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Abstract: Arsenic is a deleterious heavy metal that is usually removed from polluted water based
on adsorption processes. The latest mode of modeling such a process is to implement artificial
intelligence (AI). In the current work, a new artificial neural network (ANN) model was developed
to predict the adsorption efficiency of arsenate (As(III)) from contaminated water by analyzing
different architectures of an adaptive network-based fuzzy inference system (ANFIS). The database
for the current study consisted of the experimental data of the adsorption of As(III) by different
adsorbents/biosorbents. The data were randomly divided into two sets: 70% for the training
phase and 30% for the testing phase. Four statistical evaluation metrics, namely, mean square error
(MSE), root-mean-square error (RMSE), Pearson’s correlation coefficient (R%), and the determination
coefficient (R2) were used for the analysis. The best performing ANFIS model was characterized with
the average values of 97.72%, 0.9333, 0.137, and 0.274 of R%, R2, MSE, and RMSE, respectively. In
addition, a parametric investigation revealed that the most dominating parameters on the adsorption
process efficiency were in the following order: pH, As initial concentration, contact time, adsorbent
dosage, inoculum size, and temperature. The results of the current study would be useful in the
adsorption process scale-up and optimization.

Keywords: heavy metals; arsenic; adsorption; artificial neural network (ANN); adaptive network-
based fuzzy inference system (ANFIS)

1. Introduction

Heavy metals, discharged even at low concentrations into natural water bodies, have
threatening impacts on human life and the environment. One of such toxic heavy metals is
arsenic (As), which is considered an environmental hazard [1]. The immediate symptoms
of acute As poisoning include abdominal pain and vomiting. It can lead to death in
extreme cases. Long-term exposure can cause diabetes, pulmonary disease, cardiovascular
disease, cancer, and skin lesions [2]. Various technologies, such as coagulation–filtration [3],
membrane separation [4,5], ion exchange [6], adsorption [7,8], and hybrid membrane
systems [9,10] have been employed to remove As from contaminated water. Among these
methods, adsorption is probably the most effective separation method for the removal of
hazardous heavy metals such as As from water. The adsorption process has long been used
in the water and wastewater industries for its ease of handling, minimal sludge production,
cost-effectiveness, and regeneration capability [11].

An integral part of the application of an adsorbent in removing a heavy metal ion from
a contaminated aqueous solution is developing a process model. The traditional means of
modeling adsorption is to obtain the parameters of the kinetic and isotherm models using
experimental data at optimum conditions. However, the optimum values of the adsorption
variables, such as pH, adsorbent dosage, adsorbate initial concentration, contact time, and
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temperature, are investigated independently [7,12–14]. Considering the analytical error, un-
certainty, and independent investigation associated with the traditional experimental work,
different artificial intelligence (AI)-based machine learning (ML) models are being used
to correlate all input variables to the output parameter (contaminant removal percentage)
directly. A few examples of such applications are presented in Table 1.

Table 1. Examples of machine learning algorithms used to model adsorption processes.

Heavy Metal Adsorbent Model Reference

Copper Biochar ANN Yadav et al. (2021) [14]

Arsenic A hybrid material ANN Mandal et al. (2015) [15]

Arsenic Botryococcus braunii algal biomass ANN Podder et al. (2016) [16],
Podder et al. (2017) [17]

Arsenic Cupric oxide nanoparticles ANN and
genetic algorithm Singh et al. (2017) [18]

Lead, cadmium, nickel,
arsenic, copper, zinc Biochar ANN and

random forest Zhu et al. (2019) [19]

Lead, arsenic,
chromium, cadmium,

mercury

Superheated steam-activated granular
carbon, ragi husk powder,

antep pistachio, pistacia vera, red mud,
synthesized functional polydopamine

nanocomposite, eucalyptus leaves,
spirulina maxima, spirulina indica,

spirulina platensis, reduced graphene
oxide-supported nanoscale zero-valent

iron composites,
cupric oxide nanoparticles, and

cerium hydroxylamine hydrochloride

Random forest and Bayesian
additive regression tree Hafsa et al. (2020) [20]

Arsenic

Hybrid material, Botryococcusbraunii
algal biomass, microalgae C.
pyrenoidosa, cupric oxide

nanoparticles, Oyster shell, Palm bark
biomass, and Bacillus cereus

biomass

Support vector machine and
random forest Hafsa et al. (2021) [21]

Copper Attapulgite clay ANN, support vector
machine, and random forest Bhagat et al. (2021) [22]

