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Abstract: A smoothing localization method for Global Navigation Satellite System (GNSS) and visual
Simultaneous Localization and Mapping (SLAM) system is proposed to identify GNSS spoofing,
optimize the cumulative error of the GNSS/visual SLAM system, and obtain smoothing localization
results. The proposed method analyzes the joint error distribution of the GNSS/visual SLAM
system, uses the visual frame to invert the relative error offset of the GNSS from the dimensions
of time and localization, performs error analysis and mutual verification based on the verification
threshold. According to the mutual verification results, the GNSS spoofing is identified, and the
corresponding back-end optimization strategy is selected to obtain a smoothing localization result.
Through simulation, the time verification threshold and localization verification threshold of the
proposed method are obtained under the condition that the sensors frequency and accuracy are set.
The KITTI datasets in rural and urban scenes are used for verification. The simulation results show
that our method can identify GNSS spoofing and provide credible and smoothing localization results
in the case of GNSS spoofing occurs.

Keywords: spoofing identification; SLAM; GNSS; localization

1. Introduction

Localization is the most basic and important part for mobile terminals in autonomous
driving, robots, and Internet of Vehicles. Currently, navigation and positioning systems
based on GNSS are the most widely used. GNSS is the only method that can provide global
absolute position coordinates. However, its signals are publicly available, which makes its
localization easy to be spoofed. In recent years, with the improvement of mobile terminal
computing performance, the use of camera sensors to obtain visual SLAM data has been
widely used [1]. The visual mileage information provided by SLAM can simultaneously
match the observed environmental features with the feature map to obtain pose and
autonomous localization [2]. However, the visual SLAM method can only provide the
relative pose of the mobile terminal, and cannot provide the global localization coordinates,
such as VINS-Mono [3], ORB-SLAM1-3 [4–6].

In outdoor scenes, GNSS is still indispensable. In general, visual SLAM sensors
use GNSS to provide localization for initialization and global pose calibration, such as
VINS-Fusion [7] and GVINS [8]. The fusion of visual SLAM system and GNSS system
can make up for the limitations of SLAM relative localization, so that the mobile terminal
can obtain global localization information, realize positioning globalization and higher-
precision localization results. Although system fusion improves positioning accuracy, it
also brings new problems. GNSS signals are public and vulnerable to spoofing attacks.
Once a GNSS spoofing attack occurs, the result of system fusion positioning will become
unreliable, reducing the security of the mobile terminal during the movement [9].
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A general optimization framework that supports multi-sensor mileage estimation
such as GPS and VINS is proposed in reference [7], and the performance of the system is
verified in public data sets and through multi-sensor actual experiments. However, this
reference focuses on the optimization of the framework algorithm without considering the
possible impact of GNSS spoofing. GVINS can make up for the lack of GNSS by obtaining
tightly coupled results through camera, IMU and GNSS [8]. In order to suppress unstable
satellite signals, only satellites that have been locked for a period of time are allowed to
enter the system for optimization, but this method also does not consider the possible
occurrence of GNSS spoofing. If malicious GNSS spoofing attack occurs, deviation errors
will be injected into the localization calculation process, causing the GNSS localization
result to deviate from the correct position [10]. For the mobile terminal, the deviation errors
of the localization result will cause it to move to a pre-set location by the fraudster, and
thus be kidnapped [11,12].

Some researchers have done research on the problem of unreliable GNSS data caused
by GNSS spoofing. Reference [13] proposes a RIO method to judge whether the positioning
solution meets the distance constraint based on the information of the GNSS/IMU/ODOM
system to counter GNSS spoofing attack. Reference [14] reconstructed the distribution
of spoofing signals in the signal domain, and proposed a MEMS-INS/GNSS tightly cou-
pled spoofing identification method based on spoofing contour estimation to identify and
eliminate GNSS spoofing attacks. Reference [15] proposed a credible Kalman filter algo-
rithm model to identify GNSS attacks through auxiliary sensor systems to obtain credible
navigation results. These methods used traditional navigation sensors (GNSS, inertial
measurement unit, and odometer) without considering the possibility of visual SLAM
system in GNSS spoofing identification.

