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Abstract: Speech translation has been traditionally tackled under a cascade approach, chaining
speech recognition and machine translation components to translate from an audio source in a
given language into text or speech in a target language. Leveraging on deep learning approaches to
natural language processing, recent studies have explored the potential of direct end-to-end neural
modelling to perform the speech translation task. Though several benefits may come from end-to-end
modelling, such as a reduction in latency and error propagation, the comparative merits of each
approach still deserve detailed evaluations and analyses. In this work, we compared state-of-the-art
cascade and direct approaches on the under-resourced Basque–Spanish language pair, which features
challenging phenomena such as marked differences in morphology and word order. This case study
thus complements other studies in the field, which mostly revolve around the English language. We
describe and analysed in detail the mintzai-ST corpus, prepared from the sessions of the Basque
Parliament, and evaluated the strengths and limitations of cascade and direct speech translation
models trained on this corpus, with variants exploiting additional data as well. Our results indicated
that, despite significant progress with end-to-end models, which may outperform alternatives in some
cases in terms of automated metrics, a cascade approach proved optimal overall in our experiments
and manual evaluations.

Keywords: speech translation; Basque; Spanish; corpus; cascade speech translation; direct
speech translation

1. Introduction

Speech translation (ST) systems have been traditionally designed under a cascade
approach, where independent automatic speech recognition (ASR) and machine translation
(MT) components are chained, feeding the ASR output into the MT component, oftentimes
with task-specific bridging to optimise component communication [1–3]. Although this
approach has been the dominant paradigm in the field, cascade speech translation is prone
to error propagation, requires the assembly of separate components, and cumulates the
latency of its two main components.

With the advent of deep learning approaches, significant results have been achieved
with end-to-end neural models, notably in the fields of machine translation [4,5] and speech
recognition [6,7], building on the ability of neural models to jointly learn different aspects
of a task. Following the success of these approaches, end-to-end modelling has also been
proposed for the speech translation task [8–10]. In what follows, we use the terms direct
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and end-to-end interchangeably to denote the process of modelling speech translation with
a neural network trained on speech input in the source language and text output in the
target language.

While preliminary results with end-to-end systems had shown promise, the initial
cascade systems still obtained better results overall on standard evaluation datasets [11].
One of the main factors for this state of affairs has been the paucity of parallel speech–
text corpora, in contrast with the comparatively larger amounts of data available to train
separate ASR and MT models, for some language pairs at least. Recent efforts have been
made to build parallel corpora suitable for the task, notably the multilingual MuST-C [12]
and Europarl-ST [13] corpora. As most available data are built around English, which limits
experimental variety, [14] made available the mintzai-ST corpus for Basque–Spanish. This
corpus supports further experimentation on languages with a number of marked linguistic
properties, such as Basque, notably rich morphology and relatively free word order, which
can represent a challenge for natural language processing tasks in general and automated
translation in particular [15,16].

With newly available ST corpora supporting research and development in the field, re-
cent variants of direct ST models have closed the quality gap with cascade approaches [17–22],
in terms of automated metrics or manual evaluations on standard datasets [23,24]. Never-
theless, additional work is still needed to identify the strengths and weaknesses of end-to-
end approaches to the task, and comparative results may fluctuate on standard datasets [25].

In this paper, we extend the work of [14] on Basque–Spanish ST and address in more
details the comparative merits of cascade and direct approaches on a relatively difficult
language pair and dataset. We first explored the characteristics of the mintzai-ST Basque–
Spanish corpus, to provide a complete description of the data and present results for the
baseline cascade and direct models trained on this corpus. We then describe additional end-
to-end variants, which bridge the gap between the two approaches in terms of automated
metrics. Finally, we describe the results of manual evaluations comparing the cascade and
direct models.

The remainder of this paper is organised as follows: Section 2 presents related work in
the field; in Section 3, we describe the mintzai-ST corpus, including the data acquisition
process and data statistics; Section 4 describes the different baseline models that were built
for Basque–Spanish speech translation, including cascade and end-to-end models; Section 5
discusses comparative results for the baseline models; in Section 6, we describe several
direct ST model variants and their results on automated metrics; Section 7 describes the
protocol and results of our manual evaluation of the best cascade and end-to-end models,
along with the results of targeted evaluations on specific linguistic phenomena and on
the impact of relative input difficulty; finally, Section 8 draws the main conclusions from
this work.

2. Related Work

Standard speech-to-text translation systems operate on the basis of separate com-
ponents for speech recognition and machine translation, feeding the output of the ASR
module into the MT component. Chaining these components can be performed by simply
selecting the best recognition hypothesis as the input to machine translation, as was often
performed with earlier systems via interlingual-based representations [26,27]. To optimise
cascade processing, other alternatives have been explored over the years, notably via
the exploitation of multiple ASR hypotheses [1,2] or the adoption of statistical methods
and finite-state automata, integrating acoustic and translation models within stochastic
transducers [28,29]. The issue of error propagation has been also addressed by improv-
ing the ASR component [30], the robustness of the MT component with synthetic ASR
recognition errors [31], or the use of specific features to improve communication between
components [3].

An alternative approach to the speech translation process has focused on performing
direct ST via end-to-end artificial neural networks. The first results were obtained with
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encoder–decoder models coupled with attentions mechanisms [8–10]. Although most
studies have focused on speech-to-text, end-to-end architectures have also been explored for
speech-to-speech translation [10,32]. Despite promising initial results, which demonstrated
the ability of neural networks to model the ST task in an end-to-end fashion, cascade
systems tended to outperform end-to-end systems on standard datasets [11]. One of the
main reasons for this state of affairs was training data scarcity, i.e., the lack of sufficiently
large speech-to-text datasets to train direct ST systems, in contrast with the comparatively
larger training data for the ASR and MT components, considered separately. Another
relevant factor was the need to improve end-to-end ST architectures or training methods
for this type of approach.

The first issue has been partially tackled in recent years, with the preparation and
distribution of additional ST datasets. Thus, Reference [33] built and shared a corpus based
on 236 h of English speech, from the Librispeech library, aligned with French translations.
This corpus was exploited by [34] to train an end-to-end ST model whose performance
closed the gap with that of a conventional cascade model. Another important contribution
in terms of ST datasets was the release of MuST-C [12], based on translated TED talks from
English into eight languages, with audio recordings ranging from 385–504 h. An additional
multilingual ST corpus, CoVoST [35,36], provided coverage for translation from 21 lan-
guages into English and from English into 15 languages, with audio recording lengths
between 1 h and 364 h.

To extend the coverage of language pairs beyond English, Reference [13] released the
Europarl-ST corpus, prepared from publicly available videos of the European Parliament,
covering six languages (English, French, German, Spanish, Portuguese, and Italian) and
thirty translation pairs, with volumes of data ranging from 20–89 h of audio recordings.
Supporting multilingual ST beyond English also is the TEDx corpus [37], which covers
eight source languages associated with a subset of target languages, with audio recordings
ranging from 11–69 h. In [14], a corpus was prepared to address the under-resourced
Basque–Spanish language pair, with 180 h for Basque and 468 h for Spanish; a detailed
description of this corpus is provided in Section 3. Synthetic data have also been exploited
for speech translation, for instance by leveraging high-quality MT models on ASR datasets
and speech synthesis models on MT corpora [38].

