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Abstract: 5G is the new generation of 3GPP-based cellular communications that provides remarkable
connectivity capabilities and extreme network performance to mobile network operators and cellular
users worldwide. The rollout process of a new capacity layer (cell) on top of the existing previous
cellular technologies is a complex process that requires time and manual effort from radio planning-
engineering teams and parameter optimization teams. When it comes to optimum configuration of
the 5G gNB cell parameters, the maximization of achieved coverage (RSRP) and quality (SINR) of
the served mobile terminals are of high importance for achieving the very high data transmission
rates expected in 5G. This process strongly relies on network measurements that can be even more
insightful when mobile terminal localization information is present. This information can be gen-
erated by modern algorithmic techniques that act on the cellular network signaling measurements.
Configuration algorithms can then use these measurements combined with location information
to optimize various cell deployment parameters such as cell azimuth. Furthermore, data-driven
approaches are shown in the literature to outperform traditional, model-based algorithms as they
can automate the optimization of parameters while specializing in the characteristics of each in-
dividual geographical zone. In the context of the above, in this paper, we tested the automated
network reconfiguration schemes based on unsupervised learning and applied statistics for cell
azimuth steering. We compared network metric clustering and geospatial clustering to be used as
our baseline algorithms that are based on K-means with the proposed scheme—hybrid network and
spatial clustering based on hierarchical DBSCAN. Each of these algorithms used data generated by
an initial scenario to produce cell re-configuration actions and their performance was then evalu-
ated on a validated simulation platform to capture the impact of each set of gNB reconfiguration
actions. Our performance evaluation methodology was based on statistical distribution analysis for
RSRP and SINR metrics for the reference scenario as well as for each reconfiguration scheme. It is
shown that while both baseline algorithms improved the overall performance of the network, the
proposed hybrid network–spatial scheme greatly outperformed them in all statistical criteria that
were evaluated, making it a better candidate for the optimization of 5G capacity layers in modern
urban environments.

Keywords: 5G networks; clustering; location information; network measurements; planning;
re-configuration; coverage; quality; optimization

1. Introduction

Cellular networks provide both high capacity and geographical coverage wireless
networking to mobile users worldwide. Mobile network operators use multiple layers
of these networks as a way to utilize both the earliest generations (e.g., GSM and UMTS)
as coverage layers (i.e., to provide coverage and high availability) and high-performance
newer generations (e.g., LTE, NR) as capacity layers. Capacity layers are designed to follow
the traffic density providing the highest possible data rates and lowest latency, which
are key to supporting demanding Internet services. To maximize the effectiveness of the
capacity layers, the cellular network planning [1–3] process needs to take into consideration
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the localized mobile user characteristics of each different zone. This specialization process
provides the best possible coverage with the lowest interference, resulting in high quality
of service. Radio planning teams traditionally use an iterative method of re-configuring cell
parameters to maximize the performance of these cell layers. During this process, network
measurements are being collected that are then used to assist the parameter benchmarking.
These measurements are either performed by specialized hardware operated by radio
engineers, or they can be based on probes and real mobile terminals that operate in test
modes. The generated datasets consist of network records that contain signaling informa-
tion related to network operations and actions such as channel quality measurements and
network-related information from upper network layers.

The inclusion of location information in these measurements is of key importance for
the identification of coverage deficiencies and optimum network reconfiguration [4–8]. To
acquire the location information, various techniques [9–11] have been shown to estimate
the mobile terminal’s location within a specific zone by using only the radio channel
quality measurements performed by the mobile terminal devices during handover-related
operations. Areas such as university campuses, city malls, and entertainment venues
(that are generally placed right outside the urban zones) have very complex population
density and traffic demand patterns related to other more rural zones. These factors
are causing the static planning techniques to underperform and the need has risen for
more advanced analytical solutions that can leverage mobile terminal location information.
This information has great benefits as it improves the accuracy of the detection of quality
degradation metrics to a specific point in the map (e.g., a traffic hot-zone).

Analysis of the measurement data can also be conducted with automated methods [12]
to generate reconfiguration actions that will change the layout of the network, further
improving the radio coverage and quality and increasing the capacity layer’s performance.
In this paper, we analyzed the literature of model-based and data-driven algorithms for
cell reconfiguration, and focused on unsupervised learning [13–16] methodologies that
have proven their effectiveness in a large number of network-related optimization tasks.
Traditional approaches such as the clustering of network KPIs has been shown to correctly
detect and segment the network elements into meaningful groups, which greatly reduces
the processing overhead and is very robust to the noisy nature of network data. The
inclusion of location information in measurement datasets makes algorithms that perform
spatial clustering a key asset to the discovery of underlying human and traffic hot-zones.

