflectance map [26]. The main difference between multi-
and hyperspectral modes is the number of wavebands used and how narrow the bands
are [27]. Multispectral imaging uses a set of filters and a common digital camera to deliver
typically no more than ten bands, while hyperspectral cameras merge imaging and spectral
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separation in the optical hardware to produce hundreds of contiguous wavebands [26].
The light-source-free spectral imagery equipment is efficient and lightweight; therefore, it
has found wide application in the air- and spaceborne diagnostics of individual plants and
vegetation landscapes [28,29].
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Figure 1. The basics and principles of different spectroscopic methods. The red circles represent a
molecule generically. The black horizontal lines represent the quantum states of the molecule. The
shadowed rectangles represent virtual states, i.e., states that do not correspond to any quantum state.
The energy of a virtual transition equals that of the photon. The vertical black arrow represents
radiative transitions, i.e., those involving a photon. Vertical thick white arrows represent non-
radiative transitions, i.e., not involving photons. Electromagnetic radiation is represented by wavy
lines, color-coded according to the photon energy: violet > blue > red.

Among the various elastic spectroscopy techniques used in plant sciences and in
precision agriculture, for “point” spectral measurements and MHS imaging, either in situ
or remotely, visible-near infrared reflectance spectroscopy (Vis-NIRS) has undoubtedly a
prominent and versatile role in the assessment of whole plants, fruit, field crops, orchards
and forestry [1,26,30]. Vis–NIRS covers the electromagnetic spectrum wavelength range of
400–2500 nm, although the upper limit of 2500 nm is not consensual among authors. The
choice made here is the most common, and one of the reasons to adopt it is that it coincides
with the detection limit of the InGaAs detectors equipping the standard NIR spectrometers.
The NIR radiation was discovered by Friedrich Wilhelm Herschel in 1800 and was first
used in agricultural applications to measure the moisture in grain in the late 1960s [31].
The first Vis–NIRS application was commercialized in Japan in 1989 to sort peaches based
on their soluble solids content (SSC) in an automated grading line. However, the research
on its principles, applications and on the development of new customized systems have
only followed some decades later, being a flourishing area nowadays [10,11,32]. Overall,
devices and systems have been developed and used to produce a large bulk of significant
and cutting-edge knowledge, which has been published throughout several decades [32].
Furthermore, there are more and more commercial applications available by industrial
vendors, which are used on a daily basis, particularly in agriculture and the agro-food
sector [10,11,33,34].
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Other major spectroscopic techniques used in plant science, mainly since the 1990s–2000s,
include the spatially resolved spectroscopy (SRS), which can also be associated with both
the MHS imaging [26,35] and the time resolved spectroscopy (TRS). SRS was first developed
to understand the light propagation in turbid media [36,37] and was further applied to the
determination of the optical properties of biological tissues [38,39]. In this technique, a small
continuous-wave light beam illuminates the sample’s surface, and the reemitted light is
measured at different distances from the light source. The absorption coefficient (µa) and the
reduced scattering coefficient (µs’) can then be extracted from the measured SRS reflectance
profiles by using an appropriate numerical method [26]. In TRS, a short monochromatic pulse
is injected into a turbid medium, such as a plant or fruit tissue, and the temporal distribution
of the emitted light, which is attenuated, broadened, and delayed due to light scattering, is
measured and fitted with an appropriate model of photon migration to estimate the optical
properties of the medium [26,40,41]. Application of TRS imaging systems have been reported
for the 3D imaging of biological tissues [42], but not in plants.

Apart from the property of the matter under investigation, the recorded spectrum
of the reflected radiation highly depends on the spectrum of the internal or external
illumination source, observation geometry and parameters of the electro-optical system in
use. For this reason, signal processing includes calibration and normalization procedures
designed to ultimately synthesize a certain characteristic that solely represents a property
of the sample—usually, the reflection coefficient of the illuminated sample surface.

The collection geometry for Vis-NIRS, either in the modalities of “point” and imaging,
depends on the goal of the measurement. In any case, it is always a recommended procedure
to avoid specularly reflected light since it is mostly devoid of information from the sample.
One possibility is to send and collect light along the same oblique angle. Another possibility
is to use geometries such a 0/d, meaning that light is incident along the normal to the
surface, and the diffusively reflected light is collected along an oblique angle. Diffuse
reflected light is originated either by the surface roughness, or by scattering inside the
tissue. In some applications, it is important to collect only the photons scattered inside
the tissue, because these are the most informative. To do that, it is necessary to reject the
superficial component of the diffuse reflected light. The simplest way to achieve it is to
perform contact measurements, with light being injected and collected by optical fibers
separated by a few millimeters. However, the same effect may also be achieved with lenses
and baffles. The corresponding geometry is usually called interactance. Finally, there is
also the transmittance geometry, where light injection and collection are performed at
opposite sides of the sample. This automatically implies that only the light crossing the
tissue is detected.

Thus, in most systems the elastic reflection represents the overwhelming part of the
total reflection, and the elastic spectroscopy provides good sensitivity, achieved with robust
equipment that is cost-effective in terms of manufacturing, operation and maintenance. It is
also a very versatile technique, as nearly all biological materials reflect a sufficient portion
of the incident optical light. However, the elastic-scattering spectra of related plant samples
demonstrate significant similarities, which in many cases result in the low selectivity of
this technique.

3.2. Other Spectroscopic Techniques

Far more selective techniques can be developed based on interactions between light
and matter that result in changes in the photon energy and wavelength. These changes
are characteristic of the biological material and, as a rule, yield spectra that are more
information-rich than those due to the elastic scattering. The two main types of such
phenomena are fluorescence and Raman scattering (Figure 1), the latter firstly discovered in
1928 [43]. As both imply detection of light emitted by the irradiated sample, the fluorescence
and Raman emissions are often observed simultaneously, with the same experimental setup.

