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Abstract: During the last few decades, great research endeavors have been applied to healthcare
robots, aiming to develop companions that extend the independent living of elderly people. To
deploy such robots into the market, it is expected that certain applications should be addressed with
repeatability and robustness. Such application is the assistance with medication-related activity, a
common need for the majority of elderly people, referred from here on as medication adherence. This
paper presents a novel and complete pipeline for assistance provision in monitoring and serving
of medication, using a mobile manipulator embedded with action, perception and cognition skills.
The challenges tackled in this work comprise, among others, that the robot locates the medication
box placed in challenging spots by applying vision based strategies, thus enabling robust grasping.
The grasping is performed with strategies that allow environmental contact, accommodated by the
manipulator’s admittance controller which offers compliance behavior during interaction with the
environment. Robot navigation is applied for the medication delivery, which, combined with active
vision methods, enables the automatic selection of parking positions, allowing efficient interaction and
monitoring of medication intake activity. The robot skills are orchestrated by a partially observable
Markov decision process mechanism which is coupled with a task planner. This enables assistance
scenario guidance and offers repeatability as well as gentle degradation of the system upon a failure,
thus avoiding uncomfortable situations during human–robot interaction. Experiments have been
conducted on the full pipeline, including robot’s deployment in 12 real house environments with real
participants that led to very promising results with valuable findings for similar future applications.

Keywords: medication serving; object detection; admittance control; grasp with environmental
contacts; task planning; decision-making; autonomous operation

1. Introduction
1.1. Scope

The societal challenge inherent in the growing elderly population is a worldwide
phenomenon, which is getting worse when considering that such groups usually suffer
from chronic diseases that gradually deteriorate their health status decreasing their physical
and mental capabilities. Recently, significant steps have been made in the context of service
robotics for assisted living environments to support older people’s independence [1]. In
accordance with a recent literature review, provided by Bedaf et al. (2015), up to 2015, more
than 100 assistive robots have been developed aiming to support a wide range of different
activities of elderly people among which mobility, self-care, social, and others of general
purpose related activities can be identified.
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Considering assistance provision to self-care related activities, support in medica-
tion adherence is located at the forefront of the contemporary assistive robots’ priorities.
This falls under the wider requirement for elderly people to maintain their medication-
adherence, in order to be able to live independently [2]. However, management of complex
medication regimens by the elderly poses a significant challenge. This may stem from
diverse reasons, ranging from the complexity of the medication schedule, when com-
bined with the declining cognitive capacities of the users, to the human’s forgetfulness
and apathy [3]. Personal assistive robots can assist older adults with managing their
medication activities; however, there are significant barriers that need to be surpassed in
order to realize a complete solution in the domain of medication assistance that will allow
cross-environment applicability, repeatability and robustness.

Specifically, the assistive robot should be aware of the medication schedule of the
user which may involve multiple sessions within the same day [4]. The latter necessitates
the ability of the robot to keep track of the objects’ states involved in the medication task
(e.g., medication container) within the environment. The robot should have the capacity
to locate the human in the house, while at the same time should be able to apprehend the
human’s actions related to medication adherence and clearly deduce about the outcome of
the interaction. In addition, the robot should be able to administer the medication to the
user if s/he will not do it on his/her own, as described by Wilson [5], yet respecting the
fact that, in healthcare, the patients are not forced to take the medicine they do not want to
(with some obvious exceptions).

The closest to our work is the one described in [6]. This work is the first attempt that
aims to provide a medication assistance by offering intervention in the medication adher-
ence activity with robotic manipulations instead of notifications provision and guidelines,
thus addressing the medication fetching task. More specifically, the robot had the capacity
to locate the medication in the environment, navigate towards it, grasp it, and then locate
the human in the environment, navigate towards him/her and hand-off the medication.
However, instead of vision, the perception system of the robot, related to the detection of
the medication container and the detection of the participant, has been replaced by a radio
frequency identification (RFID) framework where tags are affixed on objects, locations
and humans. By placing ultra high frequency (UHF) RFID tags on important objects in an
environment, the robot utilized each tag’s unique identifier (ID) and signal strength from
each tag (RSSI) to detect and localize objects. The medication delivery task performed by
commanding the robot to retrieve a tagged medication and deliver it to a user wearing a
tag. Upon successful hand-off of the medication, the robot task was completed. It is evident
that this approximation was a simplified approach and had certain limitations. Specifically,
it necessitated intervention in the environment with RFID tags, while it partially tackled
the medication assistance considering that monitoring of medication adherence activity
was not supported. Moreover, the robot did not have situation awareness about the success
of its task, while it was not able to return the medication back to its storage position.

Contrary to the above-mentioned methodology, this paper deals with the entire
pipeline of robotic medication assistance. The proposed system, not only offers solutions to
all the aforementioned challenges, but turns the robot into an active agent responsible for
delivering the medication to the user and drawing a conclusion regarding the outcome of
its mission, being able to answer with a certain confidence on the question: “Has the user
received the medication?” instead of treating the robot as a fetching device responsible only
for delivering the medication container to the user. In order to achieve this, a mobile robot
manipulator equipped with vision sensors has been utilized. Vision-based object detection
and grasping from demanding spots have been developed in order to reach the medication
box from challenging places, while the entire fetching task of medication has been imple-
mented in a modular and dependable manner. Moreover, efficient human detection and
tracking methodologies have been adopted to robustly apprehend the human presence in
the environment and reach him/her with safety, while a dedicated solution to monitor the
medication adherence action has been developed. The robot cognitive ability that enables
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the denouement of medication assistance scenario has been realised through a Partially
observable Markov decision process (POMDP) model that can handle the uncertainty of
the perception input and promptly decide on the next best robot action. The decision maker
interacts directly with a robot task planner which is capable of orchestrating the robot skills,
along with the communication modalities that have been developed, covering the multiple
aspects of the medication assistance scenario and thus offering a fully autonomous solution.

To the best of our knowledge, this is the first working solution that addresses the
complete pipeline for the medication assistance task involving autonomy, perception,
cognition, human action monitoring and task planning. It is important to state herein that
the ultimate goal of this paper is to provide solutions in a series of perception, cognition
and action problems that will enable, in the near future, assistive robots’ deployment in
real home environments. The main novelty and contributions of this work are summarized
as follows:

• The development of an integrated vision system able to perform object and human
detection and tracking suitable for monitoring of medication activities;

• The integration of novel object grasping strategies with environmental contact, en-
abling object manipulation from challenging spots accompanied with situation aware-
ness mechanisms;

• The development of safe manipulation and navigation strategies suitable for robotic
agents that target operation in domestic environments with non-expert robot users;

• The identification of the necessitated robot skills for assistance in medication adherence
activity, their development in a modular manner and their organization under a task
planner framework that covers all the corner cases that can be identified within the
examined assistive scenario;

• The integration and assessment of all the developed skills in multiple realistic scenarios
with various users.

1.2. State-of-the-Art Robotic Applications in Medication Adherence Activities

To accurately classify a robot as personal service or a professional service robot, a
precise overview of the task that the robot agent is designated to perform should be per-
formed [7]. In the domain of personal service robots, which is of particular relevance in this
work, the majority of the robots target domestic applications and can be classified as mobile
servant, people carrier, physical assistant, personal care and healthcare assistant robots [8,9].
A representative taxonomy in the domain of health care robots could differentiate them
among those that provide physical assistance, those that provide companionship, and
those that monitor health and safety. Remarkable assisting robots for the elderly have
been developed so far under the scope of research projects, such as the HOBBIT project [1],
which combined research from robotics, gerontology, and human–robot interaction in order
to develop a healthcare robot capable of preventing falls, detecting emergencies, bringing of
objects and offering reminders to the users. The ACCOMPANY project was built upon the
Care-O-Bot®3 integrated in a smart-home environment aiming empathic and social human–
robot interaction, robot learning and memory visualization as well as persons’ monitoring
at home [2]. Albeit the fact that these robots were mainly designed to provide healthcare
assistance, the challenging task of assisting, with robotic manipulations intervention, in
medication tasks was merely studied, and the provided solutions were focused solely on
the provision of reminders and notifications. However, a plethora of laborious research has
already been conducted in the respective domain covering feasibility studies of contem-
porary robots to provide assistance during medication tasks. The need of contemporary
agents to assist in medication activities is a global preference for the healthcare robots [10].
The authors conducted a specific research in a retirement home which substantiates a claim
that residents may expect robots to assist them in medication adherence activities. This is
further reinforced by the study conducted in [11], where it is indicated that people, in a
retirement village that utilizes healthcare robots, rate highly the reminders’ provision in
medication adherence activities. Moreover, apart from the user’s preferences, it is important
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to assess the feasibility of robots to assist in medication sessions as well as the definition of
the level and type of intervention. A touch screen and voice-based interface integrated on
a robot, introduced in [12], proved it is an effective platform able to proactively support
users with their healthcare delivery related to assistance provision to elderly individuals
with mild cognitive and physical impairments, through human–robot interaction, people
monitoring and probabilistic action planning for robot motion next to the user. Specifically,
in this work, a robotic agent acted as a prompting mechanism, through the establishment of
interactive communication, to stimulate the elderly to complete their medication adherence
task. These findings are further emphasized when considering the feasibility study [13],
where several years later, the same experimental topology had been applied on a sample of
ten older users. This experiment exhibited remarkable results, based on which the concept
of reminders provision through a robot was well received from all users that successfully
completed the session, and most subjects found it easy to use, appropriately designed and
felt confident using it. However, in accordance with a recent study [14], it is revealed that
contemporary healthcare robots are mostly tailored to assist in medication adherence activ-
ities by providing reminders (regarding the medication adherence schedule) or monitoring
the medication sessions while only few approaches also addressed the medication fetching
task.

