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Abstract: In the task of human motion recognition, the overall action span is changeable, and there
may be an inclusion relationship between action semantics. This paper proposes a novel multi-scale
time sampling module and a deep spatiotemporal feature extraction module, which strengthens the
receptive field of the feature map and strengthens the extraction of spatiotemporal-related feature
information via the network. We study and compare the performance of three existing multi-channel
fusion methods to improve the recognition accuracy of the network on the open skeleton recognition
dataset. In this paper, several groups of comparative experiments are carried out on two public
datasets. The experimental results show that compared with the classical 2s-AGCN algorithm, the
accuracy of the algorithm proposed in this paper shows an improvement of 1% on the Kinetics dataset
and 0.4% and 1% on the two evaluating indicators of the NTU-RGB+D dataset, respectively.

Keywords: deep learning; graph neural network; action recognition; feature enhancement;
feature fusion

1. Introduction

With the rapid development of deep learning technology and artificial intelligence al-
gorithms, human motion recognition, especially motion recognition based on human bones,
has attracted extensive attention from scholars all over the world [1–3]. Motion recognition
plays a very important role in intelligent monitoring systems, human–computer interaction
systems, intelligent robots, virtual reality technology, automatic driving, motion correction,
and so on. For example, it is involved in analyzing an athletes’ sports posture to improve
the athlete’s sports performance and in automatic driving, by judging human movements
and predicting their action intention. Traditional motion recognition methods mainly used
the approach of manually designing features to extract information on features, train the
classifier, and output the prediction results. This recognition method not only consumes a
lot of resources but also can not meet the requirements of speed and accuracy [4,5].

In recent years, with the development of artificial intelligence technology and com-
puter hardware, action recognition algorithms based on deep learning have been widely
used because of their strong adaptability and high recognition efficiency. Action recognition
based on deep learning can be divided into two categories. The first is based on the use of
traditional CNN, RNN, or LSTM networks, such as two stream [6,7], C3D [8], and LSTM [9]
methods. These use end-to-end learning to effectively reduce the amounts of parameters
and greatly improve the recognition accuracy. Inspired by the process of human vision
and the understanding of video information, Karens et al. [6] designed a dual-stream
network. The two streams extracted time information and spatial information, respectively,
and finally fused the two models. Du T et al. [8] found that a 3D convolution network
is better than a 2D convolution network in learning spatiotemporal features, and proved
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through experiments that the use of a 3 × 3 × 3 convolution kernel for 3D convolution was
the best. Jeff D et al. [9] proposed the long short-term memory (LSTM) network. Later
generations used this network with action recognition tasks to learn effective features and
model the dynamic process in the time domain to realize end-to-end action recognition
and detection. The second category of the action recognition methods is those based on the
human skeleton, which show better robustness to illumination changes and environmental
changes. In recent years, this area has attracted extensive attention. The method uses a
human posture detection algorithm and a high-precision depth camera to obtain the charac-
teristics of a human skeleton, forms a graph through natural human connections, and gives
a time series of human joint positions. With the rapid development of graph convolutional
neural networks (GCNs), a large number of graph convolution-based network models
have been applied to skeleton-based action recognition tasks. Yan et al. [10] first applied a
graph convolution network to human skeleton action recognition, establishing the spatial
graph of natural human connections, added time edges between corresponding joints in
continuous time frames, and proposed a spatiotemporal graph convolution neural network.
Kalpit T et al. [11] defined a partition of a skeleton graph. In this partition, spatiotemporal
convolution was formalized using a location-based GCN for the task of action recognition;
Shi et al. [12] proposed a two-stream adaptive graph convolution model to adaptively
learn the graph topology of different GCN layers and skeleton samples, which was better
adapted to the recognition task and GCN hierarchy, and further improved the recognition
performance. At present, there are still some problems in the action recognition model
based on graph convolution neural networks. (1) Different action durations are different
and changeable. The current model still uses the characteristics of a single scale [13], and
the information obtained on the same scale is very limited, which is not conducive to the
improvement of the accuracy of action recognition. (2) Human motion recognition itself
involves a lot of time and spatial domain information. The current models cannot make
full use of the spatial-time-domain information.

To solve the above problems, we improve the two-stream adaptive graph convolu-
tional network (2S-AGCN) algorithm and propose a novel skeleton action recognition
model based on multi-scale deep spatiotemporal features. This model uses 2S-AGCN
as the backbone network. We propose a time multi-scale sampling module and a deep
spatiotemporal feature extraction module to enhance the semantic information of shallow
features. The main contributions of this paper are as follows:

1. Feature enhancement: In this paper, a multi-scale time-sampling module is proposed
to obtain richer semantic information by varying the number of time frames. In
addition, we combine the human skeleton map with the manipulator in robotics and
propose a deep spatiotemporal feature extraction module. The module calculates the
joint angle, the change of the joint angle, the angular velocity of the joint angle, and
the acceleration of the joint angle in the human skeleton map, to make full use of the
spatiotemporal features in the human skeleton data.

2. Structure comparison: For the multi-scale deep spatiotemporal features proposed
in this paper, we compare three different feature fusion methods. We introduce
these three feature fusion methods in detail in Section 3. Experiments show that the
decision-making level fusion method can achieve the best result for the model.

