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Abstract: Sophisticated segmentation of the craniomaxillofacial bones (the mandible and maxilla) in
computed tomography (CT) is essential for diagnosis and treatment planning for craniomaxillofacial
surgeries. Conventional manual segmentation is time-consuming and challenging due to intrinsic
properties of craniomaxillofacial bones and head CT such as the variance in the anatomical structures,
low contrast of soft tissue, and artifacts caused by metal implants. However, data-driven segmentation
methods, including deep learning, require a large consistent dataset, which creates a bottleneck in their
clinical applications due to limited datasets. In this study, we propose a deep learning approach for
the automatic segmentation of the mandible and maxilla in CT images and enhanced the compatibility
for multi-center datasets. Four multi-center datasets acquired by various conditions were applied
to create a scenario where the model was trained with one dataset and evaluated with the other
datasets. For the neural network, we designed a hierarchical, parallel and multi-scale residual block
to the U-Net (HPMR-U-Net). To evaluate the performance, segmentation with in-house dataset
and with external datasets from multi-center were conducted in comparison to three other neural
networks: U-Net, Res-U-Net and mU-Net. The results suggest that the segmentation performance of
HPMR-U-Net is comparable to that of other models, with superior data compatibility.

Keywords: segmentation; mandible; craniomaxillofacial bone; deep learning; neural network;
multi-center

1. Introduction

Segmentation of the craniomaxillofacial bones, such as the mandible and maxilla,
in computed topography (CT) images is one of the crucial steps for generating three-
dimensional (3D) models that are required for the diagnosis and treatment planning of
craniomaxillofacial deformities, craniofacial tumor resection, or free flap reconstruction of
the mandible [1,2]. Additionally, 3D segmentation of organs at risk (OARs) in head and
neck (H&N) CT including the mandible is a critical step in radiotherapy planning for H&N
cancer treatment [3].

The conventional segmentation task is performed manually using professional soft-
ware, which is labor-intensive and time-consuming in clinical practice [4,5]. Additionally,
manual segmentation has limitations such as low reproducibility and operator variability.
Moreover, accurate segmentation of head CT is challenging owing to the complexity of the
anatomical structures, the low contrast of soft tissue, artifacts caused by mental implants,
and variations between individual patients [6]. In specific, weak and false edges of condyles
appearing in CT images adversely affect the accurate segmentation of the mandible [7].
Figure 1 shows examples of the difficulties in segmenting the mandible and maxilla.
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Figure 1. Difficulties in mandible and maxilla segmentation. (a) Metal artifacts caused by dental
implants (b) Difficulty in distinguishing mandibular and maxillary teeth, or mandible and midface
(c) Low intensity and thin edges in condyle (d) Inter-patient anatomical variance.

Automatic segmentation can improve efficiency and reliability, reducing segmentation
time and clinician workload [7]. Numerous studies exist on automatic or semi-automatic
segmentation of the mandible from CT scans, including OARs. In the Medical Image
Computing and Computer-Assisted Intervention (MICCAI) 2015 Head and Neck Auto
Segmentation Challenge [8], various approaches were proposed for the segmentation of
OARs including the mandible. The use of public datasets, such as the Public Domain
Database for Computational Anatomy (PDDCA) version 1.4.1, which was provided for
the challenge, and how to evaluate the model performance have been a standard in head
CT segmentation research. Most of these approaches utilize atlas-based methods [9] or
model-based methods [10].

Atlas-based methods performs segmentation on novel data by image registration using
the prior knowledge from the structures of interest [11]. Although atlas-based methods
are popular and widely used for anatomy segmentation, they are sensitive to anatomical
variations as they use a fixed set of atlases [12]. Moreover, they are computationally
expansive and require many minutes to complete one registration task [13].

Statistical model-based methods utilize a statistical appearance model [14]. The models
that best represent the shape or appearance variations in the structure of interest, which
are obtained from training with a set of images and segmentations, are selected for a
new patient image [15]. However, the shape or appearance described by the statistical
model is limited to specific shapes, which gives it less flexibility unless large training sets
are employed.

In some studies, atlas-based and statistical model-based methods have been combined
with each other or with another method, leading to various other approaches for automatic
mandible segmentation. Albrecht et al. [16] used a multi-atlas to obtain an initial segmen-
tation of the OAR and an active shape model to refine the initial segmentation. Aghdasi
et al. [17] employed anatomic landmarks and prior knowledge for segmentation. Chuang
et al. [18] proposed a registration-based semi-automatic mandible segmentation pipeline
that uses a nonlinear diffeomorphic method to register preprocessed test CT scans on the
reference templates.

Recently, as convolutional neural networks (CNNs) have become more effective in
computer vision, research on deep learning for medical image segmentation has increased
exponentially [19]. The first deep learning-based algorithm utilizing a CNN for the segmen-
tation of OARs in H&N CT was proposed by Ibragimov et al. [20], who employed a network



Appl. Sci. 2022, 12, 1358 3 of 15

with three convolution layers. Tong et al. [21] then incorporated a CNN with the pretrained
shape representation model. Beyond simple CNNs, U-Net [22] has been one of the most
popular CNNs for medical image segmentation. Compared with other CNNs, U-Net,
with a simple and flexible structure, shows an outstanding performance in segmentation
extracting image features by multi-scale recognition and fusion [23]. Several approaches
have been developed by applying the U-Net structure as a baseline for mandible segmenta-
tion. Qiu et al. [1] used three U-Nets for orthogonal planes with dice loss to segment the
mandible. AnatomyNet [13] was proposed to segment OARs from H&N CT, which was
built on a 3D U-net architecture. A two-stage segmentation framework for OAR in CT was
also proposed, which employs two 3D U-Nets for localization and segmentation [24].

