
����������
�������

Citation: Aslan, M.F.; Durdu, A.;

Sabanci, K.; Ropelewska, E.; Gültekin,

S.S. A Comprehensive Survey of the

Recent Studies with UAV for

Precision Agriculture in Open Fields

and Greenhouses. Appl. Sci. 2022, 12,

1047. https://doi.org/10.3390/

app12031047

Academic Editors: Pasquale Catalano

and Antonia Tamborrino

Received: 7 December 2021

Accepted: 17 January 2022

Published: 20 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Review

A Comprehensive Survey of the Recent Studies with UAV for
Precision Agriculture in Open Fields and Greenhouses
Muhammet Fatih Aslan 1 , Akif Durdu 2,3 , Kadir Sabanci 1 , Ewa Ropelewska 4,*
and Seyfettin Sinan Gültekin 2

1 Department of Electrical and Electronics Engineering, Karamanoglu Mehmetbey University,
Karaman 70100, Turkey; mfatihaslan@kmu.edu.tr (M.F.A.); kadirsabanci@kmu.edu.tr (K.S.)

2 Department of Electrical and Electronics Engineering, Konya Technical University, Konya 42130, Turkey;
adurdu@ktun.edu.tr (A.D.); ssgultekin@ktun.edu.tr (S.S.G.)

3 Robotics Automation Control Laboratory (RAC-LAB), Konya Technical University, Konya 42130, Turkey
4 Fruit and Vegetable Storage and Processing Department, The National Institute of Horticultural Research,

Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
* Correspondence: ewa.ropelewska@inhort.pl

Abstract: The increasing world population makes it necessary to fight challenges such as climate
change and to realize production efficiently and quickly. However, the minimum cost, maximum
income, environmental pollution protection and the ability to save water and energy are all factors that
should be taken into account in this process. The use of information and communication technologies
(ICTs) in agriculture to meet all of these criteria serves the purpose of precision agriculture. As
unmanned aerial vehicles (UAVs) can easily obtain real-time data, they have a great potential to
address and optimize solutions to the problems faced by agriculture. Despite some limitations,
such as the battery, load, weather conditions, etc., UAVs will be used frequently in agriculture in
the future because of the valuable data that they obtain and their efficient applications. According
to the known literature, UAVs have been carrying out tasks such as spraying, monitoring, yield
estimation, weed detection, etc. In recent years, articles related to agricultural UAVs have been
presented in journals with high impact factors. Most precision agriculture applications with UAVs
occur in outdoor environments where GPS access is available, which provides more reliable control of
the UAV in both manual and autonomous flights. On the other hand, there are almost no UAV-based
applications in greenhouses where all-season crop production is available. This paper emphasizes
this deficiency and provides a comprehensive review of the use of UAVs for agricultural tasks and
highlights the importance of simultaneous localization and mapping (SLAM) for a UAV solution in
the greenhouse.

Keywords: indoor and outdoor environments; greenhouse; precision agriculture; SLAM; UAV

1. Introduction

It is estimated that the world population will reach 10 billion by 2050 [1]. This situation
highlights the problems of agricultural needs and demands. Of course, the solutions to
these problems depend on efficient and fast production. Applications such as robotics,
computer science, artificial intelligence, the Internet of Things (IoT), etc., can provide
smart, efficient and fast products for smart farming. Smart farming aims to produce
useful results for understanding the soil and to use information and communication
technology (ICT) services to collect and process information provided by multiple sources.
The amount of water, vegetation, pesticides, humidity, etc., which change according to time
and place, require the continuous monitoring of products in terms of irrigation and spraying.
Smart farming makes crop management easier and more efficient by using technological
equipment in proportion to the specific needs of crops. In this way, this approach aims to
use agricultural chemicals more appropriately, to save energy and products, to prevent
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agricultural pollution, to use smart technology solutions and to create environmentally
conscious production. All of these contribute significantly to crop productivity. In this
context, precision agriculture can combine multiple analysis processes and technological
tools related to all stages of production, from planting to harvest [2].

Finding solutions to agricultural demands depends on rapid production. For this
reason, the number of robotic and computerized solutions used in smart agriculture has
increased significantly in recent years due to their contributions [3–5]. As the size of farms
grows, the size of their equipment, as well as tasks such as irrigation, spraying, planting,
pruning, etc., significantly increases the farmer’s workload. These tasks are highly suitable
for autonomous robots, as they often require a large number of repetitions over a long
period of time and a large area [6]. In addition, the application of industrial developments
and technology to agriculture makes production sustainable by enabling more careful
farming [7]. Therefore, to date, robotic agricultural solutions have been proposed in various
agricultural solutions, such as fruit harvesting [8], monitoring [9], loading and unloading of
agricultural material [10], irrigation [11], fertilization [12], weed detection [13], automatic
grafting [14] and sowing [15]. Most of these studies have been carried out on agricultural
fields with suitable ground and structured environments using wheeled robots.

1.1. UAV and Precision Agriculture

In recent years, the use of unmanned aerial vehicles (UAV) in agriculture has increased
due to the development of UAV technology (see Figure 1). As a mobile robot, UAV is a
low-cost alternative detection technology and data analysis technique [16,17]. There are
many types of UAVs, and low-cost UAVs can collect high-resolution data from different
points in space. Although UAVs have not yet been applied in most precision agriculture
applications, they are increasingly playing an active role in this field in terms of sustainable
agricultural practices and profitability [18]. Moreover, the UAV, which is included in
agriculture, significantly reduces human resources and provides measurement precision. If
the data obtained with the UAV are evaluated and interpreted correctly, they can contribute
to the production of the crop and increase productivity.

UAVs can be particularly valuable for precision agriculture applications and have
strong potential to increase the efficiency of water [19], crop [20] and precision pest man-
agement [21]. They can also perform a wide variety of agricultural operations, including
soil health monitoring, fertilizer application and weather analysis. A UAV with flexible
movements and a camera provides basic support to manpower in situation assessment and
surveillance applications. In addition, multiple sensors can be used simultaneously with
the UAV, and analyses can be strengthened with sensor fusion. UAVs can be used to extract
vegetation indices that allow farmers to continuously monitor crop variability and stress
conditions. Therefore, the agricultural UAV market has gradually expanded, and some
UAV companies, such as DJI (https://www.dji.com/, (Accessed date: 6 December 2021))
and Parrot (https://www.parrot.com/ (Accessed date: 6 December 2021)), have developed
UAVs for agricultural purposes [22].

To date, UAVs have mainly been used for pest detection/control and monitoring
a large number of crops, such as corn, rice and beans. The most common applications
performed with UAVs for precision agriculture are monitoring and spraying [24]. In
monitoring applications, certain information about the crop and vegetation indices are
obtained with image analysis and remote sensing, and thus, various diseases or pests,
plant health or plant growth can be monitored. In spraying applications, the required
amounts of pesticides and fertilizers are sprayed to increase the yield of the crop and
prevent plant diseases. Recently, in addition to these applications, applications such as
mapping, weed detection, irrigation and remote sensing have also been applied with UAVs.
Moreover, UAVs are expected to be used for purposes such as planting, transportation and
soil and field surveys in the future [25]. These missions can also be performed using satellite
imagery or aircraft, but UAV applications are more useful when the image resolution, cost
and difficulty are considered. In addition, UAVs can carry different types of cameras, such
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as thermal, multispectral and hyperspectral instruments, and thus, they can capture aerial
images with different characteristics [26]. According to the Association for Unmanned
Vehicle Systems International (AUVSI), 80% of UAVs will be used in different agricultural
applications in the near future. Therefore, it is obvious that the agricultural sector will need
UAVs to a much greater extent in the future [4,24].

Appl. Sci. 2022, 12, x FOR PEER REVIEW 3 of 33 
 

 
Figure 1. The number of studies in Web of Science on UAV and UAV applications in agriculture 
[23]. 