The second issue for direct ST approaches, namely the improvement of architectural
design and training methods, has been addressed via different techniques [19]. Most
current frameworks for ST adapt the Transformer architecture [5] to the task, mainly via an
adaptation of encoder layers to handle the specificities of the audio input, whose usually
large number of frames raises issues given the quadratic complexity of the Self-Attention
(SA) mechanism. Thus, Reference [39] proposed a Transformer model, which notably
included a 2D attention mechanism to jointly attend to the time and frequency axes of two-
dimensional speech spectra input, while [17,40] included convolutional layers alongside
2D SA layers. Recently, an alternative framework was proposed by [22], with decoupled
triple supervision signals for acoustic, semantic, and translation processing, improving
over the state-of-the-art.

In addition to architectural variant proposals, an important contribution was made
by [34], who demonstrated the usefulness of pretraining the encoder and decoder of
their end-to-end model on the ASR and MT tasks, respectively, partially closing the gap
with corresponding cascade systems. Their work also demonstrated the positive impact
for speech-to-text translation of multi-task training, introduced for end-to-end speech-to-
speech translation by [10]. Leveraging additional resources has led to significant increases
in direct ST quality, with approaches such as the application of knowledge distillation
using an MT model as the teacher for direct ST training [18] or the use of meta-learning for
knowledge transfer from the ASR and MT tasks to the ST task [41].

Recently, the use of self-supervised models trained on unlabelled speech, such as
Wav2Vec [42,43], has demonstrated its potential for the ST task [20,44] and offers an in-
teresting alternative considering the lack of labelled data, which hinders research and
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development in the field. Combining the use of this type of pretrained speech encoder
with an additional pretrained text decoder, via minimalist fine-tuning, has been shown
to provide further gains on the multilingual ST task [21]. In Section 6, we describe the
impact of pretrained speech models, along with several representative ST variants, on the
mintzai-ST datasets.

Recent improvements in ST modelling have closed the gap between direct and cascade
approaches on standard datasets. Thus, whereas the latter outperformed the former in
the IWSLT 2019 shared task, results from the 2020 edition featured similar performances
overall [23]. However, results on the 2021 edition of the shared task have again placed
cascade ST as the top-performing approach [25]. Alongside these results, Reference [24]
presented an in-depth comparative study of the two main approaches, in three translation
directions, via both automatic and manual evaluations based on professional post-editing
and annotation. They concluded that, for the language pairs and datasets in their study at
least, the gap between the two approaches can be considered closed, as subtle differences
between the two are not sufficient for human evaluators to establish a preference. In
Section 7, we describe a comparative manual evaluation over several cascade and direct ST
model variants, with results that diverge from their conclusions.

3. The mintzai-ST Corpus

The mintzai-ST corpus [14] was created from the proceedings of the Basque Parlia-
ment, which provides publicly available video files, along with professional transcrip-
tions and translations, from the parliamentary sessions. The corpus is shared under the
Creative Commons CC BY-NC-ND 4.0 license and is available at the following address:
https://github.com/vicomtech/mintzai-st (accessed on 11 March 2021). The providers of
the original content have granted permission for its use without additional restrictions.)
Speakers expressed themselves in either Basque or Spanish, with a majority of interven-
tions in the latter language overall; professional transcriptions and translations were then
produced in the other language. In this section, we describe the main processes related to
the data acquisition and preparation of the corpus and detail its characteristics.

3.1. Data Acquisition

Raw data were first obtained by crawling the web sites where the official ple-
nary sessions are made available: transcriptions and translations were available at
http://www.legebiltzarra.eus, (accessed on 12 November 2019); videos of the sessions at:
https://www.irekia.euskadi.eus, (accessed on 12 November 2019).

Texts from the sessions were available as bilingual PDF files, with content in each
language provided in a dedicated column: one for the transcription of the session and
the other for its translation. Transcriptions are not literal in this corpus, in the sense that
repeated or wrongly pronounced words, dialectal variants, and fillers are usually not
transcribed. The content was extracted from the PDF files with PDFtoText, which preserved
column-based alignments, and boilerplate removal was performed with in-house content-
specific scripts. Since the translations were made at the paragraph level for the most
part [15], paragraph-level information was kept.

Videos were provided in different formats over the years (.flv, .webm and .mp4),
and audio extraction was performed with FFmpeg (https://www.ffmpeg.org/ (accessed
on 15 Novemeber 2018).The mapping between videos and reports was performed via
inferences from the respective files’ metadata whenever possible. For each session, there
were between one and seven videos and one or two PDF files. In most cases, the available
information was not sufficient to map video and PDF files with absolute confidence,
with multiple and sometimes duplicate videos. Therefore, manual revision and mapping
were performed throughout this task. The statistics for the collected raw data are shown in
Table 1.

https://github.com/vicomtech/mintzai-st
http://www.legebiltzarra.eus/debates/e_debates_pleno_L08.html
https://www.irekia.euskadi.eus
https://www.ffmpeg.org/
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Table 1. Collected raw data statistics.

Year Videos PDF Hours Words

2011 43 21 86.51 132,595
2012 38 21 117.94 173,199
2013 67 38 215.00 306,621
2014 60 30 176.83 252,887
2015 41 27 134.10 195,112
2016 38 21 113.85 170,608
2017 49 33 173.57 250,862
2018 34 26 128.38 207,910

Total 370 217 1146.18 18,625,252

3.2. Alignment and Filtering

As a first step, metadata were filtered from the PDF-extracted text, and source and
target files were extracted from the text in the original columns, preserving paragraph-level
alignments. Speaker information was usually located at the beginning of a paragraph and
was extracted automatically when available. Since sometimes speakers were identified by
their function rather than their name, manual speaker identification was also performed
(see Section 3.3 for details on speaker distribution in the final datasets).

As a second step, language identification was performed on each paragraph. Al-
though paragraphs were consistently in either one of the two languages overall, in some
cases, language switching occurred within a given paragraph or within a sentence. Since
any error identifying languages would propagate to subsequent processes, special attention
was paid to ensuring correct language identification by employing two separate tools on
the content: TextCat and the language identifier of the OpenNER project [45] (available at
the following addresses, respectively: https://github.com/Trey314159/TextCat, accessed
on 31 January 2017, and https://github.com/opener-project/language-identifier, accessed
on 31 July 2014). Paragraphs were discarded if either tool produced different results as
their topmost identified language or if neither tool identified either one of the expected
languages; in all other cases, we retained the language identified as most probable.

The third step involved forced alignment, where each word in the source transcription
was aligned to a section of the corresponding audio file via source and time indications.
This step was performed with the Kaldi toolkit [46], using an in-house bilingual model to
reduce the impact of remaining language identification uncertainties. Forced alignment was
performed with different beam sizes, to capture the largest possible number of alignments
in a corpus where audio transcriptions were produced by human experts, and therefore
assumed to be complete and correct for the most part. The forced alignment results are
shown in Table 2.