In this research, we are proposing a novel algorithmic scheme that combines the merits
of both the network KPI and the location data clustering techniques. This approach is
shown to correctly identify the problematic zones of the underlying area and propose cell
azimuth reconfiguration actions in a completely automated manner. The algorithm uses
the spatial component to identify clusters of human densities in the zone and then applies
filtering on the centroid values of each cluster to narrow down to true traffic hot-zones
(i.e., where user terminal activity is high). To quantify the performance benefits of the
proposed scheme against the baseline approaches, system-level simulation of an indicative
5G network deployment was performed. The simulation also included a validated, complex
mobility model that will increase the realism of the simulation and better showcase the
effects of each reconfiguration scheme. Analysis of the experimental results produced in
this research validates the hypothesis that the proposed algorithm outperforms the baseline
approaches and can be an important component of an automated radio access network
planning tool. Table 1 lists all abbreviations used in this document, along with the term
they describe.

The rest of this paper is organized as follows. State-of-the-art analysis and related
work related work are presented in Section 2. Section 3 introduces the problem statement of
the current work. In Section 4, there is an extended description of the solution methodology
and the different methods implemented for the experiments. Section 5 presents the perfor-
mance evaluation procedure, which includes a detailed overview of the simulation-based
evaluation platform as well as detailed performance evaluation results for each algorithm,
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along with the statistical distribution analysis of network KPIs and the comparison of
improvements compared to the initial scenario. Section 6 presents a number of discussion
topics based on this work. Finally, the paper is concluded in Section 7.

Table 1. Table of notations used in this paper.

Notation Description

3GPP 3rd Generation Partnership Project
gNB Next Generation Node B (NR)

eNodeB Enhanced Node B (LTE)
RSRP Reference Signal Received Power
SINR Signal-to-Inference-plus-Noise Ratio

DBSCAN Density-based Spatial Clustering of Applications with Noise
GSM Global System for Mobile Communications

UMTS Universal Mobile Telecommunications System
LTE Long Term Evolution
NR New Radio
KPI Key Performance Indicator
SON Self-Organizing Network
D2D Device-to-Device

MIMO Multiple-Input and Multiple-Output
Lat, Lng Latitude, Longitude

RAN Radio Access Network
OSS Operations Support Systems

DU, UR, SU, RU Dense Urban, Urban, Sub-Urban, Rural
ISD Inter-Site Distance
PCA Principal Component Analysis
UE User Equipment

CDF Cumulative Distribution Function

2. Related Work

Recent research activity has demonstrated a plethora of solutions for self-organizing
networks as next generation architectures in 3GPP standards. SON targets in enhancing
network performance KPIs such as capacity and quality of service. 3GPP Release 8 classi-
fied SON into three main categories: self-configuration, self-optimization, and self-healing.
Machine learning based approaches, both supervised and unsupervised, have been pro-
posed for all three categories of use cases. Some of the most widely used techniques include
artificial neural networks for configuration optimization, demand prediction, or resource
allocation [12]. Unsupervised techniques that have been tested in the context of SON
include self-organized maps, game theory, hidden Markov models, and of course, cluster-
ing [13,14]. Clustering-based solutions appear in various use cases. In [15], a user-centric
clustering algorithm was used to minimize the high load on cells. In [16], the K-means
algorithm was used to group users to define spatial beams and increase system capacity. In
caching applications, clustering is applied to data users to determine the set of the most
influential users, the content of which will be cached and re-used in Device-to-Device
(D2D) communication [8]. Another class of approaches uses clustering on the 5G cells to
define groups with increased mobility and load activity to apply optimization actions in a
smaller number of cells such as in [17]. While user-centric unsupervised approaches have
been proposed in the context of SON [8,15,16], the literature that applies unsupervised
techniques in the planning and reconfiguration of 5G networks is not very extensive. Thus,
we extend the aforementioned ideas in the context of optimization of the azimuth steering
of the 5G gNB cells in mobile networks. This work is the first attempt, to the best of our
knowledge, to apply a user-centric clustering-based solution to this aim.

Different clustering algorithms have been heavily explored and compared in the
literature. K-means is considered the most typical example of partitioning approaches and
has been widely used in numerous applications. Its main disadvantage is that it requires the
number of clusters K as an input and results in spherical shaped clusters. It also assumes
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that variables have similar variance, which is not difficult to ascertain in the exploratory
analysis steps. It usually converges in a smaller number of iterations than most other
clustering algorithms, but requires a comparison of the average silhouette coefficient for
different numbers of parameter K, which is time consuming [18].