To date, UAVs have mainly been used for pest detection/control and monitoring a 
large number of crops, such as corn, rice and beans. The most common applications per-
formed with UAVs for precision agriculture are monitoring and spraying [24]. In moni-
toring applications, certain information about the crop and vegetation indices are ob-
tained with image analysis and remote sensing, and thus, various diseases or pests, plant 
health or plant growth can be monitored. In spraying applications, the required amounts 
of pesticides and fertilizers are sprayed to increase the yield of the crop and prevent plant 
diseases. Recently, in addition to these applications, applications such as mapping, weed 
detection, irrigation and remote sensing have also been applied with UAVs. Moreover, 
UAVs are expected to be used for purposes such as planting, transportation and soil and 
field surveys in the future [25]. These missions can also be performed using satellite im-
agery or aircraft, but UAV applications are more useful when the image resolution, cost 
and difficulty are considered. In addition, UAVs can carry different types of cameras, such 
as thermal, multispectral and hyperspectral instruments, and thus, they can capture aerial 
images with different characteristics [26]. According to the Association for Unmanned Ve-
hicle Systems International (AUVSI), 80% of UAVs will be used in different agricultural 
applications in the near future. Therefore, it is obvious that the agricultural sector will 
need UAVs to a much greater extent in the future [4,24]. 

Although UAVs are suitable for agricultural applications, they have important tech-
nical limitations. Therefore, some questions should be answered to develop advanced and 
smart agricultural systems. Some of these questions are: 
• A UAV that works in a large agricultural area for crop monitoring, spraying, etc., 

should fully monitor the field, but is the UAV battery sufficient for this duty period? 
• Are the size of the land and the flight time of the UAV compatible? 
• Can the UAV operate autonomously in a closed environment and is it reliable? 

Figure 1. The number of studies in Web of Science on UAV and UAV applications in agriculture [23].

Although UAVs are suitable for agricultural applications, they have important techni-
cal limitations. Therefore, some questions should be answered to develop advanced and
smart agricultural systems. Some of these questions are:

• A UAV that works in a large agricultural area for crop monitoring, spraying, etc.,
should fully monitor the field, but is the UAV battery sufficient for this duty period?

• Are the size of the land and the flight time of the UAV compatible?
• Can the UAV operate autonomously in a closed environment and is it reliable?
• Is communication loss possible during the UAV mission?
• Can UAV carry loads (RGB camera, multispectral camera, etc.) for different missions?

Some studies claim that problems such as speed and battery can be solved with
multiple UAVs [27]. Multiple UAVs are actually a swarm, so there is a task assigned to each
UAV. In this way, it is predicted that agricultural applications can be carried out quickly and
without battery obstacles over a large area of agricultural land [25]. However, the number
of agricultural studies using multiple UAVs is much lower than those using single UAVs.
Performing a cooperative mission in open fields or a limited greenhouse environment with
multiple UAVs will also pose a reliability problem. It is also a challenge to establish an
effective communication network between UAVs [28]. These questions and multi-UAV
applications are active research areas that still await solutions.
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1.2. Our Study and Contributions

This study reviews and groups previous studies on agricultural tasks recently per-
formed with UAVs. As a result of the importance of agricultural applications with UAVs,
review and survey studies have also increased. The increasing use of UAVs in precision
agriculture and various UAV solutions were presented by Gago et al. [29]. Radoglou-
Grammatikis, Sarigiannidis, Lagkas and Moscholios [4] discussed potential UAV applica-
tions in precision agriculture, and information was given on 20 precision agriculture-UAV
studies conducted in the past. Kim, Kim, Ju and Son [24] explained the characteristics,
control and design of agricultural UAVs and then touched on UAV applications in agricul-
ture such as mapping, spraying, planting, crop monitoring, irrigation and pest detection.
Ju and Son [25] discussed multiple UAV systems in agriculture and emphasized that the
performance of a multiple UAV system is significantly superior to a single UAV system.
Tsouros, Bibi and Sarigiannidis [3] explained precision agriculture practices with UAVs,
types of UAVs used, data collection and data-processing methods and limitations.

This study focuses on the survey of UAV studies and divides agricultural tasks into two
steps. In the first, outdoor UAV studies are discussed, and in the second, UAV applications
in the greenhouse (indoor) are investigated, unlike previous studies. Attention is drawn
to the necessity and importance of the use of UAVs for precision agriculture tasks in
greenhouses. This study emphasizes that the number of studies on UAVs in the greenhouse
is low and offers a simultaneous localization and mapping (SLAM) proposal for indoor
(greenhouse) autonomous UAVs as a solution.

The fact that the use of UAVs for agricultural purposes is a field that has progressed
very rapidly makes survey and review studies important. The important contributions of
this study can be summarized as follows:

• Agricultural practices carried out with UAVs recently, mostly in 2020, are extensively
discussed.

• UAV agricultural applications are discussed in two categories, i.e., indoor and outdoor
environments.

• The importance, necessity and inadequacy of greenhouse UAV missions are empha-
sized.

• The importance of SLAM for autonomous agricultural UAV solutions in the green-
house is explained.

The remainder of this manuscript is organized as follows. In Section 2, information
is presented about the different agricultural tasks performed with UAVs in open fields,
and previous agricultural studies are discussed. Section 3 highlights the necessity and
lack of UAV solutions in the greenhouse and discusses previous UAV studies carried
out in the greenhouse. Section 4 states that the SLAM problem is vital for performing
autonomous missions with a UAV inside the greenhouse. Finally, Section 5 discusses the
entire manuscript and concludes the study.

2. Survey for Outdoor Agricultural UAV Applications

This section addresses outdoor UAV studies carried out for precision agriculture for
different missions. UAV-based precision agriculture studies include applications such
as crop monitoring, mapping, irrigation, etc. Useful information about the crop can
be obtained with images acquired through the UAV camera. Torres-Sánchez et al. [30]
evaluated the accuracy, spatial and temporal consistency and precision of six different
vegetation indices (CIVE, ExG, ExGR, Woebbecke index, NGRDI and VEG) in a wheat crop
using images from a low-cost camera attached to a UAV. With ExG and VEG indices, it
achieved the best accuracy in vegetation fraction mapping with values of 87.73–91.99%
at a height of 30 m and 83.74–87.82% at a height of 60 m. With this study, it was proven
that a low-cost camera UAV can be used in precision agriculture applications such as
weed management. According to Zhang et al. [31], accurate mapping of individual plants
with UAV images is difficult, given the large variations in sizes and geometries and the
distribution of plants. In this context, the authors used frailejones plants as an example and
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proposed the Scale Sequence Residual U-Net (SS Res U-Net) semantic segmentation model.
The proposed semantic method provided a more successful classification compared to FCN,
standard U-Net, Res U-Net and MS Res U-Net methods. Johansen et al. [32] used both
multispectral UAV and WorldView-3 images to quickly and consistently assess macadamia
tree status with remotely sensed images. In the application for three different areas,
excellent, good, moderate, fair and poor classes were used for trees, and the classification
algorithm was a random forest classifier. Tree condition was more successfully predicted
with WorldView-3 images.

Numerous examples of previous studies can be cited, as above. However, the number
of these studies using UAVs for agricultural purposes is quite high. Therefore, grouping
these studies according to their tasks provides more efficient information to the reader. For
this reason, in this study, recent state-of-the-art studies on the use of UAVs in precision
agriculture obtained from the Web of Science are investigated. These journals have high
impact factors in the Web of Science. Previous studies have generally aimed to perform an
outdoor agricultural task with UAVs. Table 1 provides information about the tasks, years,
agricultural product handled, type of UAV and purpose of these recent studies. An article
can contain different tasks at the same time. For example, most of the mapping articles
also involve crop monitoring and remote sensing. When Table 1 is examined, it is seen that
UAV solutions are actively explored in agriculture, and UAV missions performed outdoors
are very diverse. The definition of these tasks can be generalized as in Table 1, although the
applications are in different areas and for different crops.

Table 1 shows that UAVs performing agricultural tasks have recently been widely
published in Web of Science indexed journals. This situation is discussed in more detail
in the study by Cerro, Cruz Ulloa, Barrientos and de León Rivas [23]. Therefore, it is clear
that the interest in UAVs in agriculture has increased in recent years and that UAVs will
play a major role in the future of agriculture [25]. The previous studies in Table 1 show
that different crops can benefit from the capabilities of the UAV, such as data collection
and flexible mobility; that is, a large gain in production and yield can be achieved with the
UAV. Most agricultural products require constant control, and sometimes, changes that are
invisible to the human eye can occur in crops. The UAV is still a very important alternative
for many crops, especially for addressing such problems. For this reason, it is expected that
studies similar to those in Table 1 will be applied frequently in the future.