In order to better identify the GNSS spoofing using visual SLAM system and improve
the localization accuracy of the system, we combine the data of GNSS with the visual
SLAM system to identify GNSS spoofing attacks and obtain global smoothing localization
results. This method uses the time stamp and relative pose information obtained by the
visual SLAM system to perform error inversion on the GNSS data, and conduct mutual
verification between the GNSS and the visual SLAM system. In this way, GNSS spoofing
can be identified, the cumulative error of vision SLAM system can be optimized, and the
smoothing localization result can be obtained to resist the possible risk of GNSS spoofing.
Finally, the method is verified in different scenes of the KITTI dataset. The simulation
results show that our method can eliminate GNSS spoofing and provide relatively reliable
and smoothing localization results for mobile terminals.

2. System Model
2.1. Model Description

The GNSS spoofing identification and smoothing localization model is divided into
front-end and back-end. The front-end refers to the acquisition of data from each sensor
and modeling, and the back-end refers to the processing of the data from each sensor. At
the front-end of the system, the measurement inputs of GNSS and visual SLAM system
are processed separately. First, model the acquired GNSS measurement data, perform
pseudorange calculation and coordinate conversion, and initialize the absolute coordinate
of the system. Then, model the acquired visual SLAM measurement data and perform
pose calculation and optimizing. At the back-end of the system, use the time and pose
information of visual SLAM system to invert the relative time error and localization offset
of GNSS data, and perform time and localization verification on GNSS measurement data
to analyze whether GNSS spoofing has occurred. The GNSS data frames that if time-
localization verification passes, it will be input into the back-end optimization process to
optimize the cumulative error of the visual SLAM, and the GNSS data frames that have
not passed the time-localization verification will be discarded. Finally, two strategies of the
GNSS/Visual SLAM back-end smoothing localization method are selected according to the
results of the time and localization verification to perform smoothing localization results.
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The following of this section is the modeling and error analysis of the measurement
data of the GNSS and visual SLAM system. In Section 3, the time-localization mutual
verification, localization verification threshold and smoothing localization method are
analyzed. In Sections 4–6, parameter analysis and experiment simulation are carried out.
The GNSS spoofing identification and smoothing localization model is shown in Figure 1.
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2.2. GNSS Coordinate Calculation and Conversion

The coordinate calculation of GNSS receiver is based on the information of four or
more satellites received by the GNSS receiver. There are two steps. First, calculate the
pseudorange of the GNSS receiver based on the received information, and then calculate
the localization coordinates of the GNSS receiver based on the pseudorange.

The pseudorange is calculated based on the distance between the satellite and the
GNSS receiver, taking into account the errors of ionosphere and troposphere. Assuming that
the receiver localization coordinate is xG

A = (xA, yA, zA), the satellite coordinate obtained
by the receiver through the analysis of the received satellite signals is xS

n = (xS
n, yS

n, zS
n),

where n represents the satellite number, ρn represents the pseudorange correction value of
the nth satellite, tuA represents the clock error between the receiver and the satellite under
the coordinates xG

A = (xA, yA, zA). In addition to the clock error δt(u) generated by the
propagation geometric distance, the clock error tuA also includes the satellite clock error
δt(r), ionospheric delay δt(I), and tropospheric delay δt(T), thus

tuA = δt(u) − δt(r) + δt(I) + δt(T) (1)

In addition, the receiver will generate measurement noise ερ(t) during the measure-
ment process. Then, the pseudorange ρi solved by the GNSS receiver is

ρi =

√
(xA − xS

i )
2
+ (yA − yS

i )
2
+ (zA − zS

i )
2
+ ctuA + ερ(t) (2)

where c is the velocity of light.
The satellite clock error, ionospheric delay and tropospheric delay can all be calculated,

which can be regarded as known quantities. The measurement noise generated by the
receiver is related to the performance of the receiver itself.