Several studies have utilized U-Net with other structures together as well. Both a faster
regional CNN and attention U-Net for localization and segmentation have been introduced
by Lei et al. [24]. A recurrent segmentation CNN was proposed that embeds the CNN into
a recurrent neural network for segmentation of the mandible from CT [7]. An attention
mechanism, which has been advanced with deep learning models in computer vision,
has been incorporated to U-Net for segmentation. Squeeze-and-excitation blocks were
incorporated into U-Net for prostate zonal segmentation of multi-institutional MRI datasets,
enhancing both intra- and cross-dataset generalization [25]. An attention gate model that
can be integrated into CNN models was proposed to automatically learn to focus on target
structures [26]. Focus U-Net with attention gate for spatial and channel-based attention
was proposed for fast and accurate polyp segmentation [27].

However, there is an inevitable and considerable pitfall in data-driven methods includ-
ing deep learning, which is the lack of data compatibility; that is, the method may fail to
accurately segment images with varying properties, such as those acquired using different
CT scanners and imaging protocols [28]. The compatibility of dataset in the models refers
to the ability of models to inference the input images that have different distributions in
the latent space from the multi-center training dataset [28]. In general, datasets are limited
so that they cannot fully represent the general patient population in the clinic [29]. As a
result, models trained on the specific center domain do not perform well on a different
center domains with disparate data distribution [30]. This drawback is more significant
when applying deep learning clinically on images from other institutions. For example, it
is known that the Hounsfield units measurement varies between scanners [31]. The results
of models targeted to CT can vary depending on the imaging parameters, the scanner type,
calibration, or the scan date [29,32,33]. That is, multicenter data tend to have different
data distributions, making trained neural network impractical. With consideration for this
variability, it has been recently been required to test the artificial intelligence model with an
external dataset [32]. From these limitations in clinical applications, data compatibility in
deep learning for medical images has been an essential challenge to be addressed.

To solve this problem, research has been conducted to utilize multicenter data in
neural network training [33,34]. Another potential solution to this problem is transfer
learning [35–37], which trains with more easily obtained datasets from different domains
to enhance performance [38]. However, these approaches have limitations for clinical use,
as available medical data are scarce compared to natural images and are not sufficient for
deep learning. Furthermore, labeling is more challenging with medical data.

In this study, we propose a framework for automated 3D segmentation of the mandible
and maxilla using deep learning. We aim not only to accurately delineate the mandible
and maxilla from CT, but also to improve the compatibility of multicenter data so that the
model performs well on new domain data. To this end, we employed four multi-center
datasets acquired by various conditions, with one used to train the models, and three
used to evaluate the performance of the segmentation and the data compatibility. For the
neural network, we applied residual connections [39] to U-Net, as it has been empirically
and theoretically determined that the generalization is improved in residual networks
compared with non-residual networks [40,41].
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2. Materials and Methods
2.1. Data

We utilized four datasets: two of them from different centers (CenterA and CenterB)
including mandible and maxilla segmentations and two public datasets (PDDCA and
TCIA) for OAR segmentation in H&N CT. The CenterA dataset was randomly divided into
training, validation, and test datasets, consisting of 146, 10, and 15 sets at the patient level,
respectively. The training dataset was used to train the models, whereas the validation
dataset was used to tune the hyperparameters of the models and check the validity of
the training process. The test dataset from CenterA and other datasets were completely
separated from the training and validation datasets, and were used for evaluating the
performance of the models. Specifically, the PDDCA, TCIA, and CenterB datasets are
external datasets that were used to evaluate the models for dataset compatibility. Detailed
data characteristics of all datasets, including the number and size of slices, pixel spacing,
and slice thicknesses, are presented in Table 1.

Table 1. Properties of the datasets.

Dataset CenterA PDDCA † TCIA † CenterB

No. of sets
171

(Train: 146, Validation: 10,
Test: 15)

15 28 15

Acquisition type MDCT MDCT MDCT CBCT
Target structure Mandible & Maxilla OARs OARs Mandible & Maxilla

No. of slices 166–450,
208 ± 32

109–263,
154 ± 36

61–110,
93 ± 12 432

Slice size [pixel] 512 576 512 512

Pixel spacing [mm] 0.36–0.49,
0.44 ± 0.03 0.98–1.27, 1.11 ± 0.10 0.94–1.27, 1.04 ± 0.10 0.40

Slice thickness [mm] 0.50–1.04,
0.99 ± 0.07 2.0–3.0, 2.73 ± 0.31 2.50 0.40

† denotes the public dataset. ‘No. of slices’, ‘Pixel spacing’, and ‘Slice thickness’ are indicated as the range, the
average, and the standard deviation across the cases or the exact value if they are all same.

CenterA and CenterB datasets include CT images and the corresponding segmentation
of the mandible and maxilla provided by the clinical experts of oral and maxillofacial
surgery department and orthodontic department, respectively. Targets in CenterA datasets
were delineated manually by an expert surgeon (B.Y.H.) from Kyung Hee University
Hospital, Seoul, Korea. Ethical approval was received from the institutional review board
(IRB) (approval number KH-DT19033) for CenterA dataset. CenterB dataset was built with
15 sets of dental CBCT (i-CAT 17-19TM, Imaging Science International) from Chungang
University Hospital, Seoul, Korea (approval number 1922-007-362). Those CT images were
segmented by two well-trained biomedical engineers supervised by a clinical expert.

The PDDCA dataset is a public dataset for OAR segmentation in the H&N region of CT
images released at the 2015 MICCAI H&N radiotherapy OAR segmentation challenge [8]
provided and maintained by Dr. Sharp at Harvard Medical School. The CT scans in the
dataset are available via the Cancer Imaging Archive (TCIA) and are originally from the
radiation therapy oncology group (RTOG) 0522 study, which includes multi-institutional
clinical studies from patients with stage III or IV H&N carcinoma [42]. The dataset consists
of 48 H&N CT images with nine OAR structures manually re-segmented by experts for
uniform quality and consistency. In the challenge, the dataset was divided into 25 training
sets, 10 off-site test sets, and 5 on-site test sets. In this study, we employed 15 test sets with
mandible annotation.

