
����������
�������

Citation: Kim, Y.; Park, J.; Yoon, J.;

Kim, J. Improved Q Network

Auto-Scaling in Microservice

Architecture. Appl. Sci. 2022, 12, 1206.

https://doi.org/10.3390/app12031206

Academic Editor: Stefan Fischer

Received: 31 October 2021

Accepted: 19 January 2022

Published: 24 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Improved Q Network Auto-Scaling in Microservice Architecture
Yeonggwang Kim 1, Jaehyung Park 1, Junchurl Yoon 2,* and Jinsul Kim 1,*

1 Department of ICT Convergence System Engineering, Chonnam National University, 77, Yongbong-ro,
Buk-gu, Gwangju 500757, Korea; yklovejesus@gmail.com (Y.K.); hyeoung@jnu.ac.kr (J.P.)

2 Team of Energy Platform, Digital Transformation Department, Korea Electric Power Corporation (KEPCO),
55, Jeollyeok-ro, Naju 58322, Korea

* Correspondence: hiyoon@kepco.co.kr (J.Y.); jsworld@jnu.ac.kr (J.K.);
Tel.: +82-62-530-0407 (J.Y.); +82-62-530-1808 (J.K.)

Abstract: Microservice architecture has emerged as a powerful paradigm for cloud computing
due to its high efficiency in infrastructure management as well as its capability of largescale user
service. A cloud provider requires flexible resource management to meet the continually changing
demands, such as auto-scaling and provisioning. A common approach used in both commercial and
open-source computing platforms is workload-based automatic scaling, which expands instances
by increasing the number of incoming requests. Concurrency is a request-based policy that has
recently been proposed in the evolving microservice framework; in this policy, the algorithm can
expand its resources to the maximum number of configured requests to be processed in parallel per
instance. However, it has proven difficult to identify the concurrency configuration that provides
the best possible service quality, as various factors can affect the throughput and latency based on
the workloads and complexity of the infrastructure characteristics. Therefore, this study aimed to
investigate the applicability of an artificial intelligence approach to request-based auto-scaling in
the microservice framework. Our results showed that the proposed model could learn an effective
expansion policy within a limited number of pods, thereby showing an improved performance over
the underlying auto expansion configuration.

Keywords: microservice; Kubernetes; auto-scaling; artificial intelligence

1. Introduction

With the advancement and spread of Virtual Machine and container technology, the
adoption of microservice computing models has increased substantially [1]. Microservice
computing provides two main benefits to users: First, it is easy to scale when in use, as it is
not difficult to develop idle VMs or containers. Second, because it is delegated to a cloud
provider, there is no overhead related to infrastructure maintenance for users. Microservice
also brings other advantages such as flexibility as well as the capability of immediate
scalability to automatically add or remove resources depending on the incoming load.
Some microservice frameworks use a resource-based Kubernetes Horizontal Pod Autoscaler
(HPA) to drive expansion through CPU or memory utilization thresholds per instance. As
a result, the Auto-Scaling function depends on each system component delivering fast
and accurate calculations [2]. Commercially available microservice platforms are often
characterized by workload-based expansion, where they provide additional resources as the
incoming traffic increases. For example, AWS lambda initializes for each new request that
comes in until the limit is reached [3]. Continually creating new requests in this way leads
to a speed delay problem, because it is processed using the HPA method. To minimize this
problem, one may use an open-source framework that supports parallel processing up to a
predefined number of simultaneous requests per instance [4]. When so-called concurrency
is reached, the Knative Pod Autoscaler (KPA) deploys additional pods to handle the extra
loads. Simultaneous parameters can also be manually adjusted to use resources more
efficiently and adjust automatic scaling systems to best suit individual workloads.

Appl. Sci. 2022, 12, 1206. https://doi.org/10.3390/app12031206 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12031206
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app12031206
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12031206?type=check_update&version=1

Appl. Sci. 2022, 12, 1206 2 of 15

Existing research shows that the use of different workloads can affect microservice
performance and cause latency differences up to a few seconds. Since this can have a
significant impact on user experience, we proposed a reinforcement learning RL-based
model that dynamically determines the optimal concurrency for individual workloads.
In general, RL operates under the idea that agents can learn effective decision-making
policies by experiencing a series of trial-and-error interactions with the environment, then
evaluating the current state of the system dynamics in each iteration and determining the
operation of opening the CPU core. After learning, the agent receives positive or negative
rewards and consequently learns the advantages of each reward-status combination. Since
reinforcement learning can adapt to changes in runtime without requiring prior knowledge
of the incoming workloads, the RL algorithm has been adopted as a valid method in the
field of VM auto expansion technology. Therefore, we evaluated the applicability of the
established RL algorithm Q-learning to determine the level of concurrency with optimized
performance. Specifically, we implemented a cloud-based framework and performed three
consecutive experiments.

We analyzed the performance changes of various workload profiles in Auto-Scaling
configurations. The results demonstrated the dependence of throughput as well as delay
time during overload work; they also showed the possibility of improvement through
adaptive expansion setting. Informed by these results, we reinforced the framework with
intelligent RL-based logic to evaluate the ability of self-learning algorithms to make effective
decisions in the microservice framework. The results showed that the proposed model can
learn appropriate expansion policies within a limited time without prior knowledge of
incoming workloads, thereby showing improved performance over basic automatic CPU
expansion settings of the framework. Lastly, we proved that the proposed RL algorithm
achieves better performance than all considered alternatives.

The rest of this work is organized as follows: Section 2 introduces the microservice
platform, Q-learning, and the new Q-Learning theory, and this section reviews related
work into both the intelligent microservice framework and cloud-based Auto-Scaling
technology (Table 1). Section 3 proposes a Q-learning model to utilize these findings
to improve the auto-scaling functionality of HPA as well as the general performance.
Section 4 compares the performance of the existing HPA with the HPA applying the query
algorithm and the performance of the HPA applying the proposed Quad Q Network.
Finally, Section 5 provides the conclusions and limitations of this study, along with possible
future research directions.

Table 1. A Overview of Cloud computing & Reinforcement Learning Discussed in Section 2.

Name Reference

Microservice
Computing

Auto-Scaling Function (The Framework without An Open-Source Server) [5–7]
User Control for Limited Custom Service Quality Requirements [8]

Intelligent Automatic Expansion Kubernetes HPA [9]

Auto-Scaling

Auto-scaling of Cloud Resources [10]
Flexible and Skillful Resource Allocation, The Core Technology of Cloud Computing [11,12]

Development of Appropriate Threshold-Based Rules [13]

Threshold-based
Investigate the automatic expansion system [14]

Elastic Docker [15]
Horizontal automatic scaling [16]

Reinforcement
Learning-Based

Adaptive Fuzzy Logic Controller [17]
Threshold-based Solution for Automatic Expansion of Horizontal Containers [18]

Reinforce Learning Solution (i.e., Q Learning, Dyna-Q and Model-Based) [19]
Dynamic Number of Servers Using A Threshold-Based Expansion Policy [20]

Appl. Sci. 2022, 12, 1206 3 of 15

Table 1. Cont.