The remainder of this paper is organized as follows. Section 2 discusses some exist-
ing related works on skeleton-based action recognition and knowledge regarding robot
manipulators related to this paper. In Section 3, on the basis of 2s-AGCN, we propose a
deep spatiotemporal feature extraction module and three feature fusion methods. After
comparing the advantages and disadvantages of the three methods, we concluded that the
late fusion method was the most effective in this study. In Section 4, we give experimental
proof for the relevant modules and feature fusion methods proposed in Section 3. In
Section 5, we summarize the work of this paper and point out the directions of future work.
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2. Related Works

In the field of action recognition with artificial intelligence as the mainstream method,
the question of how to make full use of the temporal and spatial features in skeleton
data is still a challenging problem. Control science involves finding the corresponding
control output by establishing model parameters. Artificial intelligence is used to find
the parameters of the model in the data. In essence, the main parameters used in these
models may be universal. From the perspective of robot control, in this paper we aim to
understand the parameters of motion recognition, strengthen its features, and propose a
multi-flow network model based on these features.

2.1. Introduction to Manipulators in Robotics

In robot control, the basic theory is the motion control of rigid bodies, which is
consistent with the meaning of recognizing bones in bone-based motion recognition. This
section briefly introduces the four parameters of connecting rods and the motion of a
rigid body.

1. Four parameters are related to connecting ros [14,15]. The connecting rods are num-
bered from the fixed base of the operating arm. The fixed base is connecting rod 0,
the first movable connecting rod is 1, and so on. The connecting rod at the end of the
operating arm is connecting rod n. In Figure 1, the joint axis i− 1 and the joint axis i,
the connecting rod i− 1, and the connecting rod i are taken as examples to further
illustrate the description of the joint–connecting rod connection.
There is a common joint axis between two adjacent connecting rods. The distance
along the common axis of two adjacent connecting rods can be described using a
parameter called the connecting rod offset. The link offset on the joint axis i is marked
as di. Another parameter is used to describe the angleof two adjacent connecting
rods rotating around the common axis. This parameter is called the joint angle,
which is recorded as θi. Figure 1 shows the interconnected connecting rod i − 1
and connecting rod i. According to the previous definition, α(i−1) represents the
connection relationship between two adjacent connecting rods. The first parameter is
the directional distance from the intersection of the common vertical line α(i−1) and
the joint axis i to the intersection of the common vertical line α(i) and the joint axis
i, that is, the link offset di. A representation of the method of connecting rod offset
di is shown in Figure 1. When joint i is a moving joint, the link offset is di, which is
a variable. The second parameter describing the connection relationship between
adjacent connecting rods is the included angle formed by the rotation around the joint
axis i between the extension line of α(i−1) and α(i), that is, the joint angle θi, as shown
in Figure 1. In the figure, the straight lines marked with double slashes and triple
slashes are parallel lines. When joint i is a rotating joint, the joint angle θi is a variable.

BVQ =
dBQ

dt
= lim

∆t→0

BQ(t + ∆t)−BQ(t)
∆t

(1)

In the above formula, BVQ represents the speed of point Q in coordinate system B,
and BQ(t) represents the pose information of point Q in coordinate system B at time
t. The orientation of coordinate system B relative to coordinate system A changes
with time, and the rotation speed of B relative to A is expressed by vector AΩB, which
indicates that an intuitive method can be used to calculate the point velocity. Two
instantaneous quantities are used to represent the vector Q around AΩB. The rotation
of B is observed from the coordinate system A. When analyzing the acceleration
of a rigid body, the linear acceleration and angular acceleration can be obtained by
deriving the linear velocity and angular velocity of the rigid body at any instant. The
linear acceleration is shown in Equation (2) and angular velocity in Equation (3).

BV′Q =
dBVQ

dt
= lim

∆t→0

BVQ(t + ∆t)−BVQ(t)
∆t

(2)
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AΩ′B =
dAΩB

dt
= lim

∆t→0

AΩB(t + ∆t)−AΩB(t)
∆t

(3)

From the introduction of relevant knowledge in the above operating arm, we can
regard the two arms and two legs of the human body as operating arms. Therefore,
we can calculate the angle, linear velocity and angular velocity, linear acceleration,
and angular acceleration between adjacent joints.

Figure 1. Parameters describing the connection relationship between connecting rods (example).

2.2. Graph Convolutional Networks

A CNN can well process two-dimensional grid data such as images [16–20], but most of
people’s daily life involves non-Euclideanspace data, so more and more people are engaged
in research on GCNs [21–26]. There are two main methods used for GCNs: the spatial-based
method and the spectral-based method. The spatial-based method directly convolutes
the fixed points and their neighborhoods on the graph, and extracts and normalizes them
according to the manually designed rules. Compared with the spatial-based method,
the spectral-based method uses the eigenvalues and eigenvectors of the graph’s Laplace
matrix. These methods perform graph convolution in the frequency domain by means
of graph’s Fourier transform, which does not need to extract local connection regions
from the graph at each convolution step. The work of this paper follows the space-based
method. Yan et al. [5] proposed ST-GCN to directly model the skeleton data into a graphical
structure, which does not need to design manual tasks or traversal rules, in order to obtain
better performance than the previous methods. In the human skeleton diagram, the
structure of the human limbs is very similar to that of the manipulator, so we considered
introducing relevant variables in the manipulator to enrich the information in the human
skeleton diagram. GCN is a method to deal with this non-Euclidean data.