The main difference between fluorescence and Raman processes is that the former
is emission from a relatively long-lived (typically, 10−8–10−9 s) excited electronic state,
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whereas in the latter, light scattering occurs nearly instantly—more precisely, via emission
of a photon from a short-lived (less than ca. 10−15 s) excited virtual state—see a more
detailed comparison in [44]. For fluorescence, the long excited-state lifetime results in
the molecules having sufficient time to relax to the same metastable energy state prior to
emission. The energy of the virtual state, from which the radiative transition takes place,
is determined by the energy of the incident photon. Thus, the wavelength of fluorescent
radiation is weakly dependent on it, while the wavelength of Raman scattering increases
with the wavelength of the exciting light. In most cases, the light due to fluorescence and
Raman scattering possesses lower quantum energy (longer wavelength) than the initial
radiation (Stokes shift). However, when the molecules are already in an excited state, the
emitted light has higher energy (smaller wavelength) than the initial radiation (anti-Stokes
shift—see Figure 1 for illustration of anti-Stokes in Raman scattering). Anti-Stokes lines
are much weaker than the Stokes lines because there are far fewer molecules in the excited
state than in the ground state. Due to a lower probability of interactions, the fluorescence
and Raman spectroscopy lead, in general, to worse sensitivity than the elastic-scattering
methods. Reliable detection requires intensive sample irradiation, i.e., powerful sources
(such as lasers or flashlamps), which makes the instrumentation more complex, less robust
and costlier, both in manufacturing and operation. The method versatility is limited to
the irradiation wavelength–material pairs that have good quantum yield for the process
of interest.

Filtering the fluorescence and Raman signals is essential, because they are orders of
magnitude smaller than diffuse reflected light. Fluorescence and Raman are competing pro-
cesses (fluorescence being usually more intense), so they also need, in turn, to be separated.
The shielding from specular and diffuse reflectance is obtained by the same geometrical
methods described for Vis-NIRS, taking care to avoid the specular reflection angles. Ad-
ditionally, high-pass, low-pass and/or band-pass optical filters are used to remove the
unwanted wavelengths. Consider an example with blue excitation/red fluorescence. At
the excitation, a low-pass filter is used to remove any red component from the incident
light, while at the detection, a high-pass filter is used to remove any reflected blue from
the red fluorescence. For the separation of Raman from fluorescence, the most common
approach is the careful selection of the excitation wavelength. Choosing a NIR or UV laser
wavelength can avoid exciting fluorescence. In the first case, because the radiation does not
have enough energy to excite fluorescence. In the second case, there is fluorescence, but
the emission is widely separated in energy from the Raman signal, allowing to measure it
in a fluorescence-free wavelength range. It is also possible to fine tune the position of the
Raman spectrum by shifting the laser wavelength because the energy differences between
excitation and Raman peaks are always the same, while the fluorescence spectra have
fixed positions.

At present, the spectroscopist’s arsenal has many means to overcome the above general
shortcomings and thus, being highly selective, Raman and fluorescence have found wide
application in many areas of research and technology, including plant sciences. For instance,
Raman spectroscopy has been intensively developed regarding the instrumentation, data
acquisition and processing, as well as the necessary spectral databases used as standards
to identify data acquired. Overall, it allows the fingerprinting of a very wide range of
compounds, which renders it a very accurate tool for the analysis of highly complex plant
tissues [45], as discussed further in the sections below.

4. Current Applications and Future Perspectives
4.1. Elastic Spectroscopy

One of the most important and illustrative applications of elastic spectroscopy com-
prises the widespread use of MHS imaging sensors and devices in precision agriculture.
The rapid development of computer and information technologies has led to a dramatic
reduction in the time of complex computations. It enabled the practitioners to process
previously unthinkable amounts of spectral data obtained by these sensors, used in many
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different applications. This is made possible not only to significantly improve the methods
of vegetation detection [46] but also to develop models capable of predicting, with various
degrees of accuracy, a wide range of parameters describing plants, their physiology, and
interaction with the environment. Published research on this subject includes the assess-
ment of the plant biomass, chlorophyll, nitrogen and lignin-cellulose content [8,47–49];
vegetation classification [50,51] and phenotyping [52]; and detection and mapping of pest
(invasive species, diseases, etc.) [2,8,53,54] among major crops supply chains.

The most prospective approach in providing the largest and most extensive infor-
mation on many crops, forests and ecosystems, is the remote light-source-free spectral
imagery sensing based on sunlight reflection. Its widespread and rapid development relies
on several factors, in addition to the enhanced computer and information technologies
capacity. These factors comprise: (i) advances in materials engineering that have led to the
creation of compact, lightweight, reliable and low-energy-consumption instrumentation
for MHS imaging; (ii) with the advent of geographical information systems (GIS) and
Geostatistics, the recorded images have been linked, easily and precisely, with their location
on the map (georeferenced); (iii) this, in its turn, made it possible to evaluate large areas
using not only inevitably limited terrestrial observations but airborne and spaceborne
remote sensing as well [12,50,55–57]. A major example of the latter is the study by Zheng
et al. [58], which has explored and shown the potential of the Sentinel-2 Multispectral
Instrument (MSI), a launched satellite with refined spatial resolution and three red-edge
bands for discriminating between yellow rust infection severity in winter wheat over large
areas up to a regional scale.

A wide set of hyperspectral imaging applications, both in situ and remotely, have
been used in agriculture. Rice cultivation is among the major examples that has made
extensive use of those applications to assess growth, stress conditions, pests, yield, harvest,
as well as for the determination of grain quality, viability and geographical origin [12].
These applications have been extended to other species and crops, namely, to discriminate
between multiple cultivars of a crop species [59], to predict critical crops yield, and in the
early detection of potentially dangerous diseases. These include the laurel wilt disease in
avocado [60]; fire blight in pear trees [61,62]; canker, black spot, decay, and Huanglongbing
(HLB) in citrus [1,10,11,32,63]; Yellow Rust in wheat [64]; Southern Corn Rust (SCR) [65];
the Potato Virus Y (PVY) disease in visually asymptomatic infected potato plants [59]; or to
identify and classify grapevines inoculated with the Grapevine Vein-Clearing Virus (GVCV)
at the early asymptomatic stages, under field conditions [57].