Lead, copper, nickel Date seed-derived biochar ANN El Hanandeh et al. (2021) [23]

Lead, cadmium, nickel,
arsenic, copper, zinc Biochar ANN Ke et al. (2021) [24]

Chromium Clay ANFIS Foroutan et al. (2020) [25]

Copper Saw dust ANFIS Dolatabadi et al. (2018) [26]

Copper Biochar ANFIS Wong et al. (2020) [27]

The mostly used ML algorithm for modeling various adsorption processes is the artifi-
cial neural network (ANN) [28,29]. It has been used all across the world for classification
and prediction purposes in a wide range of real-time adsorption applications [14–18,22–27].
The ANN correlates the input(s) to the output(s) with nodes arranged in single or multiple
hidden layers. The nodes in one layer are connected with weight functions to the nodes in
the next layer. An activation function is used to non-linearly map the inputs to the outputs.

In addition to ANN, other machine learning algorithms (MLAs) such as decision trees,
support vector regression, random forest, genetic model, particle swarm optimization, and
adaptive network-based fuzzy inference system (ANFIS) have been used for modeling
various adsorption processes [18–22,25–27]. Among these MLAs, the ANFIS has the
advantages of the ability to capture the non-linear structure of a process, adaptation
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capability, and rapid learning capacity. It is a sub-category of ANN that integrates the
principles of neural networks and fuzzy logic to acquire the advantages of both in a single
computational platform. Compared to other MLAs, ANFIS has not been used to model
the adsorption of As. Although it was applied earlier for modeling the adsorption of
other heavy metals, such as copper and chromium [25–27], those models are based on a
single dataset with a relatively high prediction error. Therefore, a generalized model, using
different datasets with different adsorbents, needs to be developed.

In this work, a highly efficient ANFIS model was developed to predict the adsorption
removal efficiency of arsenate (As(III)) from aqueous solutions. A parametric investigation
was also performed to identify the contribution of the input parameters in predicting the
output parameter (As removal %).

2. Materials and Methods
2.1. Database

Seven experimental datasets were selected from the literature [15–18,30–32] for the cur-
rent study. These studies were considered suitable, as a variety of absorbents or biosorbents
were used to remove As(III) from contaminated aqueous solutions or ground/wastewater.
In general, the adsorption or biosorption experimentation was followed by modeling As
removal based on several input parameters, including initial As concentration, adsorbent
dose, pH, contact time, agitation speed, temperature, and others.

2.2. ANFIS Model

The ANFIS model was introduced as a combination of the neural network model
and fuzzy logic [33–38]. The ANFIS model showed a better performance in processing
a small size of training datasets when compared to ANN [39]. A typical architecture
of the ANFIS model has five layers: fuzzification, rule, normalization, defuzzification,
and aggregation [40–43]. In this study, the Takagi–Sugeno function and if–then rules
were used to represent the non-linear relationship between the input and the output
parameters [44,45].

A fuzzy inference system with two inputs and one output is used in describing the
ANFIS model. The rules of the fuzzy inference system are shown as follows:

Rule1 : i f x is A1 and y is B1, then f1 = p1x + q1y + r1 (1)

Rule1 : i f x is A2 and y is B2, then f1 = p2x + q2y + r2 (2)

where:
A1, A2, B1, and B2 are the fuzzy sets;
x, and y are the input variables;
p1, p2, q1, q2, r1, and r2: are the linear polynomial parameters; and
f is the output of the ANFIS model.
The layers of the ANFIS model used for the current study are described below and

illustrated in Figure 1.
Layer 1: This layer is called the fuzzification layer. In this layer, the fuzzy inference

system uses a membership function to convert the input parameters into a fuzzy set.
Among different types of membership functions, the Gaussian-shape membership function
was applied in this work to map the training values between [0,1].

O1,i = µ Ai(xi) (3)

for i = 1, 2
O1,i = µ Bi(yi) (4)

for i = 1, 2

µ Ai(xi) =
1

1 + ( xi−ci
σi

)
2bi

(5)
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where:
O1,i is the output of layer 1;
µ is the Gaussian-shape membership function;
Ai, and Bi represent the linguistic variables;
x and y are the input variables; and
σi, bi, and ci are the constants of the Gaussian-shape function.
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Figure 1. The architecture of the ANFIS model with two rules.

