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Abstract: Studies on virtual-to-realistic image style transfer have been conducted to minimize the
difference between virtual simulators and real-world environments and improve the training of
artificial intelligence (AI)-based autonomous driving models using virtual simulators. However,
when applying an image style transfer network architecture that achieves good performance using
land-based data for autonomous vehicles to marine data for autonomous vessels, structures such
as horizon lines and autonomous vessel shapes often lose their structural consistency. Marine data
exhibit substantial environmental complexity, which depends on the size, position, and direction of
the vessels because there are no lanes such as those for cars, and the colors of the sky and ocean are
similar. To overcome these limitations, we propose a virtual-to-realistic marine image style transfer
method using horizon-targeted loss for marine data. Horizon-targeted loss helps distinguish the
structure of the horizon within the input and output images by comparing the segmented shape.
Additionally, the design of the proposed network architecture involves a one-to-many style mapping
technique, which is based on the multimodal style transfer method to generate marine images of
diverse styles using a single network. Experiments demonstrate that the proposed method preserves
the structural shapes on the horizon more accurately than existing algorithms. Moreover, the object
detection accuracy using various augmented training data was higher than that observed in the case
of training using only virtual data. The proposed method allows us to generate realistic data to
train AI models of vision-based autonomous vessels by actualizing and augmenting virtual images
acquired from virtual autonomous vessel simulators.

Keywords: style transfer; autonomous vessels; horizon targeted loss

1. Introduction

Recent technological advances in artificial intelligence (AI) have led to improvements
in the field of autonomous driving. Autonomous vehicles learn diverse scenarios using
open-source simulators, such as AirSim [1], CARLAR [2], and SVL Simulator [3], by
training terrain and weather condition variables to respond in a manner that reflects
real driving environments. The trained AI model is subsequently mounted on a real
vehicle. Research similar to that of autonomous vehicles is now underway with respect
to marine vessels, considering the effect of waves, buoyancy, water currents, and wind
currents. The automation of navigation necessitates a robot to control the rudder and
sails, steering the sailing yacht, making tactical decisions regarding the sailing routes, and
performing docking maneuvers in ports. Virtual simulators of autonomous vessels, such as
Freefloating Gazebos [4], VREP [5], RobotX Simulator [6], and USVSim [7], when used to
simulate rudder adjustments according to the wind and tide, face the problem of a very
low level of representativeness of marine graphics. Consequently, the performance of AI
models trained to perform vision-based object tracking or pathfinding in a virtual ocean
environment deteriorates when mounted in a real environment, owing to the differences
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between the simulated and real environments. Changing the environment that is already
built into a new style is limited because it requires manual effort.

Therefore, we propose a diverse realistic marine image generation method that uses
virtual images. Figure 1 depicts the conversion of image data obtained from a virtual
simulator to provide realistic images pertaining to a variety of marine environments.
Furthermore, this study generates realistic data that can train an artificially intelligent
and vision-based autonomous vessel model by enhancing the virtual images of various
styles obtained through the virtual autonomous vessel simulator, which is suitable for a
photo-real world.
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Figure 1. Concept of realistic generation of diverse marine images for training autonomous vessels.

Existing virtual simulators for autonomous vehicles have achieved good performance
in transforming data from virtual images to those in realistic images through the generative
adversarial network (GAN) [8], such as the use of virtual environment images obtained in
the GTA game simulator and real-world driving data from Cityscapes [9]. However, when
AI model architectures developed using images from land-based data are applied to marine
images, the structural shapes within the images often collapse. On land, the locations and
orientations of roads and vehicles are uniform; therefore, land-based images are nearly
identical in structure; however, in the case of the ocean, the locations and orientations of
the vessels differ widely owing to the absence of lanes. In addition, it is easy for neural
networks to extract and learn features concerning land-based images because the color
differences between elements, such as the sky, road, and vehicle, are evident. However,
it is difficult to differentiate between the colors of the sky and sea in ocean-based images
because they may comprise a range of similar blue colors, such as in the images depicted in
Figure 2.
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To overcome these limitations, we propose a method for the realistic generation of
diverse marine images based on horizon-targeted loss that can preserve the shapes of
the horizon and the vessel. Horizon-targeted loss calculates the difference in structural
forms in the input and output images in the detected vessel areas based on the horizon
and reflects them in the loss function, thereby enabling the network to prevent loss of the
structural form of the relatively complex horizon and vessel. Moreover, this loss enhances
the AI-based learning performance of autonomous vessels by enhancing the marine image
extracted by this network from a virtual simulator such that it resembles a variety of realistic
images.