Another class of clustering algorithms that have gained in popularity in the past
decade is the density-based approaches. The most indicative algorithm in this class is
DBSCAN, which regards clusters as dense areas of data points that are separated by less
dense areas. Density-based approaches have a major advantage over partition-based ones,
which is the ability to discover clusters of arbitrary shape. However, DBSCAN and other
algorithms in this class have difficulties in finding clusters with varied densities, as they
use a global density threshold for the formation of clusters [19]. To overcome this weakness,
many variants of the initial DBSCAN algorithm have been proposed such a hierarchical
DBSCAN [20], which will be employed in this work. The idea behind HDBSCAN is to
produce many DBSCAN outcomes through increasing density thresholds. A dendrogram
is built based on these outcomes to yield the hierarchical cluster structure. To decide
the final clustering, it extracts a set of “significant” clusters at different levels of this
dendrogram. HDBSCAN was chosen over other alternatives as it is performance efficient,
easy to configure, and has not been used in the context of the optimization of 5G networks,
to the best of our knowledge.

3. Problem Statement

The optimization process of 5G capacity layers [2–7,21] involves the identification
of optimum values for the adjustable cell/site parameters listed in Figure 1. Each of
these parameters contributes in a different way to the network quality and has its own
constraints, which will be analyzed in this chapter to detect the most suitable candidate for
an automated reconfiguration scheme. Site location (incl. height) is of key importance for
the topology of the 5G network as it will dictate the actual position of the cells that will
cover an area.
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The cell site usually includes a number of cells (typically 3–5) of single or multiple
radio access technologies, and it greatly affects the coverage area of each cell. It is generally
analyzed combined with the azimuth angle, mechanical or electrical vertical tilt, which
are all key to estimating the achieved coverage for each included cell. The site locations
are placed in areas with clear line of sight and with an increased height. They also require
computation units for the radio processing, which needs specialized housing structure
and power supplies. This makes the relocation, addition, and maintenance of new site
locations a complicated and costly process. Cell azimuth angle describes the direction in
which the receivers of the radio signal will acquire the maximum antenna gain. This will
result in higher data rates, provided that the interference levels allow for transmission. The
azimuth angle is an installation parameter on the site that is changed in a relatively slow
pace, typically after reconfiguration and optimization orders from the radio optimization
team. Cell azimuth steering can play a key role in improving the coverage and quality
of users within a zone where hot-zones have been formed due to urban structures such
as plazas, shopping malls, recreation areas, and university campuses. In addition to the
physical cell azimuth configuration, beamforming azimuth steering is also available via
MIMO configuration of the antenna. However, the value range of this change is restricted,
usually in a +/−20 degree range from the physical azimuth angle, making the physical cell
azimuth a more impactful planning parameter. Cell vertical tilt (electrical or mechanical)
can also be an important configuration parameter of the 5G cells. This parameter also affects
the center of maximum antenna gain, which we described in the azimuth steering case as
they are important factors in the 2-D antenna gain computation. In modern deployments
of 5G, however, the quality is due to the impact of pathloss and absorption for the carrier
frequency. However, the use of higher carrier frequency bands minimizes the expected
range of the cells, making for denser networks with higher vertical tilt values. Another
parameter that can also be considered is the radio bandwidth and carrier frequency of the
cell. These parameters can greatly impact the maximum capacity of the cell as well as the
achieved radio and are not flexible parameters to configure, mostly due to the competition-
based spectrum acquisition process that is conducted by the regulation authorities. The
5G access network MIMO/spatial multiplexing operational mode is also a tunable aspect
of the cellular network. Depending on the relative position of the mobile terminal with
respect to the gNB cell, its radio capabilities, and the current (instantaneous) channel
conditions, multiple radio access paths can be utilized to multiply the capacity of the radio
link by a significant factor. While MIMO configuration optimization is a very active topic
of research in this field, data-driven approaches have been shown to perform better in real
time optimization and are not in the scope of network planning. Out of these configuration
actions, the cell azimuth steering is expected to provide the greatest benefits for the cases
of dense urban traffic hot-zones that will be part of our study. It can be configured to
multiple values and does not include extreme cost or other blocking factors, apart from the
manual labor required for its adjustment. Therefore, for the rest of this study, we focus on
algorithmic schemes that will reconfigure the physical azimuth steering of cells within a
target area based on mixed location and network metric measurements.

4. Solution Methodology

This paper focused on automated techniques that maximize the coverage and quality
of service (RSRP, SINR, and per user downlink throughput) of modern 5G capacity layers
using optimum azimuth steering. The high-level concept and context of our solution when
implemented in a mobile operators’ network is shown in high level in Figure 2 and can be
briefly described as follows.

The cell network was analyzed with respect to its coverage and capacity needs and
with respect to its traffic intensity in different areas. A set of cells was identified as the
‘candidate’ to be reconfigured in terms of their azimuth in order to cover these coverage
and capacity needs. Measurements from these cells are collected in the form of radio access
network (RAN) KPIs including RSRP, SINR, and throughput in software systems that
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are traditionally responsible for the operation and management of RANs, namely, RAN
operations support systems (OSS). Location information is also collected either through the
OSS or through third party geo-location systems. Algorithms responsible for parameter
configuration and optimization then use these data in order to derive parameter settings
(e.g., azimuth angles). These algorithms are typically hosted in an intelligent (data-driven)
optimization server, as depicted in Figure 2, which can be either a sub-part of a RAN
OSS or a separate software application. The derived azimuth settings are then applied
to the selected cell(s) and the newly produced KPIs are expected to increase. The above
should be a continuous and (as much as possible) automated process to ensure that the
network always operates with the optimal parameters in all different contexts (i.e., time
and space variations).
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Figure 2. High level concept and context of our optimal azimuth steering solution.