Albeit the fact that authors in [15] stated that current robot technology does not
allow reliable fully autonomous operation of service robots with manipulation capabilities
in the heterogeneous environments of private homes, the early work presented in [16]
succeeded the realization of an autonomous service robot capable of serving drinks to
users. Bohren et al. endorsed a PR2 robot with advanced perception capabilities, planning
components including navigation, arm motion planning with goal and path constraints,
and grasping modules as well as a pioneering new task-level executive system to control
the overall behavior of the system. A few years later, the same robot has been used
in healthcare domain by assisting in medication adherence activities [15]; however, the
overall system was commanded and controlled from the user remotely through handheld
devices. Such works paved the way for the insertion of the personal assistive robots in the
domain of healthcare and comprised the ancestors of the work presented herein, which
aims to introduce a complete pipeline that addresses autonomous assistance provision in
healthcare activities through active communication, robotic manipulations and monitoring
of the medication adherence activity, all implemented as modular skills orchestrated by
probabilistic decision-making integrated with a modular task planner.

1.3. Paper Layout

This paper documents the considerations, analyzes the adopted solutions, and finally
assesses the complete framework developed with a real mobile robot manipulator aiming
to proactively help in daily domestic activities of older persons, particularly focusing on
the support of medication task. More specifically, this paper presents:

• the user requirements during medication adherence activities;
• the hardware architecture and the physical implementation of the robotic manipulator;
• the adopted software components that address the user requirements;
• the safety features incorporated within the developed software;
• the experimental results that demonstrate operation in various environments with

real users.

In order to effectively address and demonstrate the completion of the above-mentioned
objectives, a robotic manipulator has been utilized, namely, the RAMCIP robot. RAMCIP
was researched and developed under the scope of the European Project “Robotic Assistant
for MCI Patients at Home”, which envisioned and realized a novel service robot able to
proactively assist older persons at the early stages of dementia, in a wide range of their
daily activities. Assistance in medication adherence comprised the most challenging use
case that the RAMCIP robot, focusing on the elderly with Mild Cognitive Impairments
(MCI), had to accomplish (see Figure 1), considering its demand for specific perception,
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action, communication, and cognition capabilities. Therefore, it is evident that, through the
detailed description of this scenario, a profound understanding of the robot’s capabilities
will be revealed. However, it should be stressed herein that the developed software
solutions are hardware independent meaning that the same algorithms can be adopted by
any other robot setup that meets the physical requirements of the scenario.

Figure 1. The RAMCIP robot engaged in a real medication adherence assistive task with a user in an
actual home environment.

The rest of this paper is organized as follows: After this introductory section, Section 2
presents the requirements posed from the health care domain and outlines the basic hard-
ware setup of the utilized robot. Section 3 describes the perception skills developed as part
of the robot’s vision system. Details regarding the implemented strategies for robotic action
capabilities are provided in Section 4, while Section 5 describes the cognitive abilities of the
robot. Section 6 exhibits the overall assessment of the developed methods and discussions
regarding findings and limitations are provided in Section 7.

2. System Architecture

The architecture of our system was designed and developed based on the findings re-
vealed during the created surveys that involved medical staff, patients, and caregivers [17].
The objective of these surveys was to identify and conclude the functional requirements,
the human–robot interaction mechanisms, the design of the robotic assistant and user
acceptance aspects [18], parameters that should be determined during the design of a
healthcare robot. To this end, both the hardware setup as well as the adopted software
architecture were chosen to methodically contribute to the robot’s mission.

2.1. Medication Adherence: Use Case Requirements

Given the outcome of the above-mentioned surveys, the assistance provision in medica-
tion adherence activities comprised a high priority use case for the users and the caregivers.
In accordance with this, the robot should:

• be aware of the medication schedule of the user;
• provide reminders to the user through the communication modalities before a medica-

tion session;
• be able to locate, detect and fetch the pill box, especially when the latter is placed in

high places difficult to be reached by the user;
• monitor and assess the progress of the medication adherence activity;
• be able to place the pill box back to its storage position;
• establish communication with external person in cases were medication process has

not been completed successfully;
• complete the assistance provision for the medication adherence scenario in a coherent

and structured manner, with sufficient repeatability.
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2.2. Hardware Specifications and Setup

It is evident that the use case requirements could be met by any mobile manipulator
endorsed with specifically designed software components. However, it is essential to
briefly describe herein the RAMCIP robot physical implementation view in order to present
the minimum required hardware specifications, while exhibiting how each hardware
component contributed to the completion of the medication assistance scenario. To this
end, the basic architectural elements of the utilized robot (see Figure 2) are described as
follows:

Figure 2. The basic architectural elements of the RAMCIP robot. The robotic platform with the eleva-
tion mechanism, the turntable, the arm manipulator and the head have been developed by ACCREA
Engineering©. The utilized hand is the smart grasping system of SHADOW Robot Company, Ltd.©.

Mobile Platform: The mobile platform comprises a two degrees of freedom (DoF)
differential kinematics model. It provides the locomotion functionality and hosts the entire
computational system of the robot. This component is responsible for performing the
navigation tasks required for approaching the human and fetching the medication box.

Elevation Mechanism: The elevation mechanism allows the robot to reach both higher
(around 1.75 m) and lower (e.g., floor or low table) locations with the same robotic arm. This
component is essential when the medication box is stored in a high place where the robot
has to be stretched in order to reach it, or has to be shrunk in order to reach a lower table.

Arm manipulator: The arm manipulation is relied in an 8-DoF kinematic model offer-
ing increased operational workspace that allows the robot to grasp the medication container
in various environment topologies. The 6 DoF arm operational workspace is extended
when considering the fact that the manipulator is mounted on a rotary actuated turntable
with an elevation mechanism. To increase safety and endorse compliance manipulation
capabilities, a force torque sensor has been mounted between the arm wrist and the hand.

Hand: The robot is equipped with a three-fingered robotic hand with nine degrees-of-
freedom, suitable to perform grasping of different objects with various grasping strategies.
It is also equipped with force sensors at its fingertips that offer situation awareness when
transferring the medication box to the user.

Head: The robot has a 2 DoF head equipped with a display for facial expressions that
enables robot–user interaction and augments it with affective cues. The actuation of the
robot head is inherited to a mounted RGB-D camera on top of it. On the one hand, the
motorized head augments the robot’s perception by enabling active vision and, on the other
hand, it allows natural robot reaction when interacting with the user where perception
along manipulation should be coordinated. Part of the communication modalities constitute
a projector for the provision of augmented reality (AR) communication purposes.
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Perception System: The robot perception system consists of a motorized RGB-D
sensor mounted on the robot’s head and two laser scanners mounted on the platform. The
RGB-D sensor is utilized for the mapping, the environment monitoring and the human
tracking. The laser scanners are utilized mainly for the robot localization and navigation
and, in cases of cameras’ occlusions, provide rough estimations of the user’s location in
the environment.

HR-Communication Modalities: In the front of the robot body, interaction compo-
nents are included such as microphone, tablet PC and speakers, allowing communication
with the user. This module is utilized for the provision of notifications and the dialogues
during medication adherence session.

3. Robot Perception Skills
3.1. Hierarchical Semantic Map

This component is responsible to model and store the environment state in a manner
that will be apprehensible by the robot. A 3D metric map of the explored environment is
firstly constructed. Then, the high level information, such as the state of the objects, the
objects’ attributes and their in-between relationships, are coded in a semantic hierarchy,
namely: the Hierarchical Semantic Map. This structure allows the robot to operate, i.e.,
navigate in a 2D environment and manipulate objects, in the 3D environment while it
simultaneously can address high-level commands such as “bring me the pill box”. In
addition, this structure allows the robot to perform its tasks by keeping track of the position
of the objects within the environment, avoiding time-consuming wandering and searching
in a known environment.