The main contributions of this study are summarized as follows.

• A specialized style transfer method for marine images is proposed.
• A novel horizon-targeted loss is designed to enhance and preserve the shapes of the

ocean horizon and the vessel.
• The accuracy of representing structural forms is improved through the style transfer

of marine data.
• A method for the generation of diverse and realistic marine images is proposed that

uses one-to-many style mapping and is based on multimodal style transfer.

The remainder of this paper is organized as follows. Related works concerning
autonomous vessel simulators and image-style transfers are outlined in Section 2. The
proposed diverse realistic marine image generation framework is introduced in Section 3.
The experimental results and analyses are presented in Section 4. Finally, the proposed
framework is presented in Section 5.

2. Related Works

This section summarizes existing studies concerning simulators of autonomous vessels
and style-transfer approaches. Subsequently, the necessity of the proposed diverse and
realistic marine image generation method is explained.

2.1. Simulators of Autonomous Vessels

Autonomous vessels are currently used for applications such as search-and-rescue
operations, inspecting bridge structures, maintaining security, and monitoring the environ-
ment. Most autonomous AI testing is conducted through simulators focused on modeling
physical conditions, such as waves, buoyancy, water currents, and wind currents, and they
do not account for realistic visual images obtained from RGB sensors. However, visual
images play an important role in autonomous vessel control. For example, object detection
models can be used to identify other boats or objects in images; furthermore, there is
potential for the utilization of segmentation models in detecting shorelines or separating
water from other structures. As listed in Table 1, autonomous-vessel simulators [4–7] can
simulate vessel control using waves, buoyancy, water currents, and wind-current condi-
tions, but the visual representativeness of these simulators in terms of reality is low, and
they do not incorporate diversity. Therefore, in this study, we propose a virtual-to-realistic
marine image style transfer method to provide diverse and realistic marine RGB images by
converting virtual images to real images, which overcomes the limitations of the lack of
visual quality and diversity exhibited by existing autonomous vessel simulators.

Table 1. Existing simulators for autonomous vessels.

Simulator Waves Buoyancy Water
Currents

Wind
Currents

Camera
(RGB)

Freefloating Gazebo [4] O O O X O

VREP [5] O O X X O

RobotX Simulator [6] O O X O O

USVSim [7] O O O O O
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2.2. Image-to-Image Translation for Style Transfer

Image-to-image translation has been studied extensively and applied in various fields
such as photorealistic transfer [8], semantic synthesis [9], and data augmentation [10]. This
section introduces the existing image-to-image translation approaches for style transfer
and is organized in the following order: Section 2.2.1. Supervised-learning Approach,
Section 2.2.2. Unsupervised-learning Approach for a Single Style, and Section 2.2.3.
Unsupervised-learning Approach for Multiple Styles.

2.2.1. Supervised-Learning Approach

Since the creation of the generative adaptive network (GAN) [11] algorithm, studies
focusing on image-to-image translation using urban scene dataset [12] such as Pix2pix [13]
and SPADE [14] have been conducted actively. Supervised image-to-image translation
aims to translate source images into a target domain using many aligned image pairs
as the source and target domains during training. However, the paired dataset used in
supervised learning cannot be built to reflect new styles. For example, in a realistic style
transfer from a virtual image, it is impossible to obtain the same structure as that of the
corresponding real-world image. To address this, unsupervised learning techniques, such
as CycleGAN [15], have been proposed.

2.2.2. Unsupervised-Learning Approach for a Single Style

Unlike Pix2pix [13] and SPADE [14], CycleGAN [15] does not require paired data from
the X and Y domains for training. Using adversarial loss, the data from the X domain
were mapped to the Y domain without a paired dataset. Gxy : X → Y is trained such
that the distribution of data from Gxy(x) is identical to that from Y. Furthermore, Gyx(y)
works in conjunction with reverse mapping, given by Gyx : Y → X , and introduces
cycle-consistency loss that forces Gyx

(
Gxy(x)

)
to resemble X.