A more detailed description of UAV missions that mostly have applications is given
below. The applications in Table 1, which are not explained in detail below, are path-
planning, field-monitoring and artificial pollination studies. These path-planning and
field-monitoring studies aim to control the UAV performing this task in a more optimized
approach, rather than performing an agricultural task. For a more realistic and generalizable
scenario, some problems regarding the autonomous movement of the UAV need to be
resolved. These can be summarized as the movement of the UAV in a dynamic environment,
prevention of collisions and determination of the shortest path between mission points.
Such studies are very few in the field of agriculture. Another agricultural UAV task with
a very limited number of studies is artificial pollination. The aim is to distribute pollen
among plants using small-sized UAVs. This field also has a gap in terms of application and
needs new studies.

2.1. Crop Monitoring

Crop monitoring involves taking measurements for the efficient cultivation of a crop
based on images of the crop captured with remote sensing methods. In this context, yield,
growth and diseases of the product are generally estimated. These controls are difficult to
perform manually, especially on very large farms. Very large farms are often monitored via
satellites and aircraft. However, satellites and airplanes involve difficulties such as high
altitude, higher costs and the effect of clouds on the ability to take clear pictures [33]. These
conditions also do not meet the requirement for precision crop monitoring. However, UAVs
can obtain high-resolution images from close range at a low cost [24]. For this reason, it is
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reasonable to perform these tasks with a UAV at minimum cost. In addition, thanks to the
different cameras in the UAV, different index information about the crops is obtained; these
indexes are also important for crop yield control [34]. The sensors used for this purpose are
generally thermal, RGB, multispectral and hyperspectral sensors (see Figure 2) [24].
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2.2. Mapping

Mapping applications aim to follow agricultural or forest areas locally. This is achieved
by obtaining 2D or 3D maps of agricultural land observed by UAVs. In this way, over time,
changes in factors such as current production, efficiency and environmental conditions are
observed. In this context, mapping can be performed by showing information such as the
area of the agricultural land, soil diversity and crop status on images taken with the UAV.
For example, understanding soil variability is one of the oldest challenges facing farmers
and researchers. Soil analysis and periodic observations provide a variable fertilization
system [4,24]. Low-flying, high-resolution images and low-cost UAV mapping applications
have been frequently applied recently. As an example of mapping agricultural products
with a UAV, Johansen, Duan, Tu, Searle, Wu, Phinn, Robson and McCabe [32] used both
multispectral UAV and WorldView-3 images to map macadamia gardens and mapped
different macadamia trees using a random forest approach.

Agricultural mapping applications often aim to mark or indicate information about
plants or soil in an image. In contrast, mapping for mobile robotics, which is discussed
later, aims to determine the geometric boundaries of the environment. In mobile robotics, if
the boundaries of the environment are known, the mobile vehicle acts with the knowledge
of its limits in the environment and also localizes itself in this environment. To perform
autonomous tasks in an indoor environment, the map of the environment must be known.
This is why mapping in robotics is very different from the term mapping in agriculture.

2.3. Spraying

One of the most preferred precision agriculture applications lately is the use of UAVs
for spraying applications. Agricultural chemical products sprayed on crops are aimed at
increasing the yield of the crop and reducing possible plant diseases and pests. However,
with unbalanced and excessive use, it has negative effects on both environmental health and
human health, causing diseases such as cancer and neurologic disorders [4,38]. Compared
to a fast and unbalanced sprayer, UAVs can reduce pesticide use and maximize plant health
and yield [4,24]. The chemical pesticide is sprayed on the plants, usually with a spraying
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system mounted on the UAV. With techniques such as image processing and artificial
intelligence, the condition of the soil or plant is predicted, and spraying is performed
accordingly. In a sample study on spraying, Martinez-Guanter et al. [39] carried out a
low-cost and high-efficiency UAV spraying application for olive and citrus orchards.

2.4. Irrigation

Sensitive irrigation applications are an area of concern for the whole world in terms
of water consumption. The fact that 70% of the water consumed worldwide is used to
irrigate crops highlights the importance of precision irrigation [40]. A UAV equipped with
spectral and thermal cameras can identify places where water is lacking and intelligently
deliver water to these areas. Image processing and artificial intelligence algorithms with
different imaging techniques ensure that water is used at the required place and in sufficient
amounts. Soil morphology obtained by UAV enables these applications, and water waste is
prevented [3]. Irrigation applications can be carried out similarly to spraying applications
by loading water instead of pesticide. In future smart farming applications, it is anticipated
that a collaborative irrigation system with UAVs, unmanned ground vehicles (UGVs) or
herd robots will be implemented [24]. Figure 3 is given as an example of a study aimed at
irrigation with a UAV. Park et al. [41] used thermal cameras for early detection of water
stress in crops and detected areas with water deficiency with the adaptive crop water stress
index (CWSI) method.
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2.5. Weed Detection

Weed detection is also among precision agriculture applications. Weeds in a field
adversely affect the growth of other main crops and cause losses in crop yield and growth.
To prevent this, weeds should be detected, and their growth should be prevented [42].
However, as the distribution of weeds is not regular (heterogeneous), precise detection
is required. In this case, deep learning-based methods have been very actively studied
recently [43]. After successful detection, weed control is achieved using herbicides. Tradi-
tional methods overuse herbicides, resulting in reduced crop yields. Instead, spraying a
sufficient amount of herbicides on weeds detected by UAV is much more beneficial in terms
of cost, environmental pollution and yield. The marking of weedy areas on UAV images
(mapping) is required for precise spraying of the herbicide [3,44]. In a sample study, Bah
et al. [45] proposed a method that uses UAV images and applies deep learning to detect
weeds in spinach and bean fields. The images of the detected weeds are shown in Figure 4.
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2.6. Remote Sensing

Remote sensing covers applications for evaluating the progress of production at
different times. In order to perform a low-cost and straightforward evaluation of crop, soil
and environmental conditions, the data obtained and the applications made are generally
related to remote sensing. Remote sensing applications are the most applied precision
agriculture application due to their necessity and importance. Thanks to remote sensing
technologies, potential problems in agriculture are detected early, and measures can be
taken to solve these problems promptly. This ensures crop efficiency. In this context, remote
sensing covers a wide range of applications. All of the studies aimed at increasing the
productivity of agricultural products by using remote sensing can be included under this
category [4,46].

Manual methods, in contrast to remote sensing, to obtain the phenotypic characteristics
of crops directly measure data such as biomass, leaf area index (LAI) and chlorophyll
content. However, manual methods require device operators to work intensively in the
field and are therefore difficult and time-consuming. To eliminate these disadvantages,
technological solutions have provided significant developments in this field [34]. Remote
sensing attracts more attention today due to developments in robotic technology, the
development of sensors and advances in data processing. Most applied remote sensing
studies are carried out using aerial images taken by satellites, UAVs and manned aircraft.
With these tools, data can be collected at spatial, temporal and spectral resolutions. These
tools can collect large area data and are nondestructive. Remote sensing by satellites and
aircraft provides the ability to collect data on a large spatial scale, but long revisit periods,
cloud congestion and high costs limit the use of these tools in remote sensing. In addition,
satellite images have low spatial resolution [47]. For this reason, recently, UAVs have
become much more popular than other vehicles, with advantages such as flexibility of
movement, ease of use, low cost and high spatial resolution [48].

An example study for remote sensing using a UAV was performed by Ye et al. [49]. Ye,
Huang, Huang, Cui, Dong, Guo, Ren and Jin [49] aimed to detect areas of banana infected
or uninfected with fusarium wilt using multispectral images acquired with a UAV. Figure 5
shows the fusarium wilt disease distribution obtained as a result of the study. Green areas
indicate healthy areas, and yellow areas show infected banana areas.
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Table 1. Recent state-of-the-art studies carried out with UAVs for precision agriculture in the outdoor environment.

No Study Study Name Task Year Product/Focus UAV
Type Purpose of Study

1

Zhang, Atkinson,
George, Wen,
Diazgranados

and Gerard [31]

Identifying and mapping
individual plants in a highly

diverse high-elevation
ecosystem using UAV imagery

and deep learning

Mapping 2020 Frailejones Single
UAV

In this study, frailejones plants were classified from
UAV images using a newly proposed SS Res U-Net
deep learning method. Later, the proposed model

was compared with other deep learning-based
semantic segmentation methods and was shown to

be superior to these methods.

2
Johansen, Duan,
Tu, Searle, Wu,
Phinn, Robson

and McCabe [32]

Mapping the condition of
macadamia tree crops using

multi-spectral UAV and
WorldView-3 imagery

Mapping 2020 Macadamia tree Single
UAV

This study used both multispectral UAV and
WorldView-3 images to map the condition of

macadamia tree crops. A random forest classifier
achieved 98.5% correct matching for both UAV and

WorldView-3 images.