3. Proposed Methods

In this chapter, we will elaborate on the deep spatiotemporal feature enhancement
module, multi-scale time sampling strategy, feature fusion method, and backbone network
model proposed in this paper.

3.1. Deep Spatiotemporal Feature Enhancement Module

When discussing the basic concepts of robotics, we observed that four variables are
needed to describe a mechanical arm. Relatedly, the human skeleton map has a similar
structure with the manipulator, but the manipulator is in three-dimensional space, and the
human skeleton map can be regarded as being in a two-dimensional plane. In the process
of movement, the movement speed of limbs varies with different actions. For example,
in the two similar actions of falling and lying down, the duration of falling is shorter,
whereas the duration of lying down is longer than that of falling. Therefore, it is necessary
to calculate the variables such as speed and acceleration, angle, and angular acceleration.



Appl. Sci. 2022, 12, 1028 5 of 19

These variables can well reflect the unique features of people in different actions. This
enriches the characteristics of human skeleton maps and is convenient for model learning.

3.1.1. Spatial Feature Extraction Module

The angle and angle variation of human joints can be used as the deep spatial features
of an action recognition task based on bone data. This is associated with the fact that the
structure of the mechanical arm in robotics is similar to that of human bone. Therefore, the
relevant knowledge in the mechanical arm can be applied to human bone feature extraction.
In the second section of this paper, we mentioned that four variables are needed to express
the connecting-rod state of a mechanical arm in 3D space, whereas the human skeleton
diagram considered in this paper only needs to consider 2D planes. Therefore, in the
human skeleton graph, we remove the two variables of link angle and offset distance, and
retain the two variables of link length and joint angle. Combined with the (x, y) coordinates
given in the human skeleton dataset, it is easy to calculate the length of the bone and the
angle between the bones. With these variables, we can easily represent the position of
two arms and two legs of the human body. As shown in Figure 2, the deep spatial feature
extraction module proposed in this paper inputs a group of action sequences and uses the
coordinates of nodes to calculate the joint length and joint angle between each frame. In
addition, we also increased the angle between the trunk and the large part of the arm and
thigh to obtain the relative position of the arm and leg.

Figure 2. Deep space feature extraction module.

The rules for defining the angle extracted by the module are as follows. According to
the coordinates of each node in the human bone dataset and its physical connection, the
length of each bone and the angles between arms, legs, and trunk are calculated. When
the degree of the node is 1, the node has only one edge and there is no need to calculate
the angle; when the degree of a node is 2, a node connects two edges and only an angle
less than 180° needs to be calculated; when the degree of a node is 3, a node connects three
edges and three angles need to be calculated; similarly, nodes with a degree of 4 need to
calculate four angles. Figure 3 shows an example of a human skeleton data label graph.

Figure 3. Example of the human skeleton.

Taking node 5 in Figure 3 as an example, node 5 is located in the left arm of the human
body, and its degree is 2. It is necessary to calculate an angle formed between its two bones.
Similarly, the included angles between other arms, legs, and trunk are also calculated one
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by one through Formula (4). Taking node 5 as an example, one can express the included
angle calculation formula as shown in Equation (4).

θ5 = arccos

 (x4 − x5)× (x7 − x5) + (y4 − y5)× (y7 − y5)√
(x4 − x5)

2 + (y4 − y5)
2 ×

√
(x7 − x5)

2 + (y7 − y5)
2

 (4)

‘X’ and ‘Y’ in the above formula represent the abscissa and ordinate of the node, and
their subscripts represent the sequence numbers of the nodes, θ5 represents the angle on
the node labeled 5. The calculation formula of a defined length is shown in Formula (5).

|L1| =
√
(x1 − x2)

2 + (y1 − y2)
2 (5)

|L1|represents the length of the bone between node 1 and node 2 in the above formula,
and its subscript represents the label of the first bone. According to the above method of
extracting the angle between bone length and bone, the angles and lengths between all
bones in a single frame are extracted to obtain the deep space feature matrix.

3.1.2. Time Feature Extraction Module

Inspired by the knowledge on rigid body motion in manipulators, we suggest that the
human skeleton can also be used to calculate linear velocity and angular velocity, linear
acceleration, and angular acceleration. Here, we simplify the linear velocity and linear
acceleration as the linear velocity and linear acceleration on the node, and the angular velocity
and angular acceleration as the angular velocity and angular acceleration between adjacent
joints. Based on the characteristics of human skeleton data, we can rewrite Equation (1)–(3).
The deep time feature extraction module is shown in Figure 4.

Figure 4. Deep time feature extraction module.

We simplify the calculation of linear velocity and obtain the differential of the abscissa
and the ordinate of each node at time t and time t + 1. The result of the differential can
represent the linear velocity of the node at time t, as shown in Equation (6).

V =
dJm

dt
= lim

∆t

Jm(t + ∆t)− Jm(t)
∆t

(6)

In the above formula, Jm represents the (x, y) coordinates on the m-th node, ∆t takes
the value of 1. For the linear acceleration, according to Equation (2), we calculate the
differential of the online velocity of each node at time t to obtain the linear acceleration of
the node at time t, as shown in Equation (7).