The TCIA dataset [43] contains 31 CT scans from TCIA [44] and segmentations for
21 OARs, in which we only used mandible segmentation. They were delineated by an
experienced radiographer, with additional peer arbitration by another radiographer and a
radiation oncologist. Both the PDDCA and TCIA datasets include a selected part of the
Head–Neck Cetuximab open source dataset [45]; owing to different selection criteria and
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different train/validation/test set division, there are five scans present in both PDDCA and
TCIA test sets.

Examples of all datasets are illustrated in Figure 2. CenterA dataset is different from
the PDDCA and TCIA datasets in terms of pixel spacing, slice thickness, and the scan range
of the CT images. Comparatively, the PDDCA and TCIA datasets include a wider range
of bodies that target OARs. CenterB uses cone beam CT (CBCT), which is fundamentally
different from multidetector CT (MDCT) datasets, meaning the performance of a model
trained with MDCT may be hindered when inferencing CBCT. Generally, seg mentation of
CBCT is more laborious and time-consuming than MDCT as the edge of the image is more
blurred and noisy. Additionally, CenterB dataset includes many cases with orthognathic
surgery or orthodontics, which makes segmentation more difficult owing to the noise
caused by surgery plates or orthodontic appliances (Figure 3). By externally testing using
datasets, including PDDCA, TCIA, and CenterB datasets, with various characteristics, it
was possible to evaluate the compatibility of the models.

Figure 2. Example cases of the datasets.

All datasets were preprocessed using the same procedure. A threshold of −1000 and
2500 HU was employed for each scan and normalized between zero and one. Both CT scans
and segmentation slices were cropped to fit the skull. All CT and segmentation volumes
were resampled to be isotropic (512 × 512 × 512). For a fair evaluation, the predicted
segmentations were conversely uncropped and resampled into the original spacing and
thickness before the evaluation metrics were calculated. For the PDDCA and TCIA datasets,
we only used the range of the mandible for the training dataset, while using the entire
range of slices for the validation and testing.
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Figure 3. Examples of noises caused by surgical plates, orthodontic device, and dental implants in
CenterB dataset, which make it more challenging to delineate the CT images.

Datasets were input to the models as 2.5D [46], in which the input was a volume of
images consisting of the target slice and its adjacent slices, and the segmentation map corre-
sponding to the center target slice was produced as an output of the model. This method
enables the use of adjacent context information in 3D, whilst lowering the computational
power required relative to 3D inputs. The proposed approach is applicable to mandible
and maxilla segmentation as the adjacent upper and lower spatial information is important
for distinguishing the mandible and maxilla in a slice that appears similar. In this study,
the 11 slices, composed of one target slice and five upper and lower slices, were input for
one slice of the segmentation map.

2.2. Framework and Network Architectures

The overall framework and detailed architectures of neural networks are displayed in
Figure 4. Preprocessed CT scans are input to the neural network as 2.5D, which outputs
one segmentation mask map for each target slice. This process was repeated for all slices in
each patient scan. Afterwards, the segmented volume for each patient was post-processed.

For the neural network, we applied a hierarchical, parallel, and multi-scale residual
(HPMR) block [47] to U-Net to enhance the data compatibility of the CNN model. This
block was first designed to enhance the performance of a CNN for landmark localization
with limited computational resources. The starting point of the architecture is a residual
bottleneck block [39] that enables the stable optimization of a deeper model by assisting
the propagation of information both forward and backward, improving performance. The
other basis for the architecture is the inception block [48], which concatenates features from
parallel paths with different receptive field sizes. Compared to the inception residual block,
the HPMR block has a smaller number of parameters with the advantage of a parallel
path. Compared to the existing research, we combined HPMR block to U-Net and showed
its performance on the segmentation task. We used HPMR block for efficient learning to
utilize advances of residual bottleneck block and parallel path with the lower number of
parameters compared to using inception blocks.

We compared U-Net with HPMR blocks (HPMR-U-Net) to its base component archi-
tecture, U-Net, and U-Net with residual blocks (Res-U-Net) to verify the effects of HPMR
blocks. Additionally, modified U-Net (mU-Net) [49] was selected as another state-of-the-art
segmentation CNN model for comparison because it requires minimum increase of network
parameters. Its residual block is composed of deconvolution and activation operations to
pass features to the skip connection of the U-Net adaptively with the object size. mU-Net is
designed not only to extract high-level features of large object edges, but also high-level
global features of small objects. We hypothesized that the increase in the complexity of
model, i.e., the increased number of parameters in the neural network, would hinder
the data compatibility of the model. It is well known that overfitting, which impedes
the data compatibility of a model, occurs when the number of parameters increases [50].
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Therefore, we chose a simpler neural network with lower number of parameters than other
state-of-the-art neural networks for comparison.

Figure 4. Overall framework and block architectures of neural networks. (a) Overall framework. The
numbers above the boxes refer to the channel number of the feature maps. The orange boxes for each
neural network are represented in (b–e), with (b) block architecture of U-Net, (c) block architecture of
Res-U-Net, (d) block architecture of mU-Net, and (e) block architecture of HPMR-U-Net.

All networks were trained using PyTorch framework in Python under the same
conditions for comparison. They were trained with a batch size of 10 for 30 epochs. We
employed cross entropy loss as a loss function and Adam optimization with a learning rate
of 10−5. Training and evaluation were performed on the computer hardware resources of a
Nvidia GeForce RTX 3090 with 24 GB memory and 16 of DIMM DDR4 Synchronous 2666
MHz with 32 GiB in a Linux environment.