Overall, more recent years featured more literal transcriptions, requiring smaller beams
to perform alignment. Increasingly larger beams were applied to preserve as much of the
content as possible in this initial alignment step, under the assumption that transcriptions of
the audio content had been professionally created and were thus correct for the most part.

At this stage, the source and target files were split on the basis of the previous align-
ment information, with one paragraph per file. Forced alignment was then applied again,
this time with a monolingual model and a small beam size of one, along with a retry beam
of two, to discard alignment errors and non-literal transcriptions. This process resulted in
the perfect and imperfect alignments reported in Table 3, with the former being kept for
the final corpus and the latter discarded.

https://github.com/Trey314159/TextCat
https://github.com/opener-project/language-identifier
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Table 2. Number of aligned audio and transcription files via forced alignment with different
beam sizes.

Year
Alignment Beam

10 100 1000 10,000

2011 2 51 32 0
2012 1 72 44 1
2013 1 186 7 3
2014 0 136 28 1
2015 0 23 98 1
2016 3 47 55 1
2017 1 151 5 1
2018 0 111 4 0

All 8 776 273 8

Table 3. Forced alignment results at the paragraph level. PARA indicates the number of paragraphs,
% speech the percentage of identified speech in the audio, and % perfect the percentage of perfectly
aligned content within identified speech.

Year
Duration Aligned Discarded

% Speech % Perfect
(Hours) PARA Hours PARA Hours

2011 86.51 9596 49.81 4572 31.75 94.26 61.07
2012 117.94 13,991 71.49 5547 38.92 93.62 64.75
2013 215.00 24,989 146.60 7788 55.20 93.86 72.65
2014 176.83 19,523 113.44 7093 52.34 93.75 68.43
2015 134.10 13,167 80.15 6004 46.13 94.17 63.47
2016 113.85 11,418 65.78 5372 41.31 94.07 61.42
2017 173.57 19,129 109.44 7474 54.77 94.60 66.65
2018 128.38 16,525 84.69 5711 36.85 94.67 69.68

All 1146.20 128,338 721.40 49,561 357.27 94.11 66.88

Since translation models require specific sentence-based training bitexts, the previ-
ously aligned paragraphs were further prepared with sentence splitting, tokenisation, and
truecasing. All operations were performed with the scripts from the Moses toolkit [47].
Sentence-level alignments were then computed with the Hunalign toolkit [48], with an
alignment probability of 0.4. Table 4 summarises the volumes of data after the alignment
and filtering steps on speech data, as described above.

The filtered and aligned data were then randomly split into training, dev, and test
subsets of triplets consisting of audio, transcription, and translation. Triplets were removed
from the test sets if the transcription–translation pair appeared in the training set as well.
This measure was adopted to account for the fact that even minor acoustic differences might
make a triple differ from another, even though the transcription–translation pair would be
a duplicate for the machine translation component. Stricter removal along the previous
lines allowed for a fair comparison between cascade and end-to-end models and made for a
more difficult test set, as it mainly discarded acoustic variants of greetings and salutations.
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Table 4. Filtered data statistics after each alignment step. Speech indicates the figures for identified
speech in the original content; Paragraph indicates the figures after alignment at the paragraph
level; Sentence indicates the figures after alignment at the sentence level.

Alignment SRC TGT SRC Hours SRC Words TGT Words

Speech ES EU 757.31 7,118,590 5,169,324
Paragraph ES EU 506.24 4,649,223 3,416,794
Sentence ES EU 478.65 4,568,911 3,377,910

Speech EU ES 321.36 1,822,122 2,402,048
Paragraph EU ES 215.16 1,224,609 1,641,571
Sentence EU ES 189.54 1,192,130 1,599,257

Table 5 shows the final statistics of the mintzai-ST corpus. With approximately 191 h
for Basque (hereafter, EU) to Spanish (hereafter, ES) and 468 h for Spanish to Basque,
the corpus is among the largest available ones for speech translation, featuring a language
pair that differs significantly from the ones in publicly available corpora.

Table 5. mintzai-ST: final corpus statistics.

SRC TGT Partition Hours Sentences SRC Words TGT Words

ES EU TRAIN 468.16 175,826 4,512,294 3,328,172
EU ES TRAIN 180.96 85,409 1,149,803 1,536,695
ES EU DEV 2.60 1000 25,359 18,566
EU ES DEV 2.23 1000 13,831 18,673
ES EU TEST 7.89 2788 74,758 55,283
EU ES TEST 6.35 2300 37,706 51,003

3.3. Data Distribution

In this section, we provide additional characteristics of the final corpus in terms of
data distribution. As shown in the boxplots of Figure 1, the distribution in terms of audio
length was similar across the partitioned datasets, with slightly larger duration on average
for the test set. In all three datasets, the data distribution was positively skewed, with audio
larger than the median being more represented overall.

Figure 1. Data distribution in terms of audio length across the training, development, and test
partitions for the Basque and Spanish data in the mintzai-ST corpus.

Table 6 lists the number of outliers across partitions, i.e., samples whose duration is
above the maximums indicated in Figure 1. Although not all outliers in this sense indicate
alignment errors or similar issues, data points above 100 s in the training set may be
considered as such and safely discarded at training time, considering the distribution.
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Table 6. Outlier distribution per duration range (seconds). MAX indicates the maximum value
excluding outliers as computed for each partition.

Range Train Dev Test

300–400 1 0 0
200–250 1 0 0
150–200 1 0 0
100–150 7 0 0
50–100 288 1 5
MAX–50 5058 37 83

Finally, Table 7 indicates the total number of speakers for each dataset and language,
along with the median speaker time. Overall, the mintzai-ST corpus features a diverse set of
speakers, with a distribution in terms of speakers that is relatively similar across partitions.

Table 7. Number of speakers and median speaker times (minutes).

EU ES

Train Dev Test Train Dev Test

Number of speakers 151 104 127 175 130 155
Median speaker time 18.62 0.43 1.23 58.96 72.02 1.28

4. Baseline Models

In this section, we describe the baseline models and components built to assess the
usefulness of the prepared corpus as a basis for speech translation and to evaluate the two
main modelling alternatives, namely: cascade models, based on state-of-the art components
for speech recognition and machine translation, and end-to-end neural speech translation
models. More advanced variants of the latter are explored in Section 6.

4.1. Cascade Models

The speech-to-text cascade models are based on separate components for speech
recognition and machine translation, each trained on their own datasets, either on the
in-domain mintzai-ST corpus only or on a combination of the corpus with additional data.
We describe each component in turn below.

For the additional dataset, we selected publicly available corpora, close to the mintzai-
ST domain, to support a straightforward reproduction of our results. For this language
pair, only text-based datasets were available with these characteristics, and we selected the
OpenDataEuskadi corpus [16], prepared from public translation memories by the transla-
tion services of the Basque public administration (the corpus is available at the following
address: http://hltshare.fbk.eu/IWSLT2018/OpendataBasqueSpanish.tgz, accessed on 30
October 2018). This corpus is close enough to the mintzai-ST domain to be meaningfully
combined and large enough to contribute significantly to different components of the
cascade models. The corpus amounts to 963,391 parallel sentences, with 23,413,116 words
in Spanish and 17,802,212 in Basque.

