
����������
�������

Citation: Li, J.; Qin, S.; Tu, T.; Zhang,

H.; Li, Y. Packet Injection Exploiting

Attack and Mitigation in Software-

Defined Networks. Appl. Sci. 2022,

12, 1103. https://doi.org/10.3390/

app12031103

Academic Editor: Christos Bouras

Received: 30 December 2021

Accepted: 19 January 2022

Published: 21 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Packet Injection Exploiting Attack and Mitigation in
Software-Defined Networks
Jishuai Li , Sujuan Qin *, Tengfei Tu *, Hua Zhang and Yongsheng Li

State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and
Telecommunications, Beijing 100876, China; sky_lee1990@bupt.edu.cn (J.L.); zhanghua_288@bupt.edu.cn (H.Z.);
lee_yongsheng@bupt.edu.cn (Y.L.)
* Correspondence: qsujuan@bupt.edu.cn (S.Q.); tutengfei.kevin@bupt.edu.cn (T.T.)

Abstract: Software-defined networking (SDN) decouples the control plane and data plane through
OpenFlow technology and allows flexible network control. It has been widely applied in different
areas and has become a focus of attention in the future network. With SDN’s development, its security
problem has become a necessary point of research to be solved urgently. In this paper, we propose a
novel attack, namely, the packet injection exploiting attack. By maliciously injecting false hosts into
SDN network topology, attackers can further use them to launch a denial of service (DoS) attack. The
consequences affect the throughput and processing capabilities of the controller, severely consume
data plane resources, and ultimately affect the entire network. To prevent the packet-injection
exploiting attack, we designed PIEDefender, an efficient, protocol-independent component built on
SDN controllers to detect and mitigate attacks effectively. We implement the PIEDefender prototype
on the Floodlight controller and assess the effectiveness in the software environment. Experimental
results show that PIEDefender achieves a 97.8% injection detection precision and a 97.96% DoS
detection precision, incurring an average CPU consumption of 10%. The evaluation demonstrates
that the PIEDefender can effectively mitigate the attack against SDN with limited overhead.

Keywords: software-defined networking (SDN); OpenFlow; packet injection exploiting attack; false
hosts; denial-of-service (DoS); detection; defense

1. Introduction

Software-defined networking (SDN) has arisen as a revolutionary networking paradigm
that can meet escalating demands of future networking [1]. Unlike a traditional network, it
separates the network’s control plane from the embedded nodes and replaces the classical
control plane based on system embedding with an open and programmable soft control
plane [2,3]. Thanks to the openness and programmability of SDN, it has been applied
to various fields, such as enterprise networks and data centers. However, the idea of
separation of logical control and forwarding function expands the attack surface [4], and the
control plane, data plane, and application plane will face security challenges. For example,
since the controller has global network visibility, the entire network can be controlled once
it is hijacked. With the deep research and broad application of SDN architecture, security
has gradually become a fundamental factor restricting its growth [5,6].

Both academia and the industry have made many efforts and proposed many solu-
tions to enhance SDN security. TopoGuard [7] and the correlation-based topology anomaly
detection (CTAD) [8] solve topological attacks in SDN. The saturation attacks detector (SA-
Detector) [9], vSwitchGuard [10], FTGuard [11], and SDNGuardian [12] are responsible for
defending against data plane saturation attacks and flow table overflow attacks. BWMan-
ager [13], DETPro [14], FloodDefender [15], and DoSDefender [16] adopt different ideas
to realize the detection and defense of distributed denial of service (DDoS)/DoS attacks
in SDN. PacketChecker [17] and INSPECTOR [18] focus on solving the problem of packet
injection attacks. These existing works provide reliable mechanisms from different aspects

Appl. Sci. 2022, 12, 1103. https://doi.org/10.3390/app12031103 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12031103
https://doi.org/10.3390/app12031103
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-2882-1823
https://orcid.org/0000-0002-5641-7441
https://doi.org/10.3390/app12031103
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12031103?type=check_update&version=1

Appl. Sci. 2022, 12, 1103 2 of 19

and strengthen SDN security. However, novel attack methods and defense strategies still
need to be discovered and studied.

The authors of [17] first proposed the packet injection attack. They point out that
attackers can inject fake nodes into the SDN by maliciously manipulating packets. We con-
tinue to carry out research on this basis and consider whether attackers can further exploit
these non-existing hosts. The answer is positive. On the one hand, the SDN controller
with the OpenFlow protocol as the southbound interface maintains the Host Profile file
to track the host’s location [7]. When attackers inject spoofed packets by modifying the
header’s information (e.g., media access control, MAC address), it assumes that a new host
joins the network and creates a new Host Profile file. On the other hand, the attacker can
quickly establish communication with these non-existent hosts due to a lack of verification
of Packet-In messages. As these false hosts have been added to the SDN network topology,
the controller will generally route and forward the associated communication behaviors.
Once enough false hosts are injected, an attacker can use them to generate plenty of new
flows in a short period. For the control plane, since the SDN switch sends all packets with
unknown flows to the controller, it will overload the controller’s processing capabilities
with high CPU consumption and not respond quickly to the legitimate user. For the data
plane, because the controller must install many flow entries for each spoofed flow, the flow
table of the switches with scarce resources can easily overflow [16]. In addition, these
unmatched flows would consume an excessive bandwidth of the secure channel [19]. These
limited resources will become the bottleneck of the network.

To defend against such an attack that injects and utilizes false hosts to perform mali-
cious behavior, we propose the packet injection exploiting attack defender (PIEDefender).
As a lightweight component of the SDN controller, PIEDefender comprises three modules:
Injection detection, simplified DoS detection, and flow rule management. The injection
detection module constructs and maintains the mapping information between the data
plane switch and the host. It identifies malicious hosts who inject fake hosts by verifying
information consistency. The simplified DoS detection module detects false nodes based on
OpenFlow message and flow features. The flow rule management module is responsible
for installing blocking rules against the attack source. These modules cooperate to protect
the SDN network effectively.

The contributions of this paper can be summarized as follows:

• We propose the packet injection exploiting attack against SDN. To prove the feasibility
of this attack, we carry out experiments in a software environment. The results
demonstrate that this attack can effectively affect the control plane and the data plane.

• In order to defend against the packet injection exploiting attack, we design and achieve
PIEDefender on the SDN controller. This scheme is protocol-independent and does
not require additional hardware equipment and any data plane modification.

• We evaluate the PIEDefender in the injection detection precision, DoS detection preci-
sion, and defense overhead. The results demonstrate that the PIEDefender effectively
mitigates the packet injection exploiting attack with limited overhead.

The rest of the paper is organized as follows. In Section 2, we survey the background
and related work. We demonstrate the feasibility of the packet injection exploiting attack
and analyze the consequences in Section 3. We detail the implementation of the PIEDefender
in Section 4 and performance evaluation in Section 5. Finally, we conclude our work in
Section 6.

2. Background and Related Works
2.1. Background

SDN separates the control layer from the data layer of the network and replaces the
original routing negotiation method with a centralized controller, which significantly im-
proves the efficiency and flexibility of network management and control. Figure 1 shows a
typical SDN network architecture consisting of the data plane, control plane, application
plane, southbound, and northbound interfaces. The data plane is running for forward-

Appl. Sci. 2022, 12, 1103 3 of 19

ing data packets according to specified rules or policies. The control plane maintains
the resources, global topology visibility, and status information. The application plane
interacts with the controller through the northbound application rpogramming interface
(API), facilitating the rapid advancement of services, such as network configuration and
application deployment.

