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Abstract: The Synthetic Aperture Radar (SAR) target recognition model usually needs to be retrained
with all the samples when there are new-coming samples of new targets. Incremental learning
emerges to continuously obtain new knowledge from new data while preserving most previously
learned knowledge, saving both time and storage. There are still three problems in the existing
incremental learning methods: (1) the recognition performance of old target classes degrades signifi-
cantly during the incremental process; (2) the target classes are easily confused when similar target
classes increase; (3) the model is inclined to new target classes due to class imbalance. Regarding the
three problems, firstly, the old sample preservation and knowledge distillation were introduced to
preserve both old representative knowledge and knowledge structure. Secondly, a class separation
loss function was designed to reduce the intra-class distance and increase the inter-class distance,
effectively avoiding the confusion between old and new classes. Thirdly, a bias correction layer and a
linear model was designed, which enabled the model to treat the old and new target classes more
fairly and eliminate the bias. The experimental results on the MSTAR dataset verified the superior
performance compared with the other incremental learning methods.

Keywords: incremental learning; SAR target recognition; knowledge distillation; old sample preservation;
class imbalance

1. Introduction

Remote sensing is a detection technology that obtains information about objects
without direct contact at long distances. It plays a very important role in many studies,
and an increasing number of more precise sensors and measurements are also providing
researchers with more information [1]. It has a growing impact in a wide variety of areas
from business to science to public policy. Synthetic Aperture Radar (SAR) is one of the active
remote sensing technologies and has a unique ability to obtain high-resolution microwave
images of the Earth’s surface targets in almost all weather conditions. Automatic Target
Recognition (ATR) based on the SAR images, especially ATR through deep learning, has
played an essential role in wide-area monitoring of targets such as vehicles, ships, and
aircraft [2–4].

The commonly used training method for the target recognition model is the one-time
supervised learning or batch learning mode to process the data in an offline manner [5,6],
as shown in Figure 1a. All existing labeled target samples are trained to predict the labels
of unknown input data. However, it is usually challenging to collect the labeled samples
of all the target classes at once in practice, and the training data of the new target classes
are obtained gradually. The storage requirement of training samples increases as well. The
trained target recognition model using old target samples needs to be retrained using both
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old and new target samples. Due to the limitation of computation and storage resources in
some particular application situations, this approach cannot be applied.

The incremental learning (also known as lifelong learning, continuous learning)
emerges to enable trained target recognition model to continuously learn new tasks [7]. It
keeps knowledge gained from previous tasks without the need to preserve large amounts
of old data [8], as shown in Figure 1b. Incremental learning focuses the problem of catas-
trophic forgetting [9–11]. The catastrophic forgetting means that after a target recognition
model is trained with a new dataset, the weights necessary for the old tasks are changed to
adapt to the new task, and the knowledge of the previously learned task is lost.

Model M0 Model M1

Train

Model M2

Train  Train ●●●  

Data0(D0)

New data

Input Input Input

New data New data

Data0(D0)
Data1(D1)

Data0(D0)
Data1(D1)
Data2(D2)

(a)

Initial Train

Model M0

●●●

Data0(D0)
Input Input

Model M1 Model M2

Incremental

Train

Incremental

Train

Input

Sample sampling

Data2(D2)

Data1.part(d1)
Sample sampling

Data0.part(d0)

Data1(D1)
●●●

●●●

Data0.part(d0)

(b)

Figure 1. Illustration of the non-incremental learning and incremental learning process. (a) Non-
incremental learning (batch learning) process. (b) Incremental learning process.

Although some incremental learning methods have been proposed, there are still three
problems needed to be addressed.

(1) The performance of the incremental process still degrades significantly for old
target classes, i.e., incremental learning faces the problem of catastrophic forgetting, and
there are varying degrees of performance degradation as the classes increase. Regarding the
problem of catastrophic forgetting, some methods are proposed, such as preserving a small
number of training samples of old classes [8,12], using a sub-network for each incremental
phase [13,14], freezing the nodes of the network essential for the old task during the training
of the model [15,16]. Among them, the old sample preservation is a straightforward way to
prevent the model from forgetting what it has learned. However, it is difficult to ensure
that the preserved old samples are representative enough to train a new model with
good recognition performance. Although the methods in [17,18] learn to generate pseudo-
samples of the old data to reconstruct the data distribution of the old classes, the quality of
the pseudo-samples is not able to entirely represent the actual samples. It is worth noting
that the knowledge distillation [19], which is initially proposed for transfer learning, is
very effective in enabling the current model to simulate the old model. Therefore, it can
be introduced into incremental learning. However, the standard knowledge distillation
method builds relevant models by minimizing the Kullback–Leibler Divergence (KLD)
between probabilistic outputs, and ignores important knowledge structures in the old
model [20]. In this paper, considering the advantage of knowledge distillation and old
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sample preservation, they are combined to alleviate catastrophic forgetting. Firstly, the
samples closer to the class center of the old data are selected and preserved, because these
samples are more representative and able to better represent a class of targets. Secondly,
the cross-entropy loss function and the knowledge distillation loss function of the old and
new samples are integrated. The distillation loss between the old and new classes is used
to preserve knowledge, and the cross-entropy loss is used to identify different classes. The
advantage of this approach is that not only the old representative knowledge but also the
knowledge structure are preserved.