To connect the components, the best hypothesis of the ASR model was fed to the MT
model, after generating punctuation as described in Section 4.1.1. Although considering
alternative hypotheses in the n-best ASR output might provide additional robustness and
accuracy to the overall system, we left an evaluation along these lines for future research.

4.1.1. Speech Recognition

Two speech recognition architectures, based on end-to-end models and Kaldi-based
systems, were trained and evaluated on the newly compiled corpus.

The end-to-end speech recognition systems were based on the Deep Speech 2 ar-
chitecture [49] for both languages and were set up with a sequence of two layers of 2D

http://hltshare.fbk.eu/IWSLT2018/OpendataBasqueSpanish.tgz
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convolutional neural networks followed by five layers of bidirectional GRU layers and a
fully connected final layer. The output corresponds to a softmax function, which computes
a probability distribution over characters. The input consisted of Mel-scale-based spec-
trograms, which were dynamically augmented through the SpecAugment technique [50].
The models were trained using only audio lasting less than 40 s, due to training memory
constraints, with a learning rate of 0.0001 annealed by a constant factor of 1.08 for a total of
60 training epochs, and Stochastic Gradient Descent (SGD) was used as the optimiser.

The Kaldi recognition systems were built with the nnet3 DNN setup using the so-
called chain acoustic model based on a Factorised Time-Delay Neural Network (TDNN-
F) [51], which reduces the number of parameters of the network by factorising the weight
matrix of each TDNN layer into the product of two low-rank matrices. Our TDNN-F
models consisted of 16 TDNN-F layers with an internal cell dimension of 1536, a bottleneck
dimension of 160, and a dropout schedule of “0,0@0.2,0.5@0.5,0”. The number of training
epochs was set to four, with a learning rate of 0.00015 and a minibatch size of sixty-
four. The input vector corresponded to a concatenation of 40-dimensional high-resolution
MFCC, augmented through speed (using factors of 0.9, 1.0, and 1.1) [52] and volume
(with a random factor between 0.125 and two) [53] perturbation techniques, as well as the
appended 100-dimensional iVectors.

Language models were five-gram models with modified Kneser–Ney smoothing,
estimated with the KenLM toolkit [54], and were used as either a component of Kaldi-based
systems or to rescore the end-to-end models’ hypotheses.

The capitalisation models were trained on the mintzai-ST corpus with the recasing
tools provided by the Moses open-source toolkit [47], using default parameters that in-
cluded phrases of length one and a trigram KenLM language model.

Finally, the punctuation module consisted of a Bidirectional Recurrent Neural Network
(BRNN) model, which takes advantage of Gated Recurrent Units (GRU) as recurrent layers
and an attention mechanism to further increase its capacity to identify relevant parts of the
context for punctuation decisions. The models were built using the Punctuator2 toolkit [55]
and trained on generic text corpora crawled from digital newspapers and acoustic data
from the broadcast news domain [56]. The text corpora were composed of 161.8 million
words for Spanish and 139.4 million words for Basque, whilst the acoustic corpus included
200 h of annotated audio per language.

4.1.2. Machine Translation

All machine translation models in the experiments reported below were based on the
Transformer architecture [5], built with the MarianNMT toolkit [57].

The models consisted of six-layer encoders and decoders and eight attention heads.
The Adam optimiser was used with parameters α = 0.0003, β1 = 0.9, β2 = 0.98, and
ε = 10−9. The learning rate was set to increase linearly for the first 16,000 training steps and
decrease afterwards proportionally to the inverse square root of the corresponding step.
The working memory was set to 8000 MB, and the largest mini-batch was automatically
chosen for a given sentence length that fit the specified memory. The validation data
were evaluated every 5000 steps for models trained on larger out-of-domain datasets and
every epoch otherwise; training ended if there was no improvement in perplexity after five
consecutive checkpoints. Embeddings were of dimension 512, tied between source and
target, and all datasets were segmented with BPE [58], using 30,000 operations.

Translation metrics were computed in terms of the BLEU [59] and ChrF [60] metrics,
obtained with the sacreBLEU toolkit [61]. All statistical significance results were computed
via paired bootstrap resampling [62].

4.2. End-to-End Baseline Models

End-to-end ST models were trained on the in-domain speech-text corpus, using the
Fairseq-ST toolkit (https://github.com/mattiadg/FBK-Fairseq-S, accessed on 23 April
2020),which supports different types of sequence-to-sequence neural models [40]. The vari-

https://github.com/mattiadg/FBK-Fairseq-ST
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ant selected for the experiments was the Transformer model enhanced for ST described
in [17], more specifically the variant the authors referred to as the S-Transformer.

The model follows the standard Transformer architecture with six SA encoder and
decoder layers, but adds layers prior to the Transformer encoder to model 2D dependencies.
The audio input is provided to the model in the form of sequences of Mel filters, encoded
first by two CNNs to model 2D-invariant features, followed by two 2D SA layers to
model long-range context. The output of the stacked 2D SA layers underwent a linear
transformation, followed by a ReLU non-linearity, and was summed with the positional
encoding prior to feeding the Transformer encoder.

We diverged from the implementation described in [17] on one important aspect.
Character-based decoding was replaced with subword decoding, using the previously de-
scribed BPE models, as the former faced consistent issues, resulting in subpar performance;
an identical setup with subwords produced significantly better results overall. Further
exploration of these differences between translation pairs is left for future research.

5. Comparative Baseline Results

We first performed an evaluation centred on cascade models, where a number of
variants were prepared based on different ASR approaches or different types and volumes
of training data. The variants included:

• ASR models trained with either an End-to-End neural model (E2E) or the Kaldi toolkit
(KAL);

• ASR and MT models trained on either In-Domain data only (IND) or on a combination
of in-domain and out-of-domain data (ALL), by integrating the OpenDataEuskadi
dataset to train the language and casing models for speech recognition and the trans-
lation models for the MT component;

• MT models obtained by fine-tuning a model trained on the out-of-domain dataset
with the in-domain data, in addition to the models trained on in-domain data only
and all available data.

Table 8 shows the results for the cascade variants on the mintzai-ST test sets, in terms
of word error rate (WER) and BLEU [59]. All results in the table were computed with ASR
output that included punctuation, generated with the previously mentioned punctuation
models. To measure the impact of punctuation on the overall process, differences between
BLEU scores obtained with and without punctuation, in that order, are also shown in the
table (∆PUNC).

Overall, cascade models trained on all data performed significantly better than their
in-domain counterparts, with improvements of up to five and 1.6 BLEU points for EU–ES
and ES–EU, respectively. These results were mostly due to improvements obtained on the
MT components, as was expected from adding significantly larger amounts of training data
to the small in-domain datasets. For the ASR components, the impact in terms of WER was
minor, with around 0.3 gains in either language, mainly due to the use of the same data for
acoustic modelling in all cases.

Punctuation had a significant impact on the results, with systematic improvements of
up to 2.6 and 1.5 BLEU points in EU–ES and ES–EU, respectively. This trend is not entirely
surprising, since the translation models were trained on data that included punctuation
marks; the impact of punctuation was amplified for models trained on larger amounts
of data.