In this paper, we opted to evaluate three data-driven techniques as part of the intel-
ligent optimization server in Figure 2, namely, two from the literature and one proposed
scheme. The selected techniques include a combination of unsupervised learning and
statistical analysis, which have been shown to have a robust performance in diverse geo-
graphical, temporal, and operational contexts. Independently of its algorithmic specificities,
each technique was evaluated by following a set of general steps as follows: (a) an ini-
tial measurement phase of the network in an initial configuration; (b) processing of the
measured dataset to derive insights for the underlying cellular network; (c) conversion of
these insights into reconfiguration parameters; (d) application of the reconfiguration on the
network; and (e) evaluation of the impact of the actions with respect to the initial scenario.
These are described in detail in the next sub-sections, followed by an algorithm complexity
analysis section.

4.1. Baseline Algorithm 1—Network Metrics Clustering

A rich literature [22–25] of unsupervised techniques for network data analysis exists
with applications in multiple optimizations, planning, and reconfiguration tasks related to
cellular networks. This process involves the acquisition of a dataset that includes network
metric measurements that will then be used to derive clusters (i.e., groups) of data that
present similar behavior. These groups are then linked to insights by applying the cluster
label analysis process, which gives characteristics to these groups that can then be included
in algorithms for optimization. In the case of azimuth angle optimization, clustering of
network metrics can be used to determine a set of cells labelled as, for example, “cells of low
coverage quality and high traffic demand”. This is an indicator that a reconfiguration action
should be performed in the specific cell and/or its neighboring cells that will improve the
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radio quality. Based on the approaches found in [22–24], appropriately tuned K-means
execution followed by statistical label traceback analysis can robustly provide automated
results for the select network metrics. In addition, we can monitor the performance of the
clustering operation by inspection of the cluster boundaries in various projected spaces
(e.g., with the principal component analysis (PCA) method). After the clustering operation,
we translated the cluster label to actions of cell azimuth steering. For this purpose, location
information was indirectly derived by each cell sector’s geometry—its assumed coverage—
and the algorithm indicates that the population density hot-zone is spatially correlated to
this area. However, the actual position of the hot-zone cannot be accurately pinpointed, so
this algorithm focuses on moving neighboring cells toward the center of the problematic
cell, which is arguably a drawback of this algorithm. The algorithmic process of this method
is as follows: Having clustered the UEs on the available network features (RSRP and SINR
values) each cell is characterized by the KPI scores of the clusters that are serving. When
a “bad” cell is found (low score for both KPIs), the derived action is to rotate its closest
“good” cell to the direction of the geometric center of the area covered by the “bad” cell to
improve their RSRP and SINR scores. The method can be seen in Baseline Algorithm 1.

Baseline Algorithm 1: Azimuth Steering based on Network Clustering

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 22 
 

reconfiguration action should be performed in the specific cell and/or its neighboring cells 
that will improve the radio quality. Based on the approaches found in [22–24], appropri-
ately tuned K-means execution followed by statistical label traceback analysis can ro-
bustly provide automated results for the select network metrics. In addition, we can mon-
itor the performance of the clustering operation by inspection of the cluster boundaries in 
various projected spaces (e.g., with the principal component analysis (PCA) method). Af-
ter the clustering operation, we translated the cluster label to actions of cell azimuth steer-
ing. For this purpose, location information was indirectly derived by each cell sector’s 
geometry—its assumed coverage—and the algorithm indicates that the population den-
sity hot-zone is spatially correlated to this area. However, the actual position of the hot-
zone cannot be accurately pinpointed, so this algorithm focuses on moving neighboring 
cells toward the center of the problematic cell, which is arguably a drawback of this algo-
rithm. The algorithmic process of this method is as follows: Having clustered the UEs on 
the available network features (RSRP and SINR values) each cell is characterized by the 
KPI scores of the clusters that are serving. When a “bad” cell is found (low score for both 
KPIs), the derived action is to rotate its closest “good” cell to the direction of the geometric 
center of the area covered by the “bad” cell to improve their RSRP and SINR scores. The 
method can be seen in Baseline Algorithm 1. 