Application Plane

Security

 Apps
Operator
Services

Monitoring
Apps

 Management
Apps

Vendor
Apps

Control Plane

Data Plane

SDN North Bound Interface(NBI)

 OpenFlow Switches

Controller

Network User

Network Administrator

Security Policy

NBI Agent

SDN Control Logic

CDPI Driver

Match Action

Flow Table

SDN Control-Data-Plane Interface(CDPI)

Figure 1. Software-defined networking (SDN) architecture [20].

Due to the centralized control, the topology management service in SDN is differ-
ent from a traditional network. To promote network management, the OpenFlow con-
troller maintains topology information and provides this visibility for upper-layer ser-
vices/applications [7]. In SDN, topology management mainly includes switch discovery,
host discovery, and link discovery. For host discovery, the controller tracks host location by
maintaining the Host Profile. It listens to Packet-In messages and indexes the Host Profile
to handle host mobility.

2.2. Related Works

Due to centralized control and programmability features, SDN can provide more
advanced functions, such as network monitoring, flow control, and security analysis.
Therefore, early research mainly focused on using SDN to empower traditional networks.
With the widespread application of SDN, its security problems have become increasingly
prominent, and an increasing number of scholars have researched the security of SDN from
different aspects.

For the topology security in SDN, TopoGuard [7] can automatically discover topology
poisoning attacks in real-time. However, it ignored the origin of Packet-In messages in
handling the host location hijacking attack. In [21], Hauth proposed solving the host usurp
attack. It implemented the confirmation for legal hosts by providing an authentication
server and authentication log. However, Hauth requires additional measures to ensure the
authentication server does not become damaged. In [22], the authors demonstrated the
persona hijacking, and presented SECUREBINDER, which prevented identifier binding
problems. What needs to be emphasized is that the target must be using DHCP for Persona
Hijacking to be applicable. CTAD [8] detected different topology attack types by analyzing
the relevance of network traffic and verifying link layer discovery protocol (LLDP) frames.
TrustTopo [23] as a lightweight and efficient SDN topology verification scheme, coped with

Appl. Sci. 2022, 12, 1103 4 of 19

the host hijacking and link fabrication attacks. However, this schema did not consider the
threats in the startup stage of the network.

For resource saturation attacks in SDN, the SA-Detector [9] calculated the self-similarity
of regular and abnormal traffic and analyzed the difference against saturation attacks. How-
ever, this scheme did not considered the origin of the attack during a saturation attack.
In [12], the authors described an enhanced saturation attack and proposed an efficient
defense framework named SDNGuardian. vSwitchGuard [10] aimed to identify the com-
promised switches targeted by foregone or unknown types of saturation attacks with
machine learning classifiers. However, the paper only studied five saturation attacks in the
SDN environment, and more types of attacks need to be investigated.

For the flow table security in SDN, FTGuard [11] implemented a behavior-based
priority-aware defense strategy to cope with the flow table overflow attack. WedgeTail [24]
distinguished malicious forwarding devices by computing the expected and actual trajec-
tories of packets, effectively protecting the data plane. This approach is helpful, but its
deployment in a real-world network is a challenge. The authors of [25] proposed a flow
table sharing mechanism, which effectively mitigates the damage to the normal network
caused by the flow table overloading attack. In [26], the authors proposed a quality of ser-
vice (QoS) aware mitigation mechanism, which combined all available flow table resource
to solve overloading attacks on a single switch of the system. However, due to the timeout
operation, legitimate flows faced the possibility of being denied into the network.

For research on denial of service (DoS) attacks in SDN, the authors of [27] proposed
a machine learning approach to detect a DoS attack on SDN data plane switches using
flow-table information and OpenFlow traffic. In [28], the authors build a mechanism that
monitors the network and can differentiate DoS traffic from benign traffic using entropy
in an SDN environment. Neural networks were used to detect DoS attacks in [29,30].
SDN-Guard [31] and FloodDefender [15] mitigated DoS attacks in SDN by dynamically
managing flow rules. Although they performed well in defending against DoS attacks,
they required additional hardware equipment. In addition, the BWManager [13] proposed
an innovative scheduling algorithm for a controller based on bandwidth prediction. As an
extension component of the SDN controller, DoSDedender [16] defended against DoS
attacks by maintaining the mapping relationship between switches and associated hosts.
This solution uses a threshold-based approach to detect attacks that falsify source ports,
easily leading to false positives.

This paper focuses on detecting and mitigating the packet injection exploiting attack.
We will introduce it in detail in later sections.

3. Packet Injection Exploiting Attack

This section describes the packet injection exploiting attack in the SDN environment.
We demonstrate how attackers can use injected hosts to launch DoS attacks.

3.1. Threat Model

We suppose the attacker controls at least one compromised physical or virtual host.
This hypothesis is reasonable because it is compatible with the previous work [13,17].
Besides, we also assume that the SDN controller runs in reactive mode, widely adopted by
most common controllers, such as Floodlight, Ryu, and Pox. In reactive mode, the controller
communicates with the switch over the secure channel. For example, the controller sends
instructions and installs forwarding rules to the OpenFlow switch. The switches encapsu-
late and forward unknown packets to the controller. In such a case, attackers can forge lots
of unknown packets and continuously trigger the matching action without needing more
privileges than legitimate users [16].

We describe a simple attack scenario shown in Figure 2, including an SDN controller,
an OpenFlow switch, and two compromised hosts. The OpenFlow switch forwards un-
known packets to the controller through Packet-In messages, and the controller installs flow
rules through Flow-Mod and Packet-Out messages. The attacker injects fake hosts by host A

Appl. Sci. 2022, 12, 1103 5 of 19

to generate a ghost topology and carries out DoS attacks through host B. The core attack
process includes:

(1). The attacker sends plenty of packets with forged source MAC addresses to the
SDN network through host A.

(2). When the switch receives an unknown data packet from host A, there is no
corresponding forwarding rule in the flow table. It will encapsulate the packet into a
Packet-In message and forward it to the controller.

(3). When receiving a Packet-In message from the switch, the SDN controller will
retrieve the Host Profile file. Since the attacker has spoofed the source MAC address,
as described in Section 2, the host tracking service will think a new host has joined the
network, thus adding a fake host to the SDN topology.

(4). After injecting many fake hosts, the attacker can further construct specific packets
through host B, specify the destination MAC address as a forged fake MAC address,
randomly generate the destination IP or port, and send it to the SDN network.

(5). Since the fake hosts have been added to the SDN topology, the controller will not
delete these unknown packets from host B. This is the most significant difference from the
attack by faking the destination MAC address. The controller calculates the forwarding
strategy of unknown packets and installs flow table rules to the switch.

(6). If the attacker frequently sends unknown packets through host B, it will overload
the controller’s processing capabilities and the flow table of switches. In addition, these un-
matched flows would consume excessive bandwidth of the southbound interface, and even
affect the entire network.

Attacker Host A Attacker Host B

(1). MAC spoofing

(2). Packet-In

(3). Topology update

(4). Packet-Out

Control Plane

(5). Flooding

Fake Host

Real Host

Figure 2. Attack scenario.

3.2. Threat Experiment

We conduct experiments in a software environment to verify the feasibility and effec-
tiveness of the packet injection exploiting attack. The experiment topology is simulated
by Mininet, as shown in Figure 3. We select Floodlight v1.2 as the controller, and the
southbound interface is Openflow1.3. We select h1 and h6 as attacking hosts and others
as normal network users to simulate the attack. The host h1 uses Scapy [32], a powerful
interactive packet manipulation program to inject fake hosts into the SDN network, and the
host h2 implements a DoS attack based on these fake hosts.

Next, we carry out verification from the injection of fake hosts and the implementation
of DoS attacks.