Layer 2: This layer has fixed nodes. The output of this layer is attained by multiplying
all the receiving signals from the input layer. The output is represented by wi

O2,i = wi = µAi(x) ∗ µBi(y), i = 1, 2. (6)

Layer 3: The nodes in this layer are fixed and labeled as N. In this layer, the outputs
are obtained using the firing strength inference system rules.

O3,i = wi =
wi

w1+w2

, i = 1, 2 (7)

where:
O3,i is the output of layer 3; and
w is the normalized firing strength of the inference system rules.
Layer 4: This layer has adaptive nodes. It has three parameters used to adjust the

adaptive nodes.
O4,i = wi. fi = wi.(pix + qiy + ri) (8)

where:
O4,i is the output of layer 4; and
pi, qi, and ri are the parameters of the inference system.
Layer 5: This layer is the inference layer, which is used to obtain the overall output

based on the previous layers.

O5,ioverall output = ∑ wi fi =
∑i wi fi

∑i wi
(9)

Earlier, the ANFIS model demonstrated a good performance in predicting the removal
efficiency of some heavy metals other than As from aqueous solutions [25–27].

2.3. Performance Evaluation

A set of statistical analysis metrics comprised of mean square error (MSE), root-
mean-square error (RMSE), Pearson’s correlation coefficient (R%), and the determination
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coefficient (R2) were used to evaluate the developed ANFIS model in this study. All of
these statistical parameters are defined as follows:

MSE =
1
n

n

∑
i=1

(
yi,exp − yi, pred

)2
(10)

RMSE =

√√√√√ n

∑
i=1

(
yi,exp − yi,pred

)2

n
(11)

R% =
n
(

∑n
i=1 yi,exp × yi, pred

)
−
(
∑n

i=1 yi,exp
)(

∑n
i=1 yi, pred

)
√[

n
(
∑n

i=1 yi,exp
)2 −

(
∑n

i=1 yi,exp
)2
][

n
(

∑n
i=1 yi,pred

)2
−
(

∑n
i=1 yi,pred

)2
] × 100 (12)

R2 = 1 −
∑n

i=1 (yi, exp − yi, pred)
2

∑n
i=1 (yi, exp − yavg, exp)

2 (13)

where:
yi,exp is the experimental value of the data point i;
yi,pred is the predicted value of the data point i;
yavg,exp is the average of the experimental values; and
n is the total number of the input data.

2.4. Parametric Importance Analysis

After developing an AI model, it is necessary to conduct a parametric importance
analysis. It allows identifying the most dominating parameters and checking if any input
parameter can be omitted to simplify the model. In this work, an importance investigation
of each parameter was performed for each dataset. Multiple non-linear regressions were
used to obtain the relationship between input and output parameters. The value of the
Pearson’s correlation coefficient (R%) was used to evaluate the relative impact of each input
parameter on the output parameter (As removal percentage).

3. Results and Discussion

As mentioned earlier, an efficient ANFIS model was developed based on a database
comprised of the experimental measurements published in seven independent studies. The
computational platform used for the modeling was MATLAB 2020. The input variables used
for the modeling were As initial concentration, pH, temperature, contact time, adsorbent
dosage, solution volume, agitation speed, inoculum size, and flow rate. The removal
percentage of arsenate from the contaminated water was the output parameter. The log
method was used for normalizing the data. The prediction capability of the developed
model was evaluated using four statistical parameters: MSE, RMSE, R%, and R2.

3.1. Development of the ANFIS Model

In this work, the scatter partition method was applied because of the small sizes of
some experimental datasets. It depends on fuzzy clustering of the data subgroups to find
the optimum membership values. The architecture of the ANFIS model is presented in
Figure 2, while the values of the corresponding model parameters are mentioned in Table 2.
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Table 2. Parameters of the developed ANFIS model.

Parameter Value

Parameter cluster 4
Partition matrix 2

Maximum number of iterations 200
Minimum improvement 1 × 10−5

Maximum number of epochs 80
Error goat 0

Initial steps size 0.01
Step size decrease rate 0.9
Step size increase rate 1.1

3.2. Training Phase of the ANFIS Model

The training process is an essential stage to develop an efficient model using experi-
mental data. For this purpose, 70% of the data were used to train the developed ANFIS
model. As mentioned earlier, the ANFIS model is based on fuzzy if–then rules and fuzzy
reasoning. Therefore, the results of the ANFIS model have no deviation, and this is one of
the advantages of this model.