Baseline Algorithm 1: Azimuth Steering based on Network Clustering 
Output: Azimuth Steering Action for each gNB 
Input: 

1. Serving gNB for each UE 
2. Cluster label for each UE 
3. RSRP score (low/medium/high) for each UE 
4. SINR score (low/medium/high) for each UE 

Begin 
  Cells <- Set of Serving gNBs 
Clusters <- Set of Cluster labels 
Foreach Cluster in Clusters do: 

1. Cluster RSRP score <- majority RSRP of Cluster’s UEs 
2. Cluster SINR score <- majority RSRP score of Cluster’s UEs 

  End 
Foreach Cell in Cells do: 

1. Find the Subset of Clusters that are served by Cell 
2. Assign to Cell RSRP and SINR scores based on scores of this subset 
3. Calculate the distances from other Cells 

  End 
Foreach Cell in Low Score Cells do: 

1. Calculate the geometric center of the Cell coverage 
2. Find the closest high-score cell to Cell  
3. Calculate the delta azimuth between the high-score cell direction and the geo-

metric center 
4. Rotate high-score cell to make the delta azimuth zero 

End 
End 



Appl. Sci. 2022, 12, 1203 8 of 21

4.2. Baseline Algorithm 2—Spatial Clustering

Spatial clustering is the process of applying unsupervised learning to identify clusters
of geospatial significance (density). The K-means algorithm [22–24] that was also included
in Baseline Algorithm 1 has also been shown to be an effective approach for the detection of
spatial centroids. The algorithm requires measurements that include location information
(in the form of latitude, longitude), user equipment device identifier, and temporal infor-
mation (in the form of timestamp). The K-means algorithm generates centroids that are
population densities detected throughout the underlying area. By identifying population
density centers, we can then make decisions as to what azimuth steering action we can take
to move the azimuth angle of the antennas toward these centers, maximizing the mobile
terminal’s RSRP. This approach can be considered as an improvement vs. the symmetrical,
hexacomb-based initial scenario and the rest of the literature, however, it does not come
without its own drawbacks. Population density and traffic hot-zones cannot be differenti-
ated by this method due to the lack of network metric information in the clustering process.
This results in all density centers being included in the azimuth steering process, which
can result in maximizing coverage for zones that are of very low traffic, making minimal
impact in the improvement of the network operation. For the spatial scenario, UEs are
clustered only on their spatial coordinates. Again, each gNB is associated to a subset of the
clusters and is rotated to center its direction to the geometric center of these clusters. The
steps of the spatial clustering algorithm can be shown in Baseline Algorithm 2.

Baseline Algorithm 2: Azimuth Steering based on Spatial Clustering
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4.3. The Proposed Scheme: Hybrid Network—Spatial Metric Clustering

The proposed scheme is an approach that aims at exploiting the techniques of both
approaches above-mentioned (Baseline 1 and 2). It is using the spatial clusters as a method
of detecting the exact location of the high population density zones that is key to the correct
computation of azimuth steering actions while using the network metric cluster traceback
analysis to distinguish between zones with high traffic demand and idle user zones. This
essentially differentiates between clusters that are traffic hot-zones and population hot-
zones, which is the key improvement vs. the Baseline 2 case. The accuracy of the azimuth
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steering, achieved by the inclusion of the location information, is also expected to make the
proposed scheme outperform the Baseline 1 case, which generalizes the location of the traffic
hot-zone within the cell’s coverage area. Due to the nature of the data distributions of the
spatial and non-spatial, the literature indicates that hierarchical DBSCAN (HDBSCAN) [26]
is the most suitable clustering approach to accurately segment the data, since it is non-
parametric, easy to configure, efficient in training time, and able to discover clusters of
varied densities. In particular, this algorithm will detect data clusters in each dimension
separately, which will allow for a 2-step identification of location centers and deficient cell
quality centers. For the computation of the azimuth delta, the same computation as in
Baseline 2 was applied on the part of the centroid that contains the position of the high
traffic cluster. In summary, in the hybrid approach, the network and spatial methods are
combined. First, UEs are clustered on their spatial coordinates along with their network
measurements. Then, similar to the network approach, each gNB is characterized by the
network scores of its associated cluster. Finally, when a “bad” cell is found, it is rotated
to center its direction with the geometric center of its associated clusters such as in the
spatial method.

Proposed Algorithm 3: Azimuth Steering based on Network—Spatial Clustering
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The use of HDBSCAN [20,25] offers the advantage that the number of clusters does
not have to be configured such as all density-based clustering algorithms. Another great
property of the algorithm is that when the feature space of the training data is not very big
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such as in our case, its time complexity is O(nlogn), which is sub-quadratic and very compet-
itive to K-means. In our experiments, grid search included approximately ~100 parameter
configurations and each configuration lasted less than 2 min for the most cases, with the
whole procedure finishing in a few hours. It should be noted that the most time-consuming
configurations were the ones with high epsilon values (cluster_selection_epsilon), so these
should be treated with caution.