(1) Packet Injection Attack: The host h1 forges data packets and injects them into the
experimental network at a fixed rate. The source MAC address of the forged data packet is
generated using the built-in RandMAC() function of Scapy, and the destination MAC and
IP address point to the host h6. We modify the source code to output the device MAC since
Floodlight does not display additional device information intuitively. The experimental
results are shown in Figure 4. As we can see, the injected host is successfully learned by the

Appl. Sci. 2022, 12, 1103 6 of 19

device management service and added to the SDN network topology. In this way, we inject
50 non-existent devices.

Switch s3

OpenFlow

h1 h2 h3 h4 h5 h6

Switch s1 Switch s2

Host:

Controller c1

Figure 3. Environment setup.

Figure 4. Floodlight with injection attack.

(2) DoS Attack: Since the attacker knows the fake hosts, they can use them to im-
plement a denial-of-service attack by constructing specific packets on the host h6. These
packets have two characteristics: (1) The destination MAC points to the MAC address of
any injected host and (2) the randomly generated IP address and port number. It should be
emphasized that there are two main reasons why we call it DoS instead of DDoS. On the
one hand, these injected hosts are non-existent. Their topological location is related to
the host that launched the injection attack, and they share the same bandwidth resources.
On the other hand, neither the attack’s power, scale, or destructiveness is the same as DDoS.

When the switch receives the attack packets from the host h6, there is no corresponding
processing rule in the flow table, and it will forward them to the controller by Packet-In
messages. Since the injected fake host has been added to the SDN network topology,
the controller will calculate and install the forwarding strategy without discarding the
packets associated with them. This is the main difference with the forging destination MAC
address attack. We evaluated the attack’s impact from the two aspects of controller CPU
utilization and switch flow table occupancy. At the same time, we compared the forging
destination MAC address attack to illustrate the difference between the two.

Attack impact on the SDN controller: We measured the controller CPU usage using
the Psutil library [33] under different conditions. Figure 5a–c respectively represent the

Appl. Sci. 2022, 12, 1103 7 of 19

impact on the controller CPU under the normal network status, the forging destination
MAC address attack, and the packet injection exploiting attack. As shown in Figure 5a,b,
the controller CPU consumption under the forging destination MAC address attack is the
same as the normal network state. This is because the manipulated MAC address does
not exist in the SDN network topology, and the controller discards the packets without
making a decision. As we can see from Figure 5c, the CPU utilization rate rises significantly
under the packet injection exploiting attack. The main reason is that all manipulated
hosts have been injected into the SDN topology, and the controller will compute routes for
unmatched packets about them. Thus the controller load increases sharply due to frequent
decision-making.

0 20 40 60 80 100
0

20

40

60

80

100

C
PU

 (%
)

Time (s)

 Normal

(a)

0 20 40 60 80 100
0

20

40

60

80

100

C
PU

 (%
)

Time (s)

 Spoofing Destination MAC

(b)

0 20 40 60 80 100
0

20

40

60

80

100

C
PU

 (%
)

Time (s)

 Injection

(c)

Figure 5. Attack impact on controller CPU usage. (a) Normal. (b) Spoofing Destination MAC.
(c) Injection.

Attack impact on OpenFlow switch: We counted the occupancy of the switch flow
table under different conditions, and the results are shown in Figure 6. As mentioned above,
when an attacker implements the forging destination MAC address attack, the controller
will delete unmatched packets. Since no more flow entries are installed, the flow table
occupancy under the forging destination MAC attack is similar to the normal network state,
as shown in Figure 6a,b. Figure 6c shows the occupancy of the flow table under the packet
injection exploiting attack. As we can see, the number of flow table entries increases rapidly,
reaching a maximum of 800. This is because the controller calculates the forwarding path
for unmatched packets and installs plenty of flow rules.

0 20 40 60 80 100
0

200

400

600

800

TC
AM

Time (s)

 Normal

(a)

0 20 40 60 80 100
0

200

400

600

800

TC
AM

Time (s)

 Spoofing Destination MAC

(b)

0 20 40 60 80 100
0

200

400

600

800

TC
AM

Time (s)

 Injection

(c)

Figure 6. Attack impact on OpenFlow switch. (a) Normal. (b) Spoofing Destination MAC.
(c) Injection.

4. Countermeasures
4.1. System Architecture

The PIEDefender stands between the controller platform and other controller apps,
as depicted in Figure 7. It includes three function modules: Injection detection, simplified
DoS detection, and flow rule management. The injection detection module builds and
maintains the mapping relationship between the switches and the hosts, and it identi-
fies malicious hosts with injection behaviors by verifying the consistency of information.
The simplified DoS detection module utilizes OpenFlow message and flows features to

Appl. Sci. 2022, 12, 1103 8 of 19

detect hosts that use injected hosts to carry out a DoS attack. Once a malicious node is
detected, the injection detection module and simplified DoS detection module will give
the threat information to the FlowRule Management module, which installs blocking rules
against the attack source, effectively protecting the SDN network.

Control Plane

Flow Rule

Management

Linkdiscovery Topology Manager Other APP......

Simplied

DoS Detection

Injection

Detection

Data Plane

OpenFlow

P
IE

D
e
fe

n
d
e
r

Figure 7. Architecture of the packet injection exploiting attack defender (PIEDefender).

For better understanding, we use Table 1 to show the meanings of major notations.
Next, we will introduce the functions of each module in detail.

Table 1. Notations.

Notations Definition

S Switches in the network
sj Switch j
hi Host i

maci MAC address of hi
dpidi DPID of of sj
portij Port which connected from hi to sj
MT Mapping table of switches and hosts

interval Time interval
PINum Number of Packet-In messages

PMNum Number of Packet-Mod messages
IFNum Number of irreversible flows

FlowNum Number of flows
Flowi The ith flow
TPN Threshold of packets number

PacketsNumi Total packets of ith flow
TFL Threshold of flow lifetime

Li f etimei Lifetime of ith flow

4.2. Injection Detection

Attackers can easily inject fake hosts by maliciously injecting manipulated packets into
SDN. The injection detection module monitors and implements the verification of Packet-In
messages and OFPT_PORT_STATUS messages to detect this attack. By verifying the Packet-
In message, it is possible to find whether an injection attack occurs. By ascertaining the
OFPT_PORT_STATUS message, it is possible to track host location changes dynamically
and prevent attackers from bypassing the static matching strategy.

(1) Packet-In Message Verification: The injection detection module constructs and
maintains the mapping table MT between the switch and the host connected. Each mapping
entry in MT is composed of maci, dpidj, and portij. Among them, maci represents the
MAC address of host hi, dpidj represents the DPID (datapath ID) of switch sj, and portij
represents the port number where host hi is connected to switch sj. The verification process

Appl. Sci. 2022, 12, 1103 9 of 19

is shown in Algorithm 1. When receiving a Packet-In message from switch sj, the injection
detection module first extracts mac, dpid, and port. Then according to dpid and port,
it queries maci from MT. It needs to be emphasized that the compromised target for the
packet injection exploiting attack is the host, not the switch. Since the switch generates
the Packet-In message, the dpid and port where the host connects to the switch are factual
information, and the attacker spoofed only the host’s mac address. There are three cases in
the verification process.

Case 1: There is no entry found in MT.
For this case, we consider a new host to join the network or migrate to a new loca-

tion. We will create a new entry in MT and forward the message to subsequent modules
for processing.

Case 2: There is an entry in MT, and the maci and mac are the same.
For this case, we think that the Packet-In message is legal and then forward it to the

next module for processing. The reason is that the host’s identification has been consistent
since joining the network.

Case 3: There is an entry in MT, but the maci is different from mac.
For this case, we consider that an injection attack occurs and then forwards the

malicious host information to the flow Rule management module. We agree that the host
information may change. For example, a host location migrates, or the network user
changes the host mac address. The latest mapping information will be stored in MT if it
is a regular migration after passing port-status message verification. Therefore, we have
strong reasons to believe that an attack occurs when the information is inconsistent.