In this work, we assume that the robot operates in a known previously mapped
environment. The mapping method adopted herein is an RGBD-SLAM approach capable
of operating in large scale environments and producing 3D metric maps. It employs the
on-board RGB-D sensor of the robot and performs incremental visual odometry during
the robot’s travel by using feature tracking and egomotion estimation with RANSAC
constraints, undergoing a specific outlier filtering step for better optimization [19]. The
robot’s estimated poses and the corresponding matched features are treated as a graph,
the nodes of which correspond to the estimated poses and the edges to the in-between
transformation of the nodes. This graph is optimized with certain criteria using the g2o
optimization library [20]. By applying the transformations of each edge in the graph to
the respective acquired point clouds, a dense 3D map of the explored environment is
obtained. The 3D map is constructed by teleoperating the robot during its installation in
the environment. The usage of the 3D map is twofold; on the one hand, the 3D map is top-
down projected and transformed into a weighted global 2D cost-map to be used for robot
navigation exploiting the differential drive kinematics of the robot (see Section 4.1.2). On the
other hand, the 3D information of the map is exploited to serve the “pill-box” localization
within the environment and, since it is registered with the semantic information i.e., XML,
each time the “pill-box” has to be fetched or localized, the 3D information is retrieved in
the form of supporting surface (which are considered as constant during the process) so as
to efficiently detect and distinguish the “pill-box” object from the rest of the scene.

The hierarchical semantic map associates the 3D metric map with semantic informa-
tion, through an XML schema that encodes semantics of the environment architecture (see
Figure 3). The root of the hierarchy in the semantic model is the “house” which comprises
a series of “rooms”. For each room, there is a descriptive list of the contained large scale
objects. Some general semantic information is stored regardless of the category that a large
scale object belongs to, such as the label of the object (shelf, table, etc.), a list of small scale
objects (e.g., “pill box”, “cup”) that are affiliated with, the type of these relationships, its
pose with respect to the global map, its affordances (graspable, supporting surface, etc.)
and a list of robot parking positions associated with this specific object, from where the
robot can stand in order to observe it, interact with it, or interact with the objects laying on
it (e.g., parking positions of a table, allowing the robot to grasp objects that lay on it). A
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detailed 3D model for each small object of interest is also stored in the hierarchical semantic
map, which will be later utilized by the object detection methods.

Figure 3. The pipeline for the formulation of the hierarchical semantic map.

In the medication scenario examined herein, the type of information stored in the
hierarchical semantic map is typically the following: the “pill box” of a specific model
(shape/color) is stored in a “high shelf”: located in a room (e.g., “kitchen”, “living room”),
which is defined during the installation phase of the robot in the home environment. The
shelf is described by a supporting surface constituted of p = {pi, ..., pn} points where each
point retains pi = {xi, yi, zi} coordinates, expressed with respect to a global coordinate
system in the map. The robot’s initial parking pose in front of the shelf is r = {xr, yr, θr},
where xr and yr are the robot location in the map and θr is its orientation, assuming motion
on planar surfaces. All the above-mentioned semantics are essential information required
to locate precisely the “pill box” within the house environment. In situations where the
robot fetches the “pill box” from high shelf to the “table”, the corresponding large object
parent ID of the small object “pill box” is updated respectively in the XML model. The
supporting surface defined over a large object e.g., “table” is passed to the hierarchical
semantic map during the robot installation phase in the environment by associating the
respective points in the initially constructed 3D map.

3.2. Object Detection and Monitoring

The objective of this component is the detection and pose estimation of small objects
involved in the medication adherence activity for their grasping from the robot as well
as for their state monitoring during the observation of the medication adherence activity.
The objects involved in the studied activity are the “cup” and the “pill box”. Their initial
detection and pose estimation is performed with the method developed in [21] within
the scope of the RAMCIP project. Apparently, this method could be replaced by any
other method capable of performing object detection and 6D pose estimation; however,
we briefly and conceptually describe it herein for the sake of completeness. Specifically,
during the training phase, the method extracts 2.5D depth invariant patches that cover
the same area of an object, regardless of their distance from the camera, from rendered
synthetic color and depth images captured from multi-view textured 3D models of the
object. The extracted patches are projected to the 3D camera coordinate system and passed
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to an auto encoder–decoder network for feature extraction. The features along with the
pose of the respective patch and the corresponding labels are utilized to train a Hough
Forest, which allows object classification, as a regular random forest. During the inference
phase, a hypothesis verification step is further utilized to select the subset of the total
detections made by the classifier that best explains the examined scene. Following a scene
segmentation and specific rule based criteria during the re-projection of each model with a
specific pose, deductions about the object ID and its pose are performed. This method is
utilized for the pose estimation of the “pill box” during grasping as well as for the initial
detection of the “pill box” and the “cup” on the scene which seed the object monitoring
component.

For the assessment of the medication adherence activity and assuming that the robot
has successfully reached an appropriate monitoring position, the object monitoring com-
ponent is initialized. Firstly, a workspace is defined with 3D boundaries wrapped above
the supporting surfaces of the large objects that are inside the field of view of the robot’s
camera. The object detection algorithm, described above, is activated to retrieve the exact
position and orientation of the instances of the object categories considered relevant to the
ongoing activity (in the case of the medication adherence, these are the “pill box” and the
“cup”). The retrieved poses are used to project the 3D object models in the 3D space and
hence to obtain a geometrical estimation of the volumes that the detected objects occupy
within the workspace. By extracting an Octree representation of the whole workspace,
the volumes that correspond to these objects are tracked. For as long as such a volume
remains occupied, the corresponding object is labeled as present in the scene. When the
occupancy of the specified volume is reduced below a certain threshold, it signifies that
the corresponding object has been removed by the user, then the object’s label shifts to
not-present. Other small objects possibly existing in the workspace are treated as irrelevant
and are neither identified nor labeled; however, they are considered part of the rest of the
scene. The same Octree representation is responsible for detecting any changes in the rest
of the monitored scene. If a change that corresponds to a new cluster entering the scene is
reported, the object detection module is re-executed on that cluster only, to determine if any
of the objects labeled as not-present were placed back in the workspace of the large object
by the user. To avoid any occlusion effects and resolve any dis-ambiguities in the tracked
estimated volumes, the human’s hands are masked from the skeleton tracker information
and excluded from the procedure. A graphical representation of the monitoring module
along with the possible states of the monitored objects are depicted in Figure 4. For the
objects identified as not-present in the workspace, it is assumed that the user interacts with
them, while, for objects identified as present in the workspace, it is assumed that currently
there is no interaction of the user with that object. The main assumption done in this work
is that we employed the same “pill-box” and “cup” objects during the entire evaluation
procedure, and this is reasonable since the main objective of this work is to evaluate the
performance of the overall system. In different cases, modeling of the user’s medication
box and cup should have been done in each new environment; thus, we adopted the same
objects among different setups for simplicity.
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Figure 4. The states of the object monitoring module for N objects considered relevant to the
ongoing activity.

3.3. Human Understanding in the Scene

This component is responsible for apprehending the human’s presence in the environ-
ment as well as to understand the medication adherence activity. The human presence is
modeled by exploiting human detection and tracking solutions based on multiple modali-
ties. Activity understanding is a custom solution that combines geometrical information
of the human skeleton limbs and information regarding the state of small object’s (e.g.,
“pill box”) involved in the medication adherence activity, as analytically described in our
previous work [22].

In particular, for the human detection in the scene, two modalities have been fused;
the first one is a human detection and tracking framework suitable to operate with low-
cost depth RGB-D sensors at real-life situations addressing limitations such as body part
occlusions, partial body views, sensor noise and interaction with objects, extensively
described in [23]. The second one is a laser based human tracking mainly inspired by the
work presented in [24]. Fusion of the two methods is a rule based method, an analytic
description of which could be found in our previous work described in [25]. Based on
this, the robot is constantly aware about the human’s pose Ph = (xh, yh, zh, θh) in the
environment, expressed in a common human–robot coordinate system Omap. The human
pose Ph will be latter exploited by the robot’s global path planner to select a parking position
around the humans and initiate the human–robot interaction.

Understanding of the medication adherence activity relies on the detection of a se-
quence of human actions with the concurrent detection of manipulated objects by the
human. For the human action recognition, a geometric approach described in [26] has
been exploited, which is based on the skeleton joints geometric topology. A combination
of such geometrically inferred actions with manipulated objects indicate the execution
of an action with semantic context, e.g., the action hand-to-mouth with the object cup as
not-present on the monitoring area, designating the action drinking. The human actions and
the manipulated objects along them are graphically illustrated in Figure 5. The sequence of
the actions in not binding given that, in order to be sure, regarding the observation, the
robot expects to identify all the triplets of actions/objects so as to infer a correct medication
adherence activity.
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Workspace

Action: Doing Nothing

Object : None

Action: Alter

Object : Pill box

Action: Hand-to-mouth

Object : Cup

Action: Hand-to-mouth

Object : None

Pill box

Cup

Human

Figure 5. A conceptual representation of the expected actions and the manipulated objects for the
medication adherence activity. Note that the sequence of the actions is not binding since the robot
expects to identify all the triplets of actions/objects in order to draw a positive detection outcome.