5. Performance Evaluation

System-level simulators compatible with the latest 4G and 5G radio access modules
have been used throughout the literature for testing and validation of various cellular
network optimization schemes. They are also used by radio planning and optimization
engineers during the process of manual parameter reconfiguration. We performed our study
in a validated 4G/5G cellular network simulator for both the initial reference scenario and
the optimized configurations generated by each algorithm. We designed the simulation
scenario to include a number of traffic hot-zones that can be found in areas such as a
shopping mall placed in a dense urban zone. This type of cellular network zone presents
with complex mobility patterns due to the different areas of points of interest within the
venue. The evaluation process will start with measurements in the initial scenario for
the establishment of the network performance baseline, then for each algorithm, we will
perform the execution based on the measurement data, which will result in new scenarios
that will include the reconfiguration. We will then perform separate simulation executions
generating new network measurements for each reconfiguration scheme. The results will be
analyzed by means of statistical distribution analysis on coverage (RSRP) and quality (SINR
and user downlink throughput) to measure the benefits of each algorithm and compare
them. We will also comment on the expected vs. actual results based on each algorithm’s
design principles in conjunction with the selected scenario.

5.1. Simulation Platform Overview and Scenario

The simulation software used for this study was a 5G cellular network simulator [22,27]
based on 3GPP specifications [28–30] that can be used for macro-simulation of network
functionalities and user mobility scenarios of 4G and 5G cellular networks. The radio
channel component supports multiple cellular network elements such as LTE eNodeB, Pico
cells, and NR gNB. It is based on standard-based propagation models specified in [28,29] for
various urban environments. Its radio quality model translates the link quality (SINR) to the
achieved throughput, which is used to serve the generated traffic of the mobile terminals.
It also includes a network planning module that was used to automatically generate the
initial hexacomb topology. It can easily apply the reconfiguration actions of the selected
algorithms to create new measurements based on the impact of the produced azimuth
reconfiguration. The simulator also includes a realistic user mobile terminal mobility
module that can be parametrized to form hot-zone population density patterns based on
the behavioral movement model, as shown in [22,27]. This model’s parameters include
predefined areas of interest (denoted by geometrical area definition, average dwell time,
and probability of arrival) as well as specific paths that are selected based on statistical
distributions. The simulator network traffic module was based on [31] and the traffic
level configuration was tuned to follow the modern traffic demand levels as shown in
Table 2. For the baseline scenario in this study, we opted to analyze a cellular network
area during its transition from an existing 4G cellular network to a 5G capacity layer. This
deployment typically follows layered installations of gNB cells on identical site and azimuth
configuration with its predecessor technology. The hexacomb placement scheme is the
most common geometrical pattern and is often used as the initial topology. The simulation
includes a small DU area (0.11 km2) with a high density of users (3635 mobile/km2) as
well as a shopping mall zone with multiple indoor zones. The dense cell deployment
requires a minimum of a 176 m inter-site distance, resulting in six gNB sites with three
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sector antennas Table 2. Standard traffic demand parameters were selected following the
simulation scenarios used in existing 5G benchmarking studies.

Table 2. Simulation scenario parameters.

Parameter Simulation Value

Playground Dimensions 340 m × 340 m
Area (meters2) 0.11 km2

Mobile Terminals 400
Population Density 3635 mobile/km2

Total Traffic Density 1.32 Gbps/km2

Per Mobile Traffic rate 36.25 Mbps/mobile
# of gNB sites/cells 6 (18 gNB sectors)
Inter-Site-Distance 176 m (DU)
gNB Vertical Tilt 26◦

gNB carrier and band 2.1 GHz (2 × 15 MHz)
Radio Propagation Model Uma 5G

The mobility model of the simulation [22,27] was parametrized with a set of areas of
interest (shops, restaurants, parking lots, cinemas etc.) that are relevant to shopping malls
Figure 3. Each area was linked with predefined paths according to the actual topology of the
underlying area for added realism. The areas of interest were split into various categories
characterized by mobility information and traffic usage levels. Areas that generate notable
mobile user hot-zones are recreation areas (high mobile usage and high dwell time), which
are typically coffee shops, restaurants, etc. and offline areas where high density and
high dwell time was observed but mobile phone usage was limited (e.g., parking lots
and cinemas).
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5.2. Simulation Measurement Dataset Analysis

In Table 3, we can see the dataset structure of the mobile terminal simulation mea-
surements that were generated for each test case. It contains fields ranging from spatial to
temporal data, IDs of the related mobile user equipment as well as the active gNB cell and
the core network metrics that are related to coverage (RSRP, active RSRP), quality (SINR),
and achieved data rates (throughput). It must be noted that the sampling frequency of
such datasets is closely related to the rate of change that the spatial and network metric
parameters have. In typical cases, such datasets have measurement intervals in the order
of seconds or even lower, therefore producing a very large amount of data within a small
period of time. This is something that can affect each algorithm’s performance and should
also be considered during the design of automated reconfiguration schemes.