3 Allred et al. [50]

Effective and efficient
agricultural drainage pipe

mapping with UAS thermal
infrared imagery: A case study

Mapping 2018
Agricultural
underground

drainage systems

Single
UAV

The Pix4D software and Pix4Dmapper Pro were
employed to determine drainage pipe locations
using visible (VIS), thermal infrared (TIR) and

near-infrared (NIR) imagery obtained by UAV. The
study claimed that TIR imagery from UAV has
considerable potential for detecting drain line

locations under dry-surface conditions.

4 Christiansen et al.
[51]

Designing and Testing a UAV
Mapping System for

Agricultural Field Surveying
Mapping 2017 Winter wheat Single

UAV

Data from sensors such as light detection and
ranging (LIDAR), global navigation satellite system

(GNSS) and inertial measurement unit (IMU)
mounted on a UAV were fused to conduct mapping

of winter wheat field. IMU, GNSS and UAV data
were used to estimate the orientation and position

(pose). The point cloud data from LIDAR were
combined with the estimated pose for

three-dimensional (3D) mapping.

5 Gašparović et al.
[52]

An automatic method for
weed mapping in oat fields

based on UAV imagery
Mapping 2020 Weed Single

UAV

Four independent classification algorithms derived
from the random forest algorithm were tested for the

creation of weed maps. Input data were collected
using a low-cost RGB camera mounted on a UAV.

The automatic object-based classification algorithm
had the highest classification accuracy with an

overall accuracy of 89.0%.
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Table 1. Cont.

No Study Study Name Task Year Product/Focus UAV
Type Purpose of Study

6 Schiefer et al. [53]

Mapping forest tree species in
high-resolution UAV-based
RGB-imagery by means of

convolutional neural networks

Mapping 2020 Forest tree species Single
UAV

RGB imagery taken from a UAV was assessed with
the learning capabilities of convolutional neural
networks (CNNs) and a semantic segmentation

approach (U-Net) for the mapping of tree species in
the forest environment. Nine tree species, deadwood,

three genus-level classes and forest floor were
accurately and quickly mapped.

7 Pearse et al. [54]

Detecting and mapping tree
seedlings in UAV imagery
using convolutional neural
networks and field-verified

data

Mapping 2020 Tree seedlings Single
UAV

A deep learning-based method applied to data from
an RGB camera mounted on a UAV was presented
for large-scale and rapid mapping of young conifer
seedlings. CNN-based models were trained on two
sites to detect seedlings with an overall accuracy of

99.5% and 98.8%.

8 Freitas et al. [55]

Use of UAVs for an efficient
capsule distribution and smart

path planning for biological
pest control

Path planning 2020 Exotic pests Single
UAV

A UAV-based coverage algorithm was proposed to
cover all areas and to detect exotic pests damaging

the area. The capsule deposition sites were
calculated in the whole environment and generated a
path for the cup distribution location of the UAV in
the algorithm. This planned distribution was more

advantageous and preferable than a zigzag
distribution in this study.

9 Tokekar et al. [56]

Sensor Planning for a
Symbiotic UAV and UGV

System for Precision
Agriculture

Remote sensing 2016 Nitrogen level
prediction

Single
UAV

+
UGV

This study aimed to predict the nitrogen (N) map of
an environment and to plan an optimum path to

apply fertilizer with a UAV. A UGV helped to
measure each point visited by the UAV. The total
time spent was minimized according to traveling
and measuring. They applied the method of the

traveling salesperson problem with neighborhoods
(TSPN) for this path-minimization problem.

10 Pan et al. [57]

Effects of citrus tree-shape and
spraying height of small

unmanned aerial vehicle on
droplet distribution

Spraying 2016 Citrus trees Single
UAV

The effects of spraying height of a UAV and citrus
tree shape were investigated for droplet distribution

in this study. The UAV performance at a 1.0 m
working height was better than at the other heights.

Additionally, to increase the droplet distribution,
open center shape citrus trees were advised based on

the results of the study.
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Table 1. Cont.

No Study Study Name Task Year Product/Focus UAV
Type Purpose of Study

11 Faiçal et al. [58]
An adaptive approach for

UAV-based pesticide spraying
in dynamic environments

Spraying 2017 Pesticide Single
UAV

A computer-based system that controls a UAV for
precise pesticide deposition in the field and

metaheuristic route-planning method based on
particle swarm optimization, genetic algorithms,

hill-climbing and simulated annealing was evaluated
for autonomous adaptation of route changes. The
spray deposition was tracked by sensors, and the

system was controlled by wireless sensor networks
(WSNs). The proposed system resulted in less

environmental damage, more precise changes in the
route of flight and more accurate deposition of the

pesticide.

12 Meng et al. [59]

Experimental evaluation of
UAV spraying for peach trees
of different shapes: Effects of

operational parameters on
droplet distribution

Spraying 2020 Peach trees Single
UAV

The effects of UAV operational parameters on
droplet distribution for orchard trees were evaluated
in this work. A UAV was experimentally used for the
aerial spraying of Y-shape and CL-shape peach trees,

and improvement on the droplet coverage was
shown by the increase in nozzle flow rate at the end

of the study.

13

Ye, Huang,
Huang, Cui,

Dong, Guo, Ren
and Jin [49]

Recognition of banana
fusarium wilt based on UAV

remote sensing

Crop
monitoring 2020 Banana Single

UAV

UAV-based multispectral imagery was used to
determine infested banana regions in this work.

Banana fusarium wilt disease was identified with a
red-edge band multispectral camera sensor. The
binary logistic regression method was used to

establish the spatial relationships between infested
plants and non-infested plants on the known map.

14 Fu et al. [60]

Wheat growth monitoring and
yield estimation based on

multi-rotor unmanned aerial
vehicle

Crop
monitoring 2020 Wheat Single

UAV

This study was performed on wheat trials treated
with seeding densities and different nitrogen levels

in the area. The images were collected by a
multispectral camera mounted on the UAV. Multiple

linear regression (MLR), simple linear regression
(LR), partial least squares regression (PLSR),

stepwise multiple linear regression (SMLR), random
forest (RF) and artificial neural network (ANN)
modeling methods were used to estimate wheat

yield. The experimental results showed that machine
learning methods had a better performance for

predicting wheat yield.
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Table 1. Cont.

No Study Study Name Task Year Product/Focus UAV
Type Purpose of Study

15 Cao et al. [61]

Monitoring of sugar beet
growth indicators using

wide-dynamic-range
vegetation index (WDRVI)

derived from UAV
multispectral images

Crop
monitoring 2020 Sugar beet Single

UAV

A UAV equipped with a multispectral camera sensor
was used for the experiments. In this study, four

wide-dynamic-range vegetation indices (WDRVIs)
were calculated by adding α weight coefficients to

the normalized vegetation index (NDVI) to estimate
the fresh weight of leaves (FWL), the fresh weight of
beet LAI and the fresh weight of roots (FWR) of the
sugar beet. Next, the effect of different indices on
sugar beet was compared. According to the study,

WDRVI1 can be used as a vegetation index to
monitor beet growth.

16 Johansen et al.
[62]

Predicting Biomass and Yield
in a Tomato Phenotyping
Experiment Using UAV

Imagery and Random Forest

Crop
monitoring 2020 Wild tomato

species
Single
UAV

In this study, UAV images were used with random
forest learning to estimate the biomass and yield of

1200 tomato plants. The results of RGB and
multispectral UAV images collected 1 and 2 weeks

before harvest were compared.

17 Tetila et al. [63]
Detection and classification of

soybean pests using deep
learning with UAV images

Crop
monitoring 2020 Soybean pests Single

UAV

This study applied five deep learning architectures
to classify soybean pest images and compared their
results. Accuracy reaching 93.82% was achieved with

transfer learning-based methods performed on a
dataset consisting of 5000 images.

18 Zhang et al. [64]

Estimation of maize yield and
effects of variable-rate

nitrogen application using
UAV-based RGB imagery

Crop
monitoring 2020 Maize Single

UAV

In this study, color images captured remotely by a
UAV imaging system were used to estimate maize

yield. Various linear regression models were
developed for three sample area sizes (21, 106 and

1058 m2). In the yield estimation using linear
regression models, a mean absolute percentage error

(MAPE) varying between 6.2% and 15.1% was
obtained.