(2) The old and new target classes are easily confused when similar target classes
increase. With the arrival of new targets, the total number of classes to be identified by
the model increases, and some visually similar classes may appear in each training phase.
When the number of old and new target samples is unbalanced, the increase of visually
similar classes will further degrade the recognition performance. On the one hand, this is
because the boundary between target classes is more susceptible to class imbalance. On
the other hand, it is also because the difference of samples within the same classes and the
similarity of samples among different classes are more likely to cause the model to confuse
the recognition of old and new classes and produce false recognition results. In [21], a new
loss function, i.e., rectification loss, is adopted to deal with the confusion among old and
new target classes. However, the disadvantage is that it relies more on the model to select
the corresponding samples in the training dataset to calculate this loss. In this paper, a class
separation loss function is designed that does not rely on directly selecting samples in the
training dataset and can be directly added into the incremental learning. It is capable of
making the inter-class sample distance larger, and the intra-class sample distance smaller,
promoting the separation of old and new classes.

(3) The target recognition model is more likely to classify the input samples as new
target classes because there is a weight bias in the fully connected layer of model. The
weight bias occurs due to that there is a class imbalance between the old and new classes
during training, where the model is able to obtain all samples of the new targets but only a
few samples of the old targets. In [12], a balanced training phase is introduced at the end
of each model training to fine-tune the model with a balanced dataset. However, these
samples cannot fully represent the data distribution and may over-fit the stored samples.
In this paper, a bias correction is performed to solve the weight bias problem in the fully
connected layer. Firstly, a bias correction layer is added after the fully connected layer
of the model, and a linear model with two parameters is used. Secondly, the preserved
representative samples are used to train the bias correction layer. This approach enables
the model to treat the old and new target classes more fairly and eliminates the bias.

In all, the three main contributions of this paper are summarized as follows.

• The knowledge distillation method has been introduced into SAR target incremental
recognition with the combination of old sample preservation. It is capable of bet-
ter achieving plasticity-stability balance and preventing catastrophic forgetting of
old classes.

• An effective loss function for class separation with attention to class boundaries has
been designed, which increases inter-class sample distance and decrease intra-class
sample distance, therefore facilitates the separation between new and old classes.

• A bias correction layer has been designed and trained to solve the problem of weight
bias in the fully connected layer, which corrects the biased output of the model.

The rest of this paper is organized as follows. Section 2 describes the existing methods
of incremental learning. Section 3 introduces the proposed method in detail. In Section 4,
experiments results on the dynamic/static target acquisition and recognition (MSTAR)
dataset are presented. Section 5 draws the conclusions.

2. Relative Work

Incremental learning is a topic that has long existed in machine learning and has
attracted more and more attention with the introduction of deep learning [8,22]. Incremental
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learning aims to train the model to recognize new target classes while preserving its initially
learned knowledge of the old target classes. As shown in Table 1, many approaches
have been proposed in recent research to find a good compromise between the stability
and plasticity of trained models to address the catastrophic forgetting problem faced by
neural networks.

In this section, three types of incremental learning methods are briefly reviewed,
including the old sample preservation method, the knowledge distillation method, and
the method for resolving class imbalance. The old sample preservation strategy stores a
subset of representative samples from previous tasks for replay in the incremental training
phase [23]. The knowledge distillation approach introduces the concept of a teacher model
(complex, highly learned model) and a student model (simple, small parametric model) [24].
By training the student model to transfer knowledge, the representative knowledge learned
in the teacher model can be transferred to the student model [25]. The combination of
the two methods is able to effectively improve the performance of the target recognition
model and alleviate catastrophic forgetting. Although the methods based on preserving
representative samples are effective in incremental learning, the class imbalance problem
still exists. The new class has more samples in the training phase than the old class. It
affects both the convergence of the model in the training phase and the generalization of
the model in the test dataset.

Table 1. Summary of existing incremental learning methods.

Methods Year Old Data Knowledge Class Application Field
Preservation Distillation Balancing (Dataset Name)

LWF [15] 2016 ! Places365-standard, ILSVRC 2012.

iCaRL [8] 2017 ! ! ! CIFAR-100,
ILSVRC 2012.

EWC [9] 2017 MNIST.
ICL-GAN [26] 2018 ! CIFAR-100, Flower-102, MS-Celeb-1M-Base.

EEIL [12] 2018 ! ! ! CIFAR-100,
ILSVRC 2012.

LWM [27] 2019 ! iCIFAR-100,
iILSVRC-small.

United [28] 2019 ! ! ! CIFAR-100,
ImageNet-Subset.

Bic [29] 2019 ! ! ! ImageNet-1000,
MS-Celeb1M.

M2KD [30] 2019 ! CIFAR-100,
iILSVRC-small.

IL2M [31] 2019 ! ! ! ILSVRC, VGGFace2,
Landmarks.

ScaIL [32] 2020 ! ILSVRC, VGGFace2,
Landmarks, CIFAR-100.

Mnemonics Training [33] 2020 ! ! CIFAR-100, ILSVRC 2012.
CBesIL [6] 2020 ! MSTAR.
Our-method 2021 ! ! ! MSTAR.