2.3. Performance Evaluation

To evaluate the regular segmentation performance of the models, an in-house test
was conducted with the separated test portion of CenterA dataset, with the ground truths
and output segmentations from the models compared. Additionally, an external test was
performed to evaluate the data compatibility in the models. Output segmentations for CT
scans in external datasets (PDDCA, TCIA, and CenterB) were obtained and compared with
the ground truths. The external test characterizes how the model can be utilized generally in
varied data, which is common in clinical settings. In the absence of maxilla segmentations
in the PDDCA and TCIA datasets, only mandible segmentations were considered. To
quantitatively evaluate the segmentation performance of the models, we used the Dice
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coefficient (DC), 95% Hausdorff distance (95HD) and average surface distance (ASD) as
evaluation metrics. Additionally, we qualitatively evaluated the segmentation results of
the models by visualizing them in 3D.

The DC measures the degree of volumetric overlap between two volumes. It is
defined as

DC =
2|GT∩OUT|
|GT|+ |OUT| , (1)

where GT and OUT are the labeled voxel sets of the manual segmentation ground truth
and output segmentation from the model, respectively.

The 95HD and ASD are distance-related metrics, with 95HD being the 95th percentile
of the Hausdorff distance (HD) between the GT and OUT points. HD measures the distance
of a point in the GT to the nearest point in the OUT. It is defined as

max
gt∈GT

min
out∈OUT

‖gt− out‖. (2)

The 95th percentile is used to eliminate the impact of outliers from a small subset of
inaccurate points when evaluating the overall segmentation performance. ASD measures
the average distance between the GT and the OUT, defined as:

ASD =
1
2

{
∑out∈OUT d(out, GT)

|OUT| +
∑gt∈GT d(gt, OUT)

|GT|

}
, (3)

where d(out, GT) is the minimum distance of a voxel on OUT to the voxels on GT, and
d(gt, OUT) is the minimum distance of voxel gt on GT to the voxels on OUT.

3. Results

Tables 2 and 3 display the calculated evaluation metrics between the ground truths and
the model outputs for the in-house and external tests. In the in-house test with the CenterA
dataset, although the scores of HPMR-U-Net were not the best among the models, the score
differences were lower compared to those for the other datasets. From the result, it can be
inferred that the performance of HPMR-U-Net for the CenterA dataset was comparable to
that of the other models. In the external tests, the scores of HPMR-U-Net ranked first for
all external datasets. The results indicate that HPMR-U-Net has the highest performance
among the models in this study for the external datasets. Comparing results among external
datasets, the differences in scores were the largest in the CenterB dataset, where CenterB
dataset may have the largest characteristic difference in the image obtained by CBCT as
compared to CenterA dataset acquired by MDCT.

Table 2. Results of in-house and external tests for mandible segmentation. The best case is bolded.

In-House Test External Test

CenterA PDDCA TCIA CenterB

DC
[%]

95HD
[mm]

ASD
[mm]

DC
[%]

95HD
[mm]

ASD
[mm]

DC
[%]

95HD
[mm]

ASD
[mm]

DC
[%]

95HD
[mm]

ASD
[mm]

U-Net 98.3
± 0.4

0.4
± 0.1

0.0
± 0.0

63.4
± 20.2

7.3
± 5.8

1.8
± 3.5

62.8
± 26.3

9.6
± 11.8

3.2
± 7.9

61.2
± 17.9

33.7
± 26.1

4.1
± 4.0

Res-U-
Net

98.2
± 0.4

0.4
± 0.1

0.1
± 0.0

51.3
± 20.1

13.5
± 12.3

2.0
± 1.8

46.3
± 25.5

18.0
± 19.8

6.5
± 13.5

48.5
± 13.1

28.8
± 20.6

4.1
± 3.3

mU-
Net

98.4
± 0.3

0.4
± 0.0

0.0
± 0.0

72.3
± 21.6

5.6
± 6.4

1.5
± 3.5

71.4
± 27.8

8.4
± 12.9

2.5
± 5.0

63.6
± 14.7

22.5
± 18.9

2.6
± 2.2

HPMR-
U-Net

97.4
± 0.4

0.4
± 0.1

0.1
± 0.0

86.5
± 3.9

1.8
± 1.3

0.2
± 0.1

86.4
± 6.2

2.8
± 7.7

0.3
± 0.7

77.7
± 4.1

3.4
± 0.6

0.7
± 0.2
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Table 3. Results of in-house and external tests for maxilla segmentation. The best case is bolded.

In-House Test External Test

CenterA CenterB

DC
[%]

95HD
[mm] ASD [mm] DC

[%]
95HD
[mm] ASD [mm]

U-Net 96.5
± 0.8

0.4
± 0.1

0.1
± 0.0

75.0
± 5.7

9.0
± 8.8

1.1
± 0.8

Res-U-Net 96.2
± 0.8

0.4
± 0.1

0.1
± 0.0

67.6
± 12.3

17.1
± 18.1

2.5
± 3.4

mU-Net 96.5
± 0.7

0.4
± 0.0

0.1
± 0.0

75.9
± 5.1

8.6
± 7.9

1.0
± 0.7

HPMR-U-
Net

90.2
± 19.5

0.5
± 0.1

0.1
± 0.0

82.8
± 3.2

2.7
± 1.6

0.4
± 0.2

Figures 5–8 show 3D rendered ground truths and the highest DC cases of the output
segmentations converted to isosurfaces from volumes for each dataset. Corresponding to the
results of the quantitative tests, the ground truth and the outputs for the CenterA dataset are
similar for all models, as shown in Figure 5. By contrast, for the external datasets, there are
visually noticeable differences in the output segmentations of HPMR-U-Net and other models.

Figure 5. Sample case in the CenterA dataset. White and blue indicate the mandible and
maxilla, respectively.