19 Wan et al. [65]

Grain yield prediction of rice
using multi-temporal
UAV-based RGB and

multispectral images and
model transfer—a case study

of small farmlands in the
South of China

Crop
monitoring 2020 Rice Single

UAV

A UAV platform with RGB and multispectral
cameras was used to predict grain yield in rice.

Spectral and structural information was obtained
from RGB and multispectral images to evaluate grain

yield and monitor crop growth status. It was then
evaluated using random forest models.
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Table 1. Cont.

No Study Study Name Task Year Product/Focus UAV
Type Purpose of Study

20 Kerkech et al.
[66]

Vine disease detection in UAV
multispectral images using

optimized image registration
and deep learning

segmentation approach

Crop
monitoring 2020 Vine Single

UAV

In this study, deep learning segmentation was used
in UAV images to detect mildew disease in vines. A
combination of visible and infrared images is used in
this method. With the proposed method, the disease

was detected with an accuracy of 92% at the
grapevine level and 87% at the leaf level.

21 Ashapure et al.
[67]

Developing a machine
learning-based cotton yield
estimation framework using

multi-temporal UAS data

Crop
monitoring 2020 Cotton Single

UAV

In this study, multitemporal remote sensing data
collected from a UAV were used for cotton yield
estimation. In the cotton yield estimation made

using artificial neural networks (ANNs), the highest
value of R2 was 0.89.

22 Li et al. [68]

Above-ground biomass
estimation and yield

prediction in potato by using
UAV-based RGB and

hyperspectral imaging

Crop
monitoring 2020 Potato Single

UAV

RGB and hyperspectral images were obtained with a
low-altitude UAV to estimate biomass and crop yield
in potatoes. High accuracy was obtained in biomass
estimation using random forest regression models.

23 Zheng et al. [69]

Growing status observation
for oil palm trees using

Unmanned Aerial Vehicle
(UAV) images

Crop
monitoring 2021 Palm

trees
Single
UAV

A classification method was proposed that reveals
both the presence and the growth state of oil palm
trees. This approach, based on Faster RCNN and

called multiclass oil palm detection (MOPAD),
produced effective results by using a refined

pyramid feature (RPF) and hybrid class-balanced
loss together. In this study, palm trees in two regions
in Indonesia were classified into five groups using

MOPAD. In the classification in two regions, F1-score
values were determined to be 87.91% and 99.04%.

24 Gomez Selvaraj
et al. [70]

Detection of banana plants
and their major diseases

through aerial images and
machine learning methods: A
case study in DR Congo and

the Republic of Benin

Crop
monitoring 2020 Banana

plants
Single
UAV

In this study, banana groups and diseases were
classified by using pixel-based and machine learning
models using multilevel satellite images and UAV
platforms on the mixed-complex surface of Africa.
Banana bunchy top disease (BBTD), Xanthomonas
wilt of banana (BXW), healthy banana cluster and

individual banana plants were determined as 4
classes and classified with 99.4%, 92.8%, 93.3% and

90.8% accuracy, respectively. This approach was
reported to have an important potential as a decision

support system in identifying the major banana
diseases encountered in Africa.
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Table 1. Cont.

No Study Study Name Task Year Product/Focus UAV
Type Purpose of Study

25 Elmokadem [71]

Distributed Coverage Control
of Quadrotor Multi-UAV

Systems for Precision
Agriculture

Field
monitoring 2019 Region-based UAV

control
Multiple

UAVs

In this study, multiple UAV control strategies were
presented for precision agriculture applications.

Using Voronoi partitions, the positions of the UAVs
were determined, and collisions with each other
were prevented. Simulations were run in Gazebo
and Robot Operating System (ROS) to show the

performance of the proposed method.

26 Hoffmann et al.
[72]

Crop water stress maps for an
entire growing season from

visible and thermal UAV
imagery

Irrigation 2016 Barley Single
UAV

A water deficit index (WDI) was obtained using
images collected by a UAV. Using this index, the

water stress of plants was measured. Both early and
growing plant images were used to determine WDI.
The WDI index is different from the commonly used
vegetation index, which is based on the greenery of

the surface. The resulting WDI map had a spatial
resolution of 0.25 m in this study.

27 Romero et al. [73]

Vineyard water status
estimation using multispectral
imagery from a UAV platform

and machine learning
algorithms for irrigation
scheduling management

Irrigation 2018 Vine Single
UAV

In this study, a relationship was established between
the vegetation index derived from multiband images

taken using UAVs and the midday stem water
potential of grapes. For this, the pattern recognition

ANN model classified the results as severe water
stress, moderate water stress and no water stress for
certain thresholds. It was determined that this model

is a suitable method for optimum irrigation.

28 Jiyu et al. [74] Distribution law of rice pollen
in the wind field of small UAV

Artificial
pollination 2017 Rice Single

UAV

In this study, the required flight speed of the UAVs to
have a positive effect on the pollination of rice was

determined. The flight speed of the UAV, which
offers the best pollination opportunity, was

determined to be 4.53 m/s. SPSS’s Q-Q plot was
used to verify this situation. The findings provided

the velocity parameters that should be used by
agricultural UAVs to have a positive effect on rice

pollination.



Appl. Sci. 2022, 12, 1047 15 of 29

Table 1. Cont.

No Study Study Name Task Year Product/Focus UAV
Type Purpose of Study

29 dos Santos
Ferreira et al. [75]

Weed detection in soybean
crops using ConvNets Weed detection 2017 Soybean crops Single

UAV

Images were taken in a soybean field in Brazil using
UAVs. With these images, a database was created
with classes such as soil, soybean and broadleaf

grasses. The classification was made using
convolutional neural networks. The best result was

achieved by using ConvNets, and the accuracy
was 98%.

30 Stroppiana et al.
[76]

Early season weed mapping in
rice crops using multi-spectral

UAV data
Weed detection 2018 Rice Single

UAV

Shortly after planting rice, the authors mapped the
weeds found in the field using a UAV. The images

taken by using the Parrot Sequoia sensor were
classified as weed or not weed with an unsupervised
clustering algorithm. The herbicide was applied by
comparing the amount of weed on this map with a

certain threshold level.
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3. UAV Solutions in Greenhouses

The use of greenhouses is growing, and thus, the distance between the grower and crop
is increasing. New technologies are being introduced for the care and preservation of crops.
Obtaining more accurate data on crop growth and local growing conditions shows the grower
how and where crop problems arise. In this way, it is easier to understand when and where
problems preventing crop productivity are and how to fix them. Unfortunately, current data
collection techniques have limited spatial resolution and are labor-intensive [22,77,78].

Greenhouse farming is one of the most suitable fields for using robotics, automation
and computer technologies together [79]. Most greenhouses have climate control systems,
usually consisting of temperature and humidity sensors, as well as irrigation, ventilation
and heating systems. Thanks to these systems, it is possible to grow plants in the green-
house throughout the year. These systems offer a wide variety of possibilities, including
climate control and production monitoring. However, they are a costly and complex solu-
tion due to cost and reliability issues. The later-emerging wireless sensor networks (WSNs)
have become very popular for such projects, with the advantages of modularity, low power
consumption, etc. [80]. For this reason, they have been used in greenhouses for moni-
toring [81] and precision agriculture [82,83] in many studies. However, in general, such
automatic systems do not fully meet the requirements for precise temperature, humidity,
etc., settings; therefore, yield losses in greenhouses occur [84].

Although greenhouse solutions with WSNs have been presented in many studies,
their application in the greenhouse has been experimentally limited, usually because WSN
applications can be used in small-sized areas. For example, Erazo-Rodas, Sandoval-Moreno,
Muñoz-Romero, Huerta, Rivas-Lalaleo, Naranjo and Rojo-Álvarez [81] and Rodríguez,
Gualotuña and Grilo [82] implemented WSNs in small greenhouses. Jiang et al. [85]
conducted a WSN-based monitoring study in a larger greenhouse but by adding a large
number of nodes (wireless sensors). Therefore, they provided a more costly and more
complex solution for precision agriculture.

The recent activity of UAVs in agriculture has overshadowed the WSN and wheeled
agricultural robot solutions. Unlike WSNs, wheeled robots and other solutions, UAVs can
take measurements at nearly any point in the three-dimensional space of the greenhouse,
making activities such as local climate control and crop monitoring easier and more reliable.
Moreover, with the UAV, crops can be monitored continuously at certain times (every week,
every hour), and changes in the crop can be monitored. Observing the plants from the air
makes it easier to reveal problems such as water stress, soil variation and pest infestation. In
addition, thanks to developing camera technology, the disease status of plants that cannot
be detected by the human eye can be easily monitored with multiband images by using
different sensors (hyperspectral, multispectral, infrared, etc.) [86].