2.1. Old Sample Preservation

Multi-class incremental learning without forgetting (mnemonics training) [33] is a
method based on old sample preservation, and it is similar to [8,12,28,29]. The method
optimizes the framework in both model-level and sample-level to ensure that the reserved
samples are capable of well representing the boundary and mean of each class’s distribution.
However, it relies on well-preprocessed feature extractors to obtain superior performance
of incremental learning. The Class Boundary exemplar selection based Incremental Learn-
ing (CBesIL) for automatic target recognition [6] mainly consists of two parts, i.e., class
boundary selection and incremental learning. The class boundary selection is based on
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local geometric information and statistical information to extract class boundaries. It per-
forms distribution reconstruction to update the sample set when new classes are added.
However, it only considers protecting class boundary updates during data reconstruction,
which will cause inaccuracy of recognition. The overcoming of catastrophic forgetting in
neural networks (EWC) [9] evaluates the importance of network synapses by computing
the Fisher information matrix, which is used to slow down the learning of weights that
highly correlate with the previous task. However, this approach also leads to an imbalance
for new tasks. The classifier weights Scaling for class Incremental Learning (ScaIL) [32]
reuses the network weights learned from all data to reduce bias. However, it depends on
comparing classifier weights for the current state and the initial state.

It is also a feasible way to generate pseudo-samples of old data using Generative
Adversarial Networks (GAN), reducing storage consumption. Wu et al. [26] use GAN to
generate pseudo images for old classes and combine these images with new class’s images
and achieve slightly better performance than [8]. However, the quality of the pseudo-
samples is not able to entirely represent the actual samples. Therefore the performance will
significantly degrade if only relying on the generated pseudo-samples. Moreover, it is not
the optimal incremental approach due to its requirement of creating more GAN models
and more memory cost.

Based on the above analysis, this paper adopts the old sample preservation strategy
so that the model does not forget what it has learned. When a new target arrives, the first k
samples closer to the class center of each target are preserved.

2.2. Knowledge Distillation

Rather than preserving old samples, the Learning Without Forgetting (LWF) [15] is
a pioneering incremental learning effort that uses knowledge distillation to minimize the
representation difference between old and new classes. During the incremental learning
process of this method, the network parameters related to the old classes are frozen, only
the new parameters are trained, and finally, all network parameters are jointly trained
until convergence. However, this method relies highly on the correlation between the
new task and the old task, which will cause task confusion when the tasks’ difference is
significant. The training time increases linearly with the number of tasks. The Learning
Without Memorizing (LWM) [27] is also a knowledge distillation approach without the
necessity to preserve the old samples. This method employs an information preserving
penalty that uses the attention distillation loss to obtain changes in the model’s attention
graph and preserve old knowledge. Instead of sequentially extracting knowledge only from
the model of the penultimate task, the Multi-model and Multi-level Knowledge Distillation
for incremental learning (M2KD) [30] directly applies all previous model information. It
also proposes an additional distillation term that runs in the middle layer of the network in
addition to the fully connected layer.

Based on the above analysis, this paper adopts the knowledge distillation strategy.
Each incremental phase uses a well-trained model on the old classes to initialize the model
that will learn the new classes. The advantage of this method is that it does not require any
change in the model structure, while preserving the knowledge that the model has learned.

2.3. Solution to Class Imbalance

The sample number of new class is always more than each old class. The incremental
Classifier and Representation Learning (iCaRL) [8] uses old sample preservation and
knowledge distillation to avoid catastrophic forgetting, and uses cross-entropy loss to
classify targets. This method introduces a nearest class mean classifier by computing the
class mean of the samples in the sample feature representation. Because this process is
independent of the weights and biases of the last layer, the class imbalance problem is well
solved. A helpful solution strategy is also proposed in the End-to-End Incremental Learning
(EEIL) [12] method, where it includes a phase called “balanced training” at the end of each
training session. In this phase, the same number of samples from all visible classes are
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used to perform a small batch of fine-tuning. However, when these samples are not fully
representing the class distribution, balancing training is likely to over-fitting the stored
samples. Hou et al. [28] propose to learn a unified classifier incrementally via rebalancing
(United), which uses a cosine normalization layer to replace the standard Softmax layer, and
combines the fine-tuning technique to improve classification performance. Wu et al. [29]
use a two-phases training approach to train a new task using distillation loss and cross-
entropy loss in the first phase and correct the imbalance problem using a validation set
selected in advance in the second phase. Belouadah et al. [31] propose the class Incremental
Learning with dual Memory (IL2M) method to modify network predictions. The imbalance
is corrected using the deterministic statistics of class predictions saved from previous tasks.
However, most of the methods mentioned above require a long offline training time, and
each incremental phase takes a lot of time to obtain good performance.

Based on the above research, class imbalance will cause bias, namely the last fully
connected layer of the model has bias in target recognition. The classification logits of the
new targets are larger than the old targets, and the model is easier to recognize the sample
as the new targets. To solve this problem, a bias correction method for class imbalance
is introduced in this paper. A bias correction layer is added after the last fully connected
layer of the model, and a linear function with two parameters is used to correct the bias. It
solves the problem of bias in the fully connected layer due to class imbalance and achieves
superior performance in incremental learning.

3. Methodology

The proposed SAR target incremental recognition method based on hybrid loss func-
tion and class-bias correction is shown in Figure 2. Firstly, a small number of old target class
samples are preserved and input into the model along with the new target class samples.
Secondly, the model is trained using knowledge distillation loss, cross-entropy loss, and
class separation loss, where the class separation loss is to reduce the confusion between
target classes. Thirdly, a bias correction layer is introduced to correct the bias in the fully
connected layer since the imbalance between the number of old and new samples will lead
to bias in the fully connected layer of the model.
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Figure 2. Illustration of one incremental phase of the proposed SAR target incremental recognition
method based on hybrid loss function and class-bias correction.