Regarding the overall translation quality, as measured in terms of the BLEU scores at
least, the results were in line with or higher than typical results in similar tasks [11]. One
explanation for higher marks is the domain specificity of the corpus, with recurrent topics
and typical expressions. Nonetheless, the corpus also features challenging characteristics
for automated speech translation, such as the use of Basque dialects or the idiosyncratic
properties of the two languages at hand.
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Table 8. Evaluation results on cascade variants. The best results, indicated in bold, are statistically
significant against all other results, for p < 0.05, except where indicated as *; differences between
top-performing systems in bold were not statistically significant.

LANG ASR MT WER BLEU CHRF ∆PUNC

EU–ES E2E IND IND 14.43 28.4 54.9 +1.0
EU–ES E2E ALL IND 14.12 28.4 54.8 +0.8
EU–ES E2E IND ALL 14.43 33.3 60.7 +2.4
EU–ES E2E ALL ALL 14.12 33.4 60.8 +2.3
EU–ES E2E IND FT 14.43 32.6 60.6 +2.4
EU–ES E2E ALL FT 14.12 33.0 60.8 +2.6
EU–ES KAL IND IND 12.07 29.2 55.7 +0.9
EU–ES KAL ALL IND 11.78 29.4 55.9 +1.1
EU–ES KAL IND ALL 12.07 34.7 61.9 * +2.6
EU–ES KAL ALL ALL 11.78 34.7 62.0 +2.7
EU–ES KAL IND FT 12.07 33.7 61.5 +2.5
EU–ES KAL ALL FT 11.78 33.9 61.7 * +2.6

ES–EU E2E IND IND 8.26 20.6 58.7 +1.3
ES–EU E2E ALL IND 8.15 20.6 58.6 +1.3
ES–EU E2E IND ALL 8.26 22.0 60.6 +1.0
ES–EU E2E ALL ALL 8.15 22.0 60.6 +1.1
ES–EU E2E IND FT 8.26 21.5 60.2 +1.3
ES–EU E2E ALL FT 8.15 21.5 60.1 +1.2
ES–EU KAL IND IND 7.23 20.9 59.0 +1.4
ES–EU KAL ALL IND 7.21 20.9 58.9 +1.3
ES–EU KAL IND ALL 7.23 22.5 61.0 +1.2
ES–EU KAL ALL ALL 7.21 22.7 61.1 +1.5
ES–EU KAL IND FT 7.23 21.9 60.6 +1.2
ES–EU KAL ALL FT 7.21 22.0 60.7 +1.4

From the previous evaluation, we selected the best cascade variants based on either
in-domain or all data and compared with the end-to-end speech translation models, in both
translation directions. The comparative results on the mintzai-ST test sets are shown in
Table 9, where BP indicates the Brevity Penalty computed within the BLEU metric.

Table 9. Results on cascade and end-to-end baseline models. The best results, indicated in bold, are
statistically significant against all other results, for p < 0.05.

Lang Model ASR MT WER BLEU BP

EU–ES CAS IND IND 12.07 29.2 0.913
EU–ES CAS ALL ALL 11.78 34.7 0.978
EU–ES E2E - - - 17.0 1.000

ES–EU CAS IND IND 7.23 20.9 0.954
ES–EU CAS ALL ALL 7.21 22.7 0.969
ES–EU E2E - - - 12.9 1.000

The most notable result from this evaluation was the large difference in terms of the
BLEU between the cascade and the end-to-end variants under similar conditions, i.e., using
only the in-domain data. Under these conditions, the end-to-end variant was outperformed
by 12.2 and eight BLEU points in EU–ES and ES–EU, respectively. Since the conditions were
similar, with relatively small amounts of training data, this large gap may be attributed to
the relative dependency of the baseline end-to-end models on larger volumes of training
data. More robust alternative end-to-end ST approaches are explored in the next section.
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Interestingly, the end-to-end model produced translations that were closer in length to
the human references, as shown by the results in terms of the brevity penalty. Although fur-
ther analyses of these aspects will be warranted, these results indicate that the end-to-end
systems built for these experiments may be modelling aspects of the speech translation
process that are not fully captured by their cascade counterparts.

6. Advanced End-to-End Models

The results in the previous section in terms of end-to-end models were based on a
basic S-Transformer architecture, applied directly to the source–target mintzai-ST data.
Although this provides useful baseline references, more advanced direct models can be
devised to better exploit the available data. In this section, we describe the experimental
results with variants based on different architectures, Pretraining (PT) and Knowledge
Distillation (KD). The different variants are illustrated in Figure 2 and described below.

Figure 2. Architectural variants for end-to-end models. FFN denotes the Feed-Forward Networks in
a standard Transformer architecture; MHA denotes Multi-Head Attention; CNN denotes convolu-
tional layers.
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6.1. Models

As our end-to-end baseline, we used the S-Transformer model [17], denoted as S-TRF

in what follows, as described and evaluated in Section 5.

6.1.1. Architectural Variants

The first variant (CNN.11E-4D.TRF) was based on the description in [24] and differs
from the S-Transformer architecture by first removing the 2D attention layers and modifying
the number of layers, with a stack of eleven SA encoder layers and four SA decoder layers;
the model preserves the CNN layers to reduce the dimensionality of the input audio data.
This architecture was selected as representative of models that have closed the gap with
cascade models in the aforementioned study.

The second variant (LINEAR.TRF) replaces both the CNN and the 2D SA layers of the
S-Transformer with a simple linear layer as the first encoder layer, following [18]. This
architecture was mainly designed to support knowledge distillation, as it combines a
Transformer model for ASR and another one for MT (see Section 6.1.3 for more details). We
included it as a variant to provide KD results with the architecture as described in [18], using
only the output of the teacher model as it provided the best results in the aforementioned
work. We also extended the use of KD to the other ST models described in this section, as it
can be straightforwardly applied in all cases.

Finally, we prepared a third variant (WAV2VEC-ST), with WAV2VEC 2.0 [43] set as the
encoder in a Transformer-based model [63]. This architecture is of notable interest in its
leverage of speech data via self-supervised methods, as one of the main limitations for
the development of end-to-end ST models is the lack of parallel audio–text data. This ST
model features initial linear and CNN layers, followed by twenty-four SA encoder layers
and six SA decoder layers. After preliminary experiments, training on the mintzai-ST
corpus was performed by first freezing the encoder layers for the first 20% of the epochs,
then allowing updates for all parameters, except the WAV2VEC 2.0 CNN, during the
remaining epochs. With this architecture,and contrary to the results obtained with S-
Transformer variants, preliminary experiments indicated that character-level decoding
outperformed BPE-based decoding. We thus maintained the original configuration and
parameters in the FAIRSEQ-ST toolkit used to train the WAV2VEC-ST models, as provided at:
https://github.com/pytorch/fairseq/tree/main/examples/speech_to_text (accessed on
18 October 2021).