V̇ =
dV
dt

= lim
∆t

V(t + ∆t)−V(t)
∆t

(7)

Definition V represents the linear velocity on the node, V̇ represents the linear ac-
celeration on the node, and ∆t = 1. Because the human skeleton data are extracted
frame-by-frame from the video, which is discrete data, we specify ∆t = 1. So the calcu-
lation formulas of linear velocity and linear acceleration are as shown in Equations (8)
and (9):
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V = Jm(t + 1)− Jm(t) (8)

V̇=V(t + 1)−V(t) (9)

Similarly, according to the characteristics of human bones, the angular velocity and
angular acceleration on human bones are calculated, and Ω is defined to represent the
angular velocity on joints, whereas Ω̇ represents the angular acceleration on joints. The
angular velocity and angular acceleration are calculated from the angle extracted from the
deep spatial features. The calculation principle is similar to that of the linear velocity on
the node, and it is specified as ∆t = 1, the calculation formula is shown in Equations (10)
and (11).

Ω=θ(t + 1)− θ(t) (10)

Ω̇=Ω(t + 1)−Ω(t) (11)

3.2. Time Multi-Scale Sampling Module

At present, most action recognition methods based on deep learning process all actions
according to a single fixed time scale, but we believe that the time span of an overall action
is changeable, the degree of change of action between each frame is also different, and
there is inclusion between action meanings. It is not optimal to use a single time scale to
deal with the problem of action recognition. Therefore, we propose an equal-interval-time
multi-scale sampling strategy. As shown in Figure 5, we extract the multi-scale action
sequence using a certain number of frames. We believe that the multi-scale action sequence
extracted after a certain number of frames can contain more semantic information, and then
the multi-scale deep spatiotemporal features are calculated using the deep spatiotemporal
feature extraction module. When we select the interval frames, we find that the duration of
some actions is short. If the interval frames are too numerous, the action sequence of this
scale will lose its original semantic information and the meaning of the action itself will be
lost. Therefore, we select 0, 1, 2, and 4 when we select the interval frames.

Figure 5. Illustration of time multi-scale sampling module.

3.3. Selection of Feature Fusion Methods

Because so many features are extracted from skeleton data, the question of how to deal
with these features has also become a key part of our work. In the process of multi-scale
feature fusion, the time of fusion is an important consideration. For different fusion periods,
we tried three feature fusion methods: early fusion and late fusion, also known as feature
fusion and decision-making level fusion. Early fusion, also known as feature fusion, refers
to a fusion method immediately after multi-scale feature extraction. Late fusion is also
called decision-making level fusion, which refers to making decisions (classification or
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regression) at each scale after that. The fused part in Figures 6–8 is marked with a dashed
box. By comparing the results of the model under three feature fusion methods, the optimal
fusion method was obtained. The first two feature fusion methods corresponded to early
fusion, and the third fusion method corresponded to late fusion. We carried out two
processes for feature layer fusion. The first method is shown in Figure 6. In this method, the
features of four time scales are directly spliced according to the dimensions of keyframes to
obtain a feature matrix with dimensions of (3, M, N, 2), where M represents the number
of keyframes and N represents the number of key points. We take this feature matrix as
the input matrix of AGCN, and finally, AGCN is used to obtain the classification results.
The second method is shown in Figure 7. Firstly, the features of four-time scales are passed
through a graph convolution layer and a ReLU activation function layer to increase the
nonlinear expression ability of the features, and then spliced according to the dimensions
of the keyframe. Similarly, a feature matrix with dimensions (3, M, N, 2) is obtained. We
take this feature matrix as the input matrix of AGCN. Finally, the classification results are
obtained by means of the AGCN. The third method is shown in Figure 8. We respectively
input the features of four different time scales into AGCN to obtain the scores of four
classifications. Finally, the scores of these four classifications are added in equal proportion
to obtain the final result. The fusion method is shown in Equation (12).

Sall = 0.25S0 + 0.25S1 + 0.25S2 + 0.25S4 (12)

Figure 6. Method 1.

Figure 7. Method 2.

Figure 8. Method 3.

3.4. Skeleton Action Recognition Algorithm Based on Multi-Scale Deep Spatiotemporal Features

The basic model of this paper comes from 2s-AGCN. The AGCN shown in Figure 9 is a
multilayer adaptive graph convolution network model, which optimizes the network topol-
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ogy and other network parameters in an end-to-end manner. This graph has uniqueness
for different layers and different samples and can adapt to the model very flexibly. At the
same time, a residual connection is added to the model to ensure the stability of the original
model. More specifically, in the spatial dimension, to make the graph adapt to different
samples and graph structures, we use the iterative formula shown in Equation (13).

fout =
Kv

∑
K

Wk fin(Ak + Bk + Ck) (13)

Kv represents the kernel size of spatial latitude. According to the division rules of
subgraphs, we set Kv = 3 , Wk is the weight matrix, and Ak is an N × N, which represents
the physical structure of the human body. Bk is also an adjacency matrix of N × N, but Bk
has no specific constraints on the inner value, which means that the graph is completely
learned from the training data. In the data-driven task, we can completely learn the graph
from the target task, considering that the value in Bk can be any value, which can represent
not only the physical structure of the human body but also the connection strength between
adjacent nodes. Ck can represent a data correlation graph, which can learn a unique graph
for each sample. To determine whether there is a connection between two adjacent nodes
and how strong the connection is, we use the normalized Gaussian function to calculate
the similarity of the two nodes, as shown in Equation (14).

f (vi, vj) =
eθ(vi)

Tφ(vj)

N
∑

j=1
eθ(vi)

Tφ(vj)
(14)

Here, N represents the sum of all nodes. We use the point product to calculate the
similarity of two nodes in the embedded space. Ck is a similarity matrix of N × N; we
normalize the value to be between 0 and 1. This is consistent with the time dimension in
ST-GCN in the time dimension. Every BN layer and Relu layer is connected behind each
spatial graph convolution and time graph convolution.