Name Reference

Cloud
Computing

Various Middleware Frameworks of Containers [21]
Programming Sensors and IoT Devices (Small VMs Supported by Python Runtime Environments such as Spring

and NodeJS) [22–25]
Application Efficiency (Resource Virtualization Technology for Hardware Flexibility) [26]

Lightweight Virtualization Solution [27]
Virtualization Application to Lower Overhead [28]

Definition of Container [29]
Strengths of Containers, Lightening Up [30]

The Connection between Lightweight Virtualization and Microservice [31]
Strategies to Strengthen The Fuzzy Distribution of Microphone Services [32]

Cluster Intelligence-Based Strategies [33]

Reinforcement
Learning

Deep Q Network That Performs Learning by Updating the Q Value [34–36]
Deep Q Network Proceeds with Effective Learning by Resetting the Q Value [37–40]

Double Deep Q Network’s Idea [41,42]
Double Deep Q Network’s Improvements [43,44]

2. Literature Review: Related Work
2.1. Microservice Computing

As microservice computing continues to spread, scalability represents one of the key
elements being researched, and there is high interest in providing various solutions and
comparing their performance [4]. We benchmarked a variety of microservice platforms,
including extensions focused on Amazon Lambda, Microsoft Azure Functions, Google
Cloud Functions, and IBM Cloud Functions [5–7], and found that the open source serverless
framework paid more attention to auto-scaling functions. Another comparison of qualita-
tive and quantitative features of Kubless, OpenFaas, Apache Openwhisk, and Knative came
to the same conclusion, although user control of custom service quality requirements was
generally limited [8]. One study proposed an intelligent automatic expansion Kubernetes
HPA to solve the computing resource management problems listed above [9]. This study
used the Kubernetes concurrency level adjustment function to compare the performance of
various workload scenarios and investigate the applicability of auto-scaling functions.

2.2. Auto-Scaling

The auto-scaling of cloud resources has emerged as a subject of intensive research in re-
cent years due to the fact that customized resource allocation is one of the key characteristics
of increased adaptation to cloud computing [10]. Other taxonomies have been proposed to
classify numerous techniques at the algorithm level, with Threshold-based Rules, Queuing
Theory, and RL being the main categories. Various studies have also been conducted with
a focus on public cloud providers such as Amazon ECS using Auto-Scaling [9]. Even with
simplified implementations, developing appropriate threshold-based rules requires expert
knowledge and precise application understanding [9–13].

In practice, we use the Kubernetes scaling engine, which makes appropriate automatic
scaling decisions to handle the actual variations in incoming requests. It can also be set up
for resource over-provisioning by introducing certain management parameters for cloud
application providers. Providing adequate application expansion represents one of the
most important elements for cloud providers, as flexible and skillful resource distribution
is a key concept of cloud computing [11,12]. Auto-scaling has been classified and studied
using basic theoretical models or methods.

Threshold-based: Studies focusing on threshold-based expansion rules have improved
vertical and horizontal elasticity performance in cloud systems of lightweight virtualization
technology [14–16]. Specifically, one study examined a resource utilization-based automatic
expansion system that demonstrates Kubernetes’ VPA through its ability to dynamically
adjust container allocation in the Kubernetes cluster without interruption [14]. Further,

Appl. Sci. 2022, 12, 1206 4 of 15

based on IBM’s principle of autonomous computing MAPE-K, an Elastic Docker study was
conducted that autonomously supports the vertical elasticity of docker containers [15]. The
above two papers integrated container movement and reviewed the possibility of vertical
auto-scaling. Another study aimed to improve horizontal auto-scaling [16].

Reinforcement learning-based: One study combined two reinforcement learning (RL)
approaches—Q-learning and state-compensation-state-behavior (SARSA) algorithms—
with self-adaptive fuzzy logic controllers that lead to dynamic resource allocation to the
virtual machine (VM) [17]. Another work provided a threshold-based solution for the
automatic scaling of horizontal containers that uses Q-learning to adjust scaling thresh-
olds [18]. In a different study, a group of dockers proposed different RL solutions (i.e., Q
learning, Dyna-Q, and model-based) that utilize various levels of knowledge about system
dynamics [19,20]. They conducted simulations and compared the behavior of their models
with those of typical M/M/c queues.

RL provides an interesting approach to agent learning about the most suitable ex-
tension measures without prior knowledge [7]. In recent years, various studies have
investigated the applicability of modeless RL algorithms such as Q-learning [10]. With the
advent of container-based applications, this field has attracted greater attention. However,
few studies have focused on areas that can mitigate the general auto-expansion problem
of VM or container configurations. Therefore, the objective of the present study was to
investigate the applicability of newly introduced Q learning to request-based automatic
expansion in a server-free environment. Unlike previous studies on direct vertical or hori-
zontal scaling using RL [13], we proposed a model that could learn effective scaling policies
by adapting simultaneous request levels per container instance to specific workloads.

2.3. Container Computing

Over the past few years, various middleware frameworks of containers have been
proposed in attempts to reduce the difference between the modern high computing needs
with simultaneous interest in multiple applications and the hardware capabilities by IoT
node/end user [21]. For example, small VMs supported in Spring and NodeJS, Python
runtime environments, are designed to allow for programming and code mobility of sensors
and other IoT devices [22–25]. The efficiency of applications depends heavily on resource
virtualization technologies that limit hardware flexibility and depend on code [26]. As a
result, there has recently been increased interest in lightweight virtualization solutions such
as docker containers [27]. Although virtualized applications/services can be implemented
more effectively with respect to hypervisor or VM-based virtualization technology, there is
a need for lower overhead [28].

Containers can be defined as a collection of processes that are separated from the rest
of the system encapsulating the associated dependencies [29]. Containers do not require a
complete guest operating system (OS), so they are much lighter than VMs [30]. For example,
a container can boot faster than a VM, in just a few seconds, and involves a resource set of
less than 2GB, thus allowing it to scale to meet requirements as necessary [27].

Lightweight virtualization is highly related to microservice networks [31]. This is
because it allows for the fast creation and booting of virtualized instances, the possibility
of having many applications simultaneously running on the same host, and separation
between instances running on the same host while reducing overhead costs. Further,
container-based services do not imply strong dependence on a given platform, program-
ming language, or specific application domain, so they have the flexibility to be developed
once and deployed everywhere.

Research related to the implementation of smart containers, dockers, Apache, and
Kubernetes is currently being actively conducted. For example, studies have proposed
fuzzy enhancement learning strategies for microservice allocation [32]. Research has also
been conducted to suggest cluster intelligence-based strategies that can contribute to
scheduling in big data applications [33]. In both cases, the proposals are limited to the
scheduling of smart containers in cloud computing, and no proposals have been presented

Appl. Sci. 2022, 12, 1206 5 of 15

for the scheduling of smart containers in intelligent auto-scaling. Therefore, previous
studies have not been able to propose an essential solution for building an intelligent
microphone service.

2.4. Basic Microservice Platform

The open source Microservice platform provides a set of Kubernetes-based middle-
ware components that can support the deployment and service of serverless applications,
including the ability to automatically scale resources as necessary [6]. When the service
revision expands, the receiving gateway is structured to first forward the receiving request
to the activator. The activator then reports the information to the auto regulator, which
then instructs the distribution of the revised version to be expanded appropriately.

The fact that the request is buffered until the user pod of the revision is available might
have negative effects in terms of waiting time, as the request is blocked during that time.
By contrast, if one or more replicas remain active, the active program can be ignored, and
the traffic can flow directly to the user’s pod to increase the efficiency.