6.1.2. Pretraining

A key insight to significantly increase the quality of direct models centres on pre-
training the model on ASR data [19,34]. We thus pretrained each model variant on the
available transcriptions in the mintzai-ST corpus, prior to training on the audio source and
target language data in the end-to-end ST scenario. Although pretraining relies on the
existence of transcriptions, and might thus be viewed as departing from a strict end-to-end
approach to the ST problem, this step is now standardly performed for direct models when
transcriptions are indeed available. For the experiments described below, pretraining was
applied to all model variants, as it can be performed without changing any of the selected
model architectures (models that underwent pretraining are indicated with the suffix .PT in
the model name).

6.1.3. Knowledge Distillation

Another relevant technique relies on knowledge distillation, as proposed by [18] for
ST. In this approach, a text translation model, based on a standard Transformer architecture,
is trained first and taken as the teacher model. In a second step, an ST model, also based on
a standard Transformer architecture (with an additional initial linear layer prior to the SA
encoder layers in the aforementioned study), is trained on the output of the teacher model.
We applied this method to all models that were trained with Transformer encoder–decoder
architectures on data segmented with BPE subwords, using the output of the cascade MT

https://github.com/pytorch/fairseq/tree/main/examples/speech_to_text
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system as a reference for the student training step (models that underwent training with
knowledge distillation are indicated with the suffix .KD in the model name).

6.2. Comparative Direct Models’ Results

We applied each of the previously described variants on the mintzai-ST test sets,
with the results shown in Tables 10 and 11, for Spanish to Basque and Basque to Spanish,
respectively.

Table 10. Comparative results for end-to-end model variants on Basque to Spanish translation. The
best results, indicated in bold, were statistically significant against all other results, for p < 0.05.

Lang Model BLEU CHRF

EU–ES S-TRF 17.0 42.5
EU–ES S-TRF.PT 26.8 52.6
EU–ES S-TRF.PT.KD 28.4 53.2
EU–ES CNN.11E-4D.TRF.PT 25.0 53.5
EU–ES CNN.11E-4D.TRF.PT.KD 28.1 53.7
EU–ES LINEAR.TRF.PT 24.6 51.4
EU–ES LINEAR.TRF.PT.KD 26.8 52.2
EU–ES WAV2VEC-ST 29.8 57.6
EU–ES WAV2VEC-ST.PT 31.4 58.5

Table 11. Comparative results for end-to-end model variants on Spanish to Basque translation. The
best results, indicated in bold, were statistically significant against all other results, for p < 0.05;
differences between top-performing systems in bold were not statistically significant.

Lang Model BLEU CHRF

ES–EU S-TRF 12.9 48.4
ES–EU S-TRF.PT 17.8 54.7
ES–EU S-TRF.PT.KD 20.4 57.3
ES–EU CNN.11E-4D.TRF.PT 15.6 53.3
ES–EU CNN.11E-4D.TRF.PT.KD 19.2 56.2
ES–EU LINEAR.TRF.PT 17.0 53.7
ES–EU LINEAR.TRF.PT.KD 18.9 55.9
ES–EU WAV2VEC-ST 24.5 61.9
ES–EU WAV2VEC-ST.PT 24.7 62.2

In both translation directions, the WAV2VEC-ST models performed significantly better
than the alternatives, overall. Although these results illustrate the positive impact of
WAV2VEC 2.0 cross-lingual speech representations for the ST task as well, it is worth noting
that all other models were trained only on the in-domain mintzai-ST data, which feature
significantly lower volumes than those used to pretrain WAV2VEC 2.0.

Another notable result is the significant impact of pretraining, with a 9.8 BLEU point
increase for the S-Transformer model for Basque to Spanish,and 4.9 points for Spanish to
Basque. Knowledge distillation was also impactful across the board, with overall increases
of at least two BLEU points over pretrained models.

Turning to architecture variants, in both translation directions, the default S-Transformer
model outperformed the variant with eleven SA encoder layers, four decoder layers,
and without 2D SA layers, which in turn performed better than the variant with a linear
layer replacing both the CNN and SA layers. These comparative metrics’ results were
consistent for the variants with pretraining only and knowledge distillation in addition
to pretraining.

Table 12 summarises the comparative results between cascade and advanced end-to-
end models, trained on either in-domain data only or on additional data (as previously
indicated, for the WAV2VEC-ST model, additional data refer to the datasets used to pretrain
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the model). In all cases, the gap between the direct and cascade models was significantly
reduced, compared to the baseline results of Section 5. End-to-end models obtained only
slightly lower results overall in both directions among systems trained only on in-domain
data. In Spanish to Basque, the end-to-end model based on WAV2VEC-ST even outperformed
the cascade model trained on all data. For Basque to Spanish though, the cascade model
still outperformed the best end-to-end model on the test sets.

Table 12. Summary of the results with cascade and advanced end-to-end models. Best-performing
systems are indicated in bold.

Lang Model Data WER BLEU

EU–ES CAS IND 12.07 29.2
EU–ES S-TRF.PT.KD IND - 28.4
EU–ES CAS ALL 11.78 34.7
EU–ES WAV2VEC-ST.PT ALL - 31.4

ES–EU CAS IND 7.23 20.9
ES–EU S-TRF.PT.KD IND - 20.4
ES–EU CAS ALL 7.21 22.7
ES–EU WAV2VEC-ST.PT ALL - 24.7

7. Targeted Evaluations of Cascade and Advanced Direct Models

Given the results of the previous sections, we selected the most representative variants
to perform a manual evaluation and examine in detail the characteristics of the selected
cascade and direct models. Since the results varied significantly between models based
strictly on in-domain data and models with access to additional data (where additional
data refer to both the datasets described in Section 4.1 and the data used to indepen-
dently train the WAV2VEC 2.0 models), we selected two different pairs of systems to be
compared separately:

• CAS IND vs. S-TRF.PT.KD for systems trained only on in-domain data;
• CAS ALL vs. WAV2VEC-ST.PT for systems trained also on additional data.

In the following sections, we describe the results of the comparative evaluations along
different relevant aspects, namely manual ranking, divergences on specific phenomena,
and error propagation.

7.1. Manual Ranking Task

This task consisted of a manual evaluation of the translations generated by the different
selected systems, previously described, where users were presented the source transcription
and two competing translations and had to indicate whether one was preferred or whether
they could be considered similar in accuracy and fluency.

As evaluation data for the task, we extracted new data from the 2019 Sessions of the
Basque Parliament, not covered by the mintzai-ST corpus, and sampled 100 representative
audio inputs. To select the samples, the content of a complete Session was first translated
with each of the four selected ST models. The data were then log-normalised and split
into quartiles according to the length of the transcriptions, with 25 samples randomly
selected from each quartile to provide a representation of different types of input in terms
of duration.

Table 13 indicates the BLEU scores obtained by each model on the selected samples,
to be taken as a first indication of the relative translation quality on the samples. The results
were in line with the previous indications of relative model strength in terms of metrics,
with slightly better scores overall obtained by the cascade models.