4. Robot Action Skills
4.1. Navigation
4.1.1. Path Planning and Parking Position Selection

During the assistance in a medication adherence scenario, the robot navigates from
one place to another in order to perform perception or action based tasks, e.g., reaching a
parking position for human monitoring, or reaching a parking position for grasping the
“pill box”. To achieve this, the robot should be able to autonomously navigate from one
place to another within the environment. Thus, a global path planner (GPP) is essential
for autonomous navigation since it is responsible to navigate the robot platform from its
current to a target location in order to execute a task. The GPP exploits a priori collected
data, which in our case is the static map created from the hierarchical semantic mapping
framework, to express the acquired information properly in the configuration space, i.e., a
cost-map and then looks for the optimal path according to the respective search algorithm.
The RACMIP navigation system exploits the D* Lite global path planner, as presented
in [27], which is a fast path planning and re-planning algorithm suitable for goal-directed
robot navigation in partially known or unknown terrain. D* Lite constitutes an extension
of Lifelong Planning A* (LPA*) [28], and it is capable of re-planning a new shortest route
from its current position to the given goal, when new obstacles appear.

The selection of the most appropriate parking position is a custom solution developed
in the scope of this work that allows optimal parking of robots based on the criteria imposed
from the task that it is designated to perform. Depending on the context of the task, the
robot navigation goal is elaborated to incorporate active vision benefits. The RAMCIP robot
is equipped with a single RGB-D camera and laser scanners of approximate 360° field of
view and, depending on the task, it will enable it to sufficiently track the human actions,
the small objects to be detected in the scene, and the manipulators workspace in order
to reach and grasp the small objects, i.e., the “pill box”. In general, the method is relied
on the selection of a (XT , YT , θT) pose in the map and the generation of a circular area
around which the robot is able to park. The radius of this area is regulated by the context
of the ongoing task T. Given the (XT , YT , θT), the robot searches for an optimal observation
range around this perimeter for the identification of a suitable parking pose that satisfies
the requirements of frontal facing of the interaction object and the robot’s footprint fitting
among the static obstacles of the global metric map. The robot’s footprint affordance to
the static metric map is controlled with a spatial decomposition technique, i.e., kdTree, by
searching with neighborhood radius of a size equal to the robot’s footprint radius, thus
ignoring those poses that intersect among the static obstacles and the footprint’s points [29].
The selection of the most appropriate parking pose is performed by applying a Euclidean
distance minimization criterion among the robot current pose and the calculated ones.

Parking strategy for Object Grasping: This is a two step reaching strategy, in accor-
dance with the robot firstly selecting a parking position with respect to the supporting
surface of the small object and navigating towards this and, then, upon detecting the small
object from a distant place, it infers a parking position convenient for the object’s grasp.
Specifically, the robot from its current position recalls from the hierarchical semantic map
the semantics of the “pill box”, based on which the large object ID i.e., “kitchen table”, is
recalled along with its center of mass (Xkt, Ykt, Zkt, θkt), which declares its location in the
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house. A circular area is defined around the (Xkt, Ykt), the radius of which is regulated by
the object detection algorithm (see Section 3.2) which has a limitation to operate up to 1.5 m.
The algorithm infers the candidate parking poses and, based on its shortest distance from
the current robot location, the most suitable one is selected. Then, the object detection mod-
ule for the “pill box” identification and pose estimation is activated and, upon detection of
the small object’s pose (Xso, Yso, Zsot, θso), a circular area with radius up up to 1m, which
roughly defines the robot’s manipulator workspace avoiding any singularities, is defined
and candidate parking positions are again inferred. The robot selects the one closest to its
current location and navigates respectively to perform again object detection and grasping.
Parking strategy for Human Activity Monitoring: This is a one step strategy, and it is
used by the robot to reach the human for activity recognition or communication. Based
on the human’s pose (xh, yh, zh, θh) in the environment (see Section 3.3), expressed in a
common human–robot coordinate system Omap, the robot infers a circular area around the
human with a radius imposed by the “personal space” criterion, inspired by the proxemics
theory introduced in [30], with a radius greater than 1.2 m as suggested in [31]. The robot
searches for an optimal observation range outside this perimeter for the identification of
a suitable parking pose that satisfies the requirements for human frontal facing and the
robot’s footprint fitting among the static obstacles of the global metric map.

Parking strategy for Object Release: This is again a two-step strategy, in accordance
with which the robot firstly parks with respect to the supporting surface upon which a
small object should be released and, then, upon detecting the center of mass of the largest
clear sub-surface (xs, ys, zs, θs) from a distant place, it infers a parking position convenient
for the object release. The suitable clear sub-surface is estimated by exploiting the depth
information of the camera to compute the largest convex hull, on the extracted plane from
the respective large object that does not enclose any objects in it. In such a way, collisions
with other objects during the release of a small object are avoided.

4.1.2. Local Planning

The global plan is generated on-demand each time the robot is commanded to navigate
from one place to another under inherent limitations of on-board environment perception
and mapping systems. Therefore, an additional reactive local path planner is necessary for
safe navigation, which accounts for dynamic environmental constraints such as moving
obstacles as well as uncertainty in the sensing inputs. Naturally, this introduces a require-
ment of real-time capability of the local planner. We use the dynamic window approach
(DWA) as it is suitable for real-time execution, and it allows a configurable structure and
parameter tuning, based on the initial work described in [32].

As input, the DWA local planner takes the set of waypoints computed in the global
path, odometry information containing pose and velocity, local map representation and the
robot representation in a 2D plane. To simplify the problem setup, but enhance the safety
considerations, the robot is approximated by a convex polygon obtained by projecting
its 3D shape onto the floor surface, accounting for the current arm pose at each control
update (Figure 6). The local planning computations are performed on the proximal area
around the robot—a grid of approximately 3× 3 m generated by merging the sensor data
from an RGB-D camera and laser range scanners. Finally, optimization is performed in
the velocity space of this area (containing both translational and rotational components),
by maximizing a value function, while taking into account robot velocity and acceleration
limits. The result is a locally optimal velocity vector.
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Figure 6. The robot collision space is projected onto the ground as a convex polygon (green surface)
to locally navigate around obstacles (blue boxes). The arrows indicate the robot’s navigational DoF.

The entire procedure is given in detail in pseudo-code in Algorithm 1. First, the
local planner parameters are parsed, containing information such as dynamic constraints
of the robot, desired velocity space discretization and minimum distance to the current
local goal, which is chosen from the global path. Second, the velocity space is discretized
into a dynamic window, accounting for maximum velocities and accelerations within
one discretization step, and a set of admissible velocities Vadmissible is obtained. The set
Vadmissible is then pruned by looping through velocity vectors vi and removing ones that are
deemed dangerous or lead to a collision. This is achieved by projecting the robot polygon
along a motion defined by vi, checking for intersections with the obstacle set Olocal and
solving for shortest time ti until a collision. The result is a set of safe velocities Vsafe, where
each vi has a corresponding time-to-collision ti assigned to it.

Algorithm 1 Pseudo code of the dynamic window procedure.
1: params← GETLOCALPLANNERPARAMETERS()
2: xgoal ← GETLOCALGOAL(params)
3: pglobal ← GETGLOBALPOSE() . Using odometry
4: while LOCALGOALNOTREACHED(p, xgoal) do
5: procedure DW_UPDATE( )
6: Olocal ← UPDATELOCALMAP(pglobal) . Obstacle set
7: Vadmissible ← SPANVELOCITYGRID(params) . Set of admissible velocity vectors
8: Vsafe ← ∅ . Set of safe velocity vectors
9: for vi ∈ Vadmissible do

10: ti ← TIMETOCOLLISION(Olocal, vi)
11: FLAG_coll← LEADSTOCOLLISION(Olocal, vi, ti)
12: FLAG_danger← ISDANGEROUS(Olocal, vi)
13: if not (FLAG_coll and FLAG_danger) then
14: Vsafe.add((vi, ti))
15: end if
16: end for
17: if Vsafe == ∅ then
18: STOPANDREPLAN()
19: else
20: v∗i ← OPTIMIZE(Vsafe)
21: end if
22: end procedure
23: pglobal ← GETGLOBALPOSE()
24: end while
25: PUBLISHVELOCITYCOMMAND(v∗i )

Selecting the optimal velocity vector within Vsafe requires the designing of a value
function that accounts for several factors. We define the following heuristic utility functions
as its components—heading, speed and distance, with respect to each safe vi. Their effects
are the following:
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• heading—Rewards goal directed motions
• speed—Rewards high linear velocities to enforce fast goal directed motions when-

ever possible
• distance—Rewards long predicted times ti until collision

Effects of each utility function are given as weights wi and summed into a value function:

V = w1H + w2S + w3D (1)

The combination of heading and speed generates an attractor behavior towards the
local goal. In the presence of obstacles, the distance utility shifts the optimum of the
total value function towards a deviating motion around the obstacle. Figure 7 illustrates
such a scenario—the robot is placed in front of an obstacle in the x-direction of the robot
coordinate system (see Figure 6), and it is shown how the value drops in the direction
of the obstacle. Nevertheless, in situations when the robot detects dynamic obstacles, a
frequently updated global path re-planning is performed to ensure smooth robot motion.
The global plan update frequency is set to 5 Hz constituting a descent compromise of
unnecessary computational burden and smooth change in robot heading considering the
robot maximum velocity.