Figure 6. Sample case in the PDDCA dataset. White and blue indicate the mandible and maxilla,
respectively. PDDCA has no maxilla ground truth.
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There were prominent decreases in quality of segmentations from other models for
the external datasets. For the PDDCA dataset in Figure 6, the DC scores for the mandible of
U-Net and mU-Net were 0.0%, as the model could not find the mandible at all, that is, they
were unable to distinguish between the mandible and the maxilla. There were also many
losses in the segmentations of the mandible and maxilla in the outputs of Res-U-Net. By
contrast, the outputs of HPMR-U-Net were more intact and closer to the ground truth. As
the teeth were included in the CenterA dataset segmentations that were used in training,
the teeth were also segmented, despite not being in the ground truth. The results for
the TCIA dataset in Figure 7 are also similar to those of the PDDCA dataset. U-Net and
Res-U-Net failed to segment the mandible, which resulted in a 0.0% DC. Additionally,
mU-Net included many portions of the maxilla in the mandible output and lost a large
portion of the segmentations. However, HPMR-U-Net exhibited high performance with a
DC of 91.7%. As displayed in Figure 8 for the CenterB dataset, HPMR-U-Net also showed
the highest performance among the models, with many lost sections in the other models.
Furthermore, the other models were more unable to accurately separate the mandible and
maxilla compared to HPMR-U-Net.

Figure 7. Sample case in the TCIA dataset. White and blue indicate mandible and maxilla, respectively.
TCIA has no maxilla ground truth.

Figure 8. Sample case in CenterB dataset. White and blue indicate the mandible and
maxilla, respectively.
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Figure 9 shows rendered color maps in 3D for the distance from the ground truths
to the output segmentations of the best DC case for the mandible in CenterA dataset
to thoroughly examine the differences among the model outputs for this dataset. There
were no significant differences, but the distances in the mandibular foramen were slightly
different. This part is challenging to segment accurately owing to its small size, and the
distance was less in the outputs of HPMR-U-Net than the other models.

Figure 9. Color maps of surface distance from the ground truths to the output segmentations of the
best dice coefficient case in the CenterA dataset for the mandible. The pieces of images on the right
side are enlargement of mandibular foramen.

4. Discussion & Conclusions

The four neural networks compared in this research exhibited similar performance
in the CenterA dataset, which was the domain used for training. Among other neural
networks, U-Net and Res-U-Net were considered for the comparison because U-Net is a
basic component of HPMR-U-Net, in which showing a difference would represent that
HPMR block is effective compared to other basic architectures. Additionally, mU-Net was
selected for the comparison as a state-of-the-art neural network for segmentation. We chose
comparably simple neural networks because we hypothesized that the data compatibility
of the more complex model with larger number of parameters would be worse because
of overfitting. CenterA dataset was set as the train dataset because it was MDCT datasets
in which easier to make ground truths than CBCT. With training with a dataset easier to
constitute, we aimed to show the performance for other institutional MDCTs and CBCTs.

PDDCA and TCIA datasets were used for examples of MDCT and CenterB dataset for
CBCT. For the external datasets of PDDCA, TCIA, and CenterB, HPMR-U-Net displayed
significantly higher performance compared to the U-Net, Res-U-Net, and mU-Net models
in both quantitative and qualitative evaluations.

All networks produced comparable results for data from the same cohort of the
training dataset; however, they exhibited different results for data from out of the training
dataset cohort. While the performances of other networks were degraded in the external
datasets, HPMR-U-Net produced segmentation of the mandible and maxilla similar to
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the ground truths. From these results, HPMR-U-Net infers a high data compatibility for
mandible and maxilla features in CT images.

The assumed differences in the data cohorts were reflected in the results. For the
PDDCA and TCIA datasets, the performance degraded significantly, and the mandible and
maxilla were not classified accurately. This is due to their slice thickness being different
from that of CenterA dataset, even though they are MDCT. The inter-slice information is
important to classify a pixel in a slice as the mandible or maxilla. The results for CenterB
dataset were the worst among the external datasets for all models. The segmentation of
CenterB dataset is more challenging as it is CBCT, which is not only different from the
in-house dataset, but also contains more noise. Additionally, CenterB dataset contains
variances in anatomical structure caused by surgeries and noise from surgical plates,
orthodontic device, and dental implants (Figure 3). It is remarkable that the score difference
between HPMR-U-Net and other models is significant for CenterB. For CBCT, which is
a different image protocol than MDCT that was used to train, there was a significant
degradation of performance in other models, but minimal degradation in HPMR-U-Net.
This demonstrates that HPMR-U-Net is more robust than other models to various data
domains that may be different from the training data.

We assume that one of the reasons for the better performance of HPMR-U-Net com-
pared to Res-U-Net is the number of parameters. The higher the complexity of the hypoth-
esis space of the deep neural network, the worse is the generalizability, according to the
principle of Occam’s razor [51]. The number of parameters in HPMR-U-Net is 12,042,179,
which is smaller than Res-U-Net with 17,118,019, U-Net with 28,959,299, and mU-Net with
35,230,019. The HPMR block could efficiently decrease the overall number of parameters,
which as a result could enhance the generalizability of the model while maintaining its
segmentation performance.

In future work, an attempt will be made to improve the performance in external
datasets for actual clinical applications when the neural network is trained with only
one data domain. Additionally, the structure of the neural network with residual con-
nections and HPMR block can be analyzed theoretically to establish the reason for the
greater generalizability, which may lead to the design of a stronger neural network for
generalization.