When the request reaches the pod, it is channeled by the queue proxy container and
then processed in the user container. The queue proxy only allows a specific number
of requests to enter the user container at the same time, and queues requests exceeding
this number if necessary. The number of parallel requests processed is specified by the
concurrency parameters that have been configured for a particular revision. Depending
on the concurrency set in the revision, the cue proxy can only simultaneously process that
number of requests by the user container, thus queueing requests as necessary.

Each cue proxy measures the incoming load and then reports the average concurrency
per second and the request on an individual port. The metrics for all queue proxy containers
are scraped by the Autoscaler component, which determines the number of new pods to be
added or removed to maintain the desired level of concurrency.

2.5. Reinforcement Learning

Reinforcement Learning (RL) refers to a collection of trials and errors in which agents
are trained to interact with their environment and make good decisions by being given
positive or negative feedback in the form of rewards for each action. The widely used
RL algorithm is Q-learning without a model. Q-learning is a stepwise learning that can
train the approximation of the optimal behavior value. The approximation of the Q value
specifies the cumulative reward that can be expected when the agent starts with state
(s), takes action (a), and then forever acts on the optimal policy afterward. By observing
the actual reward in each iteration, the optimization of the Q-function is performed step
by step.

RL describes how much newly observed information redefines old information, along
with discount factors used to balance present and future rewards. Since RL is a trial-and-
error method, the agent must choose between exploring new measures and using the
current best option during training [9]. With a certain probability, the agent selects the task
that is anticipated to maximize the expected return based on the optimal policy; i.e., the
task with the highest Q value starting with s.

2.6. Introduction of Deep Q Network, Double DQN

The Deep Q Network (DQN), a representative reinforcement learning algorithm,
is based on the mathematical model definition of the Markov Decision Process (MDP),
wherein an agent exploring an environment recognizes the current state and takes an action
to obtain an optimal policy for a series of actions that maximizes the cumulative rewards.
Figure 1 illustrates the application of the idea of the target network to DQN, which is
expressed by updating the Q value in Q-Learning [34–36].

Q(s, a) = Q(s, a) + alpha (R + gamma maxQ(s prime , a prime)−Q(s, a))

Appl. Sci. 2022, 12, 1206 6 of 15

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 15

wherein an agent exploring an environment recognizes the current state and takes an ac-

tion to obtain an optimal policy for a series of actions that maximizes the cumulative re-

wards. Figure 1 illustrates the application of the idea of the target network to DQN, which

is expressed by updating the Q value in Q-Learning [34–36].

𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝑎𝑙𝑝ℎ𝑎 (𝑅 + 𝑔𝑎𝑚𝑚𝑎 𝑚𝑎𝑥𝑄(𝑠 𝑝𝑟𝑖𝑚𝑒 , 𝑎 𝑝𝑟𝑖𝑚𝑒) − 𝑄(𝑠, 𝑎))

The target network maintains a fixed value while the original Q Network learns, but

it periodically resets to the original Q Network value. This can lead to effective learning

because it can be close to the Q Network with such a fixed target network [37–40].

𝑄(𝑠, 𝑎) → 𝑅 + 𝑔𝑎𝑚𝑚𝑎 𝑚𝑎𝑥𝑄(𝑠 𝑝𝑟𝑖𝑚𝑒 , 𝑎 𝑝𝑟𝑖𝑚𝑒)

Figure 1. Structure of learning using the target network in DQN & Double DQN.

As shown in Figure 1, Double DQN is an algorithm that involves the use of two Q

Networks to improve the accuracy of Q-learning before DQN. However, the fact that Q

values tend to be overestimated is a limitation, as the accuracy of Q-learning is reduced.

Double DQN is an algorithm developed by combining the above ideas in the existing

DQN algorithm with two Q Networks. When the state value s′ is given in maxQ(s′,a′) in

the existing Q-learning formula, a′ with the highest Q value in the Q Network is selected,

after which the Q value is multiplied by γ to derive the target value that Q(s,a) should be

close to [41,42]. The aspect that needs to be improved is that the same Q network is used

in both the selection process and the process of obtaining the Q value. The Q value selected

to use the maximum operation is generally a large value, and as learning progresses, the

Q value increases more than necessary. As a result, when the Q value increases, the per-

formance of the Q Network is greatly degraded. To prevent this, two Q Networks should

be created and learned [43,44].

3. Introducing Intelligent Kubernetes Framework Design Methods and Workloads

Figure 1. Structure of learning using the target network in DQN & Double DQN.

The target network maintains a fixed value while the original Q Network learns, but
it periodically resets to the original Q Network value. This can lead to effective learning
because it can be close to the Q Network with such a fixed target network [37–40].

Q(s, a)→ R + gamma maxQ(s prime , a prime)

As shown in Figure 1, Double DQN is an algorithm that involves the use of two Q
Networks to improve the accuracy of Q-learning before DQN. However, the fact that Q
values tend to be overestimated is a limitation, as the accuracy of Q-learning is reduced.
Double DQN is an algorithm developed by combining the above ideas in the existing DQN
algorithm with two Q Networks. When the state value s′ is given in maxQ(s′,a′) in the
existing Q-learning formula, a′ with the highest Q value in the Q Network is selected, after
which the Q value is multiplied by γ to derive the target value that Q(s,a) should be close
to [41,42]. The aspect that needs to be improved is that the same Q network is used in both
the selection process and the process of obtaining the Q value. The Q value selected to use
the maximum operation is generally a large value, and as learning progresses, the Q value
increases more than necessary. As a result, when the Q value increases, the performance of
the Q Network is greatly degraded. To prevent this, two Q Networks should be created
and learned [43,44].

3. Introducing Intelligent Kubernetes Framework Design Methods and Workloads

For customized HPA-based auto-scaling technology, we designed an Intelligent Kuber-
netes framework that is based on Machine Learning algorithms and which can be expanded.
This section describes the first experiment conducted to evaluate the performance of the
HPA-based auto-scaling and methods used in the experiment to evaluate AI based auto-
scaling. This section also introduces the Microservice Architecture monitoring system
environment used to evaluate the auto-scaling performance.

Appl. Sci. 2022, 12, 1206 7 of 15

3.1. Proposed Microservice Architecture for Auto-Scaling Performance Evaluation

Microservice computing is used for customized applications that have a variety of
resource requirements. For example, high traffic loads require significant memory and
computing power high parallel analysis operations to process video materials such as
Netflix and YouTube videos. Meanwhile, applications like chatbots tend to be low in
computing intensity. However, as the number of users increases, the number of requests
also increases, thereby requiring more responses. To investigate the auto-scaling impact of
various workloads, a synthesized and reliable workload profile that can simulate microser-
vice applications needs to be created. In this study, an API YAML (API Version: v1bera1,
Kind: Deployment) file was created to specify a target port. A load operation was then run
on the PHP-Apache server. Figure 2 illustrates the Intelligence Microservice Architecture
proposed in this study.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 15

For customized HPA-based auto-scaling technology, we designed an Intelligent Ku-

bernetes framework that is based on Machine Learning algorithms and which can be ex-

panded. This section describes the first experiment conducted to evaluate the performance

of the HPA-based auto-scaling and methods used in the experiment to evaluate AI based

auto-scaling. This section also introduces the Microservice Architecture monitoring sys-

tem environment used to evaluate the auto-scaling performance.