However, for most of these crops, including rice [1,26], the assessment through manual
in situ measurements is still the predominant procedure [12]. For instance, when evaluating
the fruit quality and ripening on-tree, the canopy foliage is still a major impediment to the
specific and accurate evaluation through airborne or spaceborne imaging sensing, namely
those based on Vis-NIRS [66]. As an alternative, MHS imaging has been used in robotic
harvesting, as successfully demonstrated for a non-destructive fruit quality monitoring
prototype system, consisting of a light detection and ranging (LiDAR) and Vis-NIRS sensors
installed on an inclined conveyor for mimicking real-time citrus fruit size and SSC measure-
ment, respectively, during harvest [67]. Another remote-controlled field robot, RobHortic,
equipped with color, multispectral, and hyperspectral (400–1000 nm) cameras and specific
software, has been developed and tested under field conditions for the detection of in-
fected plants (symptomatic and asymptomatic) with “Candidatus Liberibacter solanacearum”,
across carrot fields, with an accuracy of about 60 %, based on several machine learning-
based models [68]. Other common applications of Vis-NIRS MHS imaging comprise the
sorting of horticultural products by assessing their external (EQA) and internal quality
attributes (IQA) in the postharvest, with portable, benchtop devices and in automated
grading lines [1,31,35,36,66,69–73], commercialized by several vendors (e.g., Aweeta, Maf-
Roda, Greefa, Compaq, Unitec). The majority of these commercial devices, particularly
those installed on inline grading systems, seldom provide their actual proven assessment
capacity due to industrial secrecy. However, there are numerous examples of MHS imaging
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systems used under laboratory conditions that have demonstrated their high potential to
convey valuable information regarding, for instance, fruit quality. It is worth mentioning
the development of a hyperspectral insect damage detection algorithm in coffee, which
can automatically detect insect-damaged beans using only a few bands and one spectral
signature [70]. The demonstration of the feasibility of using these imaging techniques to
rapidly measure pectin polysaccharides in intact mulberry fruits is also of significance [72].
Furthermore, their utility for high-throughput phenotyping of plant chemical traits was
also established for maize and soybean plants in a greenhouse exposed to varying levels
of either water deficit and nutritional stress [7]. Regardless of all the apparent advantages
and the numerous reports on their application, there are a few drawbacks that might limit
the future extensive use of MHS imaging systems [12,33]. These include: (i) their high cost,
this being particularly critical in automated grading machines that usually include various
sorter lines, each of them must include a separate sensor system; (ii) the slower MHS image
acquisition in comparison to other cameras; (iii) the warranted extensive investigation
on the acquisition and image processing software; and (iv) the necessary step towards
the development of more user-friendly spectral acquisition and results in access by the
non-expert in the various fields of plant sciences, particularly those related to agriculture.
Still, based on the last decade’s trend, vendors seem consensual regarding the continuous
cost drop in this technology despite their expected upgrade [33]. This outcome is based
on the development of more powerful and comprehensive machine learning techniques
dealing with big data, such as deep learning, as well as to their storage and management
using the state-of-the-art Blockchain approach [74]. Overall, both vendors and researchers
firmly believe that the MHS systems will be able to perform the effective sorting of various
grades of horticultural produce, as well as to contribute to their traceability and safety
across the supply chain, a pressing issue in the agro-food sector [75–77]. Utterly, this would
lead to a reduced cost/benefit ratio for both producers and packinghouses, relying on a
limited number of employees for quality inspection, and guaranteeing the best quality and
the highest market prices for their commodities, while reducing food loss [37].

For the time being, however, the majority of both experimental studies and practical
applications, at least on Vis-NIRS, involve spectral “point” measuring systems instead of
MHS imaging. They have been used to assess several plant and fruit quality attributes,
disorders and pathologies [10,11,54,78–80]. They have also been incorporated in many
commercial applications to be used on inline, benchtop and handheld devices, which
similarly to the MHS imaging systems, may benefit from the non-linear techniques of
machine and deep learning to obtain the best calibration models. However, there are several
issues regarding the full potential and limitations of this technology that require further
attention and research to provide the robustness and accuracy warranted by researchers
when acquiring information on the composition and structure of plant tissues and by the
daily basis assessment routines in various crops supply chains. First of all, and despite
the many recommendations [31,81], the calibration models’ robustness still needs to be
accounted for and solved through stringent multi-year, multi-cultivar and multi-orchard
validations, such as previously reported for mango and orange [56,57]. This is of the utmost
importance when considering the assessment of fruit ripening on-tree across different plots
of an orchard or in different orchards and essential to depart from the “proof of concept”
approach and embrace the real-life conditions. Secondly, there is the effect of the rind in the
assessment of the pulp quality attributes in thick rind fruit, since the NIR radiation hardly
reaches the fruit pulp and both biochemical and optical properties have a major role to play
in the spectral data acquired [1,59–61,70,72]. Thirdly, in spite of the different spectral ranges,
levels of accuracy and cost-effective portable devices, only a few have been effectively used
on-tree to assess fruit quality and ripening, for there are many conditions such as light and
temperature that diminish the devices performance and deteriorate the calibration models
predictions, as observed for citrus [10,11,66,82–85]. Finally, it is very important to add that
these devices are of medium and high cost and that they are not the kind of technology to
“set and forget”, as reiterated by [11]. This warrants not only for a budget to acquire the
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systems but also to maintain them and to keep the continuous update and improvement of
the calibration models, which in most cases need the selling company’s assistance. Overall,
producers and packinghouses must be able to add commercial value to crops supply chains
through these systems and direct the consumer willingness to pay for the fresh commodities
graded in terms of IQA such as sugar content, acidity and nutraceutical properties.