For the convenience of presenting the proposed method, some notations of incremental
learning are defined in the following. Incremental learning assumes that one or a batch
of new class samples arrives at a time, the model learns multiple tasks in turn, and each
task contains several new classes. It is assumed that there are totally N + 1 phases of
incremental learning (1 initial phase and N incremental phases). In the initial phase, cross-
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entropy classification loss is used to learn model M0 by the old classes of data D0, and then
preserve model M0 to memory. Due to the memory limitation, the whole D0 is difficult
to be preserved, so a small number of samples d0 is preserved instead of D0. d0 is a tiny
subset of the old classes data D0 and d0 ⊂ D0 and |d0| � |D0|. In i-th incremental phase
having n old classes and m new classes, a new model Mi is trained to classify the n + m
classes. The previous d0 ∼ di−1 is abbreviated as d0:i−1. Mi−1 and d0:i−1 are loaded from
memory and d0:i−1 is combined with the new classes data Di to train Mi initialized by
Mi−1. In the incremental phase, the model Mi is trained using the hybrid loss functions
and bias correction method. The goal is to train a model that performs well on all currently
observed classes without catastrophic forgetting.

3.1. Old Sample Preservation by Herding Selection

The old sample preservation approach refers to retaining a small portion of the old
classes data during incremental learning. According to existing studies, keeping a tiny
subset of old classes is able to significantly improve the recognition rate of old classes by the
model. Algorithm 1 describes the selection process of representative samples. When one
or a group of new target classes are added in the training phase, the most representative
subset of samples is selected and stored in memory. The number of representative samples
for each class, denoted by k, is set the same (k = 20 in this paper).

The old sample preservation strategy in this paper is based on herding selection [34].
According to the distance from each sample to the mean value of the sample, a ranked list
of samples within the class is generated. For each class, select the samples closest to the
center of the current class, namely the top k samples among them are selected based on
the list of samples after sorting. The advantage of herding selection is that the final sample
mean is closest to the actual class mean. In terms of the mean, these samples we selected
are most representative and able to represent the class better. Therefore, this paper chooses
this method to reserve representative samples for each target class.

Algorithm 1: Old Sample Preservation Process by Herding Selection.
Input: Image set x = {x1, x2, ..., xn} of class label y; Samples size k;
Input: Trained model M;
Use model M to obtain the feature map Fx and feature function φ;
Let d be an empty set;
Compute the class mean µ through Fx;

for 1, 2, 3, ..., k do

dk ← arg min
x∈x

∥∥∥∥∥µ− 1
k [φ(x) +

k−1
∑

j=1
φ(dj)]

∥∥∥∥∥
end for
d← (d1, ..., dk);

Output: Representative samples set d;

3.2. Hybrid Loss Function for Knowledge Distillation and Class Separation

In this paper, the knowledge distillation loss function LKD, the classified cross-entropy
loss function LCE, and the class separation loss function LSP are combined to enable the
model to achieve better plasticity-stability balance and forget less about the previously
learned knowledge. The knowledge distillation loss is applied to the classification layer of
the old target, and the cross-entropy loss function is applied to the classification layer of all
targets. The class separation loss is used to separate the old and new target samples better.
The hybrid loss function L is denoted as:

L = λLKD(x) + (1− λ)LCE(x) + LSP(x) (1)

λ =

√
n

n + m
(2)
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where λ is a dynamically changing weight coefficient defined by (2), n and m denote the
number of old and new classes at each phase, respectively. As the incremental learning
phases increase (m is fixed and n increases), the value of λ gradually becomes larger, and
the model increasingly tends to retain the existing knowledge.

3.2.1. Loss Function for Knowledge Distillation

In this paper, the knowledge distillation loss LKD is used to retain the knowledge of
old targets. It is capable of making the current model simulate the old model trained on the
old classes. The output value of the old model is set as an additional supervised signal to
assist the training of the new model [35].

LKD(x) = − 1
n

n

∑
i=1

c

∑
j=1

d(pij)log[d(qij)] (3)

where qij denotes the probability of i-th sample belonging to j-th class predicted by the
model, pij is the one-hot class label vector of j-th class corresponding to i-th sample. d(pij)
and d(qij) are modified versions of pij and qij [12]:

d(pij) =
exp(_o i(x)/T)

n
∑

j=1
exp(_o j(x)/T)

(4)

d(qij) =
exp(oi(x)/T)

n
∑

j=1
exp(oj(x)/T)

(5)

T is the distillation parameter. o(x) represents the output logits of the current model,
_o(x) represents the output logits of the old model in the previous increment process. T = 1
denotes the common Softmax output probability. However, when T > 1, the classification
probability distribution is more moderate, making the remaining classes have a greater
impact. Their higher loss function values must be reduced to a minimum. The model needs
to learn more fine-grained classification. Therefore, the model learns a more distinctive
representation of the class to retain the knowledge of the old classes. T is empirically set to
2 for all experiments in this paper.

In this paper, the cross-entropy loss is used to learn to recognize new targets. The
cross-entropy loss is used as classification loss LCE to predict the difference or closeness of
the output to the true sample labels.

LCE(x) = − 1
n

n

∑
i=1

c

∑
j=1

pijlog[qij] (6)

where n and c denote the number of samples and the number of classes, respectively. When
the difference between the expected probability and the true sample label increases, their
cross-entropy increases.