3.1. Proposed Microservice Architecture for Auto-Scaling Performance Evaluation

Microservice computing is used for customized applications that have a variety of

resource requirements. For example, high traffic loads require significant memory and

computing power high parallel analysis operations to process video materials such as

Netflix and YouTube videos. Meanwhile, applications like chatbots tend to be low in com-

puting intensity. However, as the number of users increases, the number of requests also

increases, thereby requiring more responses. To investigate the auto-scaling impact of var-

ious workloads, a synthesized and reliable workload profile that can simulate micro-

service applications needs to be created. In this study, an API YAML (API Version:

v1bera1, Kind: Deployment) file was created to specify a target port. A load operation was

then run on the PHP-Apache server. Figure 2 illustrates the Intelligence Microservice Ar-

chitecture proposed in this study.

Figure 2. Proposed Intelligence Microservice Architecture for Auto-Scaling Performance Evalua-

tion.

Two separate clusters were set up using Kubernetes to test the auto-scaling capabili-

ties in a high-performance computing environment (Intel i9 X processor, 128GB RAM,

NVIDIA GPU RTX 3090 * 2). The sample services used in the experiment were distributed

to the service cluster. Each cluster is designed to provide sufficient capacity to host all

components as well as avoid performance limitations. Based on the collected metrics, the

agent manages the activities of the two clusters, such as updating the configuration of the

sample service and adjusting the process flow of the experiment by acting as a Kubernetes

user. The existing HPA controls the statuses of the deployed Kubernetes services and en-

ables automatic scaling of additional pods.

ML’s Reinforcement Learning method was used to update the auto-scaling configu-

ration of the service in each iteration to create a new output each time. To comprehen-

sively test the auto-scaling function, we increased the number of copies of the receiving

gateways to process load balancing, while focusing only on the auto-scaling function. We

also experimentally investigated the Auto-Scaling method using the existing reinforce-

ment learning algorithm and the newly proposed Q Network algorithm.

3.2. Customized Kubernetes Environmental Monitoring Architecture

Figure 2. Proposed Intelligence Microservice Architecture for Auto-Scaling Performance Evaluation.

Two separate clusters were set up using Kubernetes to test the auto-scaling capabilities
in a high-performance computing environment (Intel i9 X processor, 128GB RAM, NVIDIA
GPU RTX 3090 * 2). The sample services used in the experiment were distributed to
the service cluster. Each cluster is designed to provide sufficient capacity to host all
components as well as avoid performance limitations. Based on the collected metrics, the
agent manages the activities of the two clusters, such as updating the configuration of the
sample service and adjusting the process flow of the experiment by acting as a Kubernetes
user. The existing HPA controls the statuses of the deployed Kubernetes services and
enables automatic scaling of additional pods.

ML’s Reinforcement Learning method was used to update the auto-scaling configura-
tion of the service in each iteration to create a new output each time. To comprehensively
test the auto-scaling function, we increased the number of copies of the receiving gateways
to process load balancing, while focusing only on the auto-scaling function. We also experi-
mentally investigated the Auto-Scaling method using the existing reinforcement learning
algorithm and the newly proposed Q Network algorithm.

3.2. Customized Kubernetes Environmental Monitoring Architecture

The application performance within the Kubernetes cluster was examined as depicted
in Figure 3 below with an architecture designed to monitor the designated Kubernetes
environment.

Appl. Sci. 2022, 12, 1206 8 of 15

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 15

The application performance within the Kubernetes cluster was examined as de-

picted in Figure 3 below with an architecture designed to monitor the designated Kuber-

netes environment.

Figure 3. Customized Kubernetes Environmental Monitoring Architecture.

Using the Open-Source Service (Basic Kubernetes monitoring program), we exam-

ined the application performance within the Kubernetes cluster as an architecture to mon-

itor the designated Kubernetes environment. The basic process flow is shown in Figure 3.

These metrics (Kubelet, Resource Estimator, and Metrics Server) are used in the core sys-

tem components, such as the scheduling logic and simple basic UI components. The mon-

itoring pipelines used to collect and expose various metrics in the system to end users via

adapters are the Horizontal Pod Autoscaler and the Infrastructure. Two types of metrics

are used: system metrics and service metrics. System metrics can be used by all monitored

entities, such as CPU and memory usage per container and node. Meanwhile, service met-

rics are explicitly defined in the application code and exported. Both metrics can be used

in the user’s container or system infrastructure components (master components such as

API servers, add-on pods running on the master, and add-on pods running on the user

nodes).

3.3. Customized New Q Network Algorithm Applied to the Experiment

This study introduced a Quad Q Network algorithm that performs Compare Opti-

mizer work on algorithms combining the ideas of Dueling DQN algorithm with existing

double DQN algorithms. The existing method of combining Dueling DQN and Double

DQN derives the Double qs value by substituting the argmax equation based on the calcu-

lated qθ’s value of the Q1 Network in the Dueling DQN with the qθ’s’ value through the new

Q2 Network to go through the Double DQN process. Although this algorithm—which

operates through the fusion of the Dueling method and the Double method—is structur-

ally complex, it is expected to lead to high performance; however, there is one problem: It

is impossible to determine the performance when combining the argmax value based on

the Q value calculated by the Q1 Network with the Q2 Network, and it is better to combine

the argmax value based on the Q2 Network with the Q1 Network. Therefore, after obtain-

ing the value opposite to the existing value, we strengthened the Q network through the

comparison process, thus reducing the loss value and increasing the compensation. The

proposed algorithm provides a basis for selecting a Q value that derives excellent perfor-

mance through comparison and selection of each loss value. This process can describe the

Figure 3. Customized Kubernetes Environmental Monitoring Architecture.

Using the Open-Source Service (Basic Kubernetes monitoring program), we examined
the application performance within the Kubernetes cluster as an architecture to monitor the
designated Kubernetes environment. The basic process flow is shown in Figure 3. These
metrics (Kubelet, Resource Estimator, and Metrics Server) are used in the core system
components, such as the scheduling logic and simple basic UI components. The monitoring
pipelines used to collect and expose various metrics in the system to end users via adapters
are the Horizontal Pod Autoscaler and the Infrastructure. Two types of metrics are used:
system metrics and service metrics. System metrics can be used by all monitored entities,
such as CPU and memory usage per container and node. Meanwhile, service metrics are
explicitly defined in the application code and exported. Both metrics can be used in the
user’s container or system infrastructure components (master components such as API
servers, add-on pods running on the master, and add-on pods running on the user nodes).

3.3. Customized New Q Network Algorithm Applied to the Experiment

This study introduced a Quad Q Network algorithm that performs Compare Optimizer
work on algorithms combining the ideas of Dueling DQN algorithm with existing double
DQN algorithms. The existing method of combining Dueling DQN and Double DQN
derives the Double qs value by substituting the argmax equation based on the calculated
qθ’s value of the Q1 Network in the Dueling DQN with the qθ’s’ value through the new
Q2 Network to go through the Double DQN process. Although this algorithm—which
operates through the fusion of the Dueling method and the Double method—is structurally
complex, it is expected to lead to high performance; however, there is one problem: It
is impossible to determine the performance when combining the argmax value based
on the Q value calculated by the Q1 Network with the Q2 Network, and it is better to
combine the argmax value based on the Q2 Network with the Q1 Network. Therefore, after
obtaining the value opposite to the existing value, we strengthened the Q network through
the comparison process, thus reducing the loss value and increasing the compensation.
The proposed algorithm provides a basis for selecting a Q value that derives excellent
performance through comparison and selection of each loss value. This process can describe
the structure of a Quad Q Network using four Q networks, then represent it as shown in
Figure 4.