Figure 7. Example of a weighted utility grid for the distance utility of the dynamic window approach.
This grid was recorded when the robot faced an obstacle in the x-direction. The utility function drops
in the direction of the obstacle as the predicted time until collision decreases. A weighted sum of
such grids is used to determine an optimal velocity.

4.2. Manipulation and Admittance Control

In the medication adherence scenario, the robot has to perform dexterous manipu-
lation in order to reach for, grasp and release the “pill box”. These manipulation actions
(as described in Section 4.3) necessitate environmental contact that demands compliance
behavior. In addition, this compliance behavior is required for the safety of the surround-
ings and the human. In more detail, grasping a “pill box” from a table or shelf requires
the robot to be compliant in case the robot hand/finger collides with the table surface
which potentially causes a damaging level of interaction force. The compliant control of the
RAMCIP robot is achieved by means of an admittance controller with a 6 DoF force-torque
sensor at the wrist which generates the behavior of a spring-mass-damper system with the
following dynamics:

Md ẍ + Dd ẋ + FK(x, xd) = Fext − Fd (2)

with the desired virtual mass Md, damping Dd, stiffness function FK(x, xd), and external
force Fext. The set-point of the controller is given by the desired pose, xd, and the desired
force, Fd. To bound an excessive interaction force given by a large deviation from the
desired pose, the spring component is saturated with a maximum force Fmax.

FK(x, xd) =


Fmax Kd(x− xd) > Fmax
−Fmax Kd(x− xd) < −Fmax

Kd(x− xd) otherwise
(3)
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The RAMCIP robot has a redundant manipulator consisting of an elevation mecha-
nism, a turntable link and a 6 DoF arm. The characteristics of the joints are different in
terms of the range (i.e., joint position limits) and type (linear or rotational). Namely, the
RAMCIP manipulator has 8 DoF in total which is redundant for Cartesian space motion.
Therefore, the control problem can be split into two separate components; end-effector
motion and null-space motion. Specifically, mapping of joint velocities q̇ to task velocities ẋ
is unique, while mapping of task velocities to joint velocities is not. The joint velocity can
thus be considered in terms of operational space velocity and null-space velocity by

q̇d = J#
W(q)ẋ + I − (JT J#T

W ) (4)

with J#
W(q) being a pseudo inverse of the Jacobian matrix and the projection matrix to the

null-space N. The pseudo inverse is given by

J#
W(q) = W J(q)T(J(q)W J(q)T)−1 (5)

with W being a symmetric positive definite weighting matrix.
Null-space motion is used as a reactive strategy to fulfill low priority tasks. Initial

trials with the RAMCIP kinematic structure have shown that avoiding joint limits by
pure reactive null-space motion is not sufficient to hold the position constraints while
executing the motion with acceptable performance. In addition to the null-space motion,
the null-space projection can be modified by adapting the weighting matrix. Changing
the weighing matrix does not influence the Cartesian motion of the end-effector but the
linear combination of joint velocities. To implicitly avoid limits, we propose online null-
space projection shaping to adapt the weighting matrix onlline. To avoid joint limits, the
weighting matrix to favor joint motions which point away from the limit more than motions
towards it. The joint limit avoidance weighting matrix is given by

W(q, q̇) = diag(w1(q1, q̇1), ..., wN(qN , q̇N)) (6)

with
wi(qn,i, q̇n,i) =

1

tan
(

q3
i

atan(q̇i)
π + 0.5

) (7)

The weight decreases for joint motion near the limit and towards the limit and increases
for motion away from the limit. By using the online null-space projection approach, joint
limit avoidance is implicitly amplified, and it increases the overall performance of the
RAMCIP system.

4.3. Grasping

In the average domestic environment, the objects are usually placed on planar support
surfaces, which pose an environmental constraint for current state-of-the-art grasp planners.
Grasp planners attempt to plan grasps by avoiding collision with the environment and
often fail to find a solution for flat or small objects ([33]), like the “pill box”. In this work,
we use two grasp strategies, developed within the scope of RAMCIP ([34,35]). These
strategies exploit environmental contact, for grasping the “pill box”: grasping from a table
and grasping from a high shelf. The first strategy is general for flat objects that can be
reached from the top, while the second is typical for flat objects that are placed at a high
surface and the robot can not reach them from the top.

Both proposed strategies consist of three consecutive Grasp State targets GS = [xG q],
where xG ∈ SE(3) iis the pose of the palm’s frame {G} (Figure 8a) w.r.t. the target object
frame {O} (Figure 9) and q ∈ Rn are the joint positions of the hand with n joints: the Initial
Grasp State (IGS) is a hand configuration that does not involve external contacts in general,
the Pregrasp State (PGS) involves finger contact with the environment and/or the object
while in the Final Grasp State (FGS) the object is securely grasped and no longer supported
by the surface. IGS is planned online given the current scene, while PGS and FGS are
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dynamically achieved during execution by the action of the grasp controller. Multiple
desired IGS are generated to provide different possibilities for the grasp in order to be able to
select one which is feasible based on other constraints like obstacles surrounding the target
object or kinematic constraints of the arm. The assumption is that a module exists which
can check if an IGS is feasible with respect to the obstacles and the robot/hand kinematics.
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Figure 8. The IGS finger configuration for the two grasp strategies employing the RAMCIP hand. (a)
the finger configuration for grasping the “pill box” from the table. Frames {G}, {M} and {Ni} are
shown; (b) the finger configuration for grasping the “pill box” from the high shelf.

sn

sl

{O}

bounding box

Figure 9. The bounding box of the “pill box”, the normal vector ŝn of the supporting surface, and the
ŝl vector perpendicular to the edge of the supporting surface that is closest to the object.

The strategies require as input the pose and the bounding box of the “pill box”, which
are extracted by retrieving its model from the hierarchical semantic map object detection
and identification. With respect to the support surface, the strategies require the surface
normal ŝn and the surface closest to the object edge which is defined as the vector ŝl ,
a vector perpendicular to this edge as shown in Figure 9. Furthermore, the strategies
require compliant fingers and arms, a requirement fulfilled by the RAMCIP robot, which
has inherently compliant fingers while the compliance of the arm is realised actively, as
described in the previous section.

4.3.1. Grasping the “Pill Box” from a Table

The concept of this strategy is shown in Figure 10. After the end-effector has reached
the selected IGS, it approaches the support surface (table) along ŝn under force control in
order to land compliantly and ensure the proper relative orientation of the hand with the
table, achieving the PGS. Subsequently, the fingers close while maintaining contact with
the surface until they establish contact with the object and exert a predefined or learned
grasping force, reaching the FGS by lifting the object. By involving direct contact with
the table, robustness to estimation errors regarding both the object pose and the support
surface normal is achieved.
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IGS

PGS

FGS

Figure 10. The concept of the grasp strategy for grasping the “pill box” from a table.

The set of the produced IGSs place the palm frame {G} w.r.t. {O} with position
pOG = λŝO,n and orientation ROG = [−û× ŝO,n û − ŝO,n], where λ ∈ R is a small
constant representing the distance of the palm from the support surface, ŝO,n the surface
normal w.r.t. {O} and û is the normal vectors of the bounding box’s faces, which are not
parallel to the support surface. The configuration q of the fingers is the same for all IGSs
and is produced using physical human interactive guidance, shown in Figure 8a.

In order to reach PGS, we command the arm with a wrench Fcmd
G , which is the sum

of two components: one force opposite to the surface normal, which results in an arm
motion downward for establishing contact, and one external wrench induced by the contact
forces applied by the fingertips to the environment, required for the proper translation
and rotation of the hand, so that a full contact with the three fingers is established. The
contact forces are measured by using the Optoforce sensors with which the RAMCIP hand
is equipped at its fingertips. In the equilibrium, the two wrenches are equal and the motion
stops. The PGS is reached when the velocity of the hand is zero, which means that the
fingers have successfully landed on the surface. In particular, consider the frame {M}
placed on the centroid of the fingers, pM = 1

n ∑j=1, ... ,n pNj , with the same orientation as
{G}, and {Nj} the frame placed on the j-th fingertip (Figure 8a). The total commanded
wrench, applied and expressed in {G}, is the following:

Fcmd
G =[−aŝG,n 0]T+

K ∑
i=1, ... ,n

[
I3

p̂MNj

]
(RMNj fNj · ŝM,n)ŝM,n

where a the magnitude of Fd of Equation (2), ŝG,n and ŝM,n the ŝn expressed in {G} and {M},
respectively, K a diagonal matrix of gains, I3 the identity matrix, p̂MNj

the skew-symmetric

matrix of the pMNj
and fNj ∈ R3 is the external contact force measured on the fingertip j.