For the manual three-way ranking task, two separate groups of users were defined to
handle, with the following characteristics:
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• Group A was tasked with comparing the translations between models trained only on
in-domain data, namely CAS IND and S-TRF.PT.KD. For Spanish to Basque, nine users
completed the full evaluation and one user only partially completed the task (forty
out of one-hundred). For Basque to Spanish, eight users completed the full evaluation
and one user only partially completed the task (twenty-three out of one-hundred);

• Group B was tasked with comparing the translations between models trained on addi-
tional data, namely CAS ALL and WAV2VEC-ST.PT. For Spanish to Basque, 12 users com-
pleted the full evaluation; for Basque to Spanish, 11 users completed the full evaluation.

Table 13. BLEU scores on manual evaluation samples.

Lang CAS IND s-trf.pt.kd CAS All wav2vec-st.kd

ES–EU 18.4 16.7 22.0 21.7
EU–ES 30.7 28.2 35.5 33.0

The evaluators who volunteered for the task were native speakers of Basque and
Spanish, but not professional translators. They were provided guidelines on the task itself
and on the use of the evaluation environment, which is based on the Appraise system [64]
and provides inter-annotator agreement statistics.

The results of the manual evaluation are shown in Table 14, with inter-annotator
agreement measured in terms of Krippendorff’s alpha [65], Fleiss’s Kappa [66], Bennett’
S [67], and Scott’s Pi [68] (omitted from the table are the number of cases that were skipped
by users, which were none in all cases for Group B and, for Group A, amounted to 2.66% in
ES–EU and 0.12% in EU–ES). Overall, translations from the cascade systems were preferred
by a large margin for systems trained only on in-domain data, in both translation directions,
and in Basque to Spanish for the systems trained on additional data. Only in the latter case,
for Spanish to Basque, were the systems considered relatively equal. It also worth noting
that between 30% and 40% of the translations, approximately, were considered of equal
quality overall.

Table 14. Cascade vs. end-to-end 3-way ranking results. α indicates Krippendorff’s alpha; κ: Fleiss’s
Kappa; s: Bennett’s S; pi: Scott’s Pi.

Data Lang CAS < E2E Equal CAS > E2E α κ s pi

IND ES–EU 25.74% 31.60% 40.00% 0.31 0.27 0.29 0.25
IND EU–ES 18.47% 41.56% 39.85% 0.58 0.47 0.47 0.43

All ES–EU 32.04% 35.18% 32.78% 0.26 0.23 0.16 0.21
All EU–ES 17.09% 40.36% 42.55% 0.45 0.45 0.48 0.44

Inter-annotator agreement was moderate overall and significantly higher in both cases
of Basque to Spanish translation, where the differences were larger between the compared
systems. The lowest agreement was obtained in the only case where no clear preference
was shown for either system, which may be interpreted as a result of the translations being
of similar quality overall, without systematic aspects favouring one or the other.

7.2. Divergence on Specific Phenomena

To assess more detailed differences between the cascade and direct approaches, we se-
lected and evaluated translation subsets addressing three different phenomena, after a pre-
liminary manual evaluation of the data to identify aspects that led to divergent translations.

We thus identified all source transcriptions in the test sets that contained: numbers; a
specific subset of punctuation marks, namely question, exclamation, and ellipsis marks;
named entities introduced by markers in Basque or Spanish corresponding to Sir, Madam,
or similar, which are almost systematically used to refer to other participants by name in
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the sessions of the Basque Parliament. The number of identified samples, and BLEU scores
for the four selected systems on each subset, are indicated in Table 15.

Table 15. BLEU results on selected test subsets

Subset Lang Samples CAS IND s-tf.pt.kd CAS All wav2vec-st.pt

Number EU–ES 221 21.8 24.1 28.7 28.2
Punct EU–ES 348 25.2 27.3 31.9 29.8
Names EU–ES 252 43.0 41.8 45.4 44.1

Number ES–EU 332 17.1 19.2 18.3 24.2
Punct ES–EU 543 16.4 17.0 18.2 21.3
Names ES–EU 260 24.6 24.7 26.3 27.1

On the numbers subset, the end-to-end models performed better overall, although this
was mainly due to the fact that numbers were provided in word rather than numeral form
by ASR in the cascade system. Additional processes could perform this conversion in
a cascade setup, similar to the use of additional processes to insert punctuation marks.
The differences in translations of numbers were thus mainly significant to indicate that some
of the gains obtained by direct models were related to this variable way of representing
numbers in the final translations.

Translations also differed in terms of punctuation, in this case also with higher marks
obtained overall by end-to-end models, except for Basque to Spanish with additional data.
One of the main reasons for this divergence comes from the limitations of the specific
punctuation model used for the cascade system, which only covered commas and periods.
In contrast, the end-to-end models exploited the source–target punctuation data directly
and could model the whole spectrum of punctuation marks in the datasets.

Finally, the divergences in terms of names were less marked, with slightly better scores
with cascade models overall for Basque to Spanish. For Spanish to Basque, nearly identical
results were obtained with models trained only on in-domain data and slightly better scores
for WAV2VEC-ST.PT against CAS ALL.

Table 16 provides examples of divergent translations between cascade and direct
models. Except the punctuation case, which is only correct in the direct translation example,
the other examples illustrated divergences that may all be considered correct. The differ-
ences nonetheless impacted the BLEU scores on the single references used in these evalua-
tions, an aspect that needs to be factored in when comparing translation models [16,24].

Table 16. Examples of diverging translations on specific phenomena, with English translations.

Subset Translation Example

Number

Reference Lean, si no, el artículo 6.
EN If not, read article 6.

CAS ALL Véase, de lo contrario, el artículo sexto.
EN See, otherwise, article six.

WAV2VEC.PT Si no, se ha visto el artículo 6.
EN If not, article 6 has been seen.

Punct

Reference Lan-erreforma indargabetu da?
EN Is job reform repealed?

CAS IND Lan-erreforma indargabetu egin da.
EN Job reform is repealed.

S-TF.PT.KD Indargabetu al da lan-erreforma?
EN Is job reform repealed?
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Table 16. Cont.

Subset Translation Example

Name

Reference Pasando al turno de réplica, tiene usted la palabra,
señora Rojo.

EN Turning to the reply, you have the floor, Mrs. Rojo.

CAS ALL Pasando al turno de réplica, señora Rojo, tiene usted
la palabra.

EN Turning to the reply, Mrs. Rojo, you have the floor.

WAV2VEC-ST.PT En el turno de réplica, tiene la palabra la señora Rojo.
EN In the turn to reply, Mrs. Rojo has the floor.

7.3. Error Propagation

As previously noted, one of the expected advantages of direct ST models is avoiding
the propagation of ASR errors to the MT component, an aspect that was one of the charac-
teristics of earlier cascade systems. To measure this effect, albeit indirectly, we evaluated
the translation results on input classified according to the WER scores obtained with the
top-performing ASR component described in Section 4.1.1, with WER scores assumed to
reflect the percentage of ASR errors that may impact a cascaded MT model. Clearly, since
higher WER scores may be due to audio input that is intrinsically difficult to process for
any automated recognition system, cascaded or direct, this evaluation was an approxima-
tion explored to determine eventual differences in behaviour between cascade and direct
models. For these evaluations, we used the four systems selected in Section 7.

