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Abstract: The avoidance of scrap and the adherence to tolerances is an important goal in manu-
facturing. This requires a good engineering understanding of the underlying process. To achieve
this, real physical experiments can be conducted. However, they are expensive in time and re-
sources, and can slow down production. A promising way to overcome these drawbacks is process
exploration through simulation, where the finite element method (FEM) is a well-established and
robust simulation method. While FEM simulation can provide high-resolution results, it requires
extensive computing resources to do so. In addition, the simulation design often depends on un-
known process properties. To circumvent these drawbacks, we present a Gaussian Process surrogate
model approach that accounts for real physical manufacturing process uncertainties and acts as
a substitute for expensive FEM simulation, resulting in a fast and robust method that adequately
depicts reality. We demonstrate that active learning can be easily applied with our surrogate model to
improve computational resources. On top of that, we present a novel optimization method that treats
aleatoric and epistemic uncertainties separately, allowing for greater flexibility in solving inverse
problems. We evaluate our model using a typical manufacturing use case, the preforming of an
Inconel 625 superalloy billet on a forging press.

Keywords: GP regression; FEM; surrogate modeling; multi-objective optimization; hot metal forming;
Inconel 625

1. Introduction

Conducting experiments to better understand manufacturing processes is crucial, with
real physical experiments being considered the gold standard. However, conducting real
physical experiments for each new experimental setting is impractical because of expensive
materials, production stoppages and labor hours for monitoring and evaluation. One good
alternative is conducting experiments via simulation, where numerical methods–such as
Finite Element Method (FEM)–present a well-observed method in the field of structural
analysis. However, solving complex problems with FEM is time-consuming and computa-
tionally expensive. In order to reduce the computational effort, surrogate modeling may
offer a promising solution [1]. Surrogate models are trained in a supervised manner and
are designed to learn the function mapping between inputs and outputs. With a sufficient
amount of training data with respect to the observed use case, a customized surrogate
model is able to substitute for a FEM simulation up to a certain accuracy. When only spe-
cific dimensions with a controlled reduction in accuracy of a simulation result are desired,
reduced-order surrogate modeling is an already known technique. Thus, reduced-order
surrogate modeling aims to substitute the high-resolution simulation domain with some
carefully selected dimensions of importance, e.g., selected displacement measures of a
deformed part can be predicted by a reduced-order surrogate modeling with low com-
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putational effort, instead of performing a computationally intensive FEM simulation that
predicts the displacement of each node representing the deformed part.

Meanwhile, Gaussian process regression (GP) has been successfully used as a surrogate
model in the past. In literature, GP regression is also called “kriging” after the statistician
and mining engineer Danie G. Krige [2]. However, for consistency, we use only the term
GP regression or plain GP in this paper. Regarding GP regression, one of the biggest
advantages is that it predicts a distribution (described by mean and standard deviation)
rather than just a point estimate. The predicted standard deviation can be seen as a quality
criterion related to the corresponding predicted mean value. In the following, we will refer
to that standard deviation of a prediction as epistemic uncertainty, i.e., how certain the
model is with respect to its prediction. Considering real manufacturing processes, another
source of uncertainty can be observed with regard to the lack of complete control over all
influence parameters. These deviations occurring during repeated process iterations under
the same conditions are referred to as aleatoric uncertainty.

Recapitulating, we want to shed light on two types of uncertainties in surrogate mod-
eling: (1) epistemic uncertainty referring to the lack of knowledge in respect to a simulation
model and can be minimized by adding additional sources of information (with respect
to machine learning models, it is mainly increasing the number of training instances at
new locations in the feature space) and (2) aleatoric uncertainty referring to deviations of
an observed manufacturing process itself, i.e., aleatoric uncertainty cannot be minimized
even if more data is generated. Since epistemic and aleatoric uncertainties describe dif-
ferent properties, it seems natural to treat them separately when making predictions or
optimization. However, it should be mentioned that in certain circumstances it may be
useful to consider uncertainty as a whole rather than dividing it into aleatoric and epistemic
uncertainty. In such cases, heteroskedastic GP regression represents a common approach
for optimization with surrogate models [3–5]. In our problem definition, especially in solv-
ing inverse problems, we argue that the distinction of epistemic and aleatoric uncertainty
shows clear advantages.

There is a wealth of literature on surrogate models, reduced-order surrogate models,
and optimization with GP regression. We present in the following the main related works
to our research field organized in (1) GP regression and FEM simulations, (2) GP regression
trained with pure sensor data and (3) optimization with GP regression.

In the work of Roberts et al. [6], they predict damage development in forged brake discs
reinforced with Al-SiC particles using damage maps. In addition to Multilayer Perceptron
(MLP), Roberts et al. [6] utilize GP regression as a surrogate model. Loghin and Ismonov [7]
predict the stress intensity factors using GP regression trained with FEM results of a classical
bolt-nut assembly use case. Ming et al. [8] model an electrical discharge machining process
with GP regression. Su et al. [9] utilize GP regression as a surrogate in a structural reliability
analysis of a large suspension bridge. In the work of Guo and Hesthaven [10], GP regression
is used as a reduced-order model for nonlinear structural analysis in a 1D and 3D use case,
where data generation was performed with active learning. Hu et al. [11] use GP regression
to estimate residual stresses field of machined parts from two-dimensional numerical
simulations. Yue et al. [12] propose two active learning approaches using GP regression for
a composite fuselage use case. In the work of Ortali et al. [13] GP regression is used as a
reduced-order surrogate model for fluid dynamics use cases. Venkatraman et al. [14] use
GP regression as a surrogate model of texture in micro-springs. GP regression can also be
used on data with multiple fidelity levels, where Lee et al. [15] investigate GP regression
surrogate modeling with uncertain material properties of soft tissues and multi-fidelity
data. Brevault et al. [16] provide an overview of multi-fidelity GP regression techniques in
the field of aerospace systems. GP regression can also be extended by methods that stack
them or use them in a tree model. Civera et al. [17] predict imperfections in pultruded glass
fiber reinforced polymers with a treed method of GP regression trained with experimental
data and FEM simulation results. Abdelfatah et al. [18] propose a stacked GP regression
to integrate different datasets and propagate uncertainties through the stacked model.