Generally, the possibility that the GNSS localization result exceeds the range
(µ− 3σ, µ + 3σ) is only 0.27% according to the Pauta criterion (3σ criterion). Thus, an
error of ±3σ can be used as the limit error of the GNSS localization result.

According to the pseudorange positioning equation [16], the localization coordinate
xG

A and clock error tuA of the receiver can be obtained, which is the localization coordinates
of the receiver in the Earth Centered Inertial Coordinate System (ECI). Then, after the
receiver’s position calculation, the ECI coordinate xG

A is converted to the Longitude Latitude
Altitude coordinate system (LLA) to obtain the receiver’s current longitude, latitude and
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altitude xL
A = (lo, la, h), which is the absolute localization of the mobile terminal in the

world coordinate system.
The results of the GNSS position calculation will provide the absolute position in-

formation of the mobile terminal in the initialization of the system, and perform mutual
verification and smoothing localization with the visual SLAM system in the back-end of
the system.

2.3. Visual SLAM System Modeling and Error Analysis

The sensor used in our visual SLAM system is a binocular vision mileage camera.
Its localization principle is to estimate the rotation and translation matrix of the camera
through the matching relationship between the feature points observed in two adjacent
pictures, and to calculate the relative motion path of the camera. For visual SLAM, the
relative motion path of the camera is estimated based on the information of two adjacent
frames, and there is also an estimation error εv(t) at time t. With continuous calculations,
these errors will gradually accumulate in the positioning results through calculations. If the
positioning result is not corrected in time, the positioning error will continue to accumulate
and increase, making the posture estimation deviation larger and larger. Therefore, we
need to optimize to reduce the accumulation of errors. However, if all the observed frames
are optimized to reduce the accumulation of errors, the amount of data will continue to
increase. The computational burden to solve the optimization problem will also increase
rapidly as the amount of data increases. Therefore, we set a visual processing sliding
window (the size of the window is set to m) to store, optimize, and update the key frames
constantly to reduce the computational burden of the system, reduce estimation errors, and
improve positioning accuracy.

The visual frame optimization algorithm is as follows. First of all, after obtaining
the original information of the left-eye and right-eye image of the binocular camera in
current frame, the current left-eye image is tracked with the left-eye image of the previous
frame using the pyramid LK optical flow method [17] based on corner point features. The
matched points between the two frames are retained as feature points, and the points
with large differences are eliminated. Then, the feature point set is obtained, defined as
Pl = {p1, p2, . . . , pn}. For the right-eye image of the current frame, match it with the left-eye
image of the current frame and extract feature points using the same method as above.

Next, determine whether the current frame is a key frame according to the obtained
feature point information and update the key frame in the visual processing sliding window.
Calculate the number of common-view feature points between the left eye frame and the
last key frame fk in the visual processing sliding window. If the number of common-view
feature points is less than the feature point threshold Hp, delete the first frame f1 in the
visual processing sliding window, add the current left eye image to the visual processing
sliding window as a key frame and sequentially update the key frames in the window
(for example, frame f2 is updated to be frame f1, and frame fk−1 is updated to be fk−2).
Conversely, if the number of common-view feature points is greater than the feature point
threshold Hp, delete the last key frame fk and add the current left-eye image to the visual
processing sliding window as a key frame to replace the last frame fk. Similarly, calculate
the number of common-view feature points between the right-eye frame and the last key
frame fk in the window, and update the key frame in the visual processing sliding window.

Then, optimize the feature information of the key frames in the visual processing
sliding window and the rotation and translation matrix between frames to update the pose
of the camera. The camera pose update is divided into two stages: the initialization stage
and the stable updating stage.