Appl. Sci. 2022, 12, 1206 9 of 15

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 15

structure of a Quad Q Network using four Q networks, then represent it as shown in Fig-

ure 4.

Figure 4. Quad Q Network algorithm structure that derives Target Q values with the structures of

the Quad Q Network with four Q Networks.

4. Experiment and Results

To determine the performance of intelligent microservices, we first conducted a base-

line experiment comparing different workloads in terms of relative performance. This sec-

tion simulates the application’s existing Horizontal Pod Autoscaler, the Autoscaler apply-

ing reinforcement learning to HPA, and the Autoscaler incorporating the proposed rein-

forcement learning algorithm. In the existing HPA work, the CPU allocation gradually

increased for each new experiment, starting with the number of cores. To maximize each

core, the response to the request was simulated by applying a load. The time using each

core was measured while the maximum number of cores was limited to 10. The detailed

experimental results are summarized in Table 2.

Table 2. HPA-based auto-scaling performance test results.

Name Reference Targets Minpods Maxpods Replicas Time

HPA Deployment/HPA 458%/50% 1 10 1 1m14s

HPA Deployment/HPA 411%/50% 1 10 2 1m32s

HPA Deployment/HPA 364%/50% 1 10 3 1m47s

HPA Deployment/HPA 331%/50% 1 10 4 2m2s

HPA Deployment/HPA 280%/50% 1 10 5 2m35s

HPA Deployment/HPA 241%/50% 1 10 6 2m44s

HPA Deployment/HPA 200%/50% 1 10 7 2m59s

HPA Deployment/HPA 164%/50% 1 10 8 3m17s

Figure 4. Quad Q Network algorithm structure that derives Target Q values with the structures of
the Quad Q Network with four Q Networks.

4. Experiment and Results

To determine the performance of intelligent microservices, we first conducted a base-
line experiment comparing different workloads in terms of relative performance. This
section simulates the application’s existing Horizontal Pod Autoscaler, the Autoscaler
applying reinforcement learning to HPA, and the Autoscaler incorporating the proposed
reinforcement learning algorithm. In the existing HPA work, the CPU allocation gradually
increased for each new experiment, starting with the number of cores. To maximize each
core, the response to the request was simulated by applying a load. The time using each
core was measured while the maximum number of cores was limited to 10. The detailed
experimental results are summarized in Table 2.

Table 2. HPA-based auto-scaling performance test results.

Name Reference Targets Minpods Maxpods Replicas Time

HPA Deployment/HPA 458%/50% 1 10 1 1 min 14 s

HPA Deployment/HPA 411%/50% 1 10 2 1 min 32 s

HPA Deployment/HPA 364%/50% 1 10 3 1 min 47 s

HPA Deployment/HPA 331%/50% 1 10 4 2 min 2 s

HPA Deployment/HPA 280%/50% 1 10 5 2 min 35 s

HPA Deployment/HPA 241%/50% 1 10 6 2 min 44 s

HPA Deployment/HPA 200%/50% 1 10 7 2 min 59 s

HPA Deployment/HPA 164%/50% 1 10 8 3 min 17 s

HPA Deployment/HPA 140%/50% 1 10 9 3 min 31 s

HPA Deployment/HPA 122%/50% 1 10 10 4 min 24 s

Appl. Sci. 2022, 12, 1206 10 of 15

Since there is no intelligent algorithm in the existing HPA work that is suitable for
predicting overload with relation to the target share, the number of cores is opened one by
one with the existing method. The work was confirmed to be gradually carried out. The
number of cores started with one. All cores were opened in 4 min and 24 s. This method
requires improvement because it is ineffective in responding to more traffic requests.

To solve this problem, in Autoscaler work equipped with AI algorithms, the DQN
algorithm has been embedded in the existing HPA method to make the most of each core.
The learning procedure is as follows. The input data value was set as the percentage loaded
on the CPU, which is the target value. And the compensation system aimed to reduce
overload by expanding the Pod as quickly as possible. The target value was reduced to
a minimum, and reaching the target quickly was set as the best compensation value. To
prevent the use of the core without limitation, the CPU load was continuously checked. In
addition, penalties were set up to prevent unnecessary use of pods. If CPU resources are
needed when opening the core, +1 point is given. If CPU resources were optimized when
opening the core, −1 point is given. If it was difficult to judge, the learning was conducted
by setting it to +0 point. The learning results are shown in Figure 5.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 15

HPA Deployment/HPA 140%/50% 1 10 9 3m31s

HPA Deployment/HPA 122%/50% 1 10 10 4m24s

Since there is no intelligent algorithm in the existing HPA work that is suitable for

predicting overload with relation to the target share, the number of cores is opened one

by one with the existing method. The work was confirmed to be gradually carried out.

The number of cores started with one. All cores were opened in 4 min and 24 s. This

method requires improvement because it is ineffective in responding to more traffic re-

quests.

To solve this problem, in Autoscaler work equipped with AI algorithms, the DQN

algorithm has been embedded in the existing HPA method to make the most of each core.

The learning procedure is as follows. The input data value was set as the percentage

loaded on the CPU, which is the target value. And the compensation system aimed to

reduce overload by expanding the Pod as quickly as possible. The target value was re-

duced to a minimum, and reaching the target quickly was set as the best compensation

value. To prevent the use of the core without limitation, the CPU load was continuously

checked. In addition, penalties were set up to prevent unnecessary use of pods. If CPU

resources are needed when opening the core, +1 point is given. If CPU resources were

optimized when opening the core, -1 point is given. If it was difficult to judge, the learning

was conducted by setting it to +0 point. The learning results are shown in Figure 5.

Figure 5. Deep Q Network-based intelligent autoscaler compensation value result.

The highest value was derived from the 41st out of the 50 total number of learning,

with a compensation value of 7, and overall, the compensation value is upward. The same

load was given to the intelligent Autoscaler to perform simulations in a similar manner to

the previous environment. The maximum number of cores was limited to 10. The time

used for each core was measured. The detailed experimental results are listed in Table 3.

Table 3. DQN-based auto-scaling performance test results.

Name Reference Targets Minpods Maxpods Replicas Time

i1-MSA
Deployment/

i1-MSA
438%/50% 1 10 1 25s

i1-MSA
Deployment/

i1-MSA
419%/50% 1 10 2 31s

Figure 5. Deep Q Network-based intelligent autoscaler compensation value result.

The highest value was derived from the 41st out of the 50 total number of learning,
with a compensation value of 7, and overall, the compensation value is upward. The same
load was given to the intelligent Autoscaler to perform simulations in a similar manner
to the previous environment. The maximum number of cores was limited to 10. The time
used for each core was measured. The detailed experimental results are listed in Table 3.

The Autoscaler equipped with AI algorithms began with one core according to the
target share. CPU allocation was rapidly increased for each new experiment. Since there
was an intelligent algorithm suitable for predicting overload, the Autoscaler quickly opened
the cores, rather than proceeding according to the one-by-one system. It was also confirmed
that the work proceeded radically. The number of cores began with one. All cores were
opened in one minute and one second. This method helps stabilize the system by predicting
a response to a future request according to the value loaded on the target.

Using this process, we proved that the AI Autoscaler had remarkable performance com-
pared to the existing HPA. We also compared its performance with that of the Autoscaler
equipped with concepts aiming to strengthen the Q Network process in the DQN structure.

Appl. Sci. 2022, 12, 1206 11 of 15

Table 3. DQN-based auto-scaling performance test results.