The performance of the developed ANFIS model is shown in Figure 3, and the values
of the evaluation metrics are presented in Table 3. The training results show the full
agreement between the predicted values and experimental measurements of the arsenate
removal percentage for all datasets. High values of R% (≥99.99%) or R2 (≥0.9995) and very
low values of MSE or RMSE indicate that the ANFIS model is ready to be tested.

3.3. Testing of the ANFIS Model

Thirty percent (30%) of the data were used as the unseen data to test and validate the
current ANFIS model. Its performance in the testing stage is illustrated in Figure 4 and
Table 4. As shown in Figure 4, an excellent agreement between the predicted values and
the targeted (experimental) values could be achieved. Similar to the training phase, high
values of R% (97.72%) or R2 (0.9333) and low values of MSE (0.137) or RMSE (0.274) were
attained. This kind of agreement indicates the robustness of the developed ANFIS model
in predicting the As removal from polluted water by the adsorption processes.
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Figure 3. Performance of the ANFIS model in the training phase: (a) dataset 1, (b) dataset 2,
(c) dataset 3, (d) dataset 4, (e) dataset 5, (f) dataset 6, and (g) dataset 7.

Table 3. Performance of the ANFIS model in the training stage.

Dataset MSE RMSE R (%) R2

1 1.7447 × 10−8 1.320 × 10−4 100 1
2 8.84436 × 10−8 1 × 10−4 100 0.9997
3 4.0718 × 10−10 2.0179 × 10−5 100 0.9996
4 1.6415 × 10−8 1.28 × 10−3 100 0.9995
5 3.2906 × 10−5 5.76 × 10−3 99.99 0.9998
6 3.3013 × 10−8 1.8 × 10−4 100 0.9998
7 4.5042 × 10−8 2.123 × 10−3 99.99 0.9999

Even though ANFIS was used to model the adsorption of other heavy metals such
as chromium and copper [25–27], it was not applied earlier to model As adsorption. Its
application to model As adsorption is a novel contribution of the current study. A com-
parative performance of different MLAs is presented in Table 5. The MLAs used before
to model As adsorption were ANN, random forest (RF), and support vector regression
(SVR) [15–19]. The primary challenge the researchers faced to use ANN was the small sizes
of the datasets [15–18]. They overcame the challenge by producing synthetic data using
a specific algorithm for interpolation. However, they did not use any means to validate
the utility of this kind of artificial data. On the other hand, Hafsa et al. [21] tested two
non-ANN models, RF and SVR, for modeling As adsorption. Even though these MLAs
could predict the trends quite well (R2 > 0.93), the errors or data dispersions were signifi-
cantly high (RMSE > 2.5). In comparison, the current ANFIS model not only could predict
the trends of the data more accurately (R2 > 0.93) but also yielded significantly less error
(RMSE < 0.48). It should be noted that Hafsa et al. [21] used the same datasets as those
used for the current study.
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Table 4. Testing results of the ANFIS model.

Dataset MSE RMSE R (%) R2

1 8.96 × 10−4 2.994 × 10−2 99.16 0.9580
2 0.2260 0.4754 92.53 0.9423
3 4.4564 × 10−2 0.2111 95.82 0.9054
4 2.69 × 10−3 5.186 × 10−2 99.97 0.9226
5 0.4770 0.6907 96.69 0.9114
6 0.207 0.4549 99.94 0.9490
7 5.4221 × 10−5 7.36 × 10−3 99.94 0.9443

Average 0.137 0.274 97.72 0.9333

3.4. Parametric Importance Analysis

The impact of nine parameters on the As removal percentage was investigated in this
study. However, all experimental parameters are not expected to have similar impacts on
predicting the output. Therefore, the relative importance of each parameter in each dataset
was quantified using the values of R%. The higher the R% value, the higher the importance
of the parameter. Among all the investigated parameters, pH, the As initial concentration,
and contact time were found as the most influential parameters with different impacts.
While pH scored the highest of 575, the initial concentration and contact time scored 568 and
445, respectively. Figure 5 shows the importance of each input parameter on the efficiency of
As adsorption for all datasets. The current investigation provides a comparative ranking of
the most dominating parameters in modeling the arsenic adsorption process: pH > arsenate
initial concentration > contact time > adsorbent mass > inoculum size > temperature.
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Table 5. Comparative performance of different MLAs in predicting the adsorption of heavy metals.