Figure 9. Illustration of the adaptive graph convolutional block (left) and adaptive spatiotemporal
convolution model (right).

For the multi-scale deep spatiotemporal features proposed in this paper, we tried three
different feature fusion methods. In the experiment discussed in Section 4, we concluded
that the fusion effect at the decision level is the best. Therefore, when introducing the model
in this section, we only introduce the third method in detail. Figure 10 depicts the skeleton
action recognition model based on multi-scale deep spatiotemporal features proposed in
this paper. Firstly, an action sequence is given, and four groups of actions with different
scales are obtained after multi-scale time sampling. Then, the deep spatiotemporal feature
extraction module (STFEM) is used to extract the deep spatiotemporal features of actions of
four scales, and then the spatiotemporal features of these four scales are sent to the AGCN,
respectively. After the Softmax classifier is applied, four different classification scores are
obtained, and then the four classification scores are added in equal proportion to obtain the
final classification result.
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Figure 10. Skeleton motion recognition model based on multi-scale deep spatiotemporal features.

4. Experimental Results and Analysis

In this section, we analyze the effectiveness of the deep spatiotemporal feature extrac-
tion model proposed in this paper through experiments and compare the three feature fu-
sion mechanisms, in order to analyze their advantages and disadvantages. The method was
tested on two large datasets in the field of action recognition, Kinetics, and NTU-RGB+D.
The test results are compared with the results of 2s-AGCN to confirm the effectiveness of
the model proposed in this paper, and then the model proposed in this paper is compared
with the existing SOTA.

4.1. Datasets

NTU-RGB+D [27] is the largest dataset with 3D Node annotation in relation to hu-
man motion recognition tasks. This dataset contains 60 motion categories and a total of
56,000 human motion video clips. All these clips were completed by 40 volunteers in a
specific laboratory. It uses three Kinect V2 cameras with the same height but different
angles to capture information at the same time, with angles of −45°, 0°, and 45°. This
dataset obtains the position information, marked by 3D nodes on each frame, through the
Kinect depth sensor. Each character in each skeleton sequence has 25 nodes, and there are
only two characters in each segment at most. The author of NTU-RGB+D proposes to use
two indicators: (1) the Cross Subject (X-Sub) evaluation index; in this evaluation index, the
dataset is divided into the training set and verification set according to the person’s ID. the
training set has 40,320 segments and the verification set has 16,560 segments; (2) the Cross
View (X-View) evaluation index, in which the evaluation index is divided according to the
number of cameras. The information captured by cameras 2 and 3 is divided into training
sets, and the information captured by camera 1 is divided into verification machines, in-
cluding 37,920 segments in the training set and 18,960 segments in the verification set. The
evaluation indexes used in this paper follow the above two indexes, and the recognition
accuracy of top-1 on the two datasets is given.

Kinetics [28] is a large human action dataset, which contains 400 action categories.
These actions are depicted in videos obtained from YouTube. Each action category has at
least 400 video clips, and each video clip includes at least 10 s. These actions include the
interaction between people and objects, such as playing musical instruments, as well as
interactions between people, such as shaking hands. However, this dataset only provides
video without skeleton data. Therefore, in this study we used the OpenPose [29] toolbox to
estimate the positions of 18 joints in each frame of the video clips. We selected two people
for multiplayer editing according to the average joint confidence. We used their published
data to evaluate our model. The dataset was divided into a training set and a verification
set, in which the training set included 240,000 fragments and the verification set included
20,000 fragments. According to the evaluation method in Kinetics, we trained the model
on the training set and obtained the top-1 and top-5 accuracy in the verification set. In
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the dynamics skeleton dataset, the node labels were: 0—nose, 1—neck, 2—right shoulder,
3—right elbow, 4—right wrist, 5—left shoulder, 6—left elbow, 7—left wrist, 8—right hip,
9—right knee, 10—right ankle, 11—left hip, 12—left knee, 13—left ankle, 14—right eye,
15—left eye, 16—right ear, and 17—left ear.

4.2. Training Details

All the experiments in this paper werw based on the Pytorch framework and run on
a server using a 9th generation Intel CPU, 64 G memory, and two NVIDIA 2080ti GPUs.
According to the batch size, which was set to 16 in this paper, the operation occupancy rate
of the two graphics cards was between 85% and 90%.The optimization algorithm used the
stochastic gradient descent (SGD) algorithm. Its momentum was set to 0.9 and its batch
size was set to 16. The loss function used was the cross-entropy function. The weight
decay was set to 0.0001; the initial learning rate was set to 0.1. For the NTU-RGBD dataset,
there are at most two people in each sample of the dataset. If the number of bodies in
the sample was less than 2, we used a value of zero for the second body. The maximum
number of frames in each sample is 600. For samples with less than 300 frames, we repeated
the samples until they reached 600 frames. The learning rate was set as 0.1 and this was
divided by 10 at the 30th epoch and 40th epoch. The training process was ended at the 50th
epoch [6,7]. For the Kinetics-Skeleton dataset, the size of the input tensor of Kinetics was
set the same as [6], containing 150 frames with two bodies in each frame. We performed
the same data-augmentation methods as in [6]. In detail, we randomly chose 300 frames
from the input skeleton sequence and slightly disturbed the joint coordinates with ran-
domly chosen rotations and translations. The learning rate was also set as 0.1 and was
divided by 10 at the 45th epoch and 55th epoch. The training process ended at the 65th
epoch [6,7]. To increase the reliability of the experimental results, during the training
process, we repeated the process 10 times for the three feature fusion methods noted in
Section 4.3 and the ablation experiments noted in Section 4.4 and took the average value of
the results of these 10 experiments as the final results of all experiments in this paper.