Name Reference Targets Minpods Maxpods Replicas Time

i1-MSA Deployment/i1-MSA 438%/50% 1 10 1 25 s

i1-MSA Deployment/i1-MSA 419%/50% 1 10 2 31 s

i1-MSA Deployment/i1-MSA 359%/50% 1 10 3 34 s

i1-MSA Deployment/i1-MSA 330%/50% 1 10 4 39 s

i1-MSA Deployment/i1-MSA 276%/50% 1 10 5 46 s

i1-MSA Deployment/i1-MSA 222%/50% 1 10 6 48 s

i1-MSA Deployment/i1-MSA 198%/50% 1 10 7 53 s

i1-MSA Deployment/i1-MSA 172%/50% 1 10 8 57 s

i1-MSA Deployment/i1-MSA 148%/50% 1 10 9 1 min 1 s

i1-MSA Deployment/i1-MSA 119%/50% 1 10 10 1 min 10 s

As shown in Figure 6 at the top, the highest value was derived with the compensation
value 9 at the 26, 39, and 40th out of the total number of learning, and better performance
was derived than before. In Autoscaler work equipped with new AI algorithms, CPU
allocation increased faster than it previously did for each new experiment, starting with
one core. To make the most of the cores, the response to each request was loaded to perform
simulations in a manner similar to the previous environment. The maximum number of
cores was also limited to 10. The time used for each core was then measured. The detailed
experimental results are summarized in Table 4.

The Autoscaler equipped with new AI algorithms has an intelligent algorithm that
is more suitable for predicting overloads. It can perform tasks by opening the cores very
effectively due to its excellent prediction of performance loads. It was also confirmed that
the work proceeded radically, starting with one core. All cores were opened in 59 s. This
method helps stabilize the system by making more effective predictions based on the value
loaded on the target.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 15

Figure 6. Quad Q Network-based intelligent autoscaler compensation value result.

Table 4. Improved DQN-based auto-scaling performance test results.

Name Reference Targets Minpods Maxpods Replicas Time

i2-MSA
Deployment/

i2-MSA
432%/50% 1 10 1 19s

i2-MSA
Deployment/

i2-MSA
415%/50% 1 10 2 22s

i2-MSA
Deployment/

i2-MSA
364%/50% 1 10 3 26s

i2-MSA
Deployment/

i2-MSA
329%/50% 1 10 4 33s

i2-MSA
Deployment/

i2-MSA
269%/50% 1 10 5 37s

i2-MSA
Deployment/

i2-MSA
224%/50% 1 10 6 42s

i2-MSA
Deployment/

i2-MSA
198%/50% 1 10 7 46s

i2-MSA
Deployment/

i2-MSA
168%/50% 1 10 8 51s

i2-MSA
Deployment/

i2-MSA
129%/50% 1 10 9 55s

i2-MSA
Deployment/

i2-MSA
114%/50% 1 10 10 59s

The Autoscaler equipped with new AI algorithms has an intelligent algorithm that is

more suitable for predicting overloads. It can perform tasks by opening the cores very

effectively due to its excellent prediction of performance loads. It was also confirmed that

the work proceeded radically, starting with one core. All cores were opened in 59 s. This

method helps stabilize the system by making more effective predictions based on the

value loaded on the target.

Figure 7 above depicts the Auto-Scaling Performance Measurement Results by Pod

Scaler Type. The results for HPA, i1-MSA (Intelligent Autoscaler Mounted), and i2-MSA

(Improved DQN Algorithm) are also shown. The performances of the Autoscalers

Figure 6. Quad Q Network-based intelligent autoscaler compensation value result.

Appl. Sci. 2022, 12, 1206 12 of 15

Table 4. Improved DQN-based auto-scaling performance test results.

Name Reference Targets Minpods Maxpods Replicas Time

i2-MSA Deployment/i2-MSA 432%/50% 1 10 1 19 s

i2-MSA Deployment/i2-MSA 415%/50% 1 10 2 22 s

i2-MSA Deployment/i2-MSA 364%/50% 1 10 3 26 s

i2-MSA Deployment/i2-MSA 329%/50% 1 10 4 33 s

i2-MSA Deployment/i2-MSA 269%/50% 1 10 5 37 s

i2-MSA Deployment/i2-MSA 224%/50% 1 10 6 42 s

i2-MSA Deployment/i2-MSA 198%/50% 1 10 7 46 s

i2-MSA Deployment/i2-MSA 168%/50% 1 10 8 51 s

i2-MSA Deployment/i2-MSA 129%/50% 1 10 9 55 s

i2-MSA Deployment/i2-MSA 114%/50% 1 10 10 59 s

Figure 7 above depicts the Auto-Scaling Performance Measurement Results by Pod
Scaler Type. The results for HPA, i1-MSA (Intelligent Autoscaler Mounted), and i2-MSA
(Improved DQN Algorithm) are also shown. The performances of the Autoscalers equipped
with AI algorithms were found to be significantly higher than that of HPA, with the Au-
toscaler equipped with the newly developed DQN algorithm showing the best performance.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 15

equipped with AI algorithms were found to be significantly higher than that of HPA, with

the Autoscaler equipped with the newly developed DQN algorithm showing the best per-

formance.

Figure 7. Auto-Scaling Performance Measurement Results by Pod Scaler Type.

5. Conclusions

With the advent of the microservice framework, auto-scaling capabilities that meet

various demands have emerged as a major area of interest. Numerous expansion mecha-

nisms have been developed. This study focused on request-based expansion, where we

first investigated the performance and efficiency of core expansion for requests by mount-

ing AI algorithms. The results of the experiments showed significant differences in

throughput as well as deviations in maximum moisture from average latency. Therefore,

the presence or absence of AI algorithms can affect performance. To flexibly adjust the

auto-scaling settings to meet the particular requirements of a given situation, we designed

RL models based on Q-learning and evaluated their applicability to learn effective scaling

policies during runtime. Further, based on other algorithms with an enhanced Q Network,

we showed that the proposed model could effectively and appropriately adjust the num-

ber of cores within a limited time, thereby outperforming the average throughput of the

default HPA. Given these results, the presented research makes a significant contribution

to existing work in the fields of both microservice frameworks and RL-based auto-scaling

applications.

Based on the experimental results, we identified the following limitations of this ap-

proach: First, the maximum number of cores was limited to 10. There was no experiment

investigating unexpected variables depending on the increasing load and whether it could

perform better in a real-life environment that required a larger amount of traffic work. We

developed the RL approach to learn core expansion policies mainly by testing the load on

the target. However, it is necessary to analyze the extent to which the resource use ratio

of individual components can affect performance. Therefore, there is a need for a compre-

hensive study to find the combination of usage levels that is capable of achieving the best

possible performance in all microservices.

Author Contributions: Conceptualization, Y.K. and J.K.; Methodology, Y.K. and J.P.; Software, Y.K.

and J.P.; Validation, J.P. and J.Y.; Formal analysis, J.P.; Investigation, J.Y.; Resources, J.Y. and J.K.;

Data curation, J.P. and J.Y.; Writing—original draft preparation, Y.K.; Writing—review and editing,

Figure 7. Auto-Scaling Performance Measurement Results by Pod Scaler Type.