We first measured the correlation between the WER and BLEU scores for each consid-
ered model, to determine the linear relationship between the two scores, if any. Additionally,
we measured the correlation between WER and the difference of BLEU scores obtained by
the compared cascade and end-to-end models, to determine the relation between WER and
performance variation for the two types of models. To account for the fact that WER scores
are less reliable on short audio, we filtered all audio whose corresponding transcription
consisted of 10 words or less; WER scores were also normalised in the 0–100 range. The re-
sults in terms of Pearson correlation coefficients are shown in Table 17. It is worth noting
that negative coefficients between WER and BLEU indicate a positive correlation, since the
metrics are reversed in terms of rank interpretation, with a higher WER indicating worse
results, while a higher BLEU indicates better results.

Table 17. Pearson correlation between WER↓ (W) and BLEU↑ (B) scores for the selected Cascade
(CAS) and End-to-End (E2E) models. All results were statistically significant (p < 0.0001).

Lang Data ρ(W, B CAS) ρ(W, B E2E) ρ(W, (B CAS) − (B E2E))

ES–EU IND −0.14 −0.13 0.40
ES–EU ALL −0.15 −0.10 0.35
EU–ES IND −0.26 −0.25 0.32
EU–ES ALL −0.24 −0.20 0.43

For both cascade and direct models, the correlation between the WER and BLEU
scores was small overall, with lower marks for ES–EU than for EU–ES. The correlation was
comparatively higher between the WER and BLEU scores’ differences, being moderate
across the board.

To further evaluate the impact of input difficulty as indicated by the BLEU scores,
the test data were further first divided into quartiles according to the WER scores obtained
by the ASR component. We then computed the difference in the BLEU scores between
paired models on the data in each quartile. The results are shown in Figure 3.
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(a) (b)

(c) (d)

Figure 3. BLEU score differences on WER-based quartile subsets of the mintzai-ST test sets, between:
(a) CAS IND and S-TRF.PT.KD IND in EU-ES (b) CAS IND and S-TRF.PT.KD IND in ES-EU, (c) CAS ALL

and WAV2VEC-ST.PT in EU2ES, and (d) CAS ALL and WAV2VEC-ST.PT in ES2EU. The red line indicates
the average difference over joint subsets. Quartiles range from lower WER (Q4) to higher WER (Q1).

Under the assumption that higher WER scores would correlate with a larger number
of errors that would impact the MT component of cascade models more than they would
an end-to-end model, the expectation would be that the difference in BLEU scores is lower
than the average where cascade models outperform direct models and higher than average
where direct models score better than their cascade counterpart.

With models trained on in-domain data only, for EU–ES (Figure 3a), only Q3 featured
a result under the average difference; in all other quartiles, the difference was larger than
average, although the differences on both Q2 and Q1 were lower than with Q4. In ES–
EU (Figure 3b), the tendencies were opposite the expectation, with the cascade model
performing markedly better than average compared to the direct model on data associated
with a higher WER, i.e., Q2 and Q1.

The results for models trained on additional data were more in line with the assumed
impact of data associated with higher WER scores. For EU–ES for instance (Figure 3c),
the positive difference in favour of the cascade model against the direct model was lesser
on Q1 and higher on Q4, with Q1 and Q3 in line with the average difference. For ES–EU
(Figure 3d), the direct model scored higher than average compared to the cascade model,
with a consistent tendency as the WER scores increased from Q4 to Q1.

The results for this evaluation were thus not uniform, with opposite tendencies for the
two pairs of systems depending on their having been trained only on in-domain data or
also on additional data. In this case as well, additional references and manual assessments
of the audio files in terms of difficulty could help determine the actual tendencies in terms
of error propagation. A manual examination of non-literal transcriptions in the test sets
would also support a more precise evaluation of WER-related differences between models.
These tasks were however beyond the scope of this study and are left for future work.

8. Conclusions

In this work, we presented the results of a case study in Basque–Spanish speech trans-
lation, centred on comparative evaluations of cascade and direct approaches to the task.
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We first described the mintzai-ST corpus, based on the proceedings of the sessions of
the Basque Parliament between 2011 and 2018. We extended the initial description of the
corpus in [14] with a detailed examination of the different alignment and filtering steps,
along with an analysis of the data distribution in the corpus.

Different ST models were compared, based on cascade and end-to-end approaches,
starting with baseline results that included end-to-end models trained strictly on the source–
target data, which resulted in cascade systems significantly outperforming their direct
counterparts, with or without additional data.

Several variants of advanced end-to-end models were then prepared, exploiting pre-
training and knowledge distillation techniques in particular. As was the case in other
studies exploiting these techniques [18,34], all advanced variants significantly closed the
gap with their cascaded counterparts, in terms of automated metrics, including a variant
based on WAV2VEC [63], which outperformed all other models in Spanish to Basque trans-
lation. This latter model proved the most efficient in terms of metrics, providing further
support to the usefulness of self-supervised training on audio data prior to performing
speech translation. The comparison with other models in this study was less direct, how-
ever, given the use of large amounts of audio data to pretrain the models. Among other
variants, pretraining and knowledge distillation both proved critical to drastically increase
the performance of end-to-end models, with the S-Transformer model outperforming
similarly trained model variants that featured architectural differences.

To further evaluate the differences between the two main ST approaches, cascade and
direct, a manual evaluation was carried out on the translations from the best-performing
models in each case. Although between 30% and 40% of the translations overall were
considered of similar quality by a panel of native speakers of the two languages, the trans-
lations generated by the cascade models were preferred by a significant margin in all but
one case, where the preferences were equally distributed. These results complement other
comparative manual evaluations such as [24], though reaching differing conclusions, as in
our study and specific evaluation protocol, cascade translations were preferred overall.

We also conducted targeted evaluations along two axes. First, we evaluated divergent
translations under the cascade and direct approaches, where the latter approach performed
better on numbers and punctuation against the specific cascade models in this study,
although in both cases, improvements could be straightforwardly achieved in a cascade
approach. Additionally, we compared model result differences according to the WER
scores, to measure the potential impact of ASR errors on MT results in a cascade approach
and the eventual higher robustness of a direct approach in this respect. The results were
inconclusive, with better relative scores for direct models on more difficult input in Basque
to Spanish translation, but a reverse tendency in Spanish to Basque.

From this study, it appears that the gap between cascade and direct approaches has
been reduced significantly with recent approaches to direct ST modelling, in line with
similar findings [19,23,24]. Nonetheless, the cascade models still obtained better results
overall in terms of reference-based metrics and manual evaluations, in line with the findings
reported in [25], where cascade models achieved the best results overall on the IWSLT 2021
shared task datasets. It is worth noting that this was the case even under the controlled
conditions of our study, where additional audio and translation data were considered
to some extent, but with volumes of data largely under what might be exploited in this
language pair [16,69]. The gap between cascade and direct speech translation models
is thus likely to be larger under unrestricted conditions, despite the significant progress
achieved with direct models in recent years.

In future work, a more detailed examination of the characteristics of the Basque–
Spanish language pair, in terms of syntactic and morphological variation in particular,
along with further manual examination of the corpus in terms of literality and audio
variation, could shed more light on the respective strengths and limitations of cascade and
direct approaches.
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