Both SRS and TRS have been shown to be valuable tools in the sorting of both fruit
and vegetables based on the assessment of their quality attributes, external and internal
defects caused by several disorders and pathologies, and the identification of contami-
nants [26,36,40]. However, compared to SRS, TRS is considered to be more accurate in
measuring optical properties and able to reach larger depths in tissues. This turned TRS
into a smart sorting tool regarding the non-destructive assessment of IQA and disorders of
various fruit [26,40,41]. However, TRS is also expensive and complex, even for a portable
TRS device, starting on the requirement of good contact between the detection probe
and the sample during the measurement, which may introduce some difficulties when
working with intact fruit and plants with curved or irregular shape. Similarly, to all other
spectroscopic techniques, computation of the optical parameters from the SRS and TRS
measurements usually requires sophisticated numerical methods to access all the physi-
ological information from the spectral data acquired, which presents a major drawback,
based on the substantial computational time needed. Lu et al. [26] presented a comprehen-
sive review on some potential solutions that would significantly benefit and upgrade the
analytic process, such as to build a library of simulated SRS profiles or the use of databased
models, such as metamodels.

For airborne methods, the real breakthrough came with the advent of UAVs capable of
carrying spectral cameras, which has dramatically reduced the cost and complexity of data
collection [28]. Airborne multispectral surveillance has become affordable for organizations
of any profile and size; the turn-key integrated systems with automation of flight control
and georeferencing eliminate the need to hire expensive specialists [49]. As to the satellite-
borne surveillance, since the early Landsat missions, the set of satellites has grown into an
impressive constellation, with the tendency of harnessing each time more precise, sensitive
instruments with an increasing number of spectral channels [50,51].

Overall, for all sensors systems described above, the ultimate breakthrough is linked with
today’s explosive development of advanced and powerful machine learning methods of data
processing, harnessing big data to infer critical information, such as, the classic partial least
squares (PLS), support vector machines, artificial neural networks, classification techniques,
deep learning, and other artificial intelligence (AI) approaches [60,65,68,70,81,86–89]. This
opens a number of novel perspectives in the assessment and classification, beyond the state-
of-the-art, whose current landmarks can be represented by the following examples: the
automated identification and classification of Chinese medicinal plants with different sensing
techniques, including Vis-NIRS [90]; the prediction of quality attributes and internal browning
disorder in “Rocha” pear by Vis-NIRS reflectance and semi-transmittance spectra taken under
real-life conditions met in an automated inline grading system [79,80,91]; the assessment of
citrus ripening on-tree [83]; the in situ grapevine identification (down to the level of varieties)
via leaf reflectance spectra [92]; the anthocyanins fingerprinting in intact grape berries [93];
the detection of mercury induced stress in tobacco plants [94]. Additionally, it is worth
mentioning the use of specific algorithms, as the hyperspectral insect damage detection
algorithm (HIDDA), which allowed automatic detection of insect-damaged coffee beans using
only a few bands and one hyperspectral signature [70]; or the RELIEF-F algorithm used to
select the most discriminative features (wavelengths) and two band normalized differences
for developing spectral disease indices for SCR detection and severity classification [65].

4.2. Other Methods

Despite the impressive progress in processing multispectral images, which made it
possible to indirectly assess a plethora of ecosystem parameters and provided valuable
applications in agriculture, the elastic spectroscopy alone is not capable of providing
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adequate technical solutions to many topical problems of plant sciences. By its nature, the
spectra of elastically scattered light—photons that underwent rather simple and relatively
weak interaction with matter—lack information about the biological sample state and
composition. On frequent occasions, such a lack “cannot be remedied by any mathematical
trickery” [95], and more complex optical phenomena must be brought into the scene to
provide the required data reliability.

The introduction of new and improved Raman devices that simplify data collection,
along with the possibility of conducting analyses without the need for prior labeling and
complicated sample preparation, has turned this spectroscopic technique into a reliable
“solution” for some of the limitations met by the elastic spectroscopy [45]. Raman produces
specific spectral fingerprints, allowing the non-destructive detection and quantitation of
several key compounds, which makes it a powerful tool in the monitoring of the physiologi-
cal status of plants, the assessment of fruit quality, pathologies and ripening [1,45,73,96–98].
In fact, Raman is another optical spectroscopic technique claimed by precision agriculture,
which has the potential for significantly improving the capacity of farming management,
quality assessment, detection of biological and/or chemical contamination, contributing to
food safety, productivity, and profitability.

Similar to other spectroscopic techniques, the information extraction from the spectra
acquired from plant tissues requires the use of various machine learning techniques and
the mandatory access to spectral databases comprising the standards for the identification
of every fingerprint acquired [45,97,99]. These spectral libraries, which are becoming more
comprehensive and extensive by the day, allow the interpretation of the collected tissues
fingerprints in terms of the plant physiological status, the stress factor involved, the fruit
ripening stages, and the detection of pathologies and/or disorders.

Raman spectroscopy has further been used in the development of high-throughput
phenotyping of plants under biotic and abiotic stress [98,100]. The latter was demonstrated
for Coleus (Plectranthus scutellarioides) subjected to various abiotic stress conditions [101].
This technique was also used to determine the nitrogen status in Arabidopsis thaliana and two
varieties of leafy vegetable crops, namely, Pak Choi (Brassica rapa var. chinensis) and Choy
Sum (Brassica rapa var. parachinensis), under different nitrogen soil concentrations [96]. A
specific spectral signature was identified for the plant nitrogen status, which can be used
in the early diagnosis of its deficiency in plants before the onset of any visible symptoms.
Handheld Raman spectrometers that allow a form of laser-induced biochemical fingerprint-
ing of living plants, yield precise access to the plants’ physiological responses under field
conditions [97] by both farmers and plant researchers. This was demonstrated in a study
by [101], where a portable leaf-clip Raman sensor was once again successfully used for the
early diagnosis of nitrogen deficiency in Brassica spp.