Algorithm 1 Packet-In Message Verification
Input: S: set of switches, MT: mapping table

1: For ∀sj ∈ S:
2: Listening Packet-In message from sj

3: Extract mac, dpid, port from Packet-In message
4: Get maci from MT by dpid and port
5: If maci not exist in MT:
6: Set maci=mac and add to MT
7: Forwarding and Continue
8: Else If maci == mac:
9: Forwarding and Continue

10: Else: Report entry to flow rule management
11: End For

(2) Port-Status Message Verification: Inspired by the DoSDefender [16], the injection
detection module monitors the OFPT_PORT_STATUS message to realize the dynamic
management of the mapping information between the switch and connected hosts. This
is because when a host location migrates or the status of a switch port changes, the con-
troller receives an OFPT_PORT_STATUS message. The entry containing the corresponding
switch and host will be deleted simultaneously based on this message. However, since the
OFPT_PORT_STATUS message can be actively triggered (such as restarting the network
service), only through this message to manage MT has the risk of being bypassed. For ex-
ample, we assume a compromised host h1, whose MAC address is m1. The attacker can
bypass the defense in two steps.

Step 1: The attacker actively triggers the OFPT_PORT_STATUS message, causing the
defense mechanism to delete the mapping entries related to h1.

Step 2: The attacker sends crafted packets with spoofing mac address m2 to trigger
Packet-In messages. When receiving a Packet-In messages, the defense mechanism will
create a new entry related to h1, whose mac is m2.

Appl. Sci. 2022, 12, 1103 10 of 19

In the whole process, we can see that the mac address of h1 has not changed, but a
fake host with mac address m2 has been successfully injected into the network.

For the above reason, the injection detection module implements the legality verifi-
cation, as shown in Algorithm 2. The primary idea is that if a host’s mapping is updated,
the address information should be consistent with the latest mapping in its subsequent
packets. After receiving the OFPT_PORT_STATUS message, it creates a temporary map-
ping table MT’ to store the switch and host information in the subsequent related Packet-In
messages. If MT’ contains only one mapping entry when the Packet-In messages reach the
set threshold, it indicates that the message is legal and updates the MT. Before reaching
the threshold, the original mapping entry in the MT will not be deleted. Otherwise, it is
considered that the OFPT_PORT_STATUS message is illegal and forwards host information
to the flow rule management module.

Algorithm 2 Port-Status Message Verification
Input: S: set of switches, MT: mapping table,

counter: packet-in message verify threshold

1: For ∀sj ∈ S:
2: Listening oftp_port_status message from sj

3: Construct temporary mapping table MT′

4: For i = 1 to counter:
5: Listening packet-in message from sj

6: Extract mac, dpid, port from packet-in message
7: Encapsulate mapping entry which key is mac and value is dpid and port and insert to

MT′

8: End For
9: If MT′ only contains one mapping entry:

10: Update MT by the mac, dpid, and port
11: Else: Report entry to flow rule management
12: End For

4.3. Simplified DoS Detection

The injection detection module authenticates the Packet-In and OFPT_PORT_STATUS
messages and realizes the detection of injection attacks. However, the detection accuracy is
related to the threshold setting, and there is still the possibility of successful injection. There-
fore, PIEDefender implements the simplified DoS detection module to detect malicious
hosts that conduct DoS attacks based on injected hosts.

The attacker only needs to construct specific packets with MAC addresses pointing to
these injected hosts and randomly forge the IP and port, and they can generate numbers of
new flows soon. In this way, these unmatched flows would overload the flow table of the
switches and excessively consume the controller CPU and the secure channel bandwidth.
We extracted the five-tuple as the feature vector to indicate whether the attack occurred by
comprehensively analyzing the attack method and the effect. The detailed description and
judgment methods are as follows.

(1) Rate of Packet-In messages (RPI)
When a DoS attack occurs, the switch will frequently request the controller via Packet-In

messages, increasing the message rate significantly. Therefore, we take the rate of Packet-In
messages (RPI) as an essential parameter to identify the occurrence of an attack and use
the following formula for calculation:

RPI =
PINum
interval

(1)

Appl. Sci. 2022, 12, 1103 11 of 19

where PINum denotes the sum number of Packet-In messages, and interval indicates the
time interval.

(2) Rate of Flow-Mod messages (RFM)
When an attacker launches a DoS attack, the controller must install some flow entries

via Flow-Mod messages to establish routes for spoofed flows, increasing the message rate
significantly. Therefore, the rate of Flow-Mod messages is an essential characteristic to
distinguish attack traffic. The equation of RFM is as follow:

RFM =
FMNum
interval

(2)

where FMNum denotes the sum number of Flow-Mod messages.
(3) Percentage of irreversible flows (PIRF)
We define that the two flows f lowx and f lowy are irreversible if they satisfy any of the

following conditions:

• SrcIP(f lowx) 6= DstIP(f lowy);
• DstIP(f lowx) 6= SrcIP(f lowy);
• SrcPort(f lowx) 6= DstPort(f lowy);
• DstPort(f lowx) 6= SrcPort(f lowy).

An attacker sends false packets to implement DoS attacks, only to ensure that the
MAC addresses of the packets point to injected hosts and randomly generate IP addresses
and ports number. In this case, they cannot establish a complete two-way connection with
the target. Thus, the percentage of irreversible flows (PIRF) sharply increases during the
attack and use the following formula for calculation:

PIRF =
IFNum

FlowNum
(3)

where IFNum denotes the number of irreversible flows, and FlowNum denotes the sum
number of flows.

(4) Percentage of flows with small packets (PFSP)
A DoS attack usually generates plenty of new flows with a high rate, and the number

of packets in each flow is minor (e.g., about 1∼3 packets per flow) [13]. Therefore, we can
select the percentage of flows with small packets to reveal attack severity. The equation of
PFSP is as follow:

PFSP =

FlowNum
∑
i

Flowi(PacketsNumi < TPN)

FlowNum
(4)

where Flowi is the ith flow, PacketsNumi denotes the packets number of ith flow, and TPN
is a threshold value.

(5) Percentage of flows with a short lifetime (PFSL)
Since most attack packets with the same information appear only once, corresponding

flow rules installed by the controller will not stay for a long time before timeout. When
a DoS attack occurs, massive invalid packets make the percentage of flows with a short
lifetime increases. The equation of PFSL is as follows:

PFSL =

FlowNum
∑
i

Flowi(Li f etimei < TFL)

FlowNum
(5)

where Li f etimei represents the duration of the flow rule for ith flow and TFL denotes the
threshold value of a time duration.

The DoS detection module implements a detection scheme based on machine learning
(ML) using the above five-tuple feature. At present, ML has become an effective technology

Appl. Sci. 2022, 12, 1103 12 of 19

to provide system security and is widely used [14,15,27,34]. Unlike traditional solutions,
ML enables the network to identify attacks automatically. It can not only detect known
attacks but also identify unknown threats. At the same time, considering the number of
features, complexity, etc., we use support vector machine (SVM) as the classifier. SVM
is a robust supervised learning method used for classification, regression, and outliers
detection, being little affected by noisy data.

The simplified attack detection mechanism is shown in Algorithm 3. When the
classification result indicates that an attack occurs, it will notify the injection detection and
flow rule management modules. The injection detection will clear and rebuild the MT,
and the flow rule management module installs blocking rules to prevent malicious traffic
from entering the SDN network.