3.2.2. Loss Function for Class Separation

As mentioned above, the second problem of incremental learning is that the old and
new target classes are easily confused when similar target classes increase. With the arrival
of new target classes in the training phase, on the one hand, the total number of target
classes that the model needs to recognize continues to increase; on the other hand, the
visually similar target classes in each training phase will also increase. The boundary
between target classes is very sensitive. The increase of visually similar target classes will
reduce the recognition accuracy. Moreover, the similarity between different target classes
and the difference between the same target classes will indirectly lead to the confusion of
the new and old classes in the model, and hence it will produce a series of adverse effects.
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Regarding this problem, an class separation loss LSP is designed in this paper to better
separate the old and new target samples.

Generally, calculating LSP requires a three-part triplet: benchmark, positive samples,
and negative samples [28]. In incremental learning, considering that the number of trainable
samples in the old classes is small, it is wise to make full use of these preserved samples to
reduce the confusion in the model learning process effectively. In this paper, each sample
of old classes is used as a benchmark. The class vector corresponding to the benchmark
belonging to the old class (each column of the weight vector in the last layer of the model
can be considered as the class vector of each class) is used as the positive samples. The
negative samples are the class vector corresponding to the new class that produces a higher
response to the benchmark. Benchmark and positive samples belong to the same classes,
while negative samples come from different classes. The purpose of using this loss is to
maximize the distance between the old and new classes. The distance between samples
from the same classes will be as small as possible than the distance between samples from
different classes, thus solving the confusion problem between the old and new tasks. The
designed loss function LSP is described as

LSP(x) =
1
k

n

∑
i=1

max[(r + D( f (xi
a), xi

p)− D( f (xi
a), xi

n)), 0] (7)

where r is a hyperparameter, k is the number of preserved samples in the old classes
included in each incremental phase, and f (x) denotes the feature vector about sample x
obtained after the current model. xp, xn are the class vectors corresponding to positive and
negative samples. D(∗, ∗) denotes the cosine distance between the two vectors f1, f2,

D( f1, f2) =
f1 · f2

|| f1|| × || f2||
(8)

As r is added to the loss function, the value of the loss function is equal to 0 only
when the distance between the benchmark and the negative samples exceeds the distance
r between the benchmark and the positive samples. Therefore, during the incremental
learning process by gradient updating and network training, the distance between different
classes will eventually increase to r. Another point to note is the benchmark x, whose
corresponding positive and negative samples are not directly from the training sets, but the
corresponding class vectors. This allows the class separation loss LSP to be added directly
to the incremental learning process without changing the sampling of the data sets.

3.3. Bias Correction Layer for Class Imbalance

Many recent studies [12,21,29,31,32,36] have found that the imbalance between old
and new classes will lead to bias in the weights of the fully connected layer. The bias refers
to the incremental model being more inclined to the new classes. This is because the model
is trained on unbalanced dataset, where the model has accessed to many samples from
the new task. However, there are few samples from the older classes from earlier times.
Although the forgetting prevention mechanisms, such as old sample preservation and
knowledge distillation, have been employed, the model prefers newer classes. A direct
result found by Hou et al. [28] is that the classifier norms for new classes are larger than
old classes. The classifiers are biased towards new classes.

This paper adopts a simple and practical method to solve the problem of class imbal-
ance, namely a simple bias correction layer is added after the last fully connected layer of
the model. It applies a linear function model with two parameters to achieve this function.
The linear function is chosen because it is a simple function that does not introduce more
hyperparameters to the model and is fast to train. Keep the logits of the output of the old
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classes (1, 2, . . . , n) and use this linear function model to correct the bias of the output logits
of the new classes (n + 1, . . . , n + m):

qk = as(x) + b (9)

s(x) = logit(x) = WT f (x) (10)

where a and b are the parameters of the complementary task deviations and s(x) is the
output logits, represented by (10). The bias parameters a and b are shared by all new classes,
with a = 1, b = 0 under the initial non-incremental phase.

For the parameter a, inspired by [37], in the incremental phase, it is computed by
normalizing the weight vector in the fully connected layer. Firstly, the weights W are
modified in the fully connected layer in the following form:

W = (W0, Wn) (11)

W0 = (w1, w2, . . . , wn) ∈ Rd×n (12)

Wn = (wn+1, wn+2, . . . , wn+m) ∈ Rd×n (13)

Then the weight vector parametrization for the old classes and the new classes are
calculated separately:

Norm0 = (||w1||, . . . , ||wn||) (14)

Normn = (||wn+1||, . . . , ||wn+m||) (15)

Based on the above representation, the parameter a is calculated by:

a =
Mean(Norm0)

Mean(Normn)
(16)

where Mean(·) denotes the mean value of the elements in the vector. This will make the
average norm of new and old classes weight vectors equal. It is worth noting that the
relative magnitudes of the weight vector vanes do not change in the new or old classes.
Because we only change the average parametrization and make it equal. The critical point
of this design is to enable better separation of data within the old and new classes.