Appl. Sci. 2022, 12, 1089 3 of 21

GP regression can also be used for calibrating simulations, where Mao et al. [19] use GP
regression as a surrogate model in a Bayesian model updating method to calibrate FEM
simulation of a long-span suspension bridge.

In addition to the use of FEM data, GP regression also finds application in the use
of pure sensor data, which we will discuss in the following. Tapia et al. [20] use a GP
regression based surrogate model of a laser powder-bed fusion process to predict melt pool
depth. Yu et al. [21] utilize–besides other thriving methods–a GP regression to model the
relationship between geological variables and the broken rock zone thickness. Lee [22] uses
GP regression trained with experimental data to optimize wire arc additive manufacturing
process deposition parameters. Saul et al. [23] propose chained GP regression models based
on non-linear latent function combination. Binois et al. [24] provide a heteroskedastic GP
regression approach and results of two use cases, namely manufacturing and management
of epidemics.

In the course of function maximization with GP regression surrogate models,
Dai Nguyen et al. [25] propose a robust optimization approach based on Upper Confidence
Bound (UCB) Bayesian Optimization (BO). In another field of optimization, namely solving
inverse problems, there is related work found where BO with generalized chi-squared
distribution is researched by Huang et al. [26], and Uhrenholt and Jensen [27], where
besides standard GP regression Uhrenholt and Jensen [27] utilized warped GP regression
from the work of Snelson et al. [28]. An extension of the standard BO can be found in the
work of Plock et al. [29], where they combine BO with the Levenberg-Marquardt method.
While in maximization and minimization problems aleatoric and epistemic uncertainties
can often be treated in the same way, in most cases robust results can be obtained by
distinguishing between these two sources of uncertainty [30]. We refer to robust results
when mean predictions are associated with low aleatoric uncertainty.

There is already considerable related work in reduced-order surrogate modeling and
optimization using GP regression surrogates. However, to the best of our knowledge,
we could not identify related work for solving inverse problems in which aleatoric and
epistemic uncertainties are treated differently. Optimization approaches for solving inverse
problems usually use only epistemic uncertainty. When epistemic and aleatoric uncertain-
ties are taken into account, they are often simply combined, resulting in the potential loss
of important information.

To sum up, we identify the following drawbacks:

• Related work shows that mainly epistemic uncertainty is used for prediction or opti-
mization with GP regression.

• In research using aleatoric and epistemic uncertainties, they are not considered sepa-
rately when solving inverse problems.

As a response, we present the following main contributions of our research to tackle
the identified drawbacks of related work:

1. We present a GP based surrogate that models (a) the mean result, (b) the aleatoric and
(c) the epistemic uncertainty of a manufacturing process outcome.

2. We utilize aleatoric and epistemic uncertainties in solving inverse problems for robust
optimization results.

With the proposed surrogate model and novel multi-objective optimization strategy,
we pave the way for surrogate modeling and inverse problem-solving for practical appli-
cations that make use of explicit modeling of sources of uncertainties. Our findings are
validated on a typical hot metal forming manufacturing process: preforming an Inconel
625 superalloy billet on a forging press.

This paper is structured as follows. In Section 2, we present the proposed surrogate
model, providing an introduction to GP regression in Section 2.1 and describe the GP
based parts of our surrogate model in Sections 2.2 and 2.3. The data generation of aleatoric
uncertainty for our surrogate model approach is presented in Section 2.4. Section 3 deals
with optimization, where we outline active learning in Section 3.1 and solving inverse
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problems in Section 3.2. In Section 4 we present the studied use case, preforming an Inconel
625 superalloy billet on a forging press, where we give insights on the design of the forging
aggregate characteristics in Section 4.1 and all information regarding the corresponding
FEM simulation in Section 4.2. Section 5 shows the results, which are discussed in Section 6.
In Section 7, we present the conclusion of our work and an outlook for the future.

2. GP based Surrogate Model

In this section, we first introduce briefly the general idea behind our surrogate model-
ing approach. We familiarize in Section 2.1 the reader with the general functionality of GP
regression to provide an appropriate foundation for the content that follows. In Sections 2.2
and 2.3 we provide more detailed descriptions of each individual GP of our surrogate
model. After describing our surrogate model, we move on to uncertainty propagation
analysis with FEM simulation in Section 2.4, where we present the procedure for obtaining
aleatoric uncertainties.

GP regression is already well researched for surrogate modeling, replacing expensive
target labellers (e.g., numerical simulations, expensive manually labelling, conducting real
physical experiments, etc.). One reason is their ability to work with low-dimensional data.
Another big advantage of using GP regression is that predictions are made in a probabilistic
way, i.e., a prediction is represented by a posterior distribution. Thus, a prediction of GP
regression is described by a mean and a covariance. The covariance of a prediction can
be used as a metric of prediction confidence, i.e., epistemic uncertainty. We specify that
outputs of GP regression describe a distribution with mean m and epistemic uncertainty σ.

The proposed surrogate model consists of two individual GPs and takes manufac-
turing process-specific parameters xm, part-specific parameters xp and aleatoric process
uncertainty Σ̄al(Z) as input and predicts the mean manufacturing result µ and aleatoric
uncertainty σal of the manufacturing result, see Figures 1b, 2 and 3. A similar simulation
approach using FEM is shown in Figure 1a. We define Z as a parameter that describes the
manufacturing process characteristics, e.g., velocity profile of a forming tool. Our model
assumes that Σ̄al(Z) can be efficiently obtained for every xm. This assumption is justified in
our running example, where we focus on the first of two directly successive forging strokes.
That means that measurements of the manufacturing process are available (i.e., velocity
profile of the forging tool), but measurements in respect to the forged part are not possible
due to the short time span between the first and second stroke.