4.3. Effectiveness Comparison of Time Multi-Scale Modules

In this paper, we propose a time multi-scale sampling module. First, we preprocessed
the dataset and divided the dataset into four scales according to the time sampling strategy
described in Section 3. We named them scale 0, scale 1, scale 2, and scale 4, respectively.
Secondly, we directly input the features of four times scales into the AGCN. To make the
experimental results more fair, we took the node flow in the dual flow adaptive graph con-
volution network as a reference and experimented only on a single graph from the adaptive
convolution model. As shown in Table 1, we compared the effects of the characteristics of
four different time scales on the same model on NTU-RGB+D and the dynamics datasets.

Table 1. Comparison of the accuracy of features of different time scales on the NTU-RGB+D and
Kinetics datasets.

Methods Cross-View% Cross-Subject% Kinetics%

Scale 0 (J-Stream) 93.1 86.3 34.0
Scale 1 93.9 87.1 35.0
Scale 2 92.7 86.2 33.2
Scale 4 91.5 85.2 33.5

The result of the basic network used in this paper for the Kinetics dataset was only
34%. The effect of our time multi-scale sampling strategy on scale 1 was 1% better than
that of the basic network. As for why the accuracy of the kinetic dataset was very low, we
suspect that it is because the types of datasets were increasing. The number of classification
types in the Kinetics dataset used in this paper is up to 400, whereas the NTU-RGB+D
dataset has only 60 classification types. From the results shown in Table 1, it can be seen
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that the multi-scale sampling module proposed in this paper achieved the best effect at an
interval of one frame (scale 1) and exceeded that of J-Stream (one of AGCN’s branches).
However, the effect achieved on the adaptive graph convolution model’s scale 2 and scale
4 decreased gradually. For NTU-RGB+D dataset and the Kinetics dataset, scale 1 produced
0.8%, 0.8%, and 1% higher accuracy than scale 0, respectively, but scale 2’s results were
0.4%, 0.1%, and 0.8% lower than those of scale 0, and scale 4’s results were 1.6%, 1.1%,
and 1.5% lower than those of scale 0. After this analysis, we believe that although the
time multi-scale module can obtain a larger receptive field by spacing a certain number of
frames, a side effect is that it loses part of the semantic information, resulting in a decline in
the recognition performance of the model. However, to make up for this part of the lost
semantic information, we have introduced the deep spatiotemporal feature module. This
module is introduced in detail in Section 3.3, and the experimental results of the module
are given in Section 4.5.

4.4. Effectiveness Analysis of Deep Spatiotemporal Feature Module

To verify the effectiveness of the module proposed in this paper, we compared the
B-Stream and J-Stream in the 2s-AGCN with the multi-stream adaptive graph convolution
network proposed in this paper. To control the same variables, we did not sample the
action sequence. We compared the spatial and temporal features, respectively, and verified
the effectiveness of the module proposed in this paper by controlling different inputs. The
comparison results are shown in Table 2. We used A to represent an angle, L to represent
length, LV to represent linear velocity, AV to represent angular velocity, LA to represent
linear acceleration, and AA to represent angular acceleration. The results presented in
Table 2 show that the accuracy of the NTU-RGB+D and Kinetics datasets was improved
after adding the deep spatiotemporal features. It can be seen that the deep spatiotemporal
features module was more effective in improving the accuracy of the model. In the CV
index of the NTU-RGB+D dataset, the use of ‘LV + AV + LA + AA’ as the input feature
has the best accuracy, reaching 93.8%, and the effects of other features on this evaluation
index were not very different. On the CS index, the use of ‘A + L’ as the input features
achieved the best effect, reaching 87.6%, 1.3% ahead of ‘J-Stream’; ‘A + L’ also performed
well on the Kinetics dataset, leading ‘J-Stream’ by 0.9%. In terms of model training speed, it
can be seen in Figure 10 that although the number of features is increased in our proposed
method, there is no obvious disadvantage in speed.

Table 2. Comparison between the accuracy of 4-stream features extracted using the spatiotemporal
feature extraction module under the same time sampling conditions and the accuracy of the dual-
stream features of the original 2s-AGCN.

Methods Cross-View% Cross-Subject% Kinetics%

B-Stream 93.3 86.7 34.3
J-Stream 93.1 86.3 34.0

A 93.5 87.5 32.8
A + L 93.7 87.6 34.9

LV + AV 93.2 86.4 33.2
LV + AV + LA + AA 93.8 86.5 34.7

The original network we used was 2S-AGCN [6], and the model’s training method was
also consistent with that of the basic network. The turning point of the training curve in
Figures 11–16 was caused by the decay of the learning rate. At the beginning of the training
process, using a large learning rate (0.1) can accelerate the model convergence. Yan et al. [5]
and Shi et al. [6] have proven the effectiveness of learning rate decay in training motion
recognition models. With the progress of the training process, the learning rate will be
gradually reduced to help find the optimal solution and reduce the fluctuation of the loss
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function. Our experiments show that the use of learning rate decay in the training process
has a certain effect in the case of our proposed model.