Table 3. Mobile Terminal simulation measurement dataset analysis.

Field Description Example Values

Mobile ID An identifier for each mobile terminal included in the measurements Mob_1,2 ... N
Timestamp Time identifier of the measurement 1638035033
Serving Cell An identifier of the cell that the mobile terminal is connected to Cell 2_1, Cell 3_2

RSRP Received signal strength from serving gNB (idle) −72 dBm
Active RSRP Received signal strength from serving gNB (transmission) −72 dBm

SINR Signal-to-Interference-and-Noise Ratio (transmission) 9 dB
Downlink

Throughput The data rate achieved by the mobile terminal during download 34.2 Mbps

Latitude The latitude position of the mobile terminal 25.61 (deg)
Longitude The longitude position of the mobile terminal 37.61 (deg)

5.3. Network Metric Clustering Analysis

The network metric clustering aims at the separation of the measurement data into
groups with similar behavior based on the network metrics included (RSRP, active RSRP,
SINR, downlink throughput). The clustering effectiveness can be seen in the projection
of the multi-dimensional dataset in a projected plane such as the PCA projection. In the
2-dimensional component space of PCA, we used coloring to define each cluster detected,
expecting clear distinction between the clusters [Figure 4]. We are also generating centroid
classes to profile each cluster with a label that can be used to detect measurement groups
of high or low qualities such as the ones shown in Table 4. We could see that there were
10 generated clusters with meaningful partitioning that uses a combination of SINR and
RSRP cluster labels to provide clear network performance information. For instance,
Cluster 0 is described as “Medium SINR, Medium RSRP” and Cluster 1 as “High SINR,
Very Low RSRP”, etc., as seen in the overview of the cluster qualitative results. Conditional
probability analysis was used in the centroids to identify serving cells that are more related
to the clusters with the deteriorated coverage and quality. Provided the list of problematic
cells, we used their neighboring cells to improve the radio quality of the cell sector’s area,
therefore producing azimuth steering computations.

Table 4. Clustering result legend including color, index, and SINR/RSRP profile quality class.
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5.4. Spatial Clustering Analysis

The spatial clustering algorithm is based on the automated detection of population
density hot-zones. It leverages the localization information acquired from the dataset by
transforming it into population density centroids that can be used to compute azimuth
steering, which will increase the number of mobile terminals that are close to the center
of the sector antenna. As seen in Figure 5, the algorithm correctly identified densities that
were correlated with the predefined zones of the mobility model parametrization area. This
hints that the performance of the generated azimuth steering actions is an improvement
with respect to the symmetrical deployment. However, the resulting population density
areas did not differentiate on the traffic demand of the mobile terminals. We expect that
this will result in azimuth steering actions toward low traffic zones that will be considered
as incorrect.
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5.5. Hybrid Network–Spatial Clustering Analysis

The hybrid network–spatial clustering’s goal is to simultaneously detect clusters with
deteriorated radio quality and signal strength as well as identify their exact location using
the location centroid components. Based on this, we expect it to produce the best possible
azimuth steering actions that will maximize the effectiveness of the gNB’s antennas. The
results of the algorithm execution are shown in Figure 6. They include both location and
clear indication of the network metrics for each centroid. Using this information, the
algorithm filters the centers into a smaller set that only includes actual traffic hot-zones.
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5.6. Algorithm Performance Evaluation

The goal of each algorithm in this benchmarking is the maximization of coverage
(RSRP) and quality (SINR) of the total cellular network area. In addition, we will evaluate
the achieved, per-device downlink throughput to monitor the impact of the changes in the
achieved quality of service. For this purpose, we used the statistical cumulative distribution
functions of these KPIs as well as the 25th, 50th, and 75th percentile to acquire quantitative
results on the improvements with respect to the reference scenario. To evaluate the distri-
butions [2,3,6], we are looking for right shifts toward higher RSRP/SINR/normalized per
user downlink throughput values, which would indicate network metric improvement. In
Figure 7, it is evident that the RSRP distribution shifted to the right from 2–5 dB in various
ranges of the distribution for all of the optimization schemes. The spatial and network
KPI clustering seemed to improve the reference scenario by ~1 dB, which is acceptable,
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however, the hybrid clustering approach improved by more than 2.5 dB, making it the best
candidate solution for the coverage optimization goal.
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The same distribution analysis was then performed on the SINR [Figure 8] measured
by the mobile terminals during their transmission. RSRP gains alone are not adequate
measures of quality improvement, mostly due to the possibility of increased interference
caused by overlapping antenna sectors. In the analyzed data, we could see that the SINR
had also improved by all algorithm schemes, therefore indicating that the radio quality
had not deteriorated. The proposed scheme’s distribution was still a clear improvement
vs. the two baseline algorithms by a factor of 2–4 dBs, proving that it can correctly capture
the interference constraints of the network as well as specialize to the locations of high
traffic density. The same benefits of the proposed scheme are also visible in the statistical
analysis of the normalized throughput distribution, as seen in Figure 9. It is clear that
higher normalized throughput ratio values receive more measurement density in the case
of the proposed scheme.
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To summarize the comparison between the algorithms, we computed the distribu-
tion percentiles of the data generated by all the different reconfiguration schemes for all
evaluation KPIs, RSRP gains Figure 10, SINR gains Figure 11, and normalized per user
downlink throughput Figure 12. The proposed scheme–hybrid network spatial clustering
outperformed the baseline algorithms for this type of environment by a factor of more than
~100% in most cases. Another notable result was that the spatial and network algorithms,
although they performed completely different reconfiguration actions, showcased very
close performance and both their overall statistical distribution as well as the percentiles
improved the network performance to a similar degree.
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6. Discussion