2.1. Gaussian Process

A GP is a generalization of the Gaussian distribution. The Gaussian distribution
describes random variables or random vectors, while a GP describes functions f (x). In
general, a GP is completely specified by its mean function m(x) and covariance function
k(x, x′), also called kernel. If the function f (x) under consideration is modeled by a GP,
we have

E[ f (x)] = m(x) (1)

E[( f (x)−m(x))( f (x′)−m(x′))] = k(x, x′) (2)

for all x and x′. Where x refers to training and x′ to test data. Thus, we can define the GP by

f (x) ∼ GP(m(x), k(x, x′)). (3)

We use the following notation for explanatory purposes only in this section. Matrix
Dtrain = (X, Y) contains the training data with input data matrix X = (x1, . . . , xn) and
output data matrix Y = (y1, . . . , yn), and test data matrix Dtest = (X′, Y′) contains the
test data with X′ = (x′n+1, . . . , x′n+m) as input and Y′ = (y′n+1, . . . , y′n+m) as output. We
define that they are jointly Gaussian and have zero mean with consideration of the prior
distribution, further, we assume an additive independent identically distributed Gaussian
noise with variance σ2

n and identity matrix I for noisy observations:
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[
Y
Y′

]
∼ N

(
0,
[

k(X, X) + σ2
n I k(X, X′)

k(X′, X) k(X′, X′)

])
(4)

FEM

(a) FEM

GP based Surrogate
Model

(b) Surrogate Model

Figure 1. Simulation of Manufacturing Processes with Uncertainties: (a) FEM simulation scenario
and (b) GP based surrogate model with manufacturing process-specific parameters xm, part-specific
parameters xp and distribution Z that describes a manufacturing process-specific characteristic by
mean m(Z) and aleatoric manufacturing process uncertainty Σal(Z) where Σ̄al(Z) is an aggregated
form of Σal(Z). Outputs are the mean of the manufacturing process result m(µ) and mean of the
aleatoric uncertainty m(σal), each with corresponding epistemic uncertainties σ(µ) and σ(σal) in the
GP based surrogate model.

The GP predicts the function values Y′ at positions X′ in a probabilistic way, where,
the posterior distribution can be fully described by the mean and the covariance.

Y′|X′, X, Y ∼ N (k(X′, X)[k(X, X) + σ2
n I]−1Y,

k(X′, X′)− k(X′, X)[k(X, X) + σ2
n I]−1k(X, X′))

(5)

Resulting in mean

m(Y′) = E[Y′|X, Y, X′] = k(X′, X)[k(X, X) + σ2
n I]−1Y (6)

covariance

COV(Y′) = k(X′, X′)− k(X′, X)[k(X, X) + σ2
n I]−1k(X, X′) (7)

and epistemic standard deviation σ

σ(Y′) =
√

diag(COV(Y′)) (8)

where the diagonal of the covariance matrix COV is extracted as a vector and the square
root is calculated for each element to determine the epistemic standard deviation σ. It can
be observed that the selection or design of the covariance function is the main ingredient
when using GP regression. In the following, we describe the two covariance functions
we use in our approach: the popular Radial Basis Function (RBF) (also called squared
exponential covariance function)

kRBF(x, x′) = exp
(
||x− x′||2

l2

)
(9)
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with characteristic length-scale parameter l and || · || denoting the Euclidean distance and
the Matérn covariance function

kMatérn(x, x′) =
1

Γ(ν)2ν−1

(√
2ν

l
||x− x′||

)ν

Kν

(√
2ν

l
||x− x′||

)
(10)

with gamma function Γ, modified Bessel function Kν and parameter ν that controls the
smoothness of the resulting function. For more information on GP regression and covari-
ance functions, we refer the reader to the book of Williams and Rasmussen [31].

2.2. Aleatoric Uncertainty GP

A GP is used to predict a manufacturing process related aleatoric uncertainty σal =
σal(xm, xp, Σ̄al(Z)) of the manufactured part. Aleatoric uncertainty data are generated by
uncertainty propagation analysis with FEM simulation. The inputs are the setting parame-
ters from a real physical manufacturing process xm, properties of the part to be manufac-
tured xp and aleatoric manufacturing process uncertainty Σ̄al(Z) obtained from, e.g., sensor
data of the real physical manufacturing process, see Figure 2. Here, Z describes a character-
istic of the manufacturing process, e.g., the velocity profile of a forming tool. The output σal
is predicted by a GP regression, such that σal ∼ GP(m(xm, xp, Σ̄al(Z)), k((xm, xp, Σ̄al(Z)),
(xm, xp, Σ̄al(Z))′)) with mean m(xm, xp, Σ̄al(Z)) and covariance function k((xm, xp, Σ̄al(Z)),
(xm, xp, Σ̄al(Z))′).

GP

Figure 2. GP takes manufacturing process parameters xm, part specific parameters xp and aleatoric
manufacturing process uncertainty Σ̄al(Z) as input and predicts the mean m(σal) and epistemic
uncertainty σ(σal) of the aleatoric uncertainty of the manufacturing process result.

Of course, a wide variety of manufacturing process characteristics can be implemented,
e.g., rolling speeds, cutting forces, heating times etc. As a running example, we choose as
a manufacturing process hot metal forming on a friction screwpress, where xm contains
different input features which control the forging aggregate (clutch pressure between
flywheels and rotation speed of the electric motor), xp describes the part to be forged
by different dimensions and part temperature and Z is a resulting velocity profile of the
forging tool over time for a given input xm, where Σ̄al(Z) represents aggregated aleatoric
deviations in respect to forging velocity. σal then describes the deviations of the final
forged part, i.e., deviations from important final part geometries. All relevant details of our
running example can be found in Section 4.

2.3. Mean Result GP

Besides the GP that predicts the aleatoric uncertainty of a manufactured part, a second
GP is used to predict the mean result µ of the manufactured part. The inputs for the
second GP are the setting parameters from the real physical manufacturing process xm
and properties of the to be manufactured part xp. The output µ is predicted by the GP
regression, such that µ ∼ GP(m(xm, xp), k((xm, xp), (xm, xp)′)). In respect to our running
example, µ describes the final forged part by important final part geometries.
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GP

Figure 3. GP takes manufacturing process-specific parameters xm and part specific parameters xp as
input and predicts the mean m(µ) and epistemic uncertainty σ(µ) of the manufacturing process result.