For the parameter b, it is optimized on the transformed logits qk by the representative
samples preserved in the old sample preservation step. The representative samples set
is a balanced dataset with an equal number of samples from the old and new classes.
Because of its small size, it is more appropriate to choose a linear function model with fewer
and simpler parameters to correct for bias. More importantly, a similar approach to ours,
BIC [29], introduces a separate validation set for this linear function model, while we only
use the representative samples set for the knowledge retrospection process. Furthermore,
the BIC approach is highly dependent on the validation set, which is only effective for the
performance of large-scale dataset. When the validation set is small, it leads to a significant
performance degradation. In this paper, the parameter b is optimized by cross-entropy loss,
as follows:

Lb = −∑
k

dy=klog[so f tmax(qk)] (17)

where y is the label of the ground-truth class, and dy=k is the indicator function of y = k.

3.4. Algorithm Implementation

The method in this paper addresses the catastrophic forgetting problem, recogni-
tion confusion problem, and bias problem caused by class imbalance in SAR target in-
cremental learning. Algorithm 2 describes the detailed implementation process of the
proposed method.
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Algorithm 2: Detailed Implementation Process of the Proposed Method.
Input: Train dataset Di; Test dataset Ei;
Output: New representative sample set di ( Di; Model Mi;
Output: Test results;

for i in (0, 1, . . . , N) do {//1 initial phase and N incremental phases}
Get Di;
if i = 0 then {//initial phase}

Train M0 by D0;
Select samples d0 ( D0 by Algorithm 1;

else {//incremental phases}
Load d0:i−1 from memory;
Initial Mi with Mi−1;
Train Mi on d0:i−1 ∪ Di by (1);
Correct the bias of the fully connected layer by (9);

end if
Run a test with Ei and record the results;
Update samples di by Algorithm 1;

end for

4. Experiments and Discussions

To demonstrate the effectiveness of the proposed method, experiments on the MSTAR
dataset are carried out. The dataset and experiment settings are introduced. The three
comparative methods, including iCaRL, United, and CBesIL, are selected. The analysis of
experiment results, including comparison with existing methods, time consumption, abla-
tion experiments, preserved sample size, and confusion matrix comparison, are presented
to verify the proposed methods from different aspects.

4.1. Experiment Dataset

The dataset samples used in the experiment of this paper are from the MSTAR
co-database. The dataset is obtained from a cluster-beam SAR with a resolution of
0.3 m × 0.3 m, which operates in X-band and HH polarization. The dataset contains
10 classes of military targets, such as armored vehicles, tanks, rocket launchers, etc. Figure 3
shows the SAR images of 10 classes of targets and their corresponding optical image train-
ing examples. According to the official recommendations given by the MSTAR dataset, the
samples with a depression angle of 17◦ are selected as the training dataset, and the samples
with a depression angle of 15◦ are selected as the test dataset in this experiment.

2S1 BMP2 BRDM-2 BTR-60 BTR-70

D7 T62 T72 ZIL-131 ZSU-234

Figure 3. Optical image (top) and SAR image (bottom) of 10 types of targets.
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4.2. Experiment Setting

The ResNet-18 [38] is used as the base network for experiments. Each old class is saved
with k = 20 samples in a representative memory of old sample preservation. The procedure
is implemented based on the deep learning framework PyTorch [35]. The training contains
120 Epochs, and the initial learning rate is set to 0.01. After the 40th and 80th Epochs, the
learning rate is reduced to 0.001 and 0.0001, respectively. The model is trained by stochastic
gradient descent throughout the incremental learning phase.

The MSTAR dataset consists of 10 target classes, and the image size is 128 × 128 pixels.
The number of data for each training batch is set to 64. After random flipping and cropping,
the dataset is used as input of the model. No additional data preprocessing is performed
beyond that. The number of new classes for each experiment is set to be 1, 2, and 5 training
classes, so 10, 5, and 2 incremental training phases will be performed, respectively. In each
different incremental training phase, the 10 classes are arranged in a fixed random order.
Experimentally all methods are trained in class increments on the available dataset at each
phase. The generated models are evaluated based on test dataset consisting of all old and
new classes. This paper follows a protocol for assessing incremental learning [8,39], and the
results of the experiments are reported as classification accuracy curves for each incremental
batch. In addition, this paper creates three different random classification orders to run
three experiments, and reports the average incremental accuracy and standard deviation.

4.3. Comparison Methods

Some existing incremental learning methods are very similar because they use repre-
sentative sample memory with a fixed capacity, so the performance of the proposed method
is compared with the following typical incremental learning methods.

• iCaRL [8]: iCaRL is a representative method in incremental learning. It preserves the
samples of old target classes, applies distillation loss to preserve weights, and uses
the nearest class mean classifier in the feature space. This experiment reviews iCaRL’s
approach of using network output to classify and the approach of using nearest-mean-
of-exemplars classification (which requires samples to compute past class means and
thus works only when old samples are retained). They are called iCaRL-CNN and
iCaRL-NME, respectively.

• Unified [28]: the Unified approach introduces cosine normalization and fine-tuning
methods. It uses model output for classification, and introduces a less forgetting
constraint that preserves the geometric structure of the old classes. Unified also uses
old sample preservation and knowledge distillation loss. Two versions of this method,
called Unified-CNN and Unified-NME, are also experimented in this experiment.

• CBesIL [6]: The CBesIL method is based on the selection of class boundary samples.
This method saves the recognition ability of old samples in the form of class boundary
samples and proposes a class boundary selection method based on local geometric
and statistical information. A class boundary-based data reconstruction method is
used to update the sample set during the incremental process continuously.

The class order of all experimental comparison approaches is the same to ensure
comparability of results.