Relative success has been achieved when applying Raman in the quantitation of
various compounds, such as pigments and SSC of various fruits and vegetables, namely,
tomato, mango, and kiwifruit; the bruise identification on apples; and the detection of
heavy metals contamination in rice, wheat and corn grain [1,73,102]. Additionally, it has
further been used in the non-invasive assessment of lignin structure, its distribution and
cellular level of dissociation, which along with cellulose, is the only non-fossil natural
resource providing renewable aryl compounds [103].

Nevertheless, Raman is still a very costly technique, and its application under real-life
conditions warrants further research and new approaches that allow its upgrade from a
“proof of concept” to their integration in plant sciences and agriculture in field-grown crops.
This warrants the use of advanced analytical tools, such as the Internet of things (IoT), the
incorporation of AI techniques to evaluate the spectral data acquired and assure calibration
models with enough accuracy, and robustness to withstand all the biological variability met
across various species, environmental conditions, farming sites and seasons [73,97]. Then,
all data produced by this analysis must be translated into meaningful and user-friendly
information for plant science researchers, producers and packinghouses dealing with the
crop supply chains. Although Raman spectroscopy has been successfully tested for remote
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sensing of some materials, such as minerals [104,105], its use regarding plant systems has
not yet been established.

As far as botany focuses on spectroscopy of complicated organic molecules, the
wavelength-shifting light–matter interactions manifest themselves in wide spectral in-
tervals as fluorescence. Here, the lower reflection efficiency (with respect to the linear
photon scattering process) is compensated in part by the fact that several characteristic
substances, predominantly pigments and proteins, presented in plants have a high quan-
tum yield of the fluorescence emission. Of these, the most prominent is chlorophyll, which
provides information-rich and characteristic peaks in the visible and infrared spectral
ranges. With the advent of the laser, capable of irradiating the sample by extremely bright
light, laser-induced fluorescence (LIF) has become one of the most popular methods of
spectroscopic studies.

The present achievements of LIF include very reliable and non-destructive in vivo
assessment of drought stress in natural and genetically modified plants [106–108]; quite
selective characterization of the algae intoxication by a wide range of contaminants, such as
Co, Cd, Cr, Cu, Ni, Hg, Pb, and Zn [108–111], as well as the detection and characterization
of photosynthetic biofilms [49,58,112]. All of them are predominantly connected with
the particular fluorescence signature of in vivo chlorophyll obtained for a given laser
wavelength. In most cases, the LIF setup is built around a cheap and robust frequency-
doubled Q-switched Nd:YAG laser, generating at the 532 nm wavelength.

As in the previous cases, a significant part of the advances observed is related to
modern numerical signal processing methods, including the AI tools for extracting features
that are more complex than just the positions and amplitudes of characteristic fluorescence
peaks. This AI approach also provides the opportunity to fuse heterogeneous data, that
is, enhance the measurement, diagnosis, and classification techniques by applying several
of them to the same sample and then combining sensory data such that the resulting
information is more precise or reliable than would be possible if these techniques were
used individually. A very illustrative and promising example of such an approach is
using LIF as one of the data sources in high-throughput plant phenotyping [113,114]. In
this application, several spectroscopic, imaging, and other methods can be successfully
combined to monitor the performance of improved genotypes to increase the sustainability
of agricultural production and to provide a more comprehensive understanding of the
regional agricultural environments [114].

A significant breakthrough in this area, providing more reliable equipment and
information-rich data, is the development of a fluorescence induction system in which the
laser is replaced by a broad-spectrum lamp. The resulting sensor uses two monochromators
and a wide-range PMT detector. Its internal microprocessor performs a consistent scan of
the excitation (λex) and emission (λem) wavelengths, providing the fluorescence spectrum
as a 3D intensity plot (surface) in 2D spectral coordinates λex, λem, whose discrete represen-
tation is known as the spectral fluorescence signature (SFS) [114,115] or excitation-emission
matrix (EEM) [116]. The latter term is mostly associated with high-resolution spectra ob-
tained with costly stationary laboratory equipment for identification and characterization
in mixture analysis, see, e.g., [117]. In contrast, contemporary SFS spectrometry is associ-
ated with low-cost, small-size and portable instrumentation capable of working for hours
in the field using an internal battery, without any supporting infrastructure [49]. These
features have shaped a trend in the future development of 3D spectral scanning, based on
increasingly cheaper, autonomous, and user-friendly instruments.

All of the above developments were made possible by recent impressive advances
in microelectronics and engineering of light-sensitive materials and dispersive optical
elements. These same advances have led to another remarkable breakthrough—in the
field of passive fluorescence spectroscopy, which studies the fluorescence emission excited
by sunlight and uses its spectrum as a data source for deriving numerous vegetation
indicators related, among others, to the fluorescence-photosynthesis relationships and
stress effects. Before the late 1990s, the solar-induced fluorescence (SIF) technology was
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limited in its ability to provide conclusive evidence that a very weak upwelling fluores-
cence emission induced by natural light could be reliably distinguished from the dominant
reflected radiation in the same waveband [118]. Early conclusive measurements of SIF
relied on the Fraunhofer line-depth principle (FLDP), which is based on the upwelling
vegetation emission measurements in the spectral ranges corresponding to absorption
lines (minimums) of solar radiation [119]. Remarkably, nowadays numerous efforts of
scientists and engineers, stimulated by the revealed close relationship between SIF and
the actual plant photosynthetic rate, have resulted in a plethora of reliable SIF assessment
methods that bring together state-of-the-art spectrometers as well as innovative signal
processing, calibration techniques and modeling [120]—to exclude the influence of numer-
ous intervening processes in the vegetation and environment that affect quenching, light
absorption, re-absorption and scattering of fluorescence signals [118]. The SIF methodolo-
gies have gone far beyond on-the-spot measurements, embracing dedicated spaceborne
instruments [121,122] and affordable airborne measurements using UAVs [122,123].