2.4. Uncertainty Propagation Analysis

In uncertainty propagation analysis, the effect of uncertainties related to an input on
uncertainties of the corresponding output is investigated. In our case, Σal(Z) refers to the
aleatoric deviations of a manufacturing process characteristics (i.e., deviations in velocity
profile data) due to different input settings. We refer to uncertainties with respect to a
manufacturing process output obtained by uncertainty propagation analysis as aleatoric
uncertainty σal .

We vary input values x(j) = (x(j)
m , x(j)

p ) with j ∈ {1, . . . , N} where N is the number of

different input setting scenarios. For each case of process-specific input parameters x(j)
m ,

we obtain a process-specific characteristic Z(j) that is a distribution with mean m(Z(j))
and standard deviation Σal(Z(j)). Such distributions occur because, with identical input
parameters, process characteristics in reality can show deviations when repeated. We
simulate that behavior with a separate GP, thus, a random variable Z(j) is assumed to be
Normally distributed, such that Z(j) = N (m(Z(j)), Σal(Z(j))). From the posterior, we ran-
domly draw M predictions z(i)(j) with i ∈ {1, . . . , M} (i.e., different curves characterizing
the manufacturing process) and with each z(i)(j) and x(j)

p we execute FEM simulations to
obtain targets y(i)(j). We collect the individual targets y(i)(j), such that we obtain for each
input setting j a distribution with mean µ(j) and aleatoric standard deviation (i.e., aleatoric
uncertainty) σ

(j)
al . With that, we are able to describe each target by its distribution.

Thus, we obtain a dataset D =
{

D(1), . . . , D(N)
}

where each datapoint D(j) =

(X(j), Y(j)) can then be separated into input X(j) = (x(j)
m , x(j)

p , Σ̄al(Z(j))) and output Y(j) =

(µ(j), σ
(j)
al ). Here Σ̄al(Z(j)) is an aggregated manufacturing process uncertainty obtained

from data. We model each output with a GP regression, thus the outputs are described
again by a distribution with mean m and epistemic standard deviation σ (i.e., epistemic
uncertainty), such that µ(j) = N (m(µ(j)), σ(µ(j))) and σ

(j)
al = N (m(σ

(j)
al ), σ(σ

(j)
al )).

3. Active Learning and Solving Inverse Problems

For optimization, we evaluate our surrogate model in two different areas: (1) active
learning and (2) solving multi-objective inverse problems. We refer to active learning as a
method to find the most informative data points in the feature space for the best overall
performance of the surrogate model, i.e., predicting the mean result of a manufacturing
process µ and corresponding aleatoric uncertainty of the manufacturing result σal . When
solving multi-objective inverse problems, we try to find inputs where the error between a
given target vector and a prediction as well as the aleatoric uncertainty is minimal, leading
to robust optimization results.

3.1. Active Learning

Active learning is already well researched in terms of optimal use of resources for
parameter optimization of a model, i.e., generating training data, see [12,32–34]. The process
of generating training data means obtaining labels Ytrain for an input Xtrain, such that a
dataset Dtrain = (Xtrain, Ytrain) can be used to fit or optimize parameters of a model. Labels
Ytrain are obtained by an oracle, where an oracle can be a domain expert, results of real
physical experiments or like in our case results of expensive numerical FEM simulations.
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In the following, we present the idea behind the researched optimization approach and
highlight the applicability of active learning with our proposed surrogate model.

In active learning, a number of nAL datapoints connected to maximum epistemic
uncertainty σep are queried from a pool of candidates Xpool to build a training dataset
Dtrain = (Xtrain, Ytrain) that is used for training a surrogate model. Thus, we select ideal
training data, i.e., we use a minimum amount of training data such that the overall epistemic
uncertainty in respect to making prediction on Xpool is minimized. We define in (11) the
active learning query strategy with loss function LAL = LAL(σep) = σep(x) to select a new
query datapoint dAL

q = (xAL
q , yAL

q ) with input xAL
q and output yAL

q .

dAL
q = argmax

x in Xpool

σep(x) (11)

A query datapoint dAL
q is then moved to the training dataset Dtrain, the surrogate model

is fitted and the iterative generation of training data starts again. In respect to our proposed
surrogate model, we are able to utilize directly the epistemic uncertainty predictions of
the two GPs, i.e., σ(µ) and σ(σal). Thus, we define σep(x) = σ(µ(x)) + σ(σal(x)) and select
training data by utilizing (11).

3.2. Inverse Problem

In real physical manufacturing processes, it is commonly required that the result of the
manufacturing process lies within a given tolerance range. Therefore, the parameters that
control the manufacturing process and the properties of the part must be carefully selected.
Moreover, the process of finding inputs to obtain a given target can be formulated as an
inverse problem, i.e., finding causal factors for a required effect. In our work, we define
that a basic solution of an inverse problem is to find an input xinv, minimizing a distance
d = d(yinv, ytarget) between prediction yinv and target vector ytarget. However, such solutions
neglect the existence of process variations, i.e., aleatoric uncertainty. With no consideration of
aleatoric uncertainty, the found ideal inputs can lead to quite good results regarding mean
values but very high deviations, such that no robustness assertions can be made.

Therefore, we present a novel multi-objective optimization approach in (12) based
on BO with a modified UCB acquisition function, where we make a clear separation of
uncertainties, such that a loss function Linv, dependent of a distance function d, respective
aleatoric σal and epistemic σep uncertainties is minimized.

xinv = argmin
Xpool

Linv(d, σal , σep) (12)

As a distance function d, we select the absolute error between mean target µtarget and
mean manufacturing process result m(µ) as the metric. However, our approach is not
limited to a specific distance metric, so any can be used.

d = d(µtarget, m(µ)) = |µtarget −m(µ)| (13)

Utilizing m(σal), σ(σal), m(µ) and σ(µ) from our proposed surrogate model, we
define epistemic uncertainty σep = σep(σ(σal), σ(µ)) = σ(σal) + σ(µ) and construct a
loss function Linv with tuning parameters α and β, where α controls the influence of the
aleatoric uncertainty and β controls exploration vs. exploitation, i.e., the influence of the
epistemic uncertainty.