In the process of model training, we recorded the loss value and accuracy of each
epoch. In Figures 11–16, the red line represents the ‘B-Stream’, the green line represents
the ‘J-Stream’, the blue line represents the input feature ‘A’, the green line represents
the input feature ‘A + L’, the purple line represents the input feature ‘LV + AV’, and the
black line represents ‘LV + AV + LA + AA’. As can be seen in Figure 10, after adding the
deep spatiotemporal feature extraction module, the effect of the model has been further
improved based on the original two streams’ adaptive graph convolution. As can be
seen in Figures 11–14, on the NTU-RGB+D dataset, the model with six branches begins
to converge after the 32nd epoch, the loss value of the converged model is less than 0.1,
and the fluctuation is small. Furthermore, the accuracy gradually tends to be stable after
32 epochs. We can see in Figures 11 and 13 that when ‘LV + AV + LA + AA’ and ‘A + L’
are used as input characteristics, the loss of the two branch models is at the lowest value
in all branches in the 10th epoch, and the loss is kept at the lowest state until the end of
training. As can be seen in Figure 15, on the dynamics dataset, the loss value of the ‘A + L’
branch reaches the minimum of all the branches at the 10th epoch and remains in a steadily
declining state until the end of training.

Figure 11. Loss change on CV index of NTU-RGB+D dataset with different features.

Figure 12. Accuracy change on CV index of NTU-RGB+D dataset with different features.
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Figure 13. Loss change on CS index of NTU-RGB+D dataset with different features.

Figure 14. Accuracy change on CS index of NTU-RGB+D dataset with different features.

Figure 15. Loss change on Kinetics dataset with different features.
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Figure 16. Accuracy change on Kinetics dataset with different features.

4.5. Comparison of Multi-Scale Feature Fusion Methods

In this paper, multi-scale deep spatiotemporal features are proposed. We considered
how to make better use of these features. Therefore, we proposed three feature fusion
methods based on two approaches: early fusion and late fusion. Early fusion is also called
feature fusion, and refers to a fusion method conducted immediately after multi-scale
feature extraction. Late fusion is also referred to as decision-making level fusion. It refers
to the integration after making decisions (classification or regression) at each scale. In
this study, methods 1 and 2 corresponded to early fusion and method 3 corresponded
to late fusion. Method 2 had one more graph convolution layer and activation function
layer than method 1, in order to increase the nonlinear expression ability of the data. The
same problem can be solved using different algorithms. The quality of an algorithm will
affect the efficiency of the algorithm and even the program. The purpose of algorithm
analysis is to select the appropriate algorithm and improve the algorithm. We evaluated
the time complexity of the algorithm. The adaptive graph convolution algorithm had
the same algorithm execution flow as the algorithm in this paper, and only uses a for a
loop once. The feature fusion of methods 1 and 2 occurs in the early stage, so the time
complexity of methods 1 and 2 is Timesc∼O(EB) , where EB is the B power of E, E is the
number of training epochs, and B is the minimum of the minibatch. Since four adaptive
graph convolution algorithms are used in the later stage of feature fusion in method 3, the
time complexity of method 3 is Timesc∼O(4EB); four means that there are four identical
adaptive graph convolution neural networks that process four different scale features at the
same time. To verify the advantages and disadvantages of the three feature fusion methods
proposed in this paper, we compared the training time and classification accuracy of the
three models on NTU-RGB+D and Kinetics datasets, respectively. The comparison results
are shown in Table 3.

As can be seen in Table 3, the accuracy of method 1 and method 2 on the two datasets
was not as high as that of method 3. In terms of the CV index of the NTU-RGB+D dataset,
the accuracy of method 3 was 4% and 4.0% higher than that of method 1 and method 2,
respectively. In terms of the CS index, the accuracy of method 3 was 3.0% and 2.5% higher
than that of method 1 and method 2, respectively. On the Kinetics dataset, the accuracy
of method 3 was 5.1% and 5.0% higher than that of method 1 and method 2. However, in
terms of training time, method 3 needs to train the features of four-time scales four times,
so the training time was longer than those of the first two methods, but the results were
greatly improved. We believe that the reason for the low accuracy of methods 1 and 2
in these two methods is that it is difficult to represent the time synchronization between
multi-scale features in the early fusion stage. Because the representation, distribution, and
density of various scales may be different, only a simple connection between attributes may
ignore the unique attributes and correlations of each scale. Furthermore, this may cause
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redundancy and data losses between data. Early fusion also requires the fused features
to be represented in the same format before fusion. With the increase in the number of
features, it is difficult to obtain cross-correlation between these features. Method 3 uses
the corresponding models to train the features of four different scales and then fuses the
output results of the four models. Compared with methods 1 and 2, method 3 can handle
simple data asynchrony, but it is obvious from Table 1 that the learning process of method
3 is time-consuming. In order to verify the engineering value of this paper, according to the
distribution of action frames, we selected the interval with the most concentrated action
distribution, and randomly selected five actions as the test. As shown in Table 4 below, we
recorded the test time and accuracy. It can be seen from Table 4 that the three methods have
certain engineering value.