In the camera initialization stage, the world 3D coordinates of the feature points
observed by the camera are unknown. Assuming that the set of common-view feature
points of Pl and Pr is α = {α1, · · · , αi, · · · , αt}, α ∈ Pl , the normalized camera coordi-

nates of the feature points in the left and right images are
¯
x

α

l = (
¯
x

α1

l ,
¯
x

α2

l , . . . ,
¯
x

αn

l ) and
¯
x

α

r = (
¯
x

α1

r ,
¯
x

α2

r , . . . ,
¯
x

αn

r ). Then, according to the epipolar constraint [18], the eight-point
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method [19] and the SVD decomposition method [20], the homogeneous coordinates xα1

of feature point α1 in the world 3D coordinate, the depth values dα1
l and dα1

r of the feature
point α1 in the left and right images and the relative pose (Rl,r, tl,r) of the two frames
at this time can be obtained. Similarly, all the world 3D coordinates of feature points
xα = (xα1 , xα2 , . . . , xαn) can be estimated.

In the stable updating stage, we first use the world 3D coordinates of the common
view feature points, the normalized coordinates in the camera frame and depth in the
current frame fk, to calculate the rotation and translation matrix (Rk, tk). Then, we use
the obtained rotation and translation matrix to estimate the world 3D coordinates of the
non-common view feature points. We can get the world 3D coordinates xPk of all feature
points in the current frame fk, and the rotation and translation matrix (Rk, tk) of the camera
in the current frame.

In order to reduce the accumulated mileage error caused by the estimation above, we
optimize the depth of the common view feature points of the key frame and the camera
pose in the visual processing sliding window. The state vector ηV to be optimized includes
the poses of m cameras and the depths of n feature points in the visual processing sliding
window, as shown in the following formula:

ηV = [T0, T1, · · · , Tm, d0, d1, · · · , dn] (3)

where T is the camera homogeneous transformation matrix containing the rotation and
translation matrix information, and d is the depth of the feature point observed in the first
frame. Then, the visual reprojection error of the feature points from frame ft to frame fk is

f (x̂βi
k , ηV) = x̂βi

k −
[
Tbk

w (Tw
bt

dβi
x̂βi

t )
]

(4)

where x̂βi
k is the normalized camera coordinate of feature point βi in the frame fk, x̂βi

t is the
normalized camera coordinate of the feature point βi observed by the camera for the first
time, Tw

bt
is the homogeneous transformation matrix from frame ft to the world coordinate

system and Tbk
w is the homogeneous transformation matrix from the world coordinate

system to frame fk. The objective function for optimizing the depth of feature points in the
visual processing sliding window and the rotation and translation matrix (Rk, tk) of the
camera is

minζV
i = min

n

∑
i=1,

m

∑
k=1

(‖ f (x̂βi
k , η)‖

2
) (5)

Through the Ceres solver [21], a stable solution and the optimized (Rk, tk) of the
camera in each frame can be obtained. In the back-end of the system, we can use the
optimized (Rk, tk) of the camera to perform mutual verification with the results of the
GNSS position calculation. Let the ENU coordinate vector of the visual SLAM system at
time i be defined as χV

i . Then, the formula for calculating the motion position of visual
SLAM from time i−1 to time i is

χV
i = Riχ

V
i−1 + ti (6)

3. Time-Localization Verification and Smoothing Localization Method

In the back-end of the system, the time verification and localization verification of
GNSS/Visual SLAM are first performed respectively to identify GNSS spoofing. Then,
the smoothing localization method is performed to optimize the cumulative error of the
localization results.

3.1. Time Verification

Time verification is primarily used to identify whether the GNSS data frames and
visual SLAM data frames are synchronized in time. For the original data of the vision
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system and the GNSS system, there is a certain time deviation between the two data
streams, so, time synchronization is required. The ideal method for clock synchronization
between different systems is hardware trigger synchronization, but this method requires
a high degree of hardware integration, which is difficult to achieve. Therefore, the more
common method in engineering is soft synchronization. That is, when data is obtained
by the terminal, the system software time stamp is added to the data frame, and time
synchronization is performed according to the software time stamp.