Linv(d(µtarget, m(µ)), m(σal), σep(σ(σal), σ(µ))) =

d(µtarget, m(µ)) + α ·m(σal)− β · σep(σ(σal), σ(µ)))
(14)

Thus, with our approach, we find inputs that provide robust outputs close to a given
target while keeping aleatoric uncertainty low. As a result, we obtain robust optimization
outcomes when solving multi-objective inverse problems with our approach. In the work of
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Dai Nguyen et al. [25] we found a similar handling of uncertainty in the observation of the
acquisition function, however, the authors only focus on maximizing black box functions,
while we present an extension that solves multi-objective inverse problems.

4. Case Study on Forging Superalloys

We evaluate the proposed surrogate model and novel optimization method with a
classic use case from the field of hot metal forming, preforming an Inconel 625 superalloy
billet on an artificially designed forging press. First, we design the forging press charac-
teristics with a parameterized curve and a GP and second, we design the forming process
itself in a FEM simulation environment where we provide all the relevant information so
that it is possible for researchers to link directly to our work.

4.1. Forging Aggregate Characteristic

We calculate the mean forming velocity values of an artificially designed forging
process on the example of a forging screwpress by a self-designed parameterized curve
in (15) that models the die velocity vdie in mm/s as a function of the process timestep t in
seconds, clutch pressure x1 in bar and rotation speed of the electric motor x2 in rpm, such
that vdie = vdie(x1, x2, t). Where, x1 and x2 are two process-specific setting parameters, i.e.
xm = (x1, x2).

vdie(x1, x2, t) = κ1 · x1 · x2 · t2 − κ2 · x1 · x2 · t3 (15)

where κ1 = 5
3 mm2/kg and κ2 = 5

3 mm2/kgs are constants. We utilize a designed forging
press specific GP with data generated by using (15) to model the mean and input dependent
deviations in respect to the manufacturing process characteristic Z (i.e., Z represents
the velocity profile of the forging die vdie). Z is defined by a distribution with mean
m(Z) and aleatoric standard deviation Σal(Z). With respect to our use case, the forging
press specific GP with output Z(j) is at the very beginning of the uncertainty propagation
analysis, see Figure 4. The inputs for the forging press GP are xm = (x1, x2) and time
increments t = {0, . . . , T}, where T represents the duration of the manufacturing process.
The output of the forging press GP is Z, such that Z ∼ GP(m(xm, t), k((xm, t), (xm, t)′))
with mean m(xm, t) and covariance function k((xm, t), (xm, t)′). Thus, we obtain for each
time increment a distribution describing the velocity at time t. The principle GP design for
the forging press can be seen in Figure 5. As covariance function, k we found out that an
RBF kernel is appropriate.

draw 1FEM draw 2 draw M

Figure 4. Uncertainty Propagation Analysis: the characteristic Z(j) of the manufacturing process
is described by a distribution, since deviations occur when the process is repeated with identical

x(j)
m . With M draws of z(i)(j) out of the distribution Z(j) as manufacturing process characteristic

and to be manufactured part parameters x(j)
p , FEM simulations are executed to obtain targets y(i)(j)

that describe a distribution Y(j) = (µ(j), σ
(j)
al ) with mean µ(j) and aleatoric standard deviation, i.e.,

uncertainty σ
(j)
al for given inputs x(j)

m and x(j)
p .
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GP

Figure 5. GP takes manufacturing process-specific parameters xm and manufacturing process time
steps t as input and predicts a manufacturing process-specific characteristic (i.e., velocity profile of
the forging die) Z with mean m(Z) and uncertainty Σal(Z).

We utilize (15) and different input parameter combinations to generate training data
for the forging press GP, see Table 1. In terms of time step size t, we assume that each forging
stroke lasts one second, and we model each stroke with a resolution of 100 time steps.

Table 1. Input parameter combinations to generate training data for the forging press GP.

Training Data for Forging Press GP

x1 12 12 12 16 16 16 20 20 20
x2 50 60 70 50 60 70 50 60 70

To obtain different deviations connected to different x1 and x2 combinations, we use
the underlying inference properties of GP regression and vary inter- and extrapolation
tasks in respect to the input values for forging process representation, see Table 2.

Table 2. Input parameter combinations to model forging press characteristics.

Evaluation Data for Forging Press Characteristics

x1 10 10 10 10 14 14 14 14 18 18 18 18 22 22 22 22
x2 45 55 65 75 45 55 65 75 45 55 65 75 45 55 65 75

We define interpolation such that a value is within the training range (i.e., x1 equals 14
or 18 and x2 equals 55 or 65) and extrapolation such that a value is out of the training range
(i.e., x1 equals 10 or 22 and x2 equals 45 or 75).

Exemplary forging press characteristics can be seen in Figure 6, where Figure 6a shows
low deviation because x1 and x2 are both lie within the range of training data, Figure 6b,c
show moderate deviation because one of the process parameters is within and the other is
outside the range of the training data and Figure 6d shows the highest deviation because
both of the process-parameters lie outside the range of training data. Thus, our forging
press GP represents a forging aggregate characteristics with uncertainties dependent on
the inputs. In our approach, we intentionally generate deviations depending on input
parameters and assume that uncertainty is aleatoric to approximate reality, i.e., we abuse
epistemic uncertainty and assume that it is aleatoric. When working with sensor data
coming from a real manufacturing process, it is obvious that deviations, i.e., aleatoric
process uncertainties Σal , can be directly measured from data.
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(a) x1 = 14, x2 = 55 (b) x1 = 14, x2 = 45

(c) x1 = 10, x2 = 55 (d) x1 = 10, x2 = 45

Figure 6. Exemplary forging press characteristics Z(j) represented by mean and 95% credibility
interval of vdie over t with (a) low deviation, (b,c) moderate deviation and (d) high deviation.