5. Emerging Technologies for Portable Spectroscopy

The massive adoption of portable spectrometers, observed in the last twenty years,
was achieved thanks to small spectrometers with USB connection, which allowed the instru-
ments to be reduced to the size of a cards deck. These spectrometers reproduce, on a small
scale, the optics of bench instruments and generally include mirrors for collimation and
focusing, a diffraction grating and an array sensor, usually a charge couple device (CCD)
or a complementary metal oxide semiconductor (CMOS). This geometry, however, needs
some spacing to allow the light to separate properly, which places limits on miniaturization.
On the other hand, the quantity of optical components required also limits the price, and a
high-quality array sensor weighs heavily on the final cost of the spectrometer.

In recent years, the miniaturization of spectrometers has continued to advance to-
wards reducing size and weight. New technological approaches played a crucial role,
which allowed to overcome the limitations mentioned above. Thus, there are currently
available alternatives for light separation that eliminate the need for a diffraction grating,
saving space. On the other hand, there are also alternative schemes that use just a simple
photodiode instead of a CMOS array, lowering the price of the spectrometer. There are still
alternatives that combine the two advantages. Obviously, this simplification does not come
without a compromise in terms of quality, signal-to-noise ratio and sensitivity, which will
be explored further below.

Figure 2 shows the fundamental concepts associated with the main emerging technolo-
gies. It is important to note that these are simplified schemes. In all cases, components are
omitted, so that the figure retains only the fundamental process associated with each tech-
nique. In Figure 2a the conventional setup is shown. At its core, there is a diffraction grating
(2) and an array sensor (3). Light is dispersed by the grating and focused on the sensor array
(focusing optics not represented). Each sensor pixel receives light in a narrow band deter-
mined by the entrance slit (1), the grating characteristics and geometrical factors through
appropriate algorithms. However, this approach does not offer the best spectral resolution.
The SCiO spectrometer (Israel, www.consumerphysics.com/scio-for-consumers/; accessed
on 10 October 2021) uses this type of technology, working in the range 740–1070 nm.

In Figure 2b, a filter array (5) upon a CMOS photographic sensor (4) is one of the
conceptually simpler approaches to obtain a spectrum from non-dispersive elements.
The filter array may be composed of Fabry–Pérot elements with tailored characteristics.
Knowing the transmission curve of each filter allows retrieving more bands than the
number of filters. In Figure 2c, a linear variable filter (LFV) (6), which is a wedged filter,
and whose spectral properties vary linearly, allows to separate light as a function of the
position. An array sensor (3) placed immediately after the filter acquires the spectral
information. This technique offers the advantage of a higher light throughput, while
offering at the same time a compact arrangement. The MicroNIR spectrometer (Viavi, San
Jose, CA, USA, www.viavisolutions.com/en-us/osp/products/micronir-spectrometers;

www.consumerphysics.com/scio-for-consumers/
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accessed on 10 October 2021) is based in this solution, with a resolution of 6 nm in the range
900–1700 nm.
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diffraction grating (2) and array sensor (3); (b) filter array (5) upon a CMOS photographic sensor
(4); (c) linear variable filter (LVF) (6) and array sensor (3); (d) digital micromirror device (7), with
slit (1), diffraction grating (2) and photodiode (8); (e) coupled micro-electro-mechanical systems
(MEMS)-based Fabry–Pérot etalon (9) and photodiode (8); (f) MEMS-based Michelson interferometer,
constituted by a fixed mirror (10), beam-splitter (12), photodiode (8) and movable mirror (11) moved
by a MEMS (13).

In Figure 2d, a digital micromirror device (DMD) (7) is at the core of the system. It
receives light already sent through a slit (1) and separated in a diffraction grating (2) and
redirects it into a single photodiode (8). The DMD consists of hundreds or thousands
of micromirrors acted on by coupled micro-electro-mechanical systems (MEMS). The
purpose of the DMD is to implement an Hadamard spectrometer, which is a multiplex
device that observes more than one wavelength at a time using (Hadamard) masks. In
practice, this means that the DMD focuses successively on the different combinations of
spectral bands emerging from the diffraction grating of the photodiode. Knowing the
distribution of the bands in each combination (mask), it is possible to invert the data in
order to resolve the spectrum. The DLP NIRscan (Texas Instruments, Sherman, TX, USA,
https://www.ti.com/tool/DLPNIRSCANEVM; accessed on 10 October 2021) is based on
this solution. It offers a resolution of 10 nm in a spectral range of 900–1700 nm. Replacing
the array sensor with a single photodiode, the DMD-based spectrometer has a lower
cost while yielding a good signal-to-noise ratio. In Figure 2e light selection is performed
through a Fabry–Pérot interferometer or etalon (9), which is an optical cavity made from
two parallel reflecting surfaces. Light bounces back and forth, creating a superposition of
waves that is destructive for all wavelengths, except for those resonant with the cavity, that
is, when the etalon spacing is a half integer of the wavelength. The resonant wavelengths
are transmitted, while the others are strongly attenuated. Tuning the filtered wavelength
is just a matter of changing the etalon spacing. In this case, this is achieved by coupling
one of the mirrors to a MEMS. A photodiode (8) aligned with the optical axis of the etalon
performs the light detection in synchrony with the MEMS cycle, in a scan that originates
the full spectrum. Etalon spectrometers such as the NIRONE (Spectral Engines, Helsinki,
Finland, https://www.spectralengines.com/; accessed on 10 October 2021) or the MEMS-
FPI (Hamamatsu, Japan, https://www.hamamatsu.com/eu/en/product/optical-sensors/

https://www.ti.com/tool/DLPNIRSCANEVM
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https://www.hamamatsu.com/eu/en/product/optical-sensors/spectrometers/mems-fpi-spectrum-sensor/index.html
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spectrometers/mems-fpi-spectrum-sensor/index.html; accessed on 10 October 2021) are
based on this principle. They feature a good throughput and signal-to-noise ratio at an
affordable price. However, they have relatively narrow spectral ranges (typically 300 nm).