After landing, the fingers start closing, using the joint position controllers, in order
to reach FGS. While the fingers close, they exert forces on the wrist of the arm. Due to its
compliance, the arm is moving upwards while the fingers are maintaining contact with the
support surface.

4.3.2. Grasping the “Pill Box” from a High Shelf

The concept of this strategy is shown in Figure 11. Due to the size of the “pill box”,
this strategy uses two of the three fingers of the RAMCIP hand, as shown by the IGS finger
configuration in Figure 8b. After the hand reaches the IGS, it lands on the object with one
finger, which we call the dominant finger (Figure 11), reaching PGS. Then, the opposable
finger, which we call the residual finger, closes until an external force, measured by the
residual’s Optoforce sensor, is encountered by establishing contact on the opposite side
of the shelf or on the cupboard door, if any. Then, the arm starts moving away from the
surface along the direction of ŝl , invoking the object’s sliding on the surface. The predefined
perpendicular force exerted on the object by the dominant finger should be such that it
ensures adequate friction between fingertip and the “pill box”, sustaining the tangential
forces which drive the sliding. Finally, when the surface constraint vanishes for the residual
finger, a fast finger closing establishes an opposable grasp with the “pill box”.
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residual

dominant IGS PGS

Figure 11. The concept of the grasp strategy for grasping the “pill box” from a high shelf.

The IGSs of this strategy are calculated as a desired pose of the dominant fingertip:

pN = pO + εŝn, if |pGN | > d (8)

where ε ∈ R is an offset and d is the distance of the object from the closest surface edge.
The above implies that the algorithm will produce IGSs only if the distance of the fingertip
from the palm is larger than the distance of the “pill box” from the shelf’s edge. In the
opposite case, the object is not reachable and the palm will collide with the edge of the
surface; a case which is not considered by the strategy.

The orientation of the {G} frame is calculated by the desired orientation of the domi-
nant fingertip RN :

RN = [ŝl × ŝn − ŝl − ŝn] (9)

This rotation matrix is rotated along the x-axis by multiple θ ∈ [−π
2 , π

2 ] rad, ensuring
the generation of multiple IGSs for selection.

In this strategy„ the PGS is reached using the same algorithm as in the previous strat-
egy, applied only to the dominant finger; consequently, the wrench component produced
by the contact of the fingertip with the “pill box” is zero as {M} ≡ {N}.

For reaching the FGS, the arm moves in Cartesian space along the direction of the ŝl ,
while the residual proximal joint velocity is operated by the control law q̇r = K( fre f − | fNr |),
where q̇r is the joint velocity, K is a diagonal positive gain matrix, fre f ∈ R is the desired
grasping force and | fNr | is the norm of the force measured on the tip of this finger. This
simple controller commands a velocity proportional to the error of the measured force
norm, which means that the finger will close until establishing contact with the surface and
eventually with the object with force magnitude fre f , achieving an opposable grasp with
the dominant finger. Notice that q̇r is high enough in order to have a fast finger motion for
snapping the residual finger on the object during the withdrawal of the arm from the shelf.

4.3.3. Slippage Detection and Reaction

During the grasped object lifting, removal from the supported surface and transfer, a
slippage detection method developed within the RAMCIP project has been utilized [36].
The developed reaction strategy relied on the gradual increase of the grasping force upon
the detection of slippage. In the exploited method, a novel feature vector has been intro-
duced for slippage detection, combining time and frequency domain content of measured
force magnitude. The proposed scheme exploited the availability of the contact force
magnitude on the RAMCIP hand fingertips, which implies the possibility to acquire 3D
force measurements. Time domain features combined with frequency ones have been
trained for only one surface and proved generalization ability for both translational and
rotational slippage.

5. Robot Decision-Making and Task Planning

The orchestration and realization of the above described skills for the completion of
the medication serving and monitoring mission is performed in a hierarchical manner. On
top of this hierarchy, a partially observable Markov decision process (POMDP) system
has been implemented to decide regarding the optimal next robot action, based on the
current state of the robot–human–environment ecosystem, and in the lower level, a task
planner interprets this decision and transforms it into real robotic actions by initializing the
respective skills through the Robot Operating System (ROS).
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5.1. POMDP Decision-Making

For the problem formulation, we relied on the generic POMDP design theory [37],
however, tailored to the explicit medication assistive scenario, where the problem domain
comprises the environment, the human and the robot. Towards this direction, the discrete
POMDP is designed as a tuple P = {S, A, Ω, R, T, b0}, where S = {s1, s2, ..., sn} denotes the
States space that determines the condition of the environment, the human and the robot
at each time t. A = {a1, a2, ..., an} denotes the Actions space that encloses all the actions
that the robot is able to perform so as to interact with the human and the environment.
Ω = {ω1, ω2, ..., ωn} denotes the Observations space that comprises the robot perception
input from the human and the environment, yet under the assumption that an observation
ω partially describes the state of the previous entities. R = (A, S) comprises a Reward
function that determines the restrictions imposed by penalizing or endorsing specific
robotic actions (A) during the interaction with the human and the environment (S).

The solution of the POMDP model after its definition is produced using the existing
solvers [38]. The outcome is an action selection policy π that maximizes the sum of the
expected future reward up to a specific time. This policy comprises a mapping from the
current state belief probability to the action space A. Given the computed policy, the robot can
select an optimal action by computing its belief state based on the following update rule:

b′(s′) =
O(s′, a, ω)∑s∈S T(s, a, s′)b(s)

P(ω|a, b)
(10)

where b′ is the updated belief, b is the given belief at the previous time step and (a, ω) is
the latest combination of robot action and observation.

It is apparent that the computation of optimal policies is characterized by an exponen-
tial computational growth. A single step of value iteration to compute the next selected
action is on the order of |Ct| = O(|A||Ct−1||Ω|), where |Ct−1| corresponds to the number
of components required to represent the next selected action at iteration t− 1, while the
computational burden is estimated by taking into consideration the number of iterations in
each step for the O(|S|2 A||Ct−1||Ω|).

In robot assistance during medication adherence, the number of states and actions
grows drastically by considering an abundance of environment, human and robot states,
and many robotic actions that need to be determined. Thus, an abstraction of the state and
action space given the awareness of the robot for the user has been applied, following our
previous work [39]. Specifically, since the state space is partially observable, it can only
be conceptually grouped by defining scalable blocks of states that correspond to distinct
levels of robot alert (LoRA), S = {SH , SM, SL}. Herein, the state space is conceptually
partitioned in three levels of robot alerts, namely High, Medium and Low. The states that
may belong to the SH correspond to phases in the assistive task for which the human
requires drastic assistance from the robot. The SM defines the group of states within the
task, in which the robot has already been engaged in an assistive task and the levels of
awareness about the human have been moderated. Finally, the SL outlines these states
where the assistive scenario has been resolved, the required intervention is diminished and
the robot is complacent about the status of the human.

The conceptual partitioning of the state space indirectly defines groups of robotic
actions, the context of which is related to the type of robot intervention required for the
scenario propagation, given the current robot awareness about the human. Thus, the action
space is respectively partitioned as A = {AAct, ACom, APerc}, where AAct corresponds
to a highly interventional set of robotic actions necessitated when the environment and
the human is at the SH ; the ACom reflects a more discreet robotic set of actions when the
status of the domain is assessed to be at SM and the APerc consists of rather passive robotic
actions, in essence applied when the LoRA about the human is diminished, i.e., SL. The
designed POMDP model aims to propagate the system to the SL set of states by selecting
the corresponding set of actions, a feature regulated herein by carefully assigning the
values at the reward function, thus endorsing the system, respectively. A positive reward
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value is passed to the model when the selected action transits the system from a higher to
lower LoRA state, while a negative reward value is passed to the model when the selected
action tends to bring the system to a higher LoRA. A uniform distribution is applied in the
rewards function when the system passes from medium to medium LoRA states. Through
this methodology, the POMDP model is designed in a human-centric manner, where the
partial observable set of states corresponds to the status of the human and the environment,
while the set of actions are solely robotic related, thus resulting in a prompting system
aiming to draw decisions about the robot intervention in order to reduce the awareness of
the robot about the human and thus resolve the assisting scenario. To better outline the
nominal states required for the medication adherence scenario denouement with robotic
assistance, we selected to present the policy π subset that can lead the robot from high
to low LoRA as an explicit finite-state controller [40]. Such a policy graph is graphically
illustrated in Figure 12, which explicitly represents “do action then continue with the
given policy”. In this graph, the nodes correspond to vectors in value function and are
associated with actions A and the edges correspond to transitions based on observations Ω.
In Figure 12, the initial state S{L− 1} is the one outlined with a green double circle in the
finite-state controller. The state S{L− 1} became the current one after the system obtained
the observation Ω{Monitor_ω2} stemming from action A{Monitor}. The latter indicates
that, while the robot performed the Monitor action, the scenario about the medication was
triggered based on the human’s medication schedule and the observation Ω{Monitor_ω2}
passed to the policy graph leading the system eventually to state S{L− 1}. The rest of
the semantics for the actions and the expected observations are analytically appended in
Table 1, which interprets the entire finite-state controller required for the denouement of
the medication adherence scenario.
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Figure 12. The POMDP policy graph of the robot decision maker as a finite-state controller. The graph
comprises a subset of all the identified states that can be aroused during the medication assistance
scenario; however, it exhibits the majority of the Actions A which correspond to the manipulation
and perception skills described in the previous sections. The states grouped with the same colour
indicate that they belong to the same LoRA convention during the definition of the POMDP.
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Table 1. The table interprets the states, actions and observations outlined in Figure 12.