Algorithm 3 Attack Detection
Input: S: set of switches, H: set of hosts,

∆TI: time interval,
∆PN: packets number threshold of per flow,
∆FL: lifetime threshold of per flow

Output: SV: set of vulnerable hosts
1: Initialize SV = ∅ and store vulnerable hosts
2: For each switch sj in S:
3: Collect dataset ds in TTI time window based on sj
4: End For
5: For each host hi in H:
6: Extract dataset dsi about hi from ds
7: Compute f eaturei based on dsi, ∆TI, ∆PN, ∆FL
8: Detect attack with Classifier and f eaturei
9: If detection result is ATTACK:

10: Add the vulnerable host hi to SV
11: End For

4.4. Flow Rule Management

The flow rule management module receives notice from the injection detection module
and the simplified DoS detection module. It extracts the compromised host and installs
flow rules to the switch connected to block and removes malicious traffic. As described in
OpenFlow specification 1.3, any packet that matches the flow rule will be dropped [35] if no
action is specified in a flow entry. Thus, the flow rule management module can construct a
Flow-Mod message with no output action and can send it to the specified switch to remove
the flows.

5. Evaluation

This section implements PIEDefender and evaluates its performance and defense
overhead in software environments.

5.1. Environment

Experimental Setup: The experimental topology is shown in Figure 3, simulated
by Mininet, using the OpenFlow1.3 protocol as the southbound interface, running on an
Ubuntu virtual machine with an Intel Core i5-8400 2.80 GHz CPU and 8 GB of memory.
We select h1 and h6 as attackers. The h1 is responsible for launching the packet injection
attack, and h6 implements DoS attacks based on injected hosts. Based on this, we evaluate
the performance and overhead of the PIEDefender.

Parameters Setting: To evaluate the injection detection module, we capture 1 h of
normal traffic and count the changes in the number of data packets in each flow. After com-
prehensively considering the verification efficiency and effect, we set the threshold counter

Appl. Sci. 2022, 12, 1103 13 of 19

of the OFPT_PORT_STATUS message verification process to 8. We can change the value by
evaluating the actual network state.

Dataset: To evaluate the simplified DoS detection module, we generate a data set in
the environment mentioned above. Through the training sample generation, we collect
30,000 traffic, including 16,925 normal traffic and 13,075 attacks traffic.

5.2. Evaluation

We evaluate the effectiveness and performance of PIEDefender from the following
aspects: (1) Injection detection effect, (2) DoS detection effect, (3) defense effect on the SDN
controller, (4) defense effect on OpenFlow switch, and (5) defense overhead.

Injection detection effect: We evaluate the injection detection effect of the PIEDe-
fender by comparing the number of injected and detected hosts and compare with Pack-
etChecker [17] and DoSDefender [16]. Figure 8a shows the number of injected hosts
successfully discovered. As we can see, PacketChecker can find all injected hosts than
PIEDefender because it assumes that the host’s MAC address in the data plane will not
change. On the one hand, we think this assumption is too strict to some extent. On the other
hand, this mechanism cannot distinguish between malicious and non-malicious behavior.
The malicious injection has apparent intent to attack, and the purpose is to generate many
puppet hosts in the SDN network topology. Otherwise, we consider it as non-malicious
behavior. Figure 8b depicts the detection precision and the average detection precision of
PacketChecker, DoSDefender, and PIEDefender to be 96.4%, 96.9%, and 97.8%, respectively.
It can be seen that the PIEDefender are less affected by the injection scale, and the detection
performance is more stable. Although DoSDefender tracks host location migration through
OFPT_PORT_STATUS messages, the defense mechanism can be easily bypassed due to the
lack of message verification. The PIEDefender uses the threshold to verify the legality of
OFPT_PORT_STATUS messages, preventing attackers from bypassing to a certain extent.
Therefore, considering the applicability, stability, and precision, the PIEDefender is superior
to other solutions.

50 100 150 200 250 300
0

50

100

150

200

250

300

De
tec

ion
 H

ost
s

Injection Hosts

 PacketChecker
 DoSDefender
 PIEDefender

(a)

50 100 150 200 250 300
92

94

96

98

100

Pr
eci

sio
n(%

)

Injection Hosts

 PacketChecker PIEDefender DoSDefender

(b)

Figure 8. Comparison of injection detection. (a) Detection hosts. (b) Detection precision.

DoS detection effect: As mentioned in Section 4.3, we use SVM as the classifier.
To prove that SVM is more suitable for our experimental environment and scenarios,
we first compared with other classification and clustering algorithms commonly used in
anomaly detection, including k-Nearest Neighbors (KNN), Random Forest, Decision Tree,
K-means, and BayesNet. As a comparison, we use the F1 score, precision, and recall to
evaluate the performance of different algorithms and schemes, as shown in Equations (6)–
(8). In Equations (6) and (7):

(1) TP: The number of true positives means the classification of the simplified DoS
detection module is correct, and an attack occurs.

(2) FP: The number of false positives means the classification of the simplified DoS
detection module is incorrect and that no attack occurs.

(3) FN: The number of false negatives, which means the classification of the simplified
DoS detection module is incorrect, and an attack occurs.

Precision =
TP

TP + FP
(6)

Appl. Sci. 2022, 12, 1103 14 of 19

Recall =
TP

TP + FN
(7)

F1 score = 2 · Recall · Precision
Recall + Precision

. (8)

The results is shown in Table 2. As we can see, the SVM algorithm is superior to
other detection algorithms in terms of precision, recall, and F1 score for this paper’s data
and features.

Next, we compare with other proposed solutions in the same environment, including
the entropy-based detection method [28], Detpro, and DoSDefender. Detpro uses machine
learning methods for detection, and DoSDefender is a static detection solution. We ran-
domly selected the attacker and the timing of the attack, and the evaluated result is shown
in Table 3. As we can see, the attack detection accuracy of PIEDefender is superior to
the others.

Table 2. Results of different detection algorithms.

Algorithm Precision Recall F1 Score

KNN 94% 94% 94%
SVM 98% 98% 98%

KMeans 96% 96% 96%
BayesNet 95.92% 94% 94.95%

DecisionTree 96.08% 98% 97.03%
RandomForest 90% 90% 90%

Table 3. Results of different detection solutions.

Solution Precision Recall F1 Score

Entropy-based 93.88% 92% 92.93%
Detpro 97.92% 94% 95.92%

DoSDefender 95.92% 94% 94.95%
PIEDefender 97.96% 96% 96.97%

Defense effect on SDN controller: We utilize controller CPU utilization to evaluate
the protection on the control plane with the PIEDefender. Figure 9a–d represent the CPU
utilization under the injection of a different numbers of hosts. As we can see, the controller
CPU usage sharply increases without the PIEDefender when attacks start. It is because
the controller needs to handle lots of Packet-In requests, and its CPU processing power
becomes less available. Since the PIEDefender can effectively detect attacks and install
rules to drop malicious traffic without being forwarded to the controller, the controller CPU
utilization remained normal before and after the attack under the protection of PIEDefender.
At the same time, comparing the experimental results under different injection amounts,
PIEDefender has a stable defense ability on controller CPU utilization. In summary, all
results show that the PIEDefender can protect SDN controllers effectively.

Defense effect on OpenFlow switch: We measure the number of flow table entries to
evaluate the protection on the data plane with the PIEDefender. Figure 10a–d represent
the flow table occupation under the injection of different numbers of hosts. As we can see,
when the attack starts without the PIEDefender, the number of flow entries of the switch
increases rapidly. It is because the controller does not validate the Packet-In messages and
installs rules for malicious packets. Since PIEDefender can quickly detect attacks and drop
malicious traffic, the number of flow entries changes steadily without a surge. At the same
time, comparing the experimental results under different injection amounts, PIEDefender
has a stable defense ability on the switch flow table. In summary, all results indicate that
the PIEDefender can effectively protect the data plane.