Similar to the concept of dual learning in image translation, DualGAN [16] and
DiscoGAN [17] have been proposed to train two cross-domain transfer GANs with two
cyclic losses simultaneously. However, these networks can map only one style per network.
To solve this problem, research concerning multimodal image-to-image translation has
been conducted using disentangled representations.

2.2.3. Unsupervised-Learning Approach for Multiple Styles

The main concept involved in multimodal image-to-image translation learning for
diverse style transfer is the conversion of one picture into a variety of images, which
contrasts with a one-to-one mapping process. Disentangled representations [18–20] present
a solution to the one-to-one domain mapping problem. They have facilitated advances in
multimodal image-to-image translation, notably through the DRIT [21] and MUNIT [22]
methods, which assume that image data from different domains can be mapped to a single
identical latent space.

DRIT [21] and MUNIT [22] assume that the latent feature space for the image data is
composited into contents and styles, wherein the content is shared regardless of the domain,
and the style is domain-specific. Through adversarial loss, the multimodal approach applies
weight-sharing and a discriminator to force feature representations to be mapped onto the
same shared space, as well as to guarantee that the corresponding feature representations
encode the same information for both domains. With the cross-cycle consistency loss, the
multimodal approach implements a forward–backward function by swapping domain
representations. On training completion, the networks can input a different-attribute
feature vector randomly sampled from the specific attribute space to generate diverse
outputs.

However, these methods are unable to solving problems involved in marine images.
Because of the high structural diversity and low color difference of the area near the horizon,
errors in identifying structural forms occur frequently. Therefore, we propose a horizon-
targeted loss based on the MUNIT [22] architecture to reduce the error in identifying the
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horizon line and vessel shapes. The proposed method can generate diverse realistic images
from virtual RGB images without losing shape coherence in oceanic data, such that various
realistic images and ocean conditions can be provided to autonomous vessels.

3. Proposed Diverse and Realistic Marine Image Generation Framework

We propose a framework for diverse and realistic marine image generation using
horizon targeted loss to enhance and preserve the shapes of the ocean horizon and vessels
for generating realistic training data for anonymous vessels. This framework is divided
into two parts, as illustrated in Figure 3. First, the content and style features are extracted
from the virtual input image to the generator using content and style encoders, and realistic
synthetic images are generated by the decoder based on the content and style features.
Secondly, we reduce the loss by detecting the shape of vessels and extracting horizon
regions to minimize the structural errors of the ocean horizon and vessels caused by the
complexity of marine images.
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3.1. Diverse Realistic Marine Image Generator

We customized the MUNIT [22] by adding horizon-targeted loss to enable the gen-
erator to transform a virtual image into a corresponding realistic image. When training
the generator, each feature is extracted using the style encoders Evirtual

style and Ereal
style, and

the content encoders, Evirtual
con and Ereal

con , in the virtual and real-world domains, respec-
tively. The extracted features intersect with Gvirtual

(
Ereal

style(xreal), Evirtual
content(xvirtual)

)
and

Greal

(
Evirtual

style (xvirtual), Ereal
content(xreal)

)
through the decoder to synthesize each content and

style aspect, wherein the content is shared regardless of the domain, and the style is
domain-specific. To generate the stylized image output, the intermediate result is once
again provided as input to the encoder and decoder and subsequently synthesized to return
to the style of the input image. The network is trained by calculating the loss based on the
differences between the output and input images, as illustrated in Figure 4.
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There are five main types of loss functions: image reconstruction loss, latent content
loss, latent style loss, adversarial GAN loss, and horizon-targeted loss. In image recon-
struction loss, Lvirtual

image and Lreal
image are loss functions that calculate and reflect the difference

between images converted to other domains by the encoder and decoder. In latent content
and style loss, Lvirtual

content, Lreal
content, Lvirtual

style , and Lreal
style are loss functions for the latent space. In

horizon-targeted loss, Lvirtual
horizon and Lreal

horizon are loss functions that calculate and reflect the
difference between images converted to other domains based on the RoI (region of interest)
containing the horizon. In adversarial GAN loss, Lvirtual

adv and Lreal
adv are loss functions that

adjust the feature distribution of the input image to match that of the target domain.