State S{Hi, Mi, Li} Robot Action (Ai) Observation (Ωi)

S{L-1} A{Perc1}: Robot looks for
the user

Ω{Perc1_ω1}: Robot successfully detected the
user
Ω{Perc1_ω2}: Robot failed to detect the user

S{H-1} A{Act1}: Robot navigates
close to the user

Ω{Act1_ω1}: Robot successfully navigated
towards the user
Ω{Act1_ω2}: Robot failed to navigate
successfully

S{M-1}
A{Com1}: Robot reminds
the user about the
medication

Ω{Com1_ω1}: Users has already taken the
medication
Ω{Com1_ω2}: Users has not taken the
medication

S{H-2} A{Act2}: Robot navigates to
the shelf

Ω{Act2_ω1}: Robot navigated and parked
successfully wrt the shelf
Ω{Act2_ω1}: Robot failed to navigate and park
wrt the shelf

S{L-2} A{Perc2}: Robot detects the
pill box

Ω{Perc2_ω1}: Robot detected the pill box and
inferred a grasp pose
Ω{Perc2_ω2}: Robot failed to detect the pill box
or has not found a graspable pose

S{H-3} A{Act3}: Robot grasps the
pill box

Ω{Act3_ω1}: Robot grasped the pill box
successfully
Ω{Act3_ω1}: Robot failed to grasp the pill box
successfully

S{H-4} A{Act4}: Robot navigates
towards the table

Ω{Act4_ω1}: Robot navigated towards the table
successfully
Ω{Act4_ω2}: Robot failed to navigate towards
the table successfully

S{H-5} A{Act5}: Robot releases the
pillbox to the table

Ω{Act5_ω1}: Robot released the pill box to the
table correctly
Ω{Act5_ω1}: Robot failed to release the pill box
to the table

S{M-2}
A{Com2}: robot requests
from the user to take the
medication

Ω{Com2_ω1}: The user accepted to take the
medication after robot notification
Ω{Com2_ω2}: User notified that s/he will not
need any further assistance and dismissed the
robot

S{L-3}
A{Perc3}: Robot recognizes
the medication adherence
activity

Ω{Perc3_ω1}: Robot detected medication intake
activity
Ω{Perc3_ω1}: Robot failed to detect the
medication intake activity

S{M-3} A{Dial1}: Robot informs
external through com. Chnl.

Ω{Dial1_ω1}: Robot established communication
with a relative and reported the situation
Ω{Dial1_ω1}: Robot failed to establish external
communication

S{H-6} A{Act6}: Robot grasps the
pill box from the table

Ω{Act6_ω1}: Robot grasped the pill box from the
table successfully
Ω{Act6_ω2}: Robot failed to grasp the pill box
from the table

S{H-7} A{Act7}: Robot releases the
pillbox at the shelf

Ω{Act_7_ω1}: Robot released the pill box to the
shelf successfully
Ω{Act_7_ω1}: Robot failed to release the pill box
to the shelf

S{L-0}

A{Monitor}: Robot
navigates to parking
position and performs
monitoring

Ω{Monitor_ω1}: Robot monitors the user and
nothing triggers the medication intake scenario
Ω{Monitor_ω2}: The medication intake scenario
has been triggered

S{H-0}
A{SysRes}: Task
re-initialized due to internal
error

Ω{SysRes_ω1}: Robot parses the ROS
diagnostics and if possible re-initializes the task
Ω{SysRes_ω2}: Robot parses the ROS
diagnostics and if not possible returns to S{L-0}
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5.2. Task Planner

By carefully observing Figure 12, an insight regarding the flow of robotic actions
required for the scenario is obtained. Specifically, the AAct set involves all the robotic
actions required to fulfil the robot’s engagement to resolve a specific robotic task e.g.,
navigation, manipulation, grasp, release, etc. The ACom set of actions is less invasive
than the AAct set and comprises the bidirectional communication planning required for
the communication with the user supporting modalities such as dialogues, user interface
displays, gestures and even notification with augmented reality. A detailed description of
the communication planner of RAMCIP robot is thoroughly discussed in [41]. It is worth
mentioning that the communication planner has been developed in a handheld device that
comprised the human–machine interaction interface of the robot and the communication
with the task planner performed through ROS bridge messages, thus passing the respective
observations to the decision maker. The APerc set of actions corresponds to the monitoring
components of the robot which trigger functionalities suitable for assessment of the current
status of the human and the environment, such as human detection and tracking, actions
interpretation and objects detection and recognition. It is revealed that this set of actions is
passive, since the robot monitors the human and the environment, while the observations
acquired from these actions are expected to alter the state of the domain.

To this end, the task planner that has been developed is responsible for interacting with
the decision-making component and executing the inferred actions. In more detail, the task
planner continuously “listens” to the inferred actions Ai from the POMDP graph policy and
plans the respective task Ti as a sequence of robotic skills, Skill = {skill1, skill2, ... , skilln}
required for the execution of the selected robotic action. Upon the completion of the
respective task, the task planner passes the observation ωi to the belief propagation policy
in the decision maker and the system propagates to the next state. Particularly, for the
communication between the decision maker and the task planner, depending on the current
state, the POMDP sends action messages to the task planner, and the latter returns the
outcome of the executed task in a form of observations required from the POMDP policy
graph, thus updating, respectively, the belief state in Equation (10) in order to select the
next best action. Each task Ti is organized in a dedicated set of perception and action skills
Skill required for each completion. Each skilli is realized as an ROS action, the initialization
and termination of which is triggered through the standard ROS architecture. Each one of
the ROS functionalities implements a specific robot Skilli (Figure 13). The outcome of each
skill execution is coded and returned as observation ωi to the policy graph of the POMDP.
Typically, low level observation outputs such as object pose detection, human’s pose in
the environment, robot localization etc, are handled internally for each ROS component
and translated into higher level pass/fail observations to propagate the decision-making
policy. Fail safe mechanisms are foreseen within the proposed cognitive architecture where
each ROS node is accompanied with specific diagnostics and state reporting. However, the
hardware components are not accompanied with the respective diagnostics functionalities
and, thus, in case of a failure of a hardware component, the system does not enter from
the monitoring into any other state. This is mainly due to the fact that the RAMCIP robot
constitutes a prototype and in the future releases such issues once the hardware that will
be stabilized will be resolved.
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Figure 13. The POMDP and task planner integration schema. At the top, the causal relationships
between POMDP states, actions, rewards, and observations are illustrated in accordance with [42]
policy graph interpretation. At the bottom, the task planner functionality is illustrated, where each
action is assigned to a specific task, which is further decomposed into ROS functionalities, i.e., action,
service, node, which implements a specific robot Skilli. The outcome of each skill execution is coded
and returned as observation ωi to the policy graph of the POMDP.

6. Experimental Evaluation and Discussion

The framework and the subordinate methods described in this paper for the assistance
provision in the medication adherence scenario have been evaluated with the RAMCIP
robot with 12 real participants diagnosed with MCI. The experiments took place in their
own home environment, all located in Barcelona, Spain (Figure 14). Each participant had
the opportunity to interact with the robot for at least seven days. During these days, the
robot had been tested in several scenarios concerning assistive living; however, the results
mentioned herein are focused on the medication scenario, which is the most important
and complex one that includes all the developed robot skills. The overall findings of the
experimentation are reported below along with discussion regarding the failure situations.