Table 3. Comparison of the accuracy and training time of three methods on the NTU-RGB+D and
Kinetics datasets.

Cross-View %

Methods Accuracy (%) Times(h)

Method 1 90.6 30.8
Method 2 91.5 30.9
Method 3 95.5 98

Cross-Subject %

Methods Accuracy (%) Times(h)

Method 1 86.5 35
Method 2 87.0 35.2
Method 3 89.5 106

Kinetics %

Methods Accuracy (%) Times(h)

Method 1 32.0 24.8
Method 2 32.1 25
Method 3 37.1 79

Table 4. Comparison of the testing times of five examples of three methods on the NTU-
RGB+D dataset.

Action Type Frame Method 1(s) Method 2(s) Method 3(s)

A10: Clapping 69 1.4 1.4 1.5
A7: Throw 86 1.5 1.5 1.6

A27: Jump up 87 1.5 1.5 1.6
A4: Brush air 99 1.5 1.5 1.6

A1: Drink water 103 1.5 1.5 1.6

4.6. Comparison with Existing State-of-the-Art Network

We compared the results of the model using method 3 with the existing state-of-the-art
network model. We compared the results of this model with those of mainstream skeleton-
based action recognition methods on the Kinetics dataset and NTU-RGB+D dataset. The
comparison results are shown in Tables 5 and 6. It can be seen in Tables 5 and 6 that the deep
spatiotemporal feature extraction module proposed in this paper showed an improvement
to a certain extent on the basic 2s-AGCN approach. On the Kinetics dataset, top-1 was
improved by 1% and top-5 by 2.3%. The CV evaluation index in the NTU-RGB+D dataset
was increased by 0.4%, and the CS evaluation index was increased by 1%. Compared with
other mainstream models, our model showed advantages and disadvantages in relation to
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the Kinetic dataset. For example, the results of our model and GCN-NAS [30] on top-1 were
the same but the results of our model on top-5 were still 1% higher. Similarly, compared
with 2s-AAGCN, the results of our model on top-1 was slightly lower than those of 2s-
AAGCN, but it was still 0.6% higher on top-5. Compared with 4s-AAGCN, the results of
our model on top-1 were 0.7% lower than those of 4s-AAGCN, but the results on top-5 were
the same. For the NTU-RGB+D dataset, compared with the more advanced MV-IGNet, the
accuracy of our model was 0.8% less in terms of the CV index, but in terms of the CS index,
our model’s results were slightly higher than those of MV-IGNet.

Table 5. Comparison of accuracy between SOTA methods using the Kinetics dataset.

Action Type Date Top-1(%) Top-5(%)

Feature Encoding [31] 2015 14.9 25.8
Deep LSTM [32] 2016 16.4 35.3

Temporal ConvNet [33] 2017 20.3 40.0
ST-GCN [5] 2018 30.7 52.8

2S-AGCN [6] 2019 36.1 58.7
GCN-NAS [30] 2020 37.1 60.0
1s-AAGCN [34] 2020 36.0 58.4
2s-AAGCN [34] 2020 37.4 60.4
4s-AAGCN [34] 2020 37.8 61.0

MST-AGCN (ours) - 37.1 61.0

Table 6. Comparison of accuracy between SOTA methods using the NTU-RGB+D dataset.

Methods Date Cross-View (%) Cross-Subject (%)

Deep LSTM [32] 2016 67.3 60.7
Temporal ConvNet [33] 2017 83.1 74.3

VA-LSTM [35] 2017 87.6 79.4
Two-stream CNN [36] 2017 89.3 83.2

GCA-LSTM [37] 2017 82.8 74.4
ARRN-LATM [38] 2019 89.6 81.8

MANs [39] 2018 93.2 83.0
ST-GCN [5] 2018 88.3 81.5

DPRL + GCNN [40] 2018 81.5 83.5
2S-AGCN [6] 2019 95.1 88.5
RA-GCN [41] 2020 93.6 87.3

MV-IGNet [42] 2020 96.3 89.2

MST-AGCN (ours) - 95.5 89.5

5. Conclusions

In human–computer interactions and other fields that require the use of action recog-
nition methods, it is necessary to recognize actions accurately and quickly to obtain a better
experience. In the process of practical experience, we find that the time spans of some
actions are different, and there may be an inclusion relationship between action seman-
tics. Based on 2s-AGCN, in this paper we have proposed a skeleton action recognition
algorithm based on multi-scale depth spatiotemporal features. The algorithm adopts a
multi-scale time sampling module and a depth spatiotemporal feature extraction module,
which enriches the receptive field of the feature map and strengthens the extraction of
spatiotemporal-related feature information by the network. The experimental data ob-
tained from public datasets showed that the accuracy of the algorithm can be improved.
At the same time, these results also give us new inspiration. In the field of human motion
recognition based on the skeleton, we should pay full attention to the information contained
in the human skeleton, which is likely to have a significant impact on the results of motion
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recognition. Of course, it is not enough to extract only the features in the data. We also
need to design a model that is more suitable for the task of action recognition. In future
work, our focus will also be on the reconstruction of the model. We are ready to add some
modules based on the attention mechanism to better solve the problem of fine-grained
actions and add some visual information to solve the problem caused by a single actions.
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