In this study, we applied deep learning to accurately segment the mandible and maxilla
from CT and improve the compatibility in the segmentation model. To achieve this, we
utilized HPMR-U-Net and compared its results with those of U-Net, Res-U-Net, and mU-
Net with in-house and external tests. The results show that the segmentation performance
of HPMR-U-Net in the in-house test dataset was comparable to that of the other models.
In particular, the data compatibility of HPMR-U-Net was superior to other models in the
external datasets of PDDCA, TCIA, and CenterB, which have varying properties such as
image protocol, pixel spacing, slice thickness, and target range.
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3. Kodym, O.; Španěl, M.; Herout, A. Segmentation of Head and Neck Organs at Risk Using Cnn with Batch Dice Loss. In Proceed-
ings of the German Conference on Pattern Recognition; Springer: Stuttgart, Germany, 2018; pp. 105–114.

4. Byrne, N.; Velasco Forte, M.; Tandon, A.; Valverde, I.; Hussain, T. A Systematic Review of Image Segmentation Methodology,
Used in the Additive Manufacture of Patient-Specific 3D Printed Models of the Cardiovascular System. JRSM Cardiovasc. Dis.
2016, 5, 2048004016645467. [CrossRef] [PubMed]

5. Huff, T.J.; Ludwig, P.E.; Zuniga, J.M. The Potential for Machine Learning Algorithms to Improve and Reduce the Cost of
3-Dimensional Printing for Surgical Planning. Expert Rev. Med. Devices 2018, 15, 349–356. [CrossRef]

6. Wang, Z.; Wei, L.; Wang, L.; Gao, Y.; Chen, W.; Shen, D. Hierarchical Vertex Regression-Based Segmentation of Head and Neck CT
Images for Radiotherapy Planning. IEEE Trans. Image Process. 2017, 27, 923–937. [CrossRef]

7. Qiu, B.; Guo, J.; Kraeima, J.; Glas, H.H.; Borra, R.J.; Witjes, M.J.; Ooijen, P.M.V. Recurrent Convolutional Neural Networks for
Mandible Segmentation from Computed Tomography. arXiv 2020, arXiv:2003.06486.

8. Raudaschl, P.F.; Zaffino, P.; Sharp, G.C.; Spadea, M.F.; Chen, A.; Dawant, B.M.; Albrecht, T.; Gass, T.; Langguth, C.; Lüthi, M.
Evaluation of Segmentation Methods on Head and Neck CT: Auto-segmentation Challenge 2015. Med. Phys. 2017, 44, 2020–2036.
[CrossRef]

9. Chen, A.; Dawant, B. A Multi-Atlas Approach for the Automatic Segmentation of Multiple Structures in Head and Neck CT
Images. MIDAS J. 2015. [CrossRef]

10. Mannion-Haworth, R.; Bowes, M.; Ashman, A.; Guillard, G.; Brett, A.; Vincent, G. Fully Automatic Segmentation of Head and
Neck Organs Using Active Appearance Models. MIDAS J. 2015. [CrossRef]

11. Han, X.; Hoogeman, M.S.; Levendag, P.C.; Hibbard, L.S.; Teguh, D.N.; Voet, P.; Cowen, A.C.; Wolf, T.K. Atlas-Based Auto-
Segmentation of Head and Neck CT Images; Springer: Berlin/Heidelberg, Germany, 2008; pp. 434–441.

12. Linares, O.C.; Bianchi, J.; Raveli, D.; Neto, J.B.; Hamann, B. Mandible and Skull Segmentation in Cone Beam Computed
Tomography Using Super-Voxels and Graph Clustering. Vis. Comput. 2019, 35, 1461–1474.

13. Zhu, W.; Huang, Y.; Zeng, L.; Chen, X.; Liu, Y.; Qian, Z.; Du, N.; Fan, W.; Xie, X. AnatomyNet: Deep Learning for Fast and Fully
Automated Whole-volume Segmentation of Head and Neck Anatomy. Med. Phys. 2019, 46, 576–589. [CrossRef] [PubMed]

14. Cootes, T.F.; Edwards, G.J.; Taylor, C.J. Active Appearance Models. IEEE Trans. Pattern Anal. Mach. Intell. 2001, 23, 681–685.
[CrossRef]

15. Fritscher, K.D.; Peroni, M.; Zaffino, P.; Spadea, M.F.; Schubert, R.; Sharp, G. Automatic Segmentation of Head and Neck CT Images
for Radiotherapy Treatment Planning Using Multiple Atlases, Statistical Appearance Models, and Geodesic Active Contours.
Med. Phys. 2014, 41, 051910. [CrossRef] [PubMed]

16. Albrecht, T.; Gass, T.; Langguth, C.; Lüthi, M. Multi Atlas Segmentation with Active Shape Model Refinement for Multi-Organ
Segmentation in Head and Neck Cancer Radiotherapy Planning. MIDAS J. 2015. [CrossRef]

17. Aghdasi, N.; Li, Y.; Berens, A.; Moe, K.; Hannaford, B. Automatic Mandible Segmentation on CT Images Using Prior Anatomical
Knowledge. MIDAS J. 2016. [CrossRef]

18. Chuang, Y.J.; Doherty, B.M.; Adluru, N.; Chung, M.K.; Vorperian, H.K. A Novel Registration-Based Semi-Automatic Mandible
Segmentation Pipeline Using Computed Tomography Images to Study Mandibular Development. J. Comput. Assist. Tomogr.
2018, 42, 306. [CrossRef]

19. Shen, D.; Wu, G.; Suk, H.-I. Deep Learning in Medical Image Analysis. Annu. Rev. Biomed. Eng. 2017, 19, 221–248. [CrossRef]
20. Ibragimov, B.; Xing, L. Segmentation of Organs-at-risks in Head and Neck CT Images Using Convolutional Neural Networks.