Despite the above-mentioned advantages of UAVs, their use in the greenhouse has
been very low in the studies reported to date. Studies on the use of UAVs in the greenhouse
have generally focused on the measurement of water vapor (H2O), carbon dioxide (CO2)
and methane (CH4), which are three important greenhouse gases [87–91]. These studies
use the advantage of the easy positioning of the UAV in the greenhouse, and they use the
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sensors on the UAV to take measurements in areas that are difficult to measure. However,
in these studies, the UAV was manually positioned.

Apart from gas measurement, almost no precision agriculture studies have been
carried out on applications in the greenhouse, such as crop monitoring, weed detection,
yield estimation or plant temperature stress. In other words, the tasks performed with
UAVs in outdoor environments shown in Table 1 have not been adequately implemented
in indoor environments yet. There are very few studies on precision agriculture with UAVs
in indoor environments. Table 2 shows experimental studies in greenhouses for precision
agriculture with UAVs that did not use gas measurement methods. This study aims to
awaken the idea that it is reasonable for UAVs to perform autonomous missions in the
greenhouse. Although the studies in Table 2 did not perform autonomous UAV missions,
they prove that UAVs can perform autonomous missions in the greenhouse environment.

Table 2. UAV studies in the greenhouse for precision agriculture.

No Study Study Name Task Year Product/
Focus

UAV
Type

1 Shi, Liu, Mao, Shen,
Liu and Ou [93]

Study on Assistant Pollination
of Facility Tomato by UAV Pollination 2019 Tomato Single UAV

2

Roldán,
Garcia-Aunon,

Garzón, De León, Del
Cerro and Barrientos

[79]

Heterogeneous Multi-Robot
System for Mapping

Environmental Variables of
Greenhouses

Mapping 2016 Environmental
variables Single UAV

3
Roldán, Joossen, Sanz,

Del Cerro and
Barrientos [86]

Mini-UAV Based Sensory
System for Measuring

Environmental
Variables in Greenhouses

Monitoring 2015 Environmental
variables Single UAV

4
Simon, Petkovic,

Petkovic and
Petkovics [92]

Navigation and Applicability
of Hexa Rotor Drones in

Greenhouse Environment
Navigation 2018 Positioning Single UAV

The tasks of UAVs in indoor applications are more difficult than the tasks performed
with UAVs in outdoor environments. Since it is a closed environment, it contains problems
such as reliability, control and the inability to use the global positioning system (GPS). Espe-
cially in autonomous applications, the absence of GPS requires extra effort for positioning.
For this reason, the number of UAV studies applied in the greenhouse to date is insuffi-
cient, as indicated in Table 2, and needs improvement. Among these studies, in the study
by Roldán, Joossen, Sanz, Del Cerro and Barrientos [86], air temperature and humidity,
brightness and carbon dioxide concentration were measured using sensors mounted on a
mini-UAV. Control of the UAV was performed manually by the user. In a later study by
the same team, Roldán, Garcia-Aunon, Garzón, De León, Del Cerro and Barrientos [79],
included a UGV in addition to the UAV. The aim was to combine the advantages of the
two robots. The measured values were the same, and the UAV was placed on the ground
robot. If the battery of the ground robot was low or the UGV encountered an obstacle,
measurements were taken by manually flying the UAV. Simon et al. [92] tried to locate a
UAV in a greenhouse. For this, they added fixed nodes (via WSN) to the closed area and
positioned the UAV according to its distance from these nodes. The applied positioning
technique is not practical or useful for large indoor environments. Shi et al. [93] designed a
UAV with adjustable deflectors for tomato pollination. At the end of the study, they stated
that the control of the manual UAV is quite difficult due to the deflectors and should be
improved.

Apart from the studies (articles, papers, etc.) listed in Table 2, examples of UAV appli-
cations in the greenhouse are as follows. A different study on the UAV in the greenhouse
was presented by Amador and Hu [94] (see Figure 6a). Due to the decrease in bee popu-
lations in practice, an artificial pollination study was proposed for flowers grown in the
greenhouse. A lily was pollinated by a remote-controlled flying robot. The robot was hairy,
just like a real bee, and adhered to pollen thanks to an ionic liquid gel. Within the same
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application, UAVs can collect environmental data in the greenhouse and perform mapping.
In this way, UAVs, which can make yield estimates and monitor plant health, can provide
great advantages for greenhouse workers thanks to their low cost and availability. Founded
by four friends who are aware of these advantages, Applied Drone Innovations (ADI)
(http://applieddroneinnovations.nl/ (Accessed date: 6 December 2021)) in the Nether-
lands has developed UAV prototypes that monitor plant growth and environmental factors
such as temperature, humidity, carbon dioxide, brightness and volatile organic compounds
in the greenhouse [95] (see Figure 6b). They increased the effectiveness of UAVs in the
greenhouse with tasks such as localization and flight path optimization in the indoor area of
the greenhouse. In February 2020, Dutch drone developer PATS (https://pats-drones.com/
(Accessed date: 6 December 2021)) introduced a bat-like UAV solution system with video
to eliminate insect pests in the greenhouse environment (see Figure 6c). The aim was
to maintain the ecological balance in a greenhouse ecosystem by eliminating pests with
autonomously operating UAVs.
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Although the usability and importance of the UAV in the greenhouse are obvious,
greenhouses are a difficult flight environment for the UAV due to their natural structure.
Greenhouse operators want to benefit from the labor savings, efficiency and business
advantages that UAVs can offer, but they hesitate about the reliability of these systems.
Indeed, it is difficult to carry out autonomous UAV studies in an indoor environment.
Moreover, the type of plant grown is also a major factor in operating the UAV in the
greenhouse. It is much more difficult for the UAV to perform tasks in situations in which
plants grow taller, plants overlap with each other and obscure the view of other plants, or
greenhouse rope is used for plants. However, apart from such situations, autonomous UAV
missions for the greenhouse make quite a lot of sense. While the outdoor applications of
UAVs are many since they are reliable and easy, the use of UAVs in closed areas such as
greenhouses is still limited today. However, its wide application range, low cost, versatility
and precision indicate a promising future for UAVs in indoor farming. A robotic system
that accurately detects insects and pests among thousands of plants and produces maps
and data visualizations for greenhouse farmers is highly intriguing.

It is not easy for the UAV to perform autonomous tasks in indoor areas such as green-
houses. In the greenhouse, it is very difficult for the UAV to navigate autonomously while
sowing, spraying, irrigating, etc., in an unstructured environment, especially without
damaging small leaves, flowers, etc. The UAV shown in Figure 6a performs the pollination
task through (manual) control by a human. The UAVs produced by ADI in Figure 6b are
used in crop management, disease and pest detection. After implementing manual tasks
since 2015, ADI expanded its initiatives last year to move the UAV autonomously. A newly
introduced UAV developed by PATS is used to destroy pests, as shown in Figure 6c. The
company aims to develop mini-UAVs for greenhouse insects. The difficulty in developing
autonomous UAVs in indoor environments arises from difficult tasks such as UAV con-
trol, image processing algorithms, artificial intelligence algorithms, load, positioning and
navigation, which must be performed simultaneously. Processing the environmental data
received by the UAV in real time on the central computer, sending the results obtained from

http://applieddroneinnovations.nl/
https://pats-drones.com/
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the processed data to the UAV and assigning tasks require robust software and algorithm
knowledge. At the same time, the hardware requirements to support this software system
are also important.

4. Solution Proposal for UAV Applications in Greenhouses

UAVs need to be developed for smart greenhouses. However, to perform tasks in
the greenhouse with a fully autonomous UAV, the solutions proposed for autonomous
mobile robots should be examined. Since most of the tasks in the greenhouse are repetitive
applications, such as monitoring, control, etc., mobile robotics are very suitable as an
application. Instead of people constantly visiting the greenhouse and watching changes, it
is more logical for these activities to be performed by a UAV, which is in the greenhouse
and performs tasks at certain time intervals. The basic need for this is to provide the UAV
with localization and mapping ability in the indoor environment. With this ability, the
3D position of the UAV in the greenhouse can be obtained at any time. In this way, UAV
solutions that assess plants individually, collect data and develop predictions such as the
yield and growth of plants can be applied in a greenhouse (or indoor environment).