(1) Image reconstruction loss: Given an image sampled from the data distribution, we
reconstruct the entire image after encoding and decoding. Lreal

image is defined in a similar
manner.

Lvirtual
image = Ex1∼p(x1)

[
‖ Gvirtual(Evirtual

content(x1), Evirtual
style (x1))− x1 ‖

]
(1)
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(2) Latent content loss: Given a latent content code sampled from the latent distribution,
we calculate the latent content code required to reconstruct it after decoding and
encoding. Lreal

content is defined in a similar manner.

Lvirtual
content = Ec1∼p(c1),s2∼p(s2)

[
‖ Ereal

content(Greal(c1, s2)− c1 ‖
]

1
(2)

(3) Latent style loss: Given a latent style code sampled from the latent distribution, we
calculate the latent style code required to reconstruct it after decoding and encoding.
Lvirtual

style is defined in a similar manner.

Lreal
style = Ec1∼p(c1),s1∼p(s1)

[
‖ Ereal

style(Greal(c1, s2)− s1 ‖
]

(3)

(4) Adversarial GAN loss: We employ GANs to match the distribution of virtual-domain
images to that of the real-domain data. Lreal

adv is defined in a similar manner.

Lreal
adv = Ec1∼p(c1),s2∼p(s2)[log(1− Dreal(Greal(c1, s2)))] +Ex2∼p(x2)[log Dreal(x2)] (4)

(5) Horizon-targeted loss: We calculate the loss by comparing the RoI in the input data to
that in the output data. Lreal

horizon is defined in a similar manner.

Lvirtual
horizon = Ex1∼p(x1)

[
‖ Gvirtual(Evirtual

content(RoI_x1), Evirtual
style (RoI_x1))− RoI_x1 ‖

]
(5)

(6) Total loss: The objective function of our conditional GAN model is based on that of
MUNIT [22]. We propose the introduction of horizon-targeted loss, which focuses on
the horizon area to prevent losing shape coherence, via the following minimax game.

min
Estyle , Econtent, Greal, Gvirtual

max
Dreal, Dvirtual

= L
(

Estyle, Econtent, Greal, Dvirtual, Greal, Dvirtual

)

= Lvirtual
GAN + Lreal

GAN + λx

(
Lvirtual

image + Lreal
image

)
+ λc

(
Lvirtual

content + Lreal
content

)
+ λs

(
Lvirtual

style + Lreal
style

)
(6)

+ λh

(
Lvirtual

horizion + L
real
horizion

)
In the above equation, λx, λc, λs , and λh are weights that control the importance of

the reconstruction terms.

3.2. Horizon Targeted Loss Calculator

We introduce a horizon-targeted loss function because many marine images do not
exhibit a clear difference in colors between the sky and sea; unlike vehicles on land, there
are no roads for vessels, thereby resulting in diverse vessel positions, directions, and sizes.
The proposed horizon-targeted loss can consider the detected horizon and vessel area to
reduce shape inconsistency by comparing segmented RoI images of the horizon and vessel
in real- and virtual-domain data. Thus, the network can learn to identify the horizon more
proficiently. A flowchart depicting the calculation of horizon-targeted loss is outlined in
Figure 5.
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First, the positions and bounding boxes of the vessels in a single input image (virtual
or realistic) are detected using a deep learning based object detection algorithm such as
YOLO [23]. Second, a horizon candidate area is extracted based on the position of the vessel
located at the center of the detected positions, because we can assume that the horizon line
extends across all vessels. After extracting RoI images according to the extracted vessel and
horizon regions, they are converted into black and white images to enable a comparison of
the structural characteristics of the images rather than that of their colors. The regions are
roughly divided according to the objects in the image using the Otsu algorithm. Finally,
the loss is calculated by comparing each region extracted from the real image with that
extracted from the virtual image.

Algorithm 1 describes the procedure for horizon-targeted loss calculation in detail.
After obtaining the detected vessel RoI list by YOLO [23], a horizon candidate region is
extracted considering the highest vessel position in the image. The height of the horizon
candidate region is measured from the highest vessel position to approximately one-third
of the height of the input image on either side, which can be expected in the horizontal
area. For example, if the input height is 1080 pixels, the height of the candidate region is
300 pixels. Subsequently, the loss is calculated by comparing the segmented result of the
input and output images of the vessels and the horizon area. If there are no vessels, we do
not calculate the horizontal targeted loss.