It is worth mentioning that, before the actual interaction, one day had been spent
for the robot’s installation in each participant’s house. The robot installation consisted
of four mandatory steps including the metric map construction, its augmentation to ob-
tain the hierarchical semantic properties, acquisition of the detailed 3D models for all
small objects of interest, and collection of user specific information (e.g., medication sched-
ule, facial features). In addition, during this phase, the user had the opportunity to be
familiarized with the robot through a brief introduction to its functionalities and its com-
munication capabilities.

During the experimentation phase, in each house, it has been ensured that the robot’s
deployment will not be invasive to the the user’s environment. Thus, the furniture topology
has been kept intact apart from minor modifications in the area, so as to facilitate the
robot’s charging station and the parking position for the monitoring. In order to evaluate
the performance of RAMCIP robot in the medication adherence scenario, two different
methods were employed. The first concerned the documentation of each execution utilizing
an external camera, and the second one concerned the development of a logging system
integrated into the decision-making module and the task planner. The latter allowed the
recording of the executed policy graph which tracked the robot’s operation and registered
the incidents that occurred from the ROS diagnostics. In this way, it has been ensured that
both high level data, concerning the robot’s decisions and selected actions (stemming from
the POMDP), as well as low level information including failures from the implemented
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skills, were monitored. The data extracted from this mechanism were compared with the
ground truth (the external camera footage). In order to determine whether the scenario
had been executed successfully, the robot after each repetition had to be able to assess with
certainty if the user had indeed taken the medication or not.

Figure 14. Selected cases of execution of the medication assistance scenario in 12 different real house
environments.The instances concern RAMCIP robot during “pill box” grasping from high shelf (first
row), activity monitoring (second row), “pill box” grasping from table (third row) and “pill box”
release to its storage position (last row).

Overall, in compliance with the time schedule of the participant, the scenario was
initiated proactively. During the seven days of engagement, this scenario was executed
at least once per day, even if the medication schedule of the participant involved more
than one session. In case the scenario was omitted for one day, due to either technical
difficulties or participant’s obligation to other activities, it was recompensed the next day
by performing the scenario more than once. The efficiency is evaluated based on the rate of
overall correct repetitions and outlined in Table 2.

Table 2. Overall evaluation results on the assistance provision in the medication adherence scenario.

No. Participants No. Total
Repetitions

No. Successful
Executions

Overall
Performance (%)

ine 12 84 68 80.95

The medication adherence scenario has been executed in total 84 times, out of which
68 were correctly performed, resulting in an overall accuracy of 80.95%. A repetition was
marked as correct only when the robot had returned to the monitoring state, disengaged
from the scenario and was aware about whether the participant had taken the medication
or not. To extract this outcome, the sub-graph of the states with the adjunct actions, as
inferred from the POMDP, has been compared with the external camera recordings.

The remaining 16 erroneous executions concerned situations in which the robot was
uncertain about whether the user had taken the medication due to errors stemming from
the perception, action and communication skills’ faulty operation, as well as other types of
unexpected situations, all summarized in Table 3. In particular, the erroneous executions
that occurred relied firstly on the localization error where—in four instances—the robot
parked with the wrong orientation. Such types of errors directly influence the transforma-
tion chain, especially when it comes to the detection of objects like the “pill box”, which
requires cm level accuracy. The overall localization error of the RAMCIP robot platform is
±5 cm lateral and 2° rotational, which is considerably low when it is compared with the re-
quirement to position the RGB-D camera so as to bring the “pill-box” centred to the RGB-D
camera FoV. However, there were certain situations in which aggregated localization error
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led to robot parking poses that severally influenced the object detection algorithm and,
thus, the grasping of the “pill box”. The robot was unable to recover from this situations by
utilizing its internal mitigation strategies, and the scenario was terminated.

Table 3. Error justification analysis from the situations where the robot failed to execute the scenario.

Localization Error Action Recogn.
Error Planning Error Communication

Error Other Error

ine 4/16 3/16 4/16 3/16 2/16

Human activity recognition is also a very challenging task in uncontrolled environ-
ments and, as expected, affected the outcome of the evaluation. There were three situations
where the robot did not recognize correctly the outcome of the activity tracking. This
phenomenon has been observed in situations where skeletal occlusions were excessive
or the illumination reflections severally influenced the data from the depth sensor. As a
result, the joints of the participant either were not observable at all, or the existing skeleton
topology was an outlier, hence the skeletal joints did not comply to any geometric criteria
that were posed. In those situations, the robot either accidentally spotted that the user had
taken the medication and terminated the assistive scenario or prompted the user to take
the medication, even if s/he had already done it.

Arm manipulation and grasp planning also comprised significant challenges during
the deployment in the diverse environment of the participants’ houses. In more detail,
four (4) planning errors occurred during the experiments, two of which concerned the
arm trajectory generation and two concerned the grasp planning. Considering the arm
trajectory generation, the problematic situations were spotted in very tight environments
where the workspace was very limited due to surrounding objects/furniture. The outcome
of this effect was that the planning procedure was timed-out since the identification of the
inverse kinematics solution took an excessive amount of time, and the planner abandoned
the procedure. Regarding the grasp planning, there had been two failure incidents which
actually stemmed from the object pose detection algorithm. In particular, albeit the fact
that the object class had been correctly detected, the pose estimation module inferred an
erroneous pose. This as a result caused the inferred grasping poses to be very challenging
and the resulting arm planning solutions to bring the end-effector to particular poses
indicating collisions with the environment. In such situations, the grasp had been aborted
and the scenario had been terminated. In another situation, a weak grasp occurred again
due to erroneous object pose estimation and the “pill box” slipped from the robot’s hand.
In that case, the robot detected the slippage using the Optoforce sensors mounted on the
fingertips; however, the recovery strategy for grasping such flat objects from the floor was
not foreseen in the scenario and, thus, the latter was terminated.

Another source of failures during the evaluation of the medication adherence scenario
involved communication issues. Specifically, the communication between the participant
and the robot failed three times leading to the conclusion of the medication adherence
scenario, while leaving the robot with the clue that the participant had taken the medi-
cation. Albeit the fact that communication system was equipped with noise cancellation
mechanisms, due to excessive surrounding noise, the robot interpreted erroneously the
user’s response and closed the interaction scenario precociously.

Apart from the above-mentioned situations, there were two more occasions where the
robot failed to complete the assistive scenario. Both of them were related to the erroneous
observations passed to POMDP, mainly due to the fact that unexpected human responses
occurred during the interaction scenario, e.g., the participant interacted with the medication
intake scenario and initiated a different task due to its pathological condition and did
not return to the medication session. Such conditions completely confused the activity
recognition module, and the operation flow propagated erroneously. Specifically, the
passed observations from the task planner to the POMDP drove the system to a complete
irrelevant state that was not expected at the current interaction section. However, such
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situations were very limited and stemmed from the fact that the complete modeling of a
human–environment and robot ecosystem is not possible in such challenging operation
scenarios in uncontrolled environments, thus leaving some ambiguous corner cases that
the decision-making mechanism is not able to resolve.

Finally, it should be stated that the entire experimental procedure has been approved
by the ethics committee of the RAMCIP project. In the context of these experimental trials,
the requested information regarding the consent forms has been collected from the ethics
committee representatives and the involved doctors in the project, who among other things
informed the participants that the collected data will be treated in an anonymized manner.
Moreover, the completed consent forms have been signed by all the participants.

7. Conclusions

Summarizing the paper at hand significantly contributes to the current state-of-the-art
solutions for the existing personal assistive robots. It focuses on the verified use case of
assistance provision in medication adherence activities and, contrary to the existing works
(e.g., other personal robots) that address the issue of medication adherence partially, the
proposed framework outlined a complete pipeline of software operating on hardware
that addresses the problem of assistance provision in medication adherence activities fully.
More specifically, in this work, a complete pipeline for the robot assistance in medication
adherence scenario has been presented. The paper at hand exhibited a framework where a
robot will be able to provide assistive living services, focusing on the medication serving
and monitoring. Contrary to the existing works, the proposed one delivers a holistic
solution, where the robot is not solely involved as a fetching machine yet is endorsed with
capabilities that enable it to respond with certain accuracy to the question: “Has the user
received the medication?”. To achieve this, custom solutions tailored to the specific problem
have been adopted (where possible) and developed and integrated under a prompting
decision-making mechanism which is realized with a task planner that coordinates the
developed set of skills. The user requirements have been closely studied, the hardware
architecture has been documented and the developed software skills have been presented.
The integrated system has been evaluated with 12 real participants with MCI in their own
house environment. The overall system presented herein achieved more than 80% accuracy,
indicating that the robotic system can be sufficiently used for the assistance provision in
real medication adherence scenarios.

Finally, it is important to state herein that the ultimate goal of this paper was to provide
solutions in a series of perception, cognition and action (i.e., navigation, manipulation,
grasping) problems that will enable, in the near future, assistive robots’ deployment in
real home environments. However, important research should be conducted towards
the certification of such robots in order to ensure that they will comply to any standards
required for the safe human–robot coexistence and interaction.
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