The SLAM [96,97] solution is essential for autonomous UAVs in an indoor environ-
ment. SLAM is one of the main problems to be solved in autonomous mobile robotics. In
fact, the goal is just a robot moving in an unknown environment. For this, the environment
must be mapped, and simultaneously, the robot must be localized within the constantly
growing map [98]. If a mobile robot can solve the SLAM problem, that robot can move in-
dependently in the environment and perform tasks. SLAM is the first problem to be solved
for localization, mapping and path planning tasks required for autonomous movement [99].
SLAM simultaneously performs the process of creating an environment map consisting of
different properties (markers, obstacles, etc.) and determining the absolute position of the
robot using this map. In this way, the robot recognizes its environment, determines its own
position (ego-motion) accordingly and finally becomes ready to perform the task assigned
to it.

Localization in outdoor environments is generally carried out with GPS. Since the
accuracy of GPS is low in indoor environments, UAVs should also be localized in cases
where GPS is not available. In addition, GPS signals can easily be distorted due to weather
factors, electromagnetic noise and tall buildings at high density. Therefore, the UAV must
be localized indoors with sensors such as a camera (visual SLAM (VSLAM)), inertial
measurement unit (IMU), LIDAR, etc. Although it is difficult for the UAV to perform
tasks in indoor environments, studies on SLAM applications for UAV localization in indoor
environments have recently increased. In a SLAM study that we previously conducted [100],
the results of the previous indoor state-of-the-art visual-inertial SLAM (VISLAM)/visual-
inertial odometry (VIO) studies and the method that we suggested were compared. With
the deep learning-based approach, more successful localization (odometry) was achieved
with UAV indoors. Figure 7 is a screenshot of the implementation of this previous study.
The trajectory curve shows that the DJI Tello drone is localized in our indoor lab (this
lab can be thought of as a greenhouse) in real time using visual and IMU data. If such
applications are made in the greenhouse, the instantaneous position of the UAV can be
known, as seen in Figure 7. In this way, different tasks can be assigned to the UAV, and
the UAV can be directed to a specific coordinate. It can perform a special treatment on a
particular plant at this coordinate. In this way, desired measurements and images can be
taken from certain points or certain plants. The development of such applications will also
make a significant contribution to smart greenhouses in the future.
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Since the SLAM area has been an active topic for mobile robotics for many years, new
studies and techniques are still being developed. It is a very rapidly developing area but
still not fully resolved. Therefore, a large number of different methods have been proposed
for SLAM solutions indoors. To provide an example of SLAM solutions with different
sensors, Table 3 describes SLAM, VSLAM and VISLAM studies. ORB-SLAM, large-scale
direct SLAM (LSD-SLAM), semi-direct visual odometry (SVO) and visual-inertial system
(VINS) mentioned in Table 3 are frequently used methods in the field of autonomous mobile
robotics. Numerous indoor SLAM studies can be added to Table 3.

In Table 3, LIDAR was used for SLAM in the first two studies. While this sensor makes
the application easier, it has a cost disadvantage. Today, the most popular studies in the field
of SLAM employ low-cost methods. These studies aim to realize SLAM applications using
only cameras. Popular examples of these studies, called V-SLAM or monocular SLAM,
are listed in rows 3–5 in Table 3. Although VSLAM methods are quite successful, the
main weakness of these applications is the inability to provide scale information. To solve
this scale uncertainty problem, VIO/VISLAM studies have been developed that combine
an inertial sensor (IMU) with a monocular SLAM system to provide scale information.
The prominent studies on VIO/VISLAM are included in rows 6–8 in Table 3. Detailed
information on these SLAM studies is shared in Table 3.

Although UAVs have applications such as spraying, imaging, mapping and fertiliza-
tion in open lands (see Table 1), in indoor environments such as greenhouses, agricultural
practices with UAVs have almost never been applied due to localization and mapping
difficulties (see Table 2). The UAVs used in previous applications were manually controlled,
and measurements were made with the sensors on them. The studies shared in Table 3 are
successful studies aimed at self-localization and recognizing the environment of a UAV
in indoor environments. In these studies, methodological recommendations for SLAM
were presented, and prediction errors in UAV poses were compared with previous studies.
Indoor SLAM applications are often an important requirement in the robotics industry,
such as search and rescue or defense in environments without GPS access, or in the en-
tertainment industry, such as virtual reality [101,102]. However, as we know, there are no
agricultural applications of such advanced SLAM methods in indoor environments such as
greenhouses. The need for SLAM in indoor environments arises from the need to perform
autonomous tasks only with the sensors on the robot in a GPS-denied environment. At the
same time, since smart greenhouses are indoor environments where autonomous tasks will
be performed by the UAV, SLAM solutions can be directly applied in greenhouses.
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Table 3. Previous popular SLAM studies in indoor environments.

No Study Information Sensors App. Environment Result

1 Dowling et al.
[103]

UAV study based on an extended Kalman filter (EKF) that can
navigate independently in a closed indoor environment, create an area

map using 2D laser scan data for navigation and record live video.

LIDAR,
ultrasonic sensor

(SLAM)
ROS

The map was created by a planar laser
scanner using a UAV indoors, and it

was shown that the UAV avoided
obstacles correctly.

2 Qin et al. [104]

UAV and UGV were used together for autonomous exploration,
mapping and navigation in the indoor environment. To take

advantage of heterogeneous robots, the exploration and mapping
tasks are divided into two layers. In the first layer, the aim is to carry
out a preliminary exploration and produce a rough mapping with the
UGV mounted on 3D LIDAR. The map created by the UGV is shared

with the UAV. The UAV then performs complementary precision
mapping using an inclined 2D laser module and visual sensors, filling
the remaining gaps in the previous map. The application was applied

both in simulation and experimentally.

LIDAR,
stereo camera (ZED)

(SLAM)
ROS

UAV and UGV advantages were
utilized. The structure of the

environment was successfully
obtained.

3 Mur-Artal
et al. [105]

Feature-based monocular ORB-SLAM was presented for indoor and
outdoor environments. For feature extraction, ORB with directed
multiscale FAST corners was used. While the ORB provided good

invariance from the point of view, its calculation and matching were
extremely fast. This enabled the powerful optimization of mapping.
The system combined monitoring, local mapping and loop closing
threads running in parallel. The distributed bag of words (DBoW)

location recognition module was used in the system to perform loop
detection.

Monocular camera
(VSLAM) ROS

A very reliable and successful solution
for monocular SLAM was developed

with ORB-SLAM.

4 Engel et al.
[106]

This study presented the monocular large-scale direct SLAM
(LSD-SLAM), which is popular among direct SLAM methods. Direct
SLAM algorithms do not extract key points in the image but, instead,
use image densities to predict location and map. That is, they are more
robust and detailed than feature-based methods (MonoSLAM, PTAM,
ORB-SLAM, etc.), but this causes high computational costs. The map
of the environment is created based on specific key frames containing

the camera image, an inverted depth map and the variance of the
inverted depth map. The depth map and its variance are created not

for all pixels, but only for pixels located near large image density
gradients, which therefore have a semi-dense structure.

Monocular camera
(VSLAM) ROS

Successful real-time monocular SLAM
was performed with LSD-SLAM

without feature extraction.
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Table 3. Cont.

No Study Information Sensors App. Environment Result

5 Forster et al.
[107]

This study introduced the semi-direct visual odometry (SVO)
algorithm, which is very fast and powerful. It eliminates feature

extraction and matching techniques that reduce the speed of visual
odometry. SVO combines the properties of feature-based methods

(tracking multiple features, parallel tracking and mapping, keyframe
selection) with the accuracy and speed of direct methods.

Monocular camera
(VSLAM) ROS

A successful real-time SLAM
algorithm was realized by combining
the advantages of direct and indirect

SLAM algorithms.

6 Qin et al. [108]

This study proposed a monocular visual-inertial system (VINS) for
6-degrees-of-freedom (DoF) state prediction using a camera and a
low-cost IMU. The initialization procedure provides all necessary

values, including pose, velocity, gravity vector, gyroscope deflection
and 3D feature position, to bootstrap the next nonlinear

optimization-based VIO. Initial values were obtained by matching the
IMU values with the vision-only structure. After initialization of the
predictor, sliding window-based monocular VIO was performed for

high accuracy and robust state prediction. A nonlinear
optimization-based method was used to combine IMU measurements

and visual features.