4.2. FEM Simulation

The considered use case, preforming an Inconel 625 superalloy billet on a forging
press machine, is observed by utilizing a corresponding FEM simulation. Manufacturing
process related FEM inputs Z(j), i.e., different velocity profiles of the upper die over time,
are modeled by the forging press GP. Inputs for the forging press GP are x1, x2 and t, such
that Z(j)(t) = Z(j)(t)(x(j)

1 , x(j)
2 , t). All 16 possible combinations for manufacturing process

related FEM inputs are shown in Table 2. Billet related inputs x(j)
p that are shared with

our proposed surrogate model and FEM simulation are diameter, height and temperature,
such that x(j)

p = (d(j), h(j), θ(j)). One possible billet configuration is shown in Figure 7 and
possible billet parameters for different configurations are shown in Table 3. We define the
radius of the rounded edges to be constant 10 mm across all configurations.

Table 3. Key parameters for billet configurations x(j)
p , values in mm.

Configuration Data

Diameter d 220 240 260
Height h 200 210 220
Temperature θ 900 1000 1100

We observe in total 27 different billets. Connecting manufacturing process related com-
binations with different billets, we obtain 432 combinations, i.e. j ∈ {1, . . . , 432}. For evalua-
tion of the uncertainty propagation, we randomly draw z(i)(j) with i ∈ {1, . . . , 20} from each
distribution Z(j), i.e., 20 FEM simulations are performed for each input setting. Thus, a total
of 8,640 FEM simulation results are generated for our experiments. Selected FEM output
variables for our surrogate model are the final diameter and height of the preformed billet,
such that y(i)(j) = (d(i)(j)

f inal , h(i)(j)
f inal ) and Y(j) = (µ(d(j)

f inal), µ(h(j)
f inal), σal(d

(j)
f inal), σal(h

(j)
f inal)).
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In respect to the final diameter d f inal , we calculate the empiric mean by µ(d(j)
f inal) =

1
20 ∑20

i=1 d(i)(j)
f inal and aleatoric standard deviation by σal(d

(j)
f inal)

2 = 1
20 ∑20

i=1(d
(i)(j)
f inal −µ(d(j)

f inal))
2.

The calculations are analogous with respect to h f inal . Thus, we obtain a dataset with 432 in-
stances described by six input features and four output features. For our running example,
input features are clutch pressure, rotation speed, initial billet diameter, initial billet height,
initial billet temperature and aggregated manufacturing process uncertainties obtained
from data, i.e., the aggregated output of the forging press GP Σ̄al(Z(j)) = ∑T

t=1 Σal(Z)(j)(t).
Output features are the mean of the final billet diameter, the mean of the final billet height,
the aleatoric uncertainty of the final billet diameter and the aleatoric uncertainty of the final
billet height.

Figure 7. Billet configuration with Diameter d = 220 mm, Height h = 200 mm and rounded edges
with Radius = 10 mm.

The problem is defined as a 2D axisymmetric simulation task to utilize symmetries and
make efficient use of computational resources. We utilize isotropic elasto-plastic Inconel 625
material behavior from literature. The Young’s modulus is temperature-dependent and the
yield stress depends on plastic strain, strain-rate and temperature. We set contact properties
to tangential behavior with isotropic directionality and a friction coefficient of 0.3 between
the billet and upper and lower forging tool, which means that we assume lubricated hot
forging conditions. The lower tool is encastred and the upper tool’s boundary conditions
are set so that the vertical movement z(i)(j) is drawn from distribution Z(j) and there is no
horizontal movement. An exemplary simulation definition can be seen in Figure 8, where
(a) shows the initial state of the billet loaded with a randomly drawn screwpress velocity
profile z(i)(j) and (b) the end result of the simulation with selected FEM output variables
y(i)(j), i.e., the final diameter of 288 mm and the final height of 92.83 mm.
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(a) initial billet (b) preformed billet

Figure 8. Preforming an Inconel 625 superalloy billet: (a) initial billet and randomly drawn velocity
profile z(i)(j), (b) FEM simulation result with graphical presentation of the horizontal displacement
U, U1 and selected output variables y(i)(j), i.e., final diameter of 288 mm and final height of 92.83 mm.

All billets are meshed with an approximate global element size of 7 mm, using 4-
node bilinear axisymmetric quadrilateral elements with reduced integration and hourglass
control. We obtain our FEM simulation results in the context of general static simulations.
Details of the simulation steps are shown in Table 4. Simulation control parameters that are
not listed are left at default values.

Table 4. Abaqus FEM simulation control parameters for our use case.

Abaqus FEM Simulation Settings

Simulation type Static, General
Time period 1
Nlgeom On
Max number of increments 1000
Initial increment size 0.001
Min increment size 1 × 10−5

Max increment size 1
Equation solver method Direct
Solution technique Full Newton

5. Results
5.1. GPs

Before utilizing optimization methods, we evaluate each individual GP, see Table 5.
The screwpress GP is trained with data that is generated by using inputs from Table 1 with
(15) and tested on data generated by using inputs from Table 2 with (15). As covariance
function, k we found out that an RBF kernel is appropriate for this GP. The GPs of our
proposed surrogate model are both designed with a Matérn kernel with ν = 2.5 and
are independently evaluated by 10-fold cross-validation with inputs from Table 2 and
Z(j) obtained from the screwpress GP. Outputs are obtained from FEM simulations, see
Section 4.2. In each cross-validation step, we split the respective data randomly such that
10 percent are in the test dataset and the remaining 90 percent are used for model training.

Table 5. Evaluation of individual GPs by average R2-Scores over 10 folds.