Med. Phys. 2017, 44, 547–557. [CrossRef]

http://doi.org/10.1088/1361-6560/ab2c95
http://www.ncbi.nlm.nih.gov/pubmed/31239411
http://doi.org/10.1118/1.4868455
http://www.ncbi.nlm.nih.gov/pubmed/24694160
http://doi.org/10.1177/2048004016645467
http://www.ncbi.nlm.nih.gov/pubmed/27170842
http://doi.org/10.1080/17434440.2018.1473033
http://doi.org/10.1109/TIP.2017.2768621
http://doi.org/10.1002/mp.12197
http://doi.org/10.54294/hk5bjs
http://doi.org/10.54294/e86siq
http://doi.org/10.1002/mp.13300
http://www.ncbi.nlm.nih.gov/pubmed/30480818
http://doi.org/10.1109/34.927467
http://doi.org/10.1118/1.4871623
http://www.ncbi.nlm.nih.gov/pubmed/24784389
http://doi.org/10.54294/kmcunc
http://doi.org/10.54294/n4k16a
http://doi.org/10.1097/RCT.0000000000000669
http://doi.org/10.1146/annurev-bioeng-071516-044442
http://doi.org/10.1002/mp.12045


Appl. Sci. 2022, 12, 1358 14 of 15

21. Tong, N.; Gou, S.; Yang, S.; Ruan, D.; Sheng, K. Fully Automatic Multi-organ Segmentation for Head and Neck Cancer Radio-
therapy Using Shape Representation Model Constrained Fully Convolutional Neural Networks. Med. Phys. 2018, 45, 4558–4567.
[CrossRef]

22. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation; Springer: Berlin/Heidelberg,
Germany, 2015; pp. 234–241.

23. Liu, L.; Cheng, J.; Quan, Q.; Wu, F.-X.; Wang, Y.-P.; Wang, J. A Survey on U-Shaped Networks in Medical Image Segmentations.
Neurocomputing 2020, 409, 244–258. [CrossRef]

24. Wang, Y.; Zhao, L.; Wang, M.; Song, Z. Organ at Risk Segmentation in Head and Neck Ct Images Using a Two-Stage Segmentation
Framework Based on 3D U-Net. IEEE Access 2019, 7, 144591–144602. [CrossRef]

25. Rundo, L.; Han, C.; Nagano, Y.; Zhang, J.; Hataya, R.; Militello, C.; Tangherloni, A.; Nobile, M.S.; Ferretti, C.; Besozzi, D.; et al.
USE-Net: Incorporating Squeeze-and-Excitation Blocks into U-Net for Prostate Zonal Segmentation of Multi-Institutional MRI
Datasets. Neurocomputing 2019, 365, 31–43. [CrossRef]

26. Schlemper, J.; Oktay, O.; Schaap, M.; Heinrich, M.; Kainz, B.; Glocker, B.; Rueckert, D. Attention Gated Networks: Learning to
Leverage Salient Regions in Medical Images. Med. Image Anal. 2019, 53, 197–207. [CrossRef] [PubMed]

27. Yeung, M.; Sala, E.; Schönlieb, C.-B.; Rundo, L. Focus U-Net: A Novel Dual Attention-Gated CNN for Polyp Segmentation during
Colonoscopy. Comput. Biol. Med. 2021, 137, 104815. [CrossRef] [PubMed]

28. Liang, X.; Nguyen, D.; Jiang, S.B. Generalizability Issues with Deep Learning Models in Medicine and Their Potential Solutions:
Illustrated with Cone-Beam Computed Tomography (CBCT) to Computed Tomography (CT) Image Conversion. Mach. Learn. Sci.
Technol. 2020, 2, 015007. [CrossRef]

29. Qiu, B.; van der Wel, H.; Kraeima, J.; Glas, H.H.; Guo, J.; Borra, R.J.H.; Witjes, M.J.H.; van Ooijen, P.M.A. Automatic Segmentation
of Mandible from Conventional Methods to Deep Learning—A Review. J. Pers. Med. 2021, 11, 629. [CrossRef]

30. Hesse, L.S.; Kuling, G.; Veta, M.; Martel, A.L. Intensity Augmentation to Improve Generalizability of Breast Segmentation Across
Different MRI Scan Protocols. IEEE Trans. Biomed. Eng. 2021, 68, 759–770. [CrossRef]

31. Bosniak, M.A. The Current Radiological Approach to Renal Cysts. Radiology 1986, 158, 1–10. [CrossRef]
32. Bluemke, D.A.; Moy, L.; Bredella, M.A.; Ertl-Wagner, B.B.; Fowler, K.J.; Goh, V.J.; Halpern, E.F.; Hess, C.P.; Schiebler, M.L.; Weiss,

C.R. Assessing Radiology Research on Artificial Intelligence: A Brief Guide for Authors, Reviewers, and Readers—From the
Radiology Editorial Board. Radiology 2020, 294, 487–489. [CrossRef]

33. Kim, H.; Shim, E.; Park, J.; Kim, Y.-J.; Lee, U.; Kim, Y. Web-Based Fully Automated Cephalometric Analysis by Deep Learning.
Comput. Methods Programs Biomed. 2020, 194, 105513. [CrossRef]

34. Tao, Q.; Yan, W.; Wang, Y.; Paiman, E.H.M.; Shamonin, D.P.; Garg, P.; Plein, S.; Huang, L.; Xia, L.; Sramko, M.; et al. Deep
Learning–Based Method for Fully Automatic Quantification of Left Ventricle Function from Cine MR Images: A Multivendor,
Multicenter Study. Radiology 2019, 290, 81–88. [CrossRef] [PubMed]

35. B, S.; R, N. Transfer Learning Based Automatic Human Identification Using Dental Traits- An Aid to Forensic Odontology.
J. Forensic Leg. Med. 2020, 76, 102066. [CrossRef] [PubMed]

36. Ghafoorian, M.; Mehrtash, A.; Kapur, T.; Karssemeijer, N.; Marchiori, E.; Pesteie, M.; Guttmann, C.R.G.; de Leeuw, F.-E.; Tempany,
C.M.; van Ginneken, B.; et al. Transfer Learning for Domain Adaptation in MRI: Application in Brain Lesion Segmentation. In
International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Berlin/Heidelberg, Germany,
2017; pp. 516–524. [CrossRef]