3.3. Discriminator

We employed multi-scale discriminators introduced in pix2pixHD [24] to update
the generators such that they produced both realistic local features and correct global
structures. A discriminator with a large receptive field is required to produce high-quality
images. Generally, the network depth or the kernel size increases. However, in such
cases, substantial memory is required for training, and overfitting may occur. Therefore,
a multi-scale discriminator with the same structure, but managing different image scales,
was used.
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Algorithm 1 Horizon-targeted loss calculation

Input: Imagevirtual/real , Imagerealistic
Output: Horizon targeted loss
1: minY ← ImageHegiht
2: detectedObjectList ← Yolo_Based_Object_Detection_Network(Imagevirtual)
3: If detectedObjectList <> null then
4: For i := 0 → len(detectedObjectList) do
5: If object ==′ vessel′ then
6: vesselList.append(detectedObjectList[i])
7: RoIvessel list← RoIvesselListExtract (vesselList)
8: If detectedObjectList[i].y < minY then
9: minY← DetectedObjectList[i].y
10: End
11: End
12: End
13: RoIhorizon← RoIhorizonExtract (minY)
14: grayImagevirtual/real ← Convert_to_gray(Imagevirtual/real)
15: grayImagerealistic ← Convert_to_gray(Imagerealistic)
16: segementedImagevirtual/real ← Otsu(Imagevirtual/real)
17: segementedImagerealistic ← Otsu (Imagerealistic)
18: For i := 0 → len(RoIvessel list ) do
19: vesselLoss←
vesselLoss + CampareImageWithRoI

(
RoIvessel list[i], Imagevirtual/real, Imagerealistic

)
20: End
21: vesselLoss← vesselLoss/len(RoIvessel list )
22: horizonLoss← CampareImageWithRoI

(
RoIhorizon, Imagevirtual/real, Imagerealistic

)
23: Horizon targeted loss ← vesselLoss + horizonLoss
24: Else Horizon targeted loss ← 0

4. Experiments and Analysis

This section describes the experiments conducted to verify the performance and
analysis of the results of the proposed diverse realistic marine image generation framework.

4.1. Experiment Settings

Figure 6 illustrates the experimental environment for testing the proposed method
which was implemented in Unity to obtain 2000 virtual oceanic images. Furthermore, we
collected 2000 real-world images of the South Korean Ocean. The real and virtual ocean
image dimensions were 1920 × 1080, and the images did not exhibit paired matching. The
distributions of the real and virtual datasets for training and testing are summarized in
Table 2.

Table 2. Training data overview, including the distribution of images for training and testing.

Ocean Dataset Real Ocean Data Virtual Ocean Data

Training 1800 1800

Testing 200 200

Total Number of Images 2000 2000
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4.2. Evaluation Metrics

We utilized a Frechet Inception Distance (FID) [25] in our evaluation, which is a
popular metric for evaluating image generation tasks. This metric calculates the distance
between feature vectors calculated for real and generated images. The FID metrics were
defined as follows:

FID =‖ µX − µY ‖2 +Tr
(

∑ X + ∑ Y− 2
√

∑ X ∑ Y
)

(7)

4.3. Quantitative Evaluation of Diverse Photorealistic Marine Image Generator

Figure 7 illustrates the results of converting domains A -> B and B -> A. The figure
reveals that the generator can maintain the structures within each image, such as the
horizon, ship, and mountain shapes, on conversion. The trained network is one, and we
can generate new diverse style images.

We applied FID to quantitatively evaluate the performance of the proposed method.
To obtain a lower score, a model must be able to generate images that are similar with real
world image data. While virtual images, which obtained by our simulator yielded an FID
of 109.422, the realistic images which are generated by the proposed method yielded an
FID of 102.210. Table 3 shows our results are closer to the real data than those of virtual
images.

Table 3. Quantitative evaluation result of the proposed method.

Method FID (↓)
Virtual images vs. Real images 109.422

Realistic images (ours) vs. Real images 102.210

Figure 8 illustrates the results of converting the virtual ocean simulator images of four
frames into four different styles. The results indicated that the styles of the sky and sea
were well applied.