In Figure 2f, the principle of measurement is that of Fourier Transform Infrared Spec-
troscopy (FTIR) [124]. It uses a MEMS-based Michelson interferometer, and it is constituted
by a fixed mirror (10), beam-splitter (12), photodiode (8) and movable mirror (11). The nov-
elty is that the movable mirror is acted on by a MEMS and all the optics are implemented in
a small wafer. This technology allows bringing the power of FTIR to portable applications.
In principle, they benefit also from the so-called Jacquinot’s advantage. This concept is
usually mentioned in the context of comparing FTIR spectroscopy and conventional disper-
sive spectroscopy. To understand it, it is necessary to remember that the spectral resolution
in a dispersive spectrometer depends inversely on the width of the input slit. Thus, to
obtain a high resolution, it is necessary to use a very narrow slit, which limits the amount
of light that enters the device and, ultimately, the signal-to-noise ratio. There is, therefore, a
tradeoff between the resolution and the signal-to-noise ratio in a dispersive spectrometer.
This tradeoff does not apply to an FTIR spectrometer, as the resolution does not depend on
the size of the input aperture, and it is this fact that constitutes the Jacquinot’s advantage.
In fact, it is not just the system in Figure 2f that displays the Jacquinot’s advantage. Systems
depicted in Figure 2b,c,e also have it, as they do not need an input slit.

Another important concept in comparing spectrometers is the Fellgett’s advantage [125].
This advantage comes from multiplexing the measurement, that is, the simultaneous mea-
surement of several wavelengths by the same detector. For example, in FTIR spectroscopy,
all wavelengths are measured simultaneously in the detector for each position of the moving
mirror. This is the extreme example of multiplexing, encompassing all wavelengths. In system
(d), with DMDs, there is also multiplexing, as it is a Hadamard spectrometer, as explained
above. Multiplexed measurements allow the reduction in the signal-to-noise ratio by a factor√

N, where N is the number of elements sampled in the spectrum [125]. On the other hand,
classic dispersive spectrometers do not have this advantage because each of the detectors
(pixels) receives only one wavelength at a time. However, Fellgett’ s advantage also entails a
disadvantage. As all wavelengths are processed simultaneously to obtain the spectrum, noise
limited to one of the spectral components ends up being spread across the entire spectrum.
This disadvantage is important if, for some reason, there is a particularly noisy spectral com-
ponent. The systems in Figure 2d,f benefit from Fellgett´s advantage. A summary of the main
spectrometers characteristics previously described is presented in Table 1.

Table 1. Comparison of basic features among the different spectrometer types used in conventional
and major emerging optical spectroscopic technologies.

Spectrometer
Type

Jacquinot’s
Advantage

Fellgett’s
Advantage

Point or
Array Detector

Achievable Spectral
Resolution

(a) Dispersive N N Array High
(b) Multi-filter Y N Array Low
(c) LFV Y N Array Medium
(d) DMD N Y Point Medium
(e) Fabry–Pérot Y N Point Medium
(f) FTIR Y Y Point High

The advantages described above are, however, not decisive when choosing these new
devices. The sensitivity of the detectors employed and the geometric factors associated
with light coupling are also of critical importance for the overall behavior of these systems.
The interest and potential of the new spectrometers are quite clear. Their more affordable
price, higher portability and the possibility to operate the equipment wirelessly are the
characteristics necessary to implement spectroscopic networks in the context of IoT. We are,
therefore, at the dawn of a new age, in which spectroscopic sensors can be used on a large
scale. This intensive use can be the result of its operation by a large number of users or its
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autonomous integration into the IoT, remotely and automatically. In either case, the issue
of managing and analyzing large amounts of data will be raised in the context of what is
called big data.

With the new spectrometers, it will be possible to infer in real-time the evolution
of spectral characteristics of leaves or fruit on-tree, orchards, forests and also in indoor
environments, such as greenhouses or cold storage chambers. The evolution of these
spectral characteristics, by itself, may be enough to infer the physiological states of plants
and fruit. However, the spectral data acquired may also feed calibration models based
on classical chemometric methods or on the recent deep learning methods to predict
physiological parameters. The management of information from the end user’s point of
view may involve the use of a second layer of analysis to make averages, interpolations
and spatio-temporal forecasts.

It is not the purpose of this article to review all works in the field, but the following
short list below offers the reader a brief overview of the work that has already been
performed with these emerging devices. These are mainly comparative studies with classic
dispersive spectrometers, including benchtop instruments. In general, the conclusion
reached by these investigations is that the new spectrometers have a performance only
slightly inferior to that of bench instruments. There are, however, some cases where the
performance of the new spectrometers is considerably lower than that of the reference
instruments and also other cases where the performances are perfectly equivalent. It is
also necessary to bear in mind that these studies are essentially proof of concept, not
demonstrations of model robustness, as there are, in general, no studies with data from
several years and different sources. This type of prolonged study is yet to be performed.
Finally, the articles presented do not yet illustrate the integration of the new spectrometers
into a true IoT philosophy, which will probably be observed in the coming years.