In addition, when sensor trigger delay, transmission delay or GNSS spoofing occurs,
it may cause a small time misalignment between GNSS and visual SLAM system. So, in
time verification process, it is first required to obtain the frame rate of GNSS and visual
SLAM data acquisition, and use the sensor with the high frame rate as the reference sensor
to perform time verification on the other sensor. In general, although the GNSS system
can provide absolute position, its update rate is low, while the visual update rate is high.
That is, between two GNSS data frames, there will be many visual frames generated. If the
GNSS frame is used as the reference, only the visual frame synchronized with the GNSS
will be retained, and other visual data frames will be discarded. In order to be able to retain
more frames, we choose the faster sensor (Visual SLAM) as the reference source.

The time deviation δti between GNSS and visual SLAM system at time i is

δti = tV
i − tG

j (7)

where tV
i is the timestamp of the visual SLAM system and tG

j is the timestamp of the
GNSS system.

Let δT be the time verification threshold of visual SLAM and GNSS data frames (which
need to be adjusted according to the actual frame rate of the sensors, for example, 0.01s). In
the time verification process, the visual SLAM data frame is set as the main frame, and the
GNSS data frame in the buffer is verified according to Equation (15). If |δti| ≤ δT, the time
deviation between GNSS and visual SLAM system is within the time verification threshold
δT, and the time verification is judged to be normal, and the time domain verification flag
is set to CT

i = 0; if |δti| > δT, the time deviation between GNSS and visual SLAM system
exceeds the threshold range, it is judged that the time domain verification is abnormal, and
the time domain verification flag is set to CT

i = 1, that is

CT
i =

{
0 δti − δT ≤ 0
1 δti − δT > 0

(8)

Localization verification will be processed only after the GNSS frames and the visual
SLAM frame are synchronized. If δT is too large, there are many GNSS frames that meet
the threshold, and GNSS data frames that are misaligned with the visual SLAM data
frames may be input into the back-end processing, resulting in large spatial errors between
the GNSS and visual SLAM data frames, and if δT is too small, there are fewer GNSS
frames that meet the threshold requirement, which will cause normal GNSS data frames
to be discarded, and the system will increase the accumulated error due to the lack of
GNSS frame calibration. Therefore, the selection of the time verification threshold is very
important, and we will conduct simulation analysis in Section 4. The time verification is
shown in Figure 2.

After time verification, the GNSS data frame and the visual SLAM data frame are
synchronized in time. Next, the visual SLAM data frame and the verified GNSS data frame
are input into the localization verification process.
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3.2. Localization Verification

In the localization verification process, we need to unify the localization information
output by GNSS and visual SLAM system under the same coordinate system. Through
the analysis of the visual SLAM frame, the GNSS localization result is inverted to identify
whether the GNSS is spoofed.

For the GNSS system, the latitude and longitude coordinates xL = (lo, la, h) obtained
from the GNSS system are first converted to the Earth-centered and Earth-Fixed Coordinate
System (ECEF), and then converted to the local Cartesian coordinates coordinate system
(ENU) to get χG = (x, y, z) to realize the unification of the global coordinate system and the
local coordinate system [15]. χG is the ENU coordinate vector calculated by GNSS system.
The origin of the ENU coordinate system is the initial point in the ECEF coordinate system,
which is also the initial position of the visual SLAM system.

For the visual SLAM system, we set the left-eye camera as the origin of the camera
coordinate system. According to Section 2.3, the ENU coordinate vector of the visual SLAM
system at time i is defined as χV

i . However, the visual SLAM system is usually not in the
same plane with GNSS system, which requires a 4-degree-of-freedom (4DoF) rotation and
translation to achieve spatial unification with GNSS. The coordinate conversion relationship
between the visual SLAM system and the GNSS system is

χG = RGVχV + tGV (9)

where (RGV, tGV) is the external parameters of the camera (It should be noted that (RGV, tGV)
is the rotation and translation matrix between the visual frame and the GNSS frame, and
(Rk, tk) is the rotation and translation matrix for visual SLAM system from frame k − 1 to
frame k.).