Monocular camera,
IMU

(VISLAM)
ROS

A successful VISLAM was achieved
with efficient IMU pre-integration,
automatic estimator initialization,
online external calibration, error

detection and recovery, loop detection
and pose graph optimization.

7
Delmerico and

Scaramuzza
[109]

This study performed the evaluation of open code VIO algorithms on
flying robot hardware configurations. The methods used were

multi-state constraint Kalman filter (MSCKF) [110], open
keyframe-based visual-inertial SLAM (OKVIS) [111], robust

visual-inertial odometry (ROVIO) [112], monocular visual-inertial
system (VINS-Mono) [108], semi-direct visual odometry (SVO) [113] +
multisensor fusion (MSF) [114], (SVO-MSF) [115] and SVO + Georgia
Tech Smoothing and Mapping Library (GTSAM) (SVO-GTSAM) [116].

These algorithms were implemented on the EuRoC Micro Aerial
Vehicle (MAV) dataset, which contains 6-DoF motion trajectories for

flying robots.

Monocular camera,
IMU

(VISLAM)
Matlab

The comparison revealed that SVO +
MSF had the most accurate

performance. In addition, processing
time per frame, CPU usage and

memory usage criteria were taken into
consideration in the study.

8 Heo et al. [117]

In this study, a new measurement model named
local-optimal-multi-state constraint Kalman filter (LOMSCKF) was
designed. With this model, the nonlinear optimization method was

fused with MSCKF to perform VIO. In addition, unlike MSCKF, all of
the measurements and information available in the sliding window

were used.

Monocular camera,
IMU

(VISLAM)
Matlab

The performance of the proposed
LOMSCKF was evaluated using both

virtual and real-world datasets.
LOMSCKF outperformed MSCKF.
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Considering the success of the methods in Table 3 and their practicality, it is clear that
the problem of implementing a UAV that navigates autonomously in the greenhouse will be
solved with modern SLAM techniques. However, an autonomous UAV in the greenhouse
is also a challenge, as SLAM still does not achieve the desired level of success. However,
different tasks can be performed by the UAV in a greenhouse with the existing SLAM
methods.

By using a UAV, which has the advantages of mobility, high-resolution imaging and
low cost, the lack of studies on aspects such as imaging, yield estimation and mapping
in the greenhouse environment can be eliminated by UAVs that collect data and perform
monitoring in the greenhouse. It is possible to use SLAM methods to collect data and make
observations autonomously from greenhouses where production occurs in all seasons.
Moreover, in this big data era, it may become easier and faster to obtain large datasets.
This could be an exciting advance for smart greenhouses. An example representation
image of a UAV (e.g., Parrot (https://www.parrot.com/ (Accessed date: 6 December 2021))
performing autonomous missions in a greenhouse environment is given in Figure 8. If
control, monitoring and prediction tasks can be performed autonomously with UAVs, crops
can be grown in a greenhouse environment, as in Figure 8, in the future without the need
for humans.
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5. Conclusions

The role of computerized technologies in precision agriculture has developed rapidly
thanks to advancing technology and software. In addition, different technological solutions
in different areas are being increasingly developed to improve and optimize agricultural
processes. In particular, the striking superiority of the use of UAVs in precision agriculture
studies in recent times is noteworthy. Moreover, it is a field that is rapidly evolving, and
innovations are continuously being developed. Therefore, this survey study explores the
recent state-of-the-art studies that present the active use of UAVs in tasks in the agricultural
field. Although UAV technology has been popular recently, its applications in agriculture
have increased very rapidly. For this reason, applications such as crop monitoring, spraying,
irrigation, weed detection and mapping using aerial UAV images have been proposed in
recent years. The general purpose of these studies is to achieve a maximum gain in factors
such as energy, water, labor and yield, which are important for precision agriculture.

https://www.parrot.com/
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5.1. Evaluation of Outdoor UAV Applications

Recent studies in indoor (greenhouse) and outdoor environments were considered
for this survey. It can be easily seen in recent studies that the UAV has a wide variety of
application areas in open fields (outdoor) and wide areas. Many experimental studies on
crop monitoring, weed detection, remote sensing, spraying, etc., have been widely applied
in the open field. Large lands, low-altitude flying of UAVs, high-resolution images and
low cost make such applications preferable. Conversely, monitoring by plane or satellite
is both difficult and expensive. In addition, various index information about the crop
in the field can be obtained by using cameras with different imaging systems with the
UAV. This enables precision agriculture practices such as balanced/sufficient irrigation
and balanced/sufficient spraying that protect human health and the environment. Thanks
to the GPS in outdoor areas, the UAV can be tracked with manual control, and missions
can be carried out on desired sites in a wide area. In addition, since location information
is available, autonomous missions can be performed by UAVs at certain locations. The
results of this research indicate that open field UAV applications can be used on many more
agricultural products in the future.

5.2. Evaluation of Indoor UAV Applications (Greenhouse)

Despite the wide variety of work in the outdoor area, there are very few studies on
the use of UAVs in the greenhouse, so UAV solutions in the greenhouse are insufficient. In
addition, no studies have emphasized this deficiency. Previous review studies have often
introduced UAV applications and different UAV models in precision agriculture. In fact,
the greenhouse environment is well suited for autonomous tasks. Factors such as the lack
of GPS information in an indoor environment, the presence of obstacles in the environment
during flight and a limited flight area make UAV control difficult in indoor environments
such as a greenhouse. However, the intended use of greenhouses requires the constant
control and monitoring of the condition of plants or crops. Performing such applications
in very large greenhouses with an autonomous flying UAV instead of being repeated by
humans will make a great contribution to precision agriculture.

As an example of UAV applications in the greenhouse, plant-based (individual) moni-
toring of the growing conditions of vegetables in greenhouses can be provided, and various
metrics can be obtained using imaging techniques that are directly related to the growth of
plants. Plants showing unexpected growth can be identified, and thus, crop control can be
achieved. In addition, continuous control of products in the greenhouse through processes
such as weed detection, yield estimation, disease detection and plant temperature stress
can be provided. Although these are the first applications that come to mind, greenhouses
have not been preferred in studies thus far. In fact, such tasks can be performed by a UAV
with a camera using various artificial intelligence and image processing techniques. In
this way, precision agriculture practices can be applied, and crop yields can be increased.
However, using UAVs in a greenhouse environment involves many technical difficulties.
These challenges range from the automation of the UAV flight controller to the development
of the software necessary for archiving, retrieving and interpreting the collected big data.
Determining the position of the aircraft will be a major challenge in indoor environments
with limited flight space. The difficulties encountered in the real world, such as insufficient
GPS signal, the presence of dynamic obstacles in the environment, static obstacles in the
task area and lighting changes, require a large number of threads to work in harmony in
the software.

5.3. UAV Solution Proposal for Smart Greenhouses

In this study, attention is drawn to the necessity of smart solutions in the greenhouse
and the insufficiency of studies in this field. Increasing the number of UAV applications in
the greenhouse ensures smart, fast and efficient production in all seasons. Therefore, a UAV
that performs autonomous tasks to realize smart greenhouses is promising. Monitoring
each plant or plant community with a known location by UAV and performing specific



Appl. Sci. 2022, 12, 1047 25 of 29

tasks for certain plants will create smart greenhouses. This requires precise positioning
and knowledge of the structure of the environment. This can be achieved by applying the
SLAM problem, which seeks a solution to the autonomous movement of the mobile robot
in the indoor environment and to the UAV in the greenhouse. This study introduces SLAM
at the end of the survey and gives examples of different state-of-the-art applications. These
studies show that thanks to developing SLAM studies, image processing tools and artificial
intelligence algorithms, autonomous UAVs can be developed that collect data on crops in
greenhouses and analyze and adjust the conditions according to the collected data. As a
result, a UAV that can perform autonomous missions using advanced SLAM applications
may be the permanent worker of smart greenhouses in the future. Moreover, the UAV,
which makes autonomous observations, can perform collaborative tasks with UGVs. In
this way, the crop yield is increased with the help of robots, and smart and fast production
is realized. Mobile robots, which perform autonomous tasks, provide great convenience,
especially for workers working in large greenhouse areas.

In conclusion, this survey highlights the need to use SLAM methods for the develop-
ment of precision agriculture practices in the greenhouse and thus aims to contribute to
future research, marketing and applications.
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