Appl. Sci. 2022, 12, 1253 11 of 15

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 15 
 

4.2. Evaluation Metrics 
We utilized a Frechet Inception Distance (FID) [25] in our evaluation, which is a pop-

ular metric for evaluating image generation tasks. This metric calculates the distance be-
tween feature vectors calculated for real and generated images. The FID metrics were de-
fined as follows:  𝐹𝐼𝐷 = ∥ μଡ଼ − μଢ଼ ∥ଶ+  Τ𝑟 ( 𝑋 +  𝑌 − 2ට 𝑋  𝑌) (7)

4.3. Quantitative Evaluation of Diverse Photorealistic Marine Image Generator 
Figure 7 illustrates the results of converting domains A -> B and B -> A. The figure 

reveals that the generator can maintain the structures within each image, such as the hori-
zon, ship, and mountain shapes, on conversion. The trained network is one, and we can 
generate new diverse style images.  

 
Figure 7. Results of the proposed generator: (a) results of image translation from the virtual to real 
domain, and (b) results of image translation from the real to virtual domain. 
Figure 7. Results of the proposed generator: (a) results of image translation from the virtual to real
domain, and (b) results of image translation from the real to virtual domain.

4.4. Horizion Targeted Loss Effects

The result of applying horizon-targeted loss is revealed in Figure 9. Notably, in the
case of MUNIT [22], the line of the horizon is curved into a wave shape; this is not the case
with the proposed method.

4.5. Comparison of Object Detection Performance

After converting the virtual data to real-world data, three types of data were available:
(1) real-world data, (2) virtual data, and (3) realistic data. We trained the YOLO [23] network,
which is a deep learning algorithm for object detection in images, on real-data images to
detect the positions of ships and their bounding boxes. We subsequently tested the network
on the three types of data and compared the object-detection accuracies observed, as
illustrated in Figure 10. The dimensions of the input image were 512 × 910. We trained
the YOLO [23] network using 500 real training data images. Subsequently, we tested 200
images each of real, virtual, and realistic data.
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Table 4, which lists the object detection accuracies obtained for the three types of data,
reveals that the object detection accuracy is higher on testing within the case of the realistic
data than that obtained within the case of the virtual data. This indicates that we generated
realistic images that resembled the real data more closely.

Table 4. Comparison results of object detection performance.

Data Type Object Detection Accuracy

Real data 85%

Virtual data 79%

Realistic data 81%
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4.6. Inference Time

The proposed method, which applies horizon-targeted loss, does not require semantic
information from the input. Because the algorithm requires considerable time to compare
losses in the training stage, the training time increases, and no significant difference between
MUNIT [22] and the proposed algorithm is observed after training. Therefore, unlike in
MUNIT [22], no additional computation is required at the time of inference because the
input image and network layers remain the same. Furthermore, the accuracy of image
conversion was improved by reducing the error in identifying the horizon area. Table 5
shows that we achieved an inference time of 0.032 s (31.25 fps) with 640 × 480-pixel images
on a GeForce GTX 3090 Ti graphics card.

Table 5. Inference time comparison.

Method Average Inference Time

MUNIT [22] 0.034 s (29.41 fps)

Ours 0.032 s (31.25 fps)

5. Conclusions

In this study, we propose a virtual-to-realistic marine image style transfer method
using horizon-targeted loss for marine data that can preserve the shapes of the horizon
and the vessel. Horizon-targeted loss focuses on distinguishing the horizon from the other
structural forms in the input and output images, based on a comparison of the segmented
shape. Experiments reveal that the proposed method preserves the structural shapes on the
horizon more accurately than the existing algorithms. In addition, a higher object detection
accuracy is observed on learning using the augmented learning data of various walkdown
styles compared with learning using virtual data alone. The proposed method allows us to
generate realistic data to train AI models of vision-based autonomous vessels by actualizing
and augmenting virtual images acquired from virtual autonomous-vessel simulators. A
comparison between the proposed and MUNIT [22] methods via visual assessment and
quantitative analysis reveals that our method achieves better performance in maintaining
the shapes of the horizon and vessels. In future work, we will modify the proposed model
to obtain high-resolution images in real time.
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