Thus, a setup of AS7265x multispectral sensors (AMS, Premstaetten, Austria; b-type
in Figure 2 and Table 1) has been compared with an Ocean Optics USB2000+ (Ocean
Insight, Orlando, USA) dispersive spectrometer (classical a-type in Figure 2 and Table 1)
for the assessment of SSC in apples [126]. The two pieces of equipment delivered similar
performance. In another study [127], a NIRONE (Spectral Engines, Finland), which is an
e-type spectrometer (MEMS-based Fabry-Pérot; Figure 2, Table 1), was compared with
a hyperspectral imaging system (DV Optics, Padova, Italy) to predict the QA of treated
ground peppercorns. Again, the new spectrometer performed as well or better than
the classical counterpart. In the same way, a SCiO spectrometer (consumer physics, Tel
Aviv, Israel; b-type; Figure 2, Table 1) was compared with a reference bench spectrometer,
a NIRFlex (Büchi, Flawil, Switzerland), in the context of cheese analysis. Although the
NIRFlex delivered slightly better results, the SCiO produced equally good models [128]. The
investigation by [129] represents one of the most comprehensive comparisons made so far,
involving two dispersive instruments, the LabSpec4 (ASD, Boulder, CO, USA) and the F750
(Felix Instrument Inc., Camas, WA, USA), two digital micromirror devices of d-type, the
NIRscan Nano (Texas instruments Inc., Sherman, TX, USA), and the TellSpec (Tellspec Inc.,
Toronto, Ontario, Canada), a two linear variable filter device of c-type, the MicroNIR1700
and MicroNIR2200 (Viavi Solution, Milpitas, CA, USA), a MEMS-triggered Fabry–Pérot
of e-type (NIRONE 2.2) and a filter array device of b-type (SCiO) (Figure 2, Table 1). The
comparison was performed regarding the determination of sugarcane properties (total
sugar and crude protein content). The results were given through cross-validation, which is
of limited interest in evaluating the true performance of the devices under real conditions
but which nevertheless provides a relative measure of their performance. The LabSpec
delivered the best results for both parameters, which demonstrates that high-grade classical
dispersive instruments are still the best choice. The F750 did not deliver such good results
probably because of the limited wavelength range compared to the LabSpec 4. Globally,
the MicroNIR devices were the ones matching more closely the performance of LabSpec 4.
For total sugars, all the other devices yielded a prediction error 2 to 3 times higher, while
for crude protein, all the tested devices delivered comparable errors, except for the digital
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micromirror devices (NIRscan Nano and TellSpec), which produced prediction errors
clearly above the others.

6. Conclusions

Fostering the progress in plant sciences is undoubtedly a strategic goal for the forth-
coming decades in order to comply with the increasing demand for agricultural products,
fueled by a growing world population. Numerous biotic and abiotic environmental stresses
impair crop productivity and lead to significant losses in agricultural yield worldwide.
Additionally, many strains caused by global warming and human-intensive use of natural
resources on the various ecosystems across the planet have already had a clear negative
impact on the biodiversity of many species, starting with plants. Against this backdrop,
there has been an increasing demand for more and high-throughput phenotyping on the
plants’ physiological responses and regulatory mechanisms under unfavorable conditions,
which will allow early and effective intervention to avoid crop loss. Furthermore, the agro-
food industry warrants new and smart tools that allow sustainable agriculture practices
and smart management to produce crops with higher yield and quality required by the
highly demanding markets and consumers and significantly reduce the current food loss.

Numerous spectroscopic techniques, used in situ or remotely, have been proved to
comply with these requests, and seem to become more and more helpful towards the major
challenges comprised in plant sciences fundamental and applied research, as well as in
various applications already claimed by precision agriculture. They have already granted
the development of effective tools capable of studying plant physiology and reporting
stress events, and provided many devices used in the management of various crops supply
chains. However, there is still much to investigate regarding these systems’ accuracy and
robustness and their resulting cost-benefit to make their access by end users easier and to
grant significant advances in high-throughput phenomics. The latter need to occur across
scales of phenotyping platforms to sustain and improve crop yields from greenhouses
to natural settings, accounting for the unavoidable constraining imposed by seasonal
growing conditions.

There is also space for the combination of some of these techniques, as well as with
others of electronic nature in a sensors-fusion approach, that can reach farther and provide
more insight into plant structure, responses and behavior under various conditions. In
some cases, the improvement of the current spectroscopic techniques, aside from their
reliance on more powerful and effective data analysis techniques, may further depend on
the signal amplification emitted by plant structures and pathways through the inclusion
in situ nanosensors, such as fluorescence or carbon dots that provide specific spectral
signatures and can be monitored in real-time, even remotely, and allow, for instance, the
field-based phenotyping platforms to collect high-throughput trait measurements over
large areas.

Satellite imaging can detect pests, diseases, and weed infestations on a larger scale
with less complexity, but the frequency of data updates and cost to retrieve them is still a
bottleneck. The major challenges with drones are the reliability issues and accuracy of the
mosaic image. Now, they comprise sophisticated software for auto flight and automatic
image stitching of the whole field and reasonably low-cost, which will, in the near future,
help new researchers to explore more drone-based multi-view stereopsis (MVS) methods
in agriculture. The spectral response of the remote sensing data can be affected by variable
soil backgrounds and residue covers, which will affect the detection accuracy, and more
attention must be given to this issue. Widespread commercialization of MVS in agriculture
is possible only with robust, low-cost, automated, unified detection systems (pest, weed,
and diseases). The future research focus must be on MVS capable of detecting all yield
affecting factors of a particular crop. A multi-crop detection variant is preferable since
farmers use the same field for different crops in different seasons in a year.

IoT can be exploited in agriculture for the real-time automatic pest detection. Its price
can be reduced by using low-cost programmable hardware (Arduino, Raspberry Pi, Beagle-
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Bone, and so forth) with open software connected to cloud servers (Amazon web services,
Microsoft Azure, Google Cloud and others) for processing the image information to detect
stress and alerting the farmer to take action at a particular geo-location. The new types of
miniaturized spectrometers will allow for simpler integration with IoT sensor networks.

In an optimistic vision of the future, it is possible to envisage that before the farmer
awakens every morning, UAVs fitted with sophisticated cameras will take off and locate
whether there are any crop health issues within the field. However, there are still many
notable deficiencies related to the image sensor’s ability, platform dependability, and lack
of standardized procedure. With the advancements in image processing methods, low-cost
hardware and more research focus in this domain, precision agriculture is expected to
highly benefit from these systems.

Overall, the analytical spectroscopic techniques highlighted here may be of the
utmost importance in early stress detection in crops. However, to facilitate widespread
adoption of these technologies in agriculture, their economic potential and reliability
need to be validated to ensure that they remain affordable and more effective than the
existing approaches.
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