Individual GP Evaluations

Screwpress Aleatoric Uncertainty Mean Result
m(Z) m(σal,d f inal

) m(σal,h f inal
) m(µd f inal

) m(µh f inal
)

R2-Score 0.9923 0.8146 0.8455 0.9586 0.9555
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In addition, we calculate mean Pearson kurtosis

kurtPearson =
1
N

N

∑
j=1

1
M

M

∑
i=1

y(i)(j) − µ(j)

σ
(j)
al

4

(16)

and mean Fisher-Pearson coefficient of skewness

skewFisher−Pearson =
1
N

N

∑
j=1

1
M

M

∑
i=1

y(i)(j) − µ(j)

σ
(j)
al

3

(17)

to describe the distribution shapes obtained from uncertainty propagation analysis, see
Table 6.

Table 6. Mean values of Pearson kurtosis and Fisher-Pearson coefficient of skewness calculated from
uncertainty propagation analysis results.

Distribution Properties

d f inal h f inal
kurtPearson 3.003 2.685
skewFisher−Pearson 0.449 0.015

GP models were implemented with the GPflow library version 2.2.1 and Python 3.8.10.
Inferences were run on a machine with 16 GB RAM, 8 CPUs and Intel(R) i7-8565 2.0 GHz
processor. We utilized a L-BFGS-B algorithm to train the models. Training our surrogate
model on all available data took an average of 1.36 s based on 10 measurements. For
one prediction our model needs on average 0.046 s. A FEM simulation lasted on average
149.78 s.

5.2. Active Learning

We evaluate our proposed surrogate model by using active learning and compare
it with an approach based on random training data selection. Evaluation is based on
10-fold cross-validation. In each cross-validation step, models are initially trained on two
randomly selected datapoints out of the pool dataset containing 432 instances. Evaluation
metrics are R2-Score and mean-squared-error (MSE) and are computed on a 20 percent
hold-out test set that is randomly generated in each cross-validation step. Results for the
mean of reduced-order predictions and corresponding aleatoric uncertainties regarding
final diameter and height are shown respectively in Figures 9 and 10, where solid lines
depict the mean R2-Score values and shaded areas are obtained by adding and subtracting
one standard deviation. Mean values and standard deviations are calculated from the 10
cross-validation results.

5.3. Solving Inverse Problem

We evaluate our proposed multi-objective optimization strategy by solving inverse
problems, i.e., we try to find input settings that lead to an output that is as near as possible
to an initially defined target vector. In addition to minimize distances between a target
vector ytarget and random mean vector m(µ(j)), we try to achieve results that also keep

mean aleatoric uncertainty m(σ
(j)
al ) low. We utilize a 10-fold cross-validation, where in each

cross-validation step the target vector is randomly drawn from the pool dataset and the best
found prediction after drawing 50 datapoints out of the pool dataset is used for evaluation.
This means that for each method, a dataset of 50 datapoints is generated, and each best
prediction is found by evaluating the respective acquisition function on the corresponding
generated dataset. We compare our approach with two other baselines, namely:
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(a) m(µDiameter) (b) m(σal,Diameter)

(c) m(µHeight) (d) m(σal,Height)

Figure 9. R2-Scores of 10-fold cross-validation over number of drawn training data N. In each cross-
validation step, models are initially trained on two randomly selected datapoints drawn from the pool
dataset. Solid lines depict the mean R2-Score values and shaded areas the upper and lower confidence
bounds obtained by adding and subtracting the standard deviations, calculated from the obtained results.

(a) m(µDiameter) (b) m(σal,Diameter)

(c) m(µHeight) (d) m(σal,Height)

Figure 10. MSEs of 10-fold cross-validation over number of drawn training data N. In each cross-
validation step, models are initially trained on two randomly selected datapoints drawn from the
pool dataset. Solid lines depict the mean R2-Score values and shaded areas the upper and lower
confidence bounds obtained by adding and subtracting the standard deviations, calculated from the
10 obtained results.



Appl. Sci. 2022, 12, 1089 16 of 21

1. Combined (This baseline can be considered as an approximation to the use of het-
eroskedastic GP in UCB BO.): no distinction of uncertainties in UCB based BO, i.e.,
simply adding aleatoric and epistemic uncertainty with loss:

Lcombined(d(µtarget, m(µ)), m(σal), σep(σ(σal), σ(µ))) =

d(µtarget, m(µ))− [α ·m(σal) + β · σep(σ(σal), σ(µ)))]
(18)

2. Epistemic: neglecting aleatoric uncertainty in UCB based BO with loss:

Lepistemic(d(µtarget, m(µ)), m(σal), σep(σ(σal), σ(µ))) =

d(µtarget, m(µ))− β · σep(σ(σal), σ(µ))).
(19)

Figure 11 shows representative plots of optimization results for one random target
vector (i.e., one cross-validation step) over 50 draws of xinv, where solid lines depict squared
errors and dotted lines show mean aleatoric uncertainty m(σal). Figures 12 and 13 show
different distributions of optimization results obtained by 10-fold cross-validation in respect
to squared errors and mean aleatoric uncertainty m(σal). Distributions are visualized by
kernel density estimation.

α

0.0

1.0

5.0

10.0

0.0 1.0 5.0 10.0
β

Figure 11. Representative plots of multi-objective optimization results for different hyperparameter
settings α and β over number of optimization steps N. Solid lines depict squared error values, and
dotted lines represent corresponding mean aleatoric uncertainty m(σal). The plots for α = 0 show
only blue lines, because the results of the different methods are the same and the lines are on top of
each other.
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α

0.1

1.0

5.0

10.0

0.1 1.0 5.0 10.0
β

Figure 12. Kernel density estimate plots of squared errors for different hyperparameter settings α

and β, distributions are obtained by 10-fold cross-validation, where in each fold a target vector is
randomly selected. The plots for α = 0 show only blue lines, because the results of the different
methods are the same and the lines are on top of each other.
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α

0.1

1.0

5.0

10.0

0.1 1.0 5.0 10.0
β

Figure 13. Kernel density estimate plots of mean aleatoric uncertainties m(σal) for different hyperpa-
rameter settings α and β, distributions are obtained by 10-fold cross-validation, where in each fold a
target vector is randomly selected. The plots for α = 0 show only blue lines, because the results of the
different methods are the same and the lines are on top of each other.