4.4. Experimental Results
4.4.1. Target Recognition Accuracy

As described in Section 4.2, the incremental learning experiments on the MSTAR
dataset start with a pre-trained model on a portion of the old classes data. The incremental
process can be divided into 2-phases, 5-phases, and 10-phases increments depending on
the number of new target classes each time. 5-phases increment means the process of initial
training on 2 classes of old data, followed by increments of 2 classes of new data each time.
The rest of the incremental phases are similar to the above process.
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Table 2 shows the comparison of our method with existing methods. All tables show
the average incremental accuracy and standard deviation of each method at different
incremental stages. It can be seen that our method has a smaller standard deviation
and less forgetting of old samples as new samples arrive. Figure 4 shows the accuracy
differences between the proposed method and the comparison methods. The proposed
method achieves superior performance at different incremental phases. The accuracy
improvement is about 6% to 8%. It solves well the imbalance problem between old and
new target classes, the bias of the fully connected layer for the old and new tasks.

75

80

85

90

95

100

5 10

1 2

ac
cu

ra
cy
（

%
）

number of classes

phases

Our-method

Unified-NME

Unified-CNN

CBesIL

iCaRL-NME

iCaRL-CNN

(a)

75

80

85

90

95

100

2 4 6 8 10

1 2 3 4 5

ac
cu

ra
cy
（

%
）

numbers of classes 
phases

Our-method

Unified-NME

Unified-CNN

CBesIL

iCaRL-NME

iCaRL-CNN

(b)

75

80

85

90

95

100

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

ac
cu

ra
cy
（

%
）

number of classes

phases

Our-method

Unified-NME

Unified-CNN

CBesIL

iCaRL-NME

iCaRL-CNN

(c)

Figure 4. Target incremental recognition accuracy at different incremental phases and different classes
per phase. (a) 2 phases, 5 classes per phase. (b) 5 phases, 2 classes per phase. (c) 10 phases, 1 class
per phase.

It can be also observed from Figure 4 and Table 2 that the more incremental phases
there are, the more significant forgetting and accuracy decreasing. Namely, more incremen-
tal phases imply more forgetting. The proposed method significantly reduces forgetting
compared with other methods. In the 10-phase increments with 1 class per phase, as
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shown in Figure 4c), the model by the proposed methods shows more significant differ-
ences from the other models, degrading slowly throughout the run against forgetting
(“gradual forgetting”). In contrast, the other methods show a significant performance
degradation at the beginning of the run (“catastrophic forgetting”). It is worth noting
that the accuracy becomes better due to the mixture of bias correction methods and class
separation loss. They solve the problem of biased output of the model and identification of
confusion very well.

Table 2. Average incremental accuracy for 0ur-method vs. state of the art (average incremental
accuracy ± standard deviations).

Methods Average Incremental Accuracy ± Standard Deviations
2 Phases 5 Phases 10 Phases

iCaRL-CNN 92.68 ± 8.48 83.13 ± 8.98 84.55 ± 7.61
iCaRL-NME 93.97 ± 6.65 86.95 ± 7.14 86.51 ± 6.54
United-CNN 94.54 ± 5.96 92.71 ± 3.82 89.10 ± 5.91
United-NME 95.17 ± 5.07 94.23 ± 2.88 90.83 ± 4.08

CBesIL 93.10 ± 5.71 93.92 ± 4.26 94.21 ± 3.53
Our-method 98.04 ± 2.06 97.73 ± 1.44 97.17 ± 1.35

4.4.2. Time Consumption

The advantage of incremental learning is that it is able to significantly reduce the time
consumption required for model training. The purpose of using incremental learning for
SAR ATR is to occupy smaller memory space, obtain faster training speed, and consume
less time. Non-incremental learning (one-time supervised learning or batch learning)
means that the model training phase uses all data from each target class, which is the
common joint training approach. The experiment is run under windows environment,
the computer cpu is intel core i5-8500, the gpu is NVIDA GeForce RTX 2070, the RAM
is 16 g. We first start training on data containing 5 target classes, and then joint training
obtains all data from each class each time. Incremental training adds 1 new class of data
at a time, while only representative samples of the old data from the past are preserved.
As shown in Figure 5, during the total of 6 phases, the incremental learning approach
significantly reduces the time consumption. The time required for incremental training
remains essentially in the same dimension as the new target arrives. However, the time
consumption of non-incremental training continues to increase and exceeds the incremental
methods. This shows that the incremental learning method proposed in this paper is able
to obtain a better recognition rate and less time consumption.
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Figure 5. Comparison of non-incremental and incremental learning time consumption.

4.4.3. Ablation Experiments

The method proposed in this study combines knowledge distillation loss, cross-
entropy loss, class separation loss, and bias correction to deal with catastrophic forgetting,
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old and new class confusion, class imbalance. To analyze the impact of different compo-
nents on incremental learning performance, each of the following three combinations of
methods are compared.

• Hybrid 1: training the model using cross-entropy loss (LCE) and knowledge distillation
loss (LKD).

• Hybrid 2: training the model using cross-entropy loss (LCE), knowledge distillation
loss (LKD), and class separation loss (LSP).

• Our-method: the model is trained using cross-entropy loss (LCE), knowledge distilla-
tion loss (LKD), class separation loss (LSP), and bias correction (Bic correction) methods.