37. Lee, K.-S.; Jung, S.-K.; Ryu, J.-J.; Shin, S.-W.; Choi, J. Evaluation of Transfer Learning with Deep Convolutional Neural Networks
for Screening Osteoporosis in Dental Panoramic Radiographs. J. Clin. Med. 2020, 9, 392. [CrossRef] [PubMed]

38. Weiss, K.; Khoshgoftaar, T.M.; Wang, D. A Survey of Transfer Learning. J. Big Data 2016, 3, 9. [CrossRef]
39. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
40. Frei, S.; Cao, Y.; Gu, Q. Algorithm-Dependent Generalization Bounds for Overparameterized Deep Residual Networks. arXiv

2019, arXiv:1910.02934.
41. Huang, K.; Tao, M.; Wang, Y.; Zhao, T. Why Do Deep Residual Networks Generalize Better than Deep Feedforward Networks? —

A Neural Tangent Kernel Perspective. 2020, 12. arXiv 2020, arXiv:2002.06262.
42. Ang, K.K.; Zhang, Q.; Rosenthal, D.I.; Nguyen-Tan, P.F.; Sherman, E.J.; Weber, R.S.; Galvin, J.M.; Bonner, J.A.; Harris, J.; El-Naggar,

A.K. Randomized Phase III Trial of Concurrent Accelerated Radiation plus Cisplatin with or without Cetuximab for Stage III to
IV Head and Neck Carcinoma: RTOG 0522. J. Clin. Oncol. 2014, 32, 2940. [CrossRef]

43. Nikolov, S.; Blackwell, S.; Zverovitch, A.; Mendes, R.; Livne, M.; De Fauw, J.; Patel, Y.; Meyer, C.; Askham, H.; Romera-Paredes,
B. Deep Learning to Achieve Clinically Applicable Segmentation of Head and Neck Anatomy for Radiotherapy. arXiv 2018,
arXiv:1809.04430.

44. Clark, K.; Vendt, B.; Smith, K.; Freymann, J.; Kirby, J.; Koppel, P.; Moore, S.; Phillips, S.; Maffitt, D.; Pringle, M. The Cancer
Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository. J. Digit. Imaging 2013, 26, 1045–1057.
[CrossRef]

45. Bosch, W.R.; Straube, W.L.; Matthews, J.W.; Purdy, J.A. Data from Head-Neck_cetuximab. Cancer Imaging Arch. 2015, 10, K9.
46. Han, X. Automatic Liver Lesion Segmentation Using A Deep Convolutional Neural Network Method. Med. Phys.

2017, 44, 1408–1419. [CrossRef] [PubMed]

http://doi.org/10.1002/mp.13147
http://doi.org/10.1016/j.neucom.2020.05.070
http://doi.org/10.1109/ACCESS.2019.2944958
http://doi.org/10.1016/j.neucom.2019.07.006
http://doi.org/10.1016/j.media.2019.01.012
http://www.ncbi.nlm.nih.gov/pubmed/30802813
http://doi.org/10.1016/j.compbiomed.2021.104815
http://www.ncbi.nlm.nih.gov/pubmed/34507156
http://doi.org/10.1088/2632-2153/abb214
http://doi.org/10.3390/jpm11070629
http://doi.org/10.1109/TBME.2020.3016602
http://doi.org/10.1148/radiology.158.1.3510019
http://doi.org/10.1148/radiol.2019192515
http://doi.org/10.1016/j.cmpb.2020.105513
http://doi.org/10.1148/radiol.2018180513
http://www.ncbi.nlm.nih.gov/pubmed/30299231
http://doi.org/10.1016/j.jflm.2020.102066
http://www.ncbi.nlm.nih.gov/pubmed/33032205
http://doi.org/10.1007/978-3-319-66179-7_59
http://doi.org/10.3390/jcm9020392
http://www.ncbi.nlm.nih.gov/pubmed/32024114
http://doi.org/10.1186/s40537-016-0043-6
http://doi.org/10.1200/JCO.2013.53.5633
http://doi.org/10.1007/s10278-013-9622-7
http://doi.org/10.1002/mp.12155
http://www.ncbi.nlm.nih.gov/pubmed/28192624


Appl. Sci. 2022, 12, 1358 15 of 15

47. Bulat, A.; Tzimiropoulos, G. Binarized Convolutional Landmark Localizers for Human Pose Estimation and Face Alignment with
Limited Resources. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017;
pp. 3706–3714.

48. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with
Convolutions. In Proceedings of the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston,
MA, USA, 7–12 June 2015; pp. 1–9.

49. Seo, H.; Huang, C.; Bassenne, M.; Xiao, R.; Xing, L. Modified U-Net (MU-Net) with Incorporation of Object-Dependent High
Level Features for Improved Liver and Liver-Tumor Segmentation in CT Images. IEEE Trans. Med. Imaging 2019, 39, 1316–1325.
[CrossRef] [PubMed]

50. Gupta, S.; Gupta, R.; Ojha, M.; Singh, K.P. A Comparative Analysis of Various Regularization Techniques to Solve Overfitting
Problem in Artificial Neural Network. In Proceedings of the Data Science and Analytics; Panda, B., Sharma, S., Roy, N.R., Eds.;
Springer: Singapore, 2018; pp. 363–371.

51. He, F.; Liu, T.; Tao, D. Why ResNet Works? Residuals Generalize. arXiv 2019, arXiv:1904.01367.

http://doi.org/10.1109/TMI.2019.2948320
http://www.ncbi.nlm.nih.gov/pubmed/31634827

	Introduction 
	Materials and Methods 
	Data 
	Framework and Network Architectures 
	Performance Evaluation 

	Results 
	Discussion & Conclusions 
	References