Appl. Sci. 2022, 12, 1103 15 of 19

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

CP
U

Ut
iliz

ati
on

 (%
)

Time (s)

 With PIEDefender Without PIEDefneder

(a)

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

CP
U

Ut
iliz

ati
on

 (%
)

Time (s)

 Without PIEDefneder With PIEDefender

(b)

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

CP
U

Ut
iliz

ati
on

 (%
)

Time (s)

 Without PIEDefneder With PIEDefender

(c)

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

CP
U

Ut
iliz

ati
on

 (%
)

Time (s)

 Without PIEDefneder With PIEDefender

(d)

Figure 9. Comparison of controller CPU utilization with and without PIEDefender. (a) 50 hosts.
(b) 100 hosts. (c) 150 hosts. (d) 200 hosts.

0 20 40 60 80 100
0

100

200

300

400

500

600

700

800

900

1000

TC
AM

 U
tili

zat
ion

Time (s)

 Without PIEDefender With PIEDefender

(a)

0 20 40 60 80 100
0

100

200

300

400

500

600

700

800

900

1000

TC
AM

 U
tili

zat
ion

Time (s)

 Without PIEDefender With PIEDefender

(b)

0 20 40 60 80 100
0

100

200

300

400

500

600

700

800

900

1000

TC
AM

 U
tili

zat
ion

Time (s)

 Without PIEDefender With PIEDefender

(c)

0 20 40 60 80 100
0

100

200

300

400

500

600

700

800

900

1000

TC
AM

 U
tili

zat
ion

Time (s)

 Without PIEDefender With PIEDefender

(d)

Figure 10. Comparison of switch ternary content addressable memory (TCAM) utilization with and
without PIEDefender. (a) 50 hosts. (b) 100 hosts. (c) 150 hosts. (d) 200 hosts.

Defence overhead: We measured the CPU and memory resource consumption of
PIEDefender with and without attacks to evaluate the defend overhead. The test time was
the 60 s, and the attack started in 15 s.

Figure 11a depicts the change in CPU utilization. As we can see, with no attacks,
the controller CPU utilization changes smoothly without significant fluctuations. It is
mainly related to the implementation of the PIEDefender. On the one hand, the injection
detection module uses the hashmap to manage mapping entries, and the complexity of
the message verification function is O(1). On the other hand, we have pre-trained the
attack detection model and no training process is required after deployment. With attacks,
the discovery and detection of malicious hosts require a specific period. As a result,
the CPU consumption increases gradually, peaking at 24%. After completing detection,
the PIEDefender installs flow rules to discard malicious traffic. Thus, CPU consumption
decreases and levels off.

Appl. Sci. 2022, 12, 1103 16 of 19

Figure 11b shows the shift in memory utilization. Since the verification function needs
to store the mapping relationship between switches and hosts, it will bring some storage
overhead. However this is minimal, especially when no attack occurs. There was an
approximate 4% increase in memory utilization with attacks. This is because the Port-Status
message verification needs to store a copy mapping information temporarily, but the impact
of this consumption is negligible.

In conclusion, the experimental results demonstrate that the defense overhead of
PIEDefender is acceptable.

0 10 20 30 40 50 60

8

12

16

20

24

CP
U

(%
)

Time (s)

 With Attacks
 Without Attacks

(a)

0 10 20 30 40 50 60

6

8

10

12

14

Me
mo

ry
(%

)

Time (s)

 With Attacks
 Without Attacks

(b)

Figure 11. Defence overhead of PIEDefender. (a) CPU. (b) Memory.

From the above results, we can conclude that the PIEDefender can prevent the packet
injection exploiting attack on the control plane and data plane of the SDN network with
limited overhead.

Further discussion: We demonstrate that the PIEDefender is effective for mitigating
the packet injection exploiting attack. However, it is questionable whether the PIEDefender
is useful against other common attacks in SDN. Therefore, we further discuss its applicabil-
ity. For a certain kind of attack, we think the PIEDefender is applicable if it can, or after
extending, defend. Otherwise, it is not applicable. The result is shown in Table 4.

Table 4. Applicability of PIEDefender.

Attack Related Works Applicable Not Applicable

Flow table overflow attack [11,36–38] X
Flow rule conflict [39–42] X
Packet injection attack [16,17] X
Fingerprinting attack [43–47] X
Topology poisoning attack [7,23,48] X
Saturation attack [10,12,49–51] X
New-flow based DoS attack [1,16] X
Low-rate DoS attack [20,52–55] X

PIEDefender constructs and maintains the mapping table between switches and hosts
connected. Since having the latest global topology status, in addition to detecting malicious
injection behaviors, PIEDefender can quickly identify malicious hosts and topology attacks
with legitimate network configuration information. That is to say that the PIEDefender is
beneficial for preventing topology poisoning attacks and packet injection attacks. Besides,
PIEDefender utilizes OpenFlow message and flows features to detect hosts which use
injected hosts to carry out a DoS attack. These characteristics are compatible with general
high-rate DoS attacks. They will increase the messages rate and generate many flows
quickly, like the saturation attack, the flow table overflow attack, and the new flow-based
DoS attack. However, the PIEDefender has limitations in defending against other attacks,
such as fingerprinting and low-rate DoS attacks. We will focus on these attacks in the future.

Appl. Sci. 2022, 12, 1103 17 of 19

6. Conclusions

In this paper, we proposed a new attack that exploits OpenFlow protocol vulnera-
bilities, named the packet injection exploiting attack. We proved the possibility of the
attack through experiments and assessed its impact. In order to protect against the packet
injection exploiting attack, we designed PIEDefender, an efficient, protocol-independent
component to detect and mitigate attacks effectively. We implementeded the PIEDefender
prototype in the Floodlight controller and evaluated the effectiveness in the software en-
vironment. The evaluation shows that PIEDefender could effectively mitigate the packet
injection exploiting attack against SDN with limited overhead. However, our research is
inapplicable to wireless networks. This is because all hosts connect through the access point
(AP) in a wireless network, and the AP is a single port. In this case, the proposed injection
detection mechanism will fail because we cannot effectively identify every terminal. We
will consider more scenarios to make our scheme more universal in future work.

Author Contributions: Conceptualization, J.L.; methodology, J.L.; software, J.L.; validation, J.L., H.Z.,
and Y.L.; formal analysis, J.L. and T.T.; investigation, J.L. and S.Q.; resources, S.Q., T.T. and H.Z; data
curation, J.L. and S.Q.; writing—original draft preparation, J.L.; writing—review and editing, S.Q.
and T.T.; visualization, J.L., H.Z. and Y.L.; supervision, H.Z. and Y.L.; project administration, S.Q. and
T.T.; funding acquisition, S.Q. and T.T. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Singh, M.P.; Bhandari, A. New-flow based DDoS attacks in SDN: Taxonomy, rationales, and research challenges. Comput.

Commun. 2020, 154, 509–527. [CrossRef]
2. Shu, Z.; Wan, J.; Li, D.; Lin, J.; Vasilakos, A.V.; Imran, M.A. Security in Software-Defined Networking: Threats and Countermea-

sures. Mob. Netw. Appl. 2016, 21, 764–776. [CrossRef]
3. Bera, S.; Misra, S.; Vasilakos, A.V. Software-Defined Networking for Internet of Things: A Survey. IEEE Internet Things J. 2017,

4, 1994–2008. [CrossRef]
4. Rawat, D.B.; Reddy, S.R. Software defined networking architecture, security and energy efficiency: A survey. IEEE Commun. Surv.

Tutor. 2016, 19, 325–346. [CrossRef]
5. Kalkan, K.; Gur, G.; Alagoz, F. Defense mechanisms against DDoS attacks in SDN environment. IEEE Commun. Mag. 2017,

55, 175–179. [CrossRef]
6. Yang, H.; Yuan, J.; Li, C.; Zhao, G.; Sun, Z.; Yao, Q.; Bao, B.; Vasilakos, A.V.; Zhang, J. BrainIoT: Brain-Like Productive Services

Provisioning with Federated Learning in Industrial IoT. IEEE Internet Things J. 2021. [CrossRef]
7. Hong, S.; Xu, L.; Wang, H.; Gu, G. Poisoning network visibility in software-defined networks: New attacks and countermeasures.