5. Conclusions

With the advent of the microservice framework, auto-scaling capabilities that meet
various demands have emerged as a major area of interest. Numerous expansion mecha-
nisms have been developed. This study focused on request-based expansion, where we first
investigated the performance and efficiency of core expansion for requests by mounting AI
algorithms. The results of the experiments showed significant differences in throughput as
well as deviations in maximum moisture from average latency. Therefore, the presence or
absence of AI algorithms can affect performance. To flexibly adjust the auto-scaling settings
to meet the particular requirements of a given situation, we designed RL models based
on Q-learning and evaluated their applicability to learn effective scaling policies during
runtime. Further, based on other algorithms with an enhanced Q Network, we showed that
the proposed model could effectively and appropriately adjust the number of cores within

Appl. Sci. 2022, 12, 1206 13 of 15

a limited time, thereby outperforming the average throughput of the default HPA. Given
these results, the presented research makes a significant contribution to existing work in
the fields of both microservice frameworks and RL-based auto-scaling applications.

Based on the experimental results, we identified the following limitations of this
approach: First, the maximum number of cores was limited to 10. There was no experiment
investigating unexpected variables depending on the increasing load and whether it could
perform better in a real-life environment that required a larger amount of traffic work. We
developed the RL approach to learn core expansion policies mainly by testing the load
on the target. However, it is necessary to analyze the extent to which the resource use
ratio of individual components can affect performance. Therefore, there is a need for a
comprehensive study to find the combination of usage levels that is capable of achieving
the best possible performance in all microservices.

Author Contributions: Conceptualization, Y.K. and J.K.; Methodology, Y.K. and J.P.; Software, Y.K.
and J.P.; Validation, J.P. and J.Y.; Formal analysis, J.P.; Investigation, J.Y.; Resources, J.Y. and J.K.; Data
curation, J.P. and J.Y.; Writing—original draft preparation, Y.K.; Writing—review and editing, J.K. and
J.Y.; Visualization, J.Y.; Supervision, J.K. and J.Y.; Project administration, J.K.; Funding acquisition, J.K.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was also supported by the National Research Foundation of Korea (NRF) grant
funded by the Korean government (MSIT) (No. NRF-2021R1I1A3060565). This work was supported
by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded
by the Korean government (MSIT) (No. 2021-0-02068, Artificial Intelligence Innovation Hub).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Amaral, M.; Polo, J.; Carrera, D.; Mohomed, I.; Unuvar, M.; Steinder, M. Performance Evaluation of Microservices Architectures

Using Containers. In Proceedings of the 2015 IEEE 14th International Symposium on Network Computing and Applications,
Cambridge, MA, USA, 28–30 September 2015; pp. 27–34.

2. Li, J.; Kulkarni, S.G.; Ramakrishnan, K.K.; Li, D. Understanding Open Source Serverless Platforms: Design Considerations and
Performance. In Proceedings of the 5th International Workshop on Serverless Computing (WOSC ’19), UC Davis, CA, USA, 9–13
December 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 37–42.

3. McGrath, G.; Brenner, P.R. Serverless computing: Design, implementation, and performance. In Proceedings of the 2017 IEEE
37th International Conference on Distributed Computing Systems Workshops (ICDCSW), Atlanta, GA, USA, 5–8 June 2017;
pp. 405–410.

4. Akbulut, A.; Perros, H.G. Software Versioning with Microservices through the API Gateway Design Pattern. In Proceedings
of the 2019 9th International Conference on Advanced Computer Information Technologies (ACIT), Ceske Budejovice, Czech
Republic, 5–7 June 2019; pp. 289–292.

5. Lloyd, W.; Ramesh, S.; Chinthalapati, S.; Ly, L.; Pallickara, S. Serverless Computing: An Investigation of Factors Influencing
Microservice Performance. In Proceedings of the 2018 IEEE International Conference on Cloud Engineering, Orlando, FL, USA,
17–20 April 2018; pp. 159–169.

6. Wang, L.; Li, M.; Zhang, Y.; Ristenpart, T.; Swift, M. Peeking behind the curtains of serverless platforms. In Proceedings of the
2018 USENIX Annual Technical Conference, USENIX ATC 2018, Boston, MA, USA, 11–13 July 2020; pp. 133–145.

7. Lee, H.; Satyam, K.; Fox, G. Evaluation of production serverless computing environments. In Proceedings of the 2018 IEEE 11th
International Conference on Cloud Computing (CLOUD), San Francisco, CA, USA, 2–7 July 2018; pp. 442–450.

8. Palade, A.; Kazmi, A.; Clarke, S. An Evaluation of Open Source Serverless Computing Frameworks Support at the Edge. In
Proceedings of the 2019 IEEE World Congress on Services (SERVICES), Milan, Italy, 8–13 July 2019; pp. 206–211.

9. Tseng, F.H.; Tsai, M.S.; Tseng, C.W.; Yang, Y.T.; Liu, C.C.; Chou, L.D. A Lightweight Auto-Scaling Mechanism for Fog Computing
in Industrial Applications. IEEE Trans. Ind. Inform. 2018, 14, 4529–4537. [CrossRef]

10. Singh, P.; Gupta, P.; Jyoti, K.; Nayyar, A. Research on Auto-Scaling of Web Applications in Cloud: Survey, Trends and Future
Directions. Scalable Comput. Pract. Exp. 2019, 20, 399–432. [CrossRef]

11. Al-Dhuraibi, Y.; Paraiso, F.; Djarallah, N.; Merle, P. Elasticity in cloud computing: State of the art and research challenges. IEEE
Trans. Serv. Comput. 2017, 11, 430–447. [CrossRef]

http://doi.org/10.1109/TII.2018.2799230
http://doi.org/10.12694/scpe.v20i2.1537
http://doi.org/10.1109/TSC.2017.2711009

Appl. Sci. 2022, 12, 1206 14 of 15

12. Lorido-Botran, T.; Miguel-Alonso, J.J.; Lozano, J.A. A Review of Auto-scaling Techniques for Elastic Applications in Cloud
Environments. J. Grid Comput. 2014, 12, 559–592. [CrossRef]

13. Lucia, S.; Somaya, J.; Niklas, K. AI-based Resource Allocation: Reinforcement Learning for Adaptive Auto-scaling in Serverless
Environments. In Proceedings of the 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing
(CCGrid), Melbourne, Australia, 10–13 May 2021; pp. 804–811.

14. Rattihalli, G.; Govindaraju, M.; Lu, H.; Tiwari, D. Exploring potential for non-disruptive vertical auto scaling and resource
estimation in kubernetes. In Proceedings of the IEEE International Conference on Cloud Computing (CLOUD), Milan, Italy, 8–13
July 2019; pp. 33–40.

15. Al-Dhuraibi, Y.; Paraiso, F.; Djarallah, N.; Merle, P. Autonomic Vertical Elasticity of Docker Containers with ELASTICDOCKER.
In Proceedings of the IEEE International Conference on Cloud Computing, CLOUD, Honolulu, CA, USA, 25–30 June 2017.

16. Toka, L.; Dobreff, G.; Fodor, B.; Sonkoly, B. Adaptive AI-based auto-scaling for Kubernetes. In Proceedings of the 2020 20th
IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID), Melbourne, Australia, 11–14 May
2020; pp. 599–608.

17. Arabnejad, H.; Pahl, C.; Jamshidi, P.; Estrada, G. A Comparison of Reinforcement Learning Techniques for Fuzzy Cloud Auto-
Scaling. In Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID),
Madrid, Spain, 14–17 May 2017; pp. 64–73.