Optimum 5G capacity layer deployment involves a large number of parameters to be
considered and tuned, however, azimuth steering can provide significant improvement in
coverage and quality with the minimum amount of effort and cost. The azimuth steering
problem is shown to be very closely related to the geometry of the active users of the
underlying network. The directional gain of the sector antenna (or patch antennas for gNB)
provides significant improvement in RSRP, SINR, and achieved user throughput, even in
non-line of site propagation (which is very highly present in modern environments). In this
study, we focused our efforts on a case of 5G deployment for the 2.1 GHz band, however, it
is in the scope of the continuous technology rollout that millimeter-wave carrier frequencies
will be utilized, as seen in various studies [1]. Radio transmission at higher frequencies
tends to benefit less from wave spreading phenomena such as refraction in comparison
to the core cellular frequencies (0.5–3.5 GHz range). Millimeter-wave transmission is very
sensitive to cell antenna direction and line of sight plays a critical role on the quality of the
link. It will be interesting to expand this research toward applying the proposed schemes
on millimeter and even micro-wave carrier experimental deployments and compare the
benefits with respect to this study.

Traditional model-based approaches for optimum configuration can be shown to be
ineffective in areas with very high concentration of mobile phone users, therefore, we
believe that data-driven approaches are key to optimized deployments. Automated re-
configuration algorithms are effective if used with accurate measurements of the network
location information of the mobile terminals. It greatly reduces the time and effort required
from processes such as continuous manual analysis and reconfiguration performed by
teams of radio engineers. Simulation software is also a possible alternative that can be
used to replace real measurements, if careful considerations and scenario design have been
made, which in turn would require expert knowledge on telecommunications and user
behavioral analysis in various urban contexts. Automated azimuth steering methodologies
are shown to effectively utilize unsupervised learning components such as the K-means,
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X-means, DBSCAN, and other variants. These algorithms generate robust results that are
a good fit to the statistical distributions of network data measurements. Clustering label
traceback analysis is also an important component, as shown in the implementation of
Baseline 1 and the proposed algorithm. It is based on conditional probability analysis to
create network metric labels that provide meaningful insights for the cells.

7. Conclusions

In this paper, we designed and tested data-driven methodologies that allow for auto-
mated coverage and performance maximization of the 5G capacity layer. This approach
is suited for areas that include hot-zone population densities and network traffic patterns
mostly found in dense urban and urban zones. The algorithms consist of a combination of
unsupervised learning, statistical analysis, and analytical coverage optimization, based on
measurements performed on mobile terminals from an initial, hexacomb-based symmetri-
cal network deployment. These measurements include temporal, network, and location
information, which are utilized differently by each included algorithm. The outputs of
these algorithms are azimuth angle changes in various cells of the underlying network
that maximize the RSRP, SINR, and per user downlink throughput. Specialized simulation
software for 5G radio simulation was used as the validation platform of these algorithms
with realistic mobility patterns and radio environments that are found in dense urban shop-
ping mall zones. All algorithms generated acceptable results that improved the network
coverage and quality in relation to the reference scenario. The two baseline algorithms un-
derperformed by a significant factor compared to the proposed scheme in both metrics due
to their lack of information to correctly specialize to the zone’s characteristics. In particular,
the network metric clustering approach (Baseline 1) can only use the sector’s geometry to
estimate the traffic hotspot location, which leads to incorrect actions. Baseline 2 algorithm,
on the other hand, utilizes the location information to identify population density hot-zones.
However, without the usage network metric information, this can lead to azimuth steering
toward inactive population centers. The proposed scheme’s combined spatial and network
approach is designed to further refine the Baseline 2 algorithm using network metric inputs
in a manner similar to Baseline 1. It was shown that this combined approach is the most
appropriate candidate for the automated azimuth steering reconfiguration of 5G capacity
cell layers.
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