6. Discussion

Evaluation of the individual GPs with 10-fold cross-validation shows promising R2-
Scores (lowest: 0.8146, mean: 0.89355, highest: 0.9586), i.e., hyperparameters appear to
be appropriate for further evaluations. Observation of generated manufacturing process
uncertainties, i.e., Σ̄al(Z(j)) shows a diverse data landscape, thus, we assume that further
uncertainty propagation analysis is meaningful.

We observe the distributions obtained from uncertainty propagation analysis by
calculating Pearson kurtosis and Fisher-Pearson coefficient of skewness (A Pearson kurtosis
of 3.0 and Fisher-Pearson coefficient of skewness of 0.0 describe a normal distribution.).
Regarding kurtosis, results shows that distributions are near to Normal distributions, where
the distribution of h f inal is slightly platykurtic (kurtPearson(h f inal) = 2.685 < 3.0), i.e., it is
less peaked than a Normal distribution and the distribution of d f inal is little leptokurtic
(kurtPearson(d f inal) = 3.003 > 3.0), i.e., the distribution is more peaked compared to a
Normal distribution. In terms of skewness, the distribution of d f inal is more skewed
compared to h f inal , however, both values are less than 0.5 so that approximate symmetry
can be assumed.

We evaluate the impact of data selection for model training using two metrics, R2-Score
and MSE, with a 10-fold cross-validation comparing active learning with random sample
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selection. With respect to mean values µ, active learning shows overall an improvement
compared to random sample selection. In terms of aleatoric uncertainties σal , random
sample selection is superior to active learning up to the selection of about 20 samples,
but after that active learning shows superior performance compared to random sample
selection. The initially worse performance of active learning with respect to σal is due to a
trade-off in the active learning cost function between σ(µ) and σ(σal) with the influence
of σ(µ) dominating. A possible solution for this would be the introduction of appropriate
tuning parameters that regulate the influence of the respective epistemic uncertainties σ(µ)
and σ(σal). Moreover, it should be noted that random sample selection shows only better
performance at a stage where the tuning of parameters is far from complete, so the better
performance is not applicable in practice.

With regard to solving inverse problems, we compare our novel robust UCB based BO
multi-objective optimization algorithm with two baselines: (1) combined: no distinction
of uncertainties in UCB based BO and (2) epistemic: neglecting aleatoric uncertainty in
UCB based BO. We show that over different values of tuning parameters α and β there
are clear tendencies of the different approaches. By disabling the influence of aleatoric
uncertainty (α = 0), all three approaches show the same results as expected: low squared
errors and neglected aleatoric uncertainty. For all approaches, slight differences can be seen
over different β values while α = 0, regulating the exploration vs. exploitation trade-off.

Due to the fundamentals of the epistemic approach, there are no differences in the
optimization result when α values are changed for constant β values, see Figure 11. Differ-
ences in kernel density estimate plots over varying α values are from random target vector
selection. Overall, the epistemic approach yields the best optimization results in terms of
squared errors, see Figures 11 and 12, however, as expected, aleatoric uncertainty is ignored
and thus high, see Figure 13. The combined approach, where aleatoric and epistemic
uncertainties are simply added and handled as quasi-epistemic, shows the overall worst
results. At low α values, the squared errors are acceptable, but the aleatoric uncertainty
is high due to inappropriate handling of information, see Figures 11–13. To arrive at our
approach, once aleatoric uncertainty is considered, i.e., α > 0.0 results for the inverse
problem show low squared errors and low aleatoric uncertainty which we recognize as
robust results. Moreover, by increasing α one can see that our approach leads to results
where lowering aleatoric uncertainty σal is more preferred than lowering squared errors, see
Figure 11 α = 1.0 and α = 10.0. Kernel density estimate plots generated from 10-fold cross-
validation results confirm those findings, where clear tendencies of optimization results
in respect to tuning parameters α and β can be seen. While an approach considering only
epistemic uncertainties delivers overall best results in respect to squared errors, aleatoric
uncertainties are out of scope, thus, optimization results lead to less robust outcomes. An
approach considering aleatoric and epistemic uncertainties combined by summing them
up shows overall worst results and can not compete with the remaining. Our approach,
where aleatoric and epistemic uncertainties are considered to deliver different information,
depicts that overall good results are achieved with respect to squared errors while keeping
aleatoric uncertainty low, thus robust solutions for solving multi-objective inverse problems
are provided.

Moreover, our model is directly applicable in an industrial framework where the
forging press characteristics are represented by measured sensor data of the aggregate (e.g.,
velocity over time, forging force over time, forging force over the forming path, etc.), which
can be used in an appropriately designed FEM simulation for uncertainty propagation
analysis and, moreover, for surrogate model training.

7. Conclusions

In this work, we present a GP based reduced-order surrogate model approach with a
novel multi-objective target vector optimization strategy to obtain more robust optimization
results by concerning aleatoric and epistemic uncertainties. Evaluation on a classic hot metal
forming use case, preforming an Inconel 625 forging billet on a self-designed forging press,
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depicts the advantages of our approach compared to baselines. Our major findings include
that our surrogate model produces fast results (over 3000 times faster) compared to FEM
simulation, with a calculated loss of accuracy and information. Moreover, active learning
can be used directly with our model to make optimal use of computational resources, and
solving inverse problems leads to robust optimization results, i.e., finding results close to a
defined objective while keeping aleatoric uncertainty low. With our work, we pave one
promising way for faster and more realistic simulation and optimization methods.

In future work, we will evaluate our GP based surrogate model and multi-objective
optimization strategy on manufacturing process use cases concerning other domains, with
real sensor data describing the characteristics of a manufacturing process. Additionally, we
will research other Bayesian machine learning and deep learning models as components
instead of GP in our surrogate model approach. Moreover, we will experiment with further
active learning approaches.
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