Ndss 2015, 15, 8–11.
8. Chou, L.D.; Liu, C.C.; Lai, M.S.; Chiu, K.C.; Tu, H.H.; Su, S.; Lai, C.L.; Yen, C.K.; Tsai, W.H. Behavior anomaly detection in SDN

control plane: A case study of topology discovery attacks. In Proceedings of the 2019 International Conference on Information
and Communication Technology Convergence (ICTC), Jeju Island, Korea, 16–18 October 2019; pp. 357–362.

9. Li, Z.; Xing, W.; Khamaiseh, S.; Xu, D. Detecting saturation attacks based on self-similarity of openflow traffic. IEEE Trans. Netw.
Serv. Manag. 2019, 17, 607–621. [CrossRef]

10. Khamaiseh, S.; Serra, E.; Xu, D. vswitchguard: Defending openflow switches against saturation attacks. In Proceedings of
the 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC), Madrid, Spain, 13–17 July 2020;
pp. 851–860.

11. Zhang, M.; Bi, J.; Bai, J.; Dong, Z.; Li, Y.; Li, Z. Ftguard: A priority-aware strategy against the flow table overflow attack in sdn. In
Proceedings of the SIGCOMM Posters and Demos, Los Angeles, CA, USA, 21–25 August 2017; pp. 141–143.

12. Xu, J.; Wang, L.; Xu, Z. An enhanced saturation attack and its mitigation mechanism in software-defined networking. Comput.
Netw. 2020, 169, 107092. [CrossRef]

13. Wang, T.; Guo, Z.; Chen, H.; Liu, W. BWManager: Mitigating denial of service attacks in software-defined networks through
bandwidth prediction. IEEE Trans. Netw. Serv. Manag. 2018, 15, 1235–1248. [CrossRef]

http://doi.org/10.1016/j.comcom.2020.02.085
http://dx.doi.org/10.1007/s11036-016-0676-x
http://dx.doi.org/10.1109/JIOT.2017.2746186
http://dx.doi.org/10.1109/COMST.2016.2618874
http://dx.doi.org/10.1109/MCOM.2017.1600970
http://dx.doi.org/10.1109/JIOT.2021.3089334
http://dx.doi.org/10.1109/TNSM.2019.2959268
http://dx.doi.org/10.1016/j.comnet.2019.107092
http://dx.doi.org/10.1109/TNSM.2018.2873639

Appl. Sci. 2022, 12, 1103 18 of 19

14. Chen, Y.; Pei, J.; Li, D. Detpro: A high-efficiency and low-latency system against ddos attacks in sdn based on decision tree. In
Proceedings of the ICC 2019—2019 IEEE International Conference on Communications (ICC), Shanghai, China, 22–24 May 2019;
pp. 1–6.

15. Shang, G.; Zhe, P.; Bin, X.; Aiqun, H.; Kui, R. FloodDefender: Protecting data and control plane resources under SDN-aimed DoS
attacks. In Proceedings of the IEEE INFOCOM 2017—IEEE Conference on Computer Communications, Atlanta, GA, USA, 1–4
May 2017; pp. 1–9.

16. Deng, S.; Gao, X.; Lu, Z.; Li, Z.; Gao, X. DoS vulnerabilities and mitigation strategies in software-defined networks. J. Netw.
Comput. Appl. 2019, 125, 209–219. [CrossRef]

17. Deng, S.; Gao, X.; Lu, Z.; Gao, X. Packet injection attack and its defense in software-defined networks. IEEE Trans. Inf. Forensics
Secur. 2017, 13, 695–705. [CrossRef]

18. Alshra’A, A.S.; Seitz, J. Using inspector device to stop packet injection attack in SDN. IEEE Commun. Lett. 2019, 23, 1174–1177.
[CrossRef]

19. Ni, J.; Zhang, K.; Vasilakos, A.V. Security and Privacy for Mobile Edge Caching: Challenges and Solutions. IEEE Wirel. Commun.
2021, 28, 77–83. [CrossRef]

20. Tang, D.; Zhang, S.; Yan, Y.; Chen, J.; Qin, Z. Real-time Detection and Mitigation of LDoS Attacks in the SDN Using the HGB-FP
Algorithm. IEEE Trans. Serv. Comput. 2021. [CrossRef]

21. Xin, W.; Neng, G.; Zhang, L.C. Hauth: A Novel Approach for Network Visibility Protection. In Proceedings of the International
Conference on Computer Networks and Communication Technology (CNCT 2016), Xiamen, China, 16–18 December 2016;
Atlantis Press: Amsterdam, The Netherlands, 2016; pp. 128–136.

22. Jero, S.; Koch, W.; Skowyra, R.; Okhravi, H.; Nita-Rotaru, C.; Bigelow, D. Identifier binding attacks and defenses in software-
defined networks. In Proceedings of the 26th USENIX Security Symposium (USENIX Security 17), Vancouver, BC, Canada, 16–18
August 2017; pp. 415–432.

23. Huang, X.; Shi, P.; Liu, Y.; Xu, F. Towards trusted and efficient SDN topology discovery: A lightweight topology verification
scheme. Comput. Netw. 2020, 170, 107119. [CrossRef]

24. Shaghaghi, A.; Kaafar, M.A.; Jha, S. Wedgetail: An intrusion prevention system for the data plane of software defined networks.
In Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, Abu Dhabi, United Arab
Emirates, 2–6 April 2017; pp. 849–861.

25. Siyi, Q.; Chengchen, H.; Hao, L.; others. A mechanism of taming the flow table overflow in OpenFlow switch. Chin. J. Comput.
2018, 41, 2003–2015.

26. Yuan, B.; Zou, D.; Yu, S.; Jin, H.; Qiang, W.; Shen, J. Defending against flow table overloading attack in software-defined networks.
IEEE Trans. Serv. Comput. 2016, 12, 231–246. [CrossRef]

27. Abhiroop, T.; Babu, S.; Manoj, B. A machine learning approach for detecting DoS attacks in SDN switches. In Proceedings of the
2018 Twenty Fourth National Conference on Communications (NCC), Hyderabad, India, 25–28 February 2018; pp. 1–6.

28. Carvalho, R.N.; Bordim, J.L.; Alchieri, E.A.P. Entropy-based DoS attack identification in SDN. In Proceedings of the 2019 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Rio de Janeiro, Brazil, 20–24 May 2019;
pp. 627–634.

29. De Assis, M.V.; Novaes, M.P.; Zerbini, C.B.; Carvalho, L.F.; Abrãao, T.; Proença, M.L. Fast defense system against attacks in
software defined networks. IEEE Access 2018, 6, 69620–69639. [CrossRef]

30. Arivudainambi, D.; KA, V.K.; Chakkaravarthy, S.S. LION IDS: A meta-heuristics approach to detect DDoS attacks against
Software-Defined Networks. Neural Comput. Appl. 2019, 31, 1491–1501. [CrossRef]

31. Dridi, L.; Zhani, M.F. SDN-guard: DoS attacks mitigation in SDN networks. In Proceedings of the 2016 5th IEEE International
Conference on Cloud Networking (Cloudnet), Pisa, Italy, 3–5 October 2016; pp. 212–217.