18. Horovitz and Arian, y. Efficient Cloud Auto-Scaling with SLA Objective Using Q-Learning. In Proceedings of the IEEE 6th
International Conference on Future Internet of Things and Cloud (FiCloud), Barcelona, Spain, 6–8 August 2018; pp. 85–92.

19. Rossi, F.; Nardelli, M.; Cardellini, V. Horizontal and Vertical Scaling of Container-Based Applications Using Reinforcement
Learning. In Proceedings of the IEEE 12th International Conference on Cloud Computing (CLOUD), Milan, Italy, 8–13 July 2019;
pp. 329–338.

20. Naranjo, P.G.; Pooranian, Z.; Shamshirband, S.; Abawajy, J.H.; Conti, M. Fog over Virtualized IoT: New Opportunity for
Context-Aware Networked Applications and a Case Study. Appl. Sci. 2017, 7, 1325. [CrossRef]

21. Morabito, R.; Farris, I.; Iera, A.; Taleb, T. Evaluating performance of containerized IoT services for clustered devices at the network
edge. IEEE Internet Things J. 2017, 4, 1019–1030. [CrossRef]

22. Levis, P.; Culler, D. MatÉ: A tiny virtual machine for sensor networks. SIGARCH Comput. Archit. News 2002, 30, 85–95. [CrossRef]
23. Aslam, F.; Fennell, L.; Schindelhauer, C.; Thiemann, P.; Ernst, G.; Haussmann, E.; Rührup, S.; Uzmi, Z.A. Optimized java

binary and virtual machine for tiny motes. In International Conference on Distributed Computing in Sensor Systems; Springer:
Berlin/Heidelberg, Germany, 2010; pp. 15–30.

24. Alessandrelli, D.; Petraccay, M.; Pagano, P. T-res: Enabling reconfigurable in-network processing in iot-based wsns. In Proceedings
of the 2013 IEEE International Conference on Distributed Computing in Sensor Systems, Cambridge, MA, USA, 20–23 May 2013;
pp. 337–344.

25. Gusev, A.; Ilin, D.; Nikulchev, E. The Dataset of the Experimental Evaluation of Software Components for Application Design
Selection Directed by the Artificial Bee Colony Algorithm. Data 2020, 5, 59. [CrossRef]

26. Pérez de Prado, R.; García-Galán, S.; Muñoz-Expósito, J.E.; Marchewka, A.; Ruiz-Reyes, N. Smart Containers Schedulers for
Microservices Provision in Cloud-Fog-IoT Networks. Challenges and Opportunities. Sensors 2020, 20, 1714. [CrossRef] [PubMed]

27. Docker. Docker Containers. Available online: https://www.docker.com/ (accessed on 4 December 2019).
28. Morabito, R.; Kjallman, J.; Komu, M. Hypervisors vs. lightweight virtualization: A performance comparison. In Proceedings of

the 2015 IEEE International Conference on Cloud Engineering, Tempe, AZ, USA, 9–13 March 2015; pp. 386–393.
29. Liu, L.; Masfary, O.; Antonopoulos, N. Energy performance assessment of virtualization technologies using small environmental

monitoring sensors. Sensors 2012, 12, 6610–6628. [CrossRef] [PubMed]
30. Chen, S.; Mengchu, Z. Evolving Container to Unikernel for Edge Computing and Applications in Process Industry. Processes 2021,

9, 351. [CrossRef]
31. Plauth, M.; Feinbube, L.; Polze, A. A performance survey of lightweight virtualization techniques. In Proceedings of the European

Conference on Service-Oriented and Cloud Computing, Oslo, Norway, 27–29 September 2017; pp. 34–48.
32. Joseph, C.T.; Martin, J.P.; Chandrasekaran, K.; Kandasamy, A. Fuzzy Reinforcement Learning based Microservice Allocation in

Cloud Computing Environments. In Proceedings of the TENCON 2019—2019 IEEE Region 10 Conference (TENCON), Kochi,
India, 17–20 October 2019; pp. 1559–1563.

33. Liu, B.; Li, J.; Lin, W.; Bai, W.; Li, P.; Gao, Q. K-PSO: An improved PSO-based container scheduling algorithm for big data
applications. Int. J. Netw. Manag. 2020, 31, e2092. [CrossRef]

34. Watkins, C.J.C.H. Learning from Delayed Rewards; King’s College: Cambridge, UK, 1989.
35. Lin, L. Reinforcement Learning for Robots Using Neural Networks. Ph.D. Thesis, School of Computer Science, Carnegie-Mellon

University, Pittsburgh, PA, USA, 1993.
36. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;

Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]
37. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing Atari with Deep

Reinforcement Learning. arXiv 2013, arXiv:1312.5602.
38. Wang, Z.; Schaul, T.; Hessel, M.; Van Hasselt, H.; Lanctot, M.; De Freitas, N. Dueling Network Architectures for Deep Reinforce-

ment Learning. arXiv 2015, arXiv:1511.06581.

http://doi.org/10.1007/s10723-014-9314-7
http://doi.org/10.3390/app7121325
http://doi.org/10.1109/JIOT.2017.2714638
http://doi.org/10.1145/635506.605407
http://doi.org/10.3390/data5030059
http://doi.org/10.3390/s20061714
http://www.ncbi.nlm.nih.gov/pubmed/32204390
https://www.docker.com/
http://doi.org/10.3390/s120506610
http://www.ncbi.nlm.nih.gov/pubmed/22778660
http://doi.org/10.3390/pr9020351
http://doi.org/10.1002/nem.2092
http://doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670

Appl. Sci. 2022, 12, 1206 15 of 15

39. Sutton, R.S.; Barto, A.G. Introduction to Reinforcement Learning; MIT Press: Cambridge, UK, 1998.
40. Wang, Y.; Xing, J.G.; Qian, S. Selectivity Enhancement in Electronic Nose Based on an Optimized DQN. Sensors 2017, 17, 2356.

[CrossRef] [PubMed]
41. Li, L.; Lv, Y.; Wang, F.-Y. Traffic signal timing via deep reinforcement learning. IEEE/CAA J. Autom. Sin. 2016, 3, 247–254.
42. Genders, W.; Razavi, S. Using a deep reinforcement learning agent for traffic signal control. arXiv 2016, arXiv:1611.01142.
43. Hasselt, H.V.; Guez, A.; Silver, D. Deep reinforcement learning with double q-learning. In Proceedings of the Thirtieth AAAI

conference on artificial intelligence, Phoenix, AZ, USA, 12–17 February 2016.
44. Hessel, M.; Modayil, J.; van Hasselt, H.; Schaul, T.; Ostrovski, G.; Dabney, W.; Horgan, D.; Piot, B.; Azar, M.; Silver, D. Rainbow:

Combining improvements in deep reinforcement learning. In Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence, San Francisco, CA, USA, 2–7 February 2017.

http://doi.org/10.3390/s17102356
http://www.ncbi.nlm.nih.gov/pubmed/29035335

	Introduction
	Literature Review: Related Work
	Microservice Computing
	Auto-Scaling
	Container Computing
	Basic Microservice Platform
	Reinforcement Learning
	Introduction of Deep Q Network, Double DQN

	Introducing Intelligent Kubernetes Framework Design Methods and Workloads
	Proposed Microservice Architecture for Auto-Scaling Performance Evaluation
	Customized Kubernetes Environmental Monitoring Architecture
	Customized New Q Network Algorithm Applied to the Experiment

	Experiment and Results
	Conclusions
	References