The experiments are conducted under a 5-phases incremental process, with 2 new
classes incremented each time. Table 3 reports the average incremental accuracy and stan-
dard deviation with different components. As shown in Figure 6 and Table 3, Hybrid 1
uses knowledge distillation loss to preserve the knowledge of the old classes, the confusion
between the old and new classes gradually increased with the incremental phases, and the
model performance degradation is significant. Hybrid 2 is better than Hybrid 1 because the
class separation loss focusing on class boundaries increases the distance between samples
of different classes and reduces the distance within samples of the same class, which solves
the classification confusion problem well. However, due to class imbalance between old
and new classes, the recognition accuracy further decreases after multiple phases of incre-
mental training. When the bias correction method is added to the training, the classification
preference of the fully connected layer for the new class is corrected. The model’s perfor-
mance improves significantly and shows a slow forgetting during incremental learning.
These results suggest that the bias problem caused by a class imbalance in incremental
learning with exemplars significantly affects the incremental learning performance. Our
proposed method is able to further improve the model recognition ability and achieve a
perfect stability-plasticity compromise: it maintains the model’s ability to discriminate
between old tasks and learn new tasks well.

100

75

80

85

90

95

100

2 4 6 8 10

1 2 3 4 5

ac
cu

ra
cy
（

%
）

（

number of classes

phases

cy

Hybrid 1(CE + KD)

Hybrid 2(CE + KD + SP)

Our-method(CE + KD + SP +

Bic correction)

Figure 6. The effect of different loss functions on incremental learning performance.

Table 3. The impact of different components on incremental learning performance (average incre-
mental accuracy ± standard deviation).

Methods
Average Incremental Accuracy ± Standard

Deviations
5 Phases

hybrid 1(CE+KD) 87.99 ± 7.78
hybrid 2(CE+KD+SP) 92.80 ± 4.35

Our-method(CE+KD+SP+Bic correction) 97.72 ± 1.44
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4.4.4. Preserved Sample Size Analysis

The proposed method preserves a small number of old samples, which leads to a
significant increase in the accuracy of incremental learning. The number of preserved
samples is important since different numbers of old samples will have different effects on
the performance of incremental learning methods. Table 4 shows the average incremental
accuracy and standard deviation for preserving different sample sizes. The larger the
number of preserved samples, the smaller the standard deviation, i.e., the smaller the data
fluctuation. As shown in Figure 7 and Table 4, under the incremental training of 5 and
10 phases, the model recognition performance degrades significantly when the number of
preserved old samples is 1, 5, and 10 samples per class. At the same time, the improvement
is not significant when 30, 40, and 50 samples are preserved compared with 20 samples
(the curves of k = 20, 30, 40, 50 almost overlap). In all, considering the memory space
occupation, this paper sets the number of samples preserved for each old class to be 20,
i.e., k = 20.

Table 4. Average incremental accuracy for different preserved sample sizes (average incremental
accuracy ± standard deviations).

Number of Preserved Samples Average Incremental Accuracy ± Standard Deviations
5 Phases 10 Phases

1 79.83 ± 12.45 76.61 ± 15.24
5 91.92 ± 5.72 87.97 ± 8.16
10 95.54 ± 2.99 93.48 ± 3.93
20 97.72 ± 1.44 97.17 ± 1.34
30 97.87 ± 1.25 97.58 ± 1.39
40 98.18 ± 1.09 97.87 ± 1.23
50 98.39 ± 0.90 98.21 ± 1.03
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Figure 7. The effect of different preserved sample sizes on incremental learning performance.
(a) 5 phases, 2 classes per phase. (b) 10 phases, 1 class per phase.

4.4.5. Confusion Matrix Comparison

Figure 8 shows the comparison of the proposed incremental learning method with
the United-NME and iCaRL-NME methods confusion matrix on the test dataset, and this
experiment is performed under a 5-phases incremental process. As shown in Figure 8,
the iCaRL-NME method is greatly affected by the imbalance between the old and new
classes, and the classification bias is more serious. It is more likely to classify the input test
samples as the new classes, and the overall accuracy is poor. The United-NME method is
able to better alleviate the class imbalance due to its use of cosine normalization, which
solves this problem to some extent. In general, this paper uses knowledge distillation
loss and class separation loss to reduce forgetting and confusion. It also corrects the
bias of the fully connected layer, which better solves the bias problem caused by classes
imbalance. As shown in Figure 8c, the proposed method identifies the old classes better,
avoids the problems of catastrophic forgetting and classification confusion well, and solves
the problem of class imbalance better.
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Figure 8. Comparison of confusion matrices under three methods while the experiment is carried out
under the condition of 5-phase incremental learning. (a) iCaRL-NME. (b) United-NME. (c) Our-method.

5. Conclusions

This paper presents a new approach to tackle the problem of incremental learning-
based SAR target recognition. Through research, it is found that the bias caused by the
imbalance between old and new classes is the primary factor that influences the perfor-
mance of incremental learning. Our incremental approach deals with these problems at
different levels and achieves a good balance between the retention of old knowledge and
the learning of new knowledge. First, this paper combines the knowledge distillation
method and old sample preservation method that preserve representative samples to re-
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duce the forgetting of old classes. Then an effective loss function for class separation is
used to reduce the confusion between old and new classes. Finally, we find that the fully
connected layer of the deep learning model has a stronger tendency to favor new classes
in classification. Therefore, a linear model is used to correct the bias problem of the fully
connected layer. Experiments on the MSTAR dataset show that the proposed approach in
this paper has superior performance to existing methods.
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