Heavy Metal Model Evaluation Metrics Reference

Chromium ANFIS R2 = 0.9997
MSE = 1.288 × 10−06 Foroutan et al. (2020) [25]

Copper ANFIS R2 = 0.99
MSE = 0.707

Dolatabadi et al. (2018) [26]

Copper ANFIS R2 = 0.9024
MSE = 3.29

Wong et al. (2020) [27]

Arsenic ANN R2 = 0.9975
Relative % error = 0.293

Mandal et al. (2015) [15]

Arsenic ANN R2 = 0.9998 Podder et al. (2016) [16]

Arsenic ANN R2 = 0.9987 Podder et al. (2017) [17]

Arsenic ANN-GA
R2 = 0.9984
MSE = 0.036

% Error (abs) = 3.16
Singh et al. (2017) [18]

Arsenic RF, and SVR

RF:
R2 = 0.954

RMSE = 2.8
MAE = 0.96

SVR:
R2 = 0.939

RMSE = 2.9
MAE = 1.9

Hafsa et al. (2021) [21]

Arsenic ANFIS
R2 = 0.933

MSE = 0.137
RMSE = 0.274

Current Study

Generally, as the pH increases, the concentration of H+ ions decreases. The solution H+

ions can compete for the available total active sites, thus reducing the active sites available
for the As ions. Therefore, increasing pH can increase the removal percentage of As [46].
However, there is an optimum value beyond which any further increase in pH will not
affect the adsorption efficiency. Therefore, the value of pH must be optimized before
conducting the batch adsorption experiments.

In addition, the arsenate removal percentage can be calculated using Equation (14).
For the same adsorbent dosage (mass), as the adsorbate initial concentration increases, the
removal percentage decreases [46]. An adsorbent has a limited number of active adsorption
sites at which As ions are adsorbed. Therefore, insufficient active sites will be the case as
the As concentration increases. Therefore, the initial concentration has a significant impact
on the adsorption process.

Arsenic removal (%) =

(
Co − C f

)
Co

× 100 (14)

where:
Co is the As initial concentration (mg/L); and
Cf is the As concentration at the end of the experiment (mg/L).
Moreover, contact time is one of the dominating parameters in the adsorption process.

As the contact time increases, the adsorption efficiency increases until reaching equilibrium,
at which no further mass transfer will occur. The optimum contact time must be determined
before conducting experiments.
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Adsorbent dosage ranked fourth in terms of relative importance with a total score of
305. As the adsorbent dosage increases, the mass transfer surface area also increases for the
same particle size. It enhances the adsorption efficiency. However, economic adsorbent
mass, i.e., minimum mass with the highest adsorbability, should be used to achieve the
optimum adsorption. Similarly, when using biosorbents, as the inoculum size increases,
the adsorption efficiency increases. Therefore, the inoculum size ranked fifth in terms of
relative importance with a total score of 270.

Furthermore, the nature and the spontaneity of the adsorption process have a signifi-
cant effect on the removal efficiency. Temperature plays a key role in the determination
of the thermodynamic properties of the adsorption process and thus has a non-negligible
impact. Temperature ranked sixth in terms of relative importance with a total score of 237.

The rest of the parameters, namely, agitation speed, flow rate, and solution volume
showed less significant impacts on the As removal efficiency. Their evaluation score varied
between 63 and 76. That is, all the parameters selected for the current study had varying
contributions in predicting the output.
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4. Conclusions

In this work, the application of the ANFIS model was investigated to predict the
arsenate removal efficiency from aqueous solutions using different adsorbents at different
conditions. Based on the promising results of this study, the following conclusions can
be drawn:

• An efficient ANFIS model was successfully developed to predict the adsorption
removal of arsenate from water. High values of R% and R2 with low values of
MSE/RMSE were reported for both training and testing phases.

• The parametric investigation of the current study can be used to optimize the param-
eters and, hence, increase the removal efficiency. The relative ranking of the most
dominating parameters, in the modeling of the arsenate adsorption process, were as
follows: pH, arsenic initial concentration, contact time, adsorbent mass, inoculum size,
and then temperature.

• Prediction of the removal of single or multi-component heavy metal/s can be investi-
gated using an appropriate ANFIS model.

• Deep learning can solve complex problems that need to find hidden patterns from
the available input data. Therefore, advanced artificial intelligence models such as
the Long Short-Term Memory (LSTM) model are highly recommended to be used in
the future.

• Developing a smart system as an alternative tool to predict the arsenic (or other heavy
metal/s) removal from contaminated drinking/ground/irrigation/wastewater is very
important to save cost and time. Further investigation in this regard is currently
under consideration.
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