32. Scapy Projec. Available online: https://scapy.net/ (accessed on 20 October 2021).
33. Psutil. Available online: https://pypi.org/project/psutil/ (accessed on 20 October 2021).
34. Dibaei, M.; Zheng, X.; Xia, Y.; Xu, X.; Jolfaei, A.; Bashir, A.K.; Tariq, U.; Yu, D.; Vasilakos, A.V. Investigating the Prospect of

Leveraging Blockchain and Machine Learning to Secure Vehicular Networks: A Survey. IEEE Trans. Intell. Transp. Syst. 2021,
1–18. [CrossRef]

35. Specifications. Available online: https://opennetworking.org/software-defined-standards/specifications/ (accessed on 20
October 2021).

36. Noh, S.; Kang, M.J.; Park, M. Protection against Flow Table Overflow Attack in Software Defined Networks. In Proceedings of
the 2021 International Conference on Information Networking (ICOIN), Jeju Island, Korea, 13–16 January 2021; pp. 486–490.

37. Soylu, M.; Guillen, L.; Izumi, S.; Abe, T.; Suganuma, T. NFV-GUARD: Mitigating Flow Table-Overflow Attacks in SDN Using
NFV. In Proceedings of the 2021 IEEE 7th International Conference on Network Softwarization (NetSoft), Tokyo, Japan, 27 June–1
July 2021; pp. 263–267.

38. Zhao, X.; Wang, Q.; Wu, Z.; Guo, R. Method for Overflow Attack Defense of SDN Network Flow Table Based on Stochastic
Differential Equation. Wirel. Pers. Commun. 2021, 117, 3431–3447. [CrossRef]

39. Cui, J.; Zhou, S.; Zhong, H.; Xu, Y.; Sha, K. Transaction-Based Flow Rule Conflict Detection and Resolution in SDN. In Proceedings
of the 2018 27th International Conference on Computer Communication and Networks (ICCCN), Hangzhou, China, 30 July–2
August 2018; pp. 1–9.

http://dx.doi.org/10.1016/j.jnca.2018.10.011
http://dx.doi.org/10.1109/TIFS.2017.2765506
http://dx.doi.org/10.1109/LCOMM.2019.2896928
http://dx.doi.org/10.1109/MWC.001.2000329
http://dx.doi.org/10.1109/TSC.2021.3102046
http://dx.doi.org/10.1016/j.comnet.2020.107119
http://dx.doi.org/10.1109/TSC.2016.2602861
http://dx.doi.org/10.1109/ACCESS.2018.2878576
http://dx.doi.org/10.1007/s00521-018-3383-7
https://scapy.net/
https://pypi.org/project/psutil/
http://dx.doi.org/10.1109/TITS.2020.3019101
https://opennetworking.org/software-defined-standards/specifications/
http://dx.doi.org/10.1007/s11277-021-08086-y

Appl. Sci. 2022, 12, 1103 19 of 19

40. Zhou, Q.; Yu, J.; Li, D. TSSBV: A Conflict-Free Flow Rule Management Algorithm in SDN Switches. In Proceedings of the 2021
IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland, 25–28 April 2021; pp. 1–5.

41. We, L. Rule Conflict Detection in Protocol-Oblivious Forwarding. Microelectron. Comput. 2015, 32, 78–81.
42. Hao, W.; Jiang, Y.; Gao, J. Detection mechanisms of rule conflicts in SDN based on a path-tree model. In Proceedings of the 2017

8th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 24–26 November 2017;
pp. 336–339.

43. Ahmed, B.; Ahmed, N.; Malik, A.W.; Jafri, M.; Hafeez, T. Fingerprinting SDN Policy Parameters: An Empirical Study. IEEE
Access 2020, 8, 142379–142392. [CrossRef]

44. Azzouni, A.; Braham, O.; Nguyen, T.M.T.; Pujolle, G.; Boutaba, R. Fingerprinting OpenFlow Controllers: The First Step to Attack
an SDN Control Plane. In Proceedings of the 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC,
USA, 4–8 December 2016; pp. 1–6.

45. Zeitlin, Z.J. Fingerprinting Software Defined Networks and Controllers. 2015. Available online: https://xs2.dailyheadlines.cc/
scholar?q=Fingerprinting+Software+Defined+Networks+and+Controllers (accessed on 30 November 2021).

46. Zhang, M.; Hou, J.; Zhang, Z.; Shi, W.; Qin, B.; Liang, B. Fine-Grained Fingerprinting Threats to Software-Defined Networks. In
Proceedings of the 2017 IEEE Trustcom/BigDataSE/ICESS, Sydney, Australia, 1–4 August 2017; pp. 128–135.

47. Cao, J.; Yang, Z.; Sun, K.; Li, Q.; Xu, M.; Han, P. Fingerprinting SDN Applications via Encrypted Control Traffic. In Proceedings
of the RAID, Beijing, China, 23–25 September 2019.

48. Chou, L.D.; Liu, C.C.; Lai, M.S.; Chiu, K.C.; Tu, H.H.; Su, S.; Lai, C.L.; Yen, C.K.; Tsai, W.H. Behavior Anomaly Detection in SDN
Control Plane: A Case Study of Topology Discovery Attacks. Wirel. Commun. Mob. Comput. 2020, 2020, 8898949. [CrossRef]

49. Li, Z.; Xing, W.; Xu, D. Detecting Saturation Attacks in Software-Defined Networks. In Proceedings of the 2018 IEEE International
Conference on Intelligence and Security Informatics (ISI), Miami, FL, USA, 9–11 November 2018; pp. 163–168.

50. Khamaiseh, S.; Alsmadi, I.; Al-Alaj, A. Deceiving Machine Learning-Based Saturation Attack Detection Systems in SDN. In
Proceedings of the 2020 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN),
Leganes, Spain, 10–12 November 2020; pp. 44–50.

51. Huang, X.; Xue, K.; Xing, Y.; Hu, D.; Li, R.; Sun, Q. FSDM: Fast Recovery Saturation Attack Detection and Mitigation Framework
in SDN. In Proceedings of the 2020 IEEE 17th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), Delhi,
India, 10–13 December 2020; pp. 329–337.

52. Cao, J.; Xu, M.; Li, Q.; Sun, K.; Yang, Y.; Zheng, J. Disrupting SDN via the Data Plane: A Low-Rate Flow Table Overflow Attack.
In SecureComm 2017: Security and Privacy in Communication Networks; Springer: Berlin/Heidelberg, Germany, 2017.

53. Pascoal, T.A.; Dantas, Y.G.; da Fonseca, I.E.; Nigam, V. Slow TCAM Exhaustion DDoS Attack. In SEC 2017: ICT Systems Security
and Privacy Protection; Springer: Berlin/Heidelberg, Germany, 2017.

54. Xie, S.; Xing, C.; Zhang, G.; Zhao, J. Research on Table Overflow Ldos Attack Detection and Defense Method in Software Defined
Networks. In ICBDS 2019: Big Data and Security; Springer: Berlin/Heidelberg, Germany, 2019.

55. Wu, Z.; Xu, Q.; Wang , J.; Yue, M.; Liu, L. Low-Rate DDoS Attack Detection Based on Factorization Machine in Software Defined
Network. IEEE Access 2020, 8, 17404–17418. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2020.3012176
https://xs2.dailyheadlines.cc/scholar?q=Fingerprinting+Software+Defined+Networks+and+Controllers
https://xs2.dailyheadlines.cc/scholar?q=Fingerprinting+Software+Defined+Networks+and+Controllers
http://dx.doi.org/10.1155/2020/8898949
http://dx.doi.org/10.1109/ACCESS.2020.2967478

	Introduction
	Background and Related Works
	Background
	Related Works

	Packet Injection Exploiting Attack
	Threat Model
	Threat Experiment

	Countermeasures
	System Architecture
	Injection Detection
	Simplified DoS Detection
	Flow Rule Management

	Evaluation
	Environment
	Evaluation

	Conclusions
	References