The optimized coordinates of the visual SLAM system in the ENU coordinate system
χ̂V

i can be obtained as
χ̂V

i = RGV
i × χV

i + tGV
i (10)

There are generally two types of GNSS spoofing. One of them is forwarding spoofing.
After the forwarding spoofing is tracked to the receiver signal, the location spoofing
information is applied, so that the terminal calculates the wrong position and continues to
move toward the target point. In fact, it reaches the location designated by the spoofing
terminal. The other type is inducing spoofing, which applies small displacement spoofing
to the terminal, causing the terminal to be gradually pulled away. Assume that Ed is the
location verification threshold of forwarding spoofing and Es is the location verification
threshold of inducing spoofing. The localization verification methods of the two types of
spoofing are analyzed separately.

In order to identify whether the GNSS is spoofed, the GNSS measurement data will be
checked with visual SLAM data. By inverting the offset of GNSS data, it is judged whether
the offset result exceeds the threshold.

When GNSS forwarding spoofing occurs, the forwarding spoofing deviation ψi at time
i is

ψi = ‖χG
i − χ̂V

i ‖ (11)
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If ψi ≤ Ed, the deviation between GNSS and visual SLAM system is within the
threshold range, the localization verification is judged to be normal, and the localization
domain verification flag is set to CL

i = 0. If ψi > Ed, the deviation between GNSS and
visual SLAM system exceeds the threshold range, the localization verification is judged to
be abnormal, and the localization domain verification flag is set to CL

i = 1, that is

CL
i =

{
0 ψi ≤ Ed
1 ψi > Ed

(12)

When GNSS inducing spoofing occurs, since the small drift (usually less than the
positioning accuracy of GNSS) applied by spoofing terminal is not easy to be found at each
moment, it is necessary to observe the cumulative error within a certain time window.

Suppose the size of the time window is W, then the total spoofing deviation Ψi in the
time window at time i is

Ψi =
i+W

∑
t=i
‖χG

t − χ̂V
t ‖ (13)

If Ψi ≤ Es, the deviation between GNSS and visual SLAM system is within the
threshold range, the localization verification is judged to be normal, and the localization
domain verification flag is set to CL

i = 0. If Ψi > Es, the deviation between GNSS and
visual SLAM system exceeds the threshold range, the localization verification is judged
to be abnormal, and the localization domain verification flag is set to CL

i = 1. Therefore,
regardless of whether forward spoofing or progressive spoofing occurs, GNSS frames need
to be discarded. Then, the localization domain verification flag needs to meet

CL
i =

{
0 ψi ≤ Ed and Ψi ≤ Es
1 ψi > Ed or Ψi > Es

(14)

The localization verification is shown in Figure 3. Only the GNSS frames that are
verified with the visual SLAM frame will enter the smoothing localization process. If
location verification threshold is too large, spoofed GNSS frames that meet the threshold
may be input into the smoothing localization process, resulting in localization errors in
the back-end of the system, and if location verification threshold is too small, normal
GNSS data frames will be discarded. Therefore, the selection of the localization verification
threshold is also important. So, we conduct localization verification threshold analysis in
Section 3.3. After time and localization verification, the verified GNSS data frames will
be input into the smoothing localization process. Then, the system enters the smoothing
localization method.
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3.3. Localization Verification Threshold Analysis

When the terminal is moving, the position calculated by GNSS is usually within a
certain error range from the true value, and the position calculated by the visual SLAM
system also has a certain error. According to the predicted position and the true value, the
calculated position (the total number is N) can be divided into four states: True positive
(TP), False negative (FN), False positive (FP) and True negative (TN). The accuracy rate of
navigation prediction (PD), the probability of false alarm (PFA) and the missing alarm rate
(PMD) are

PD =
NTP + NTN

N
, PFA =

NFP
NFP + NTN

, PMD =
NFN

NTP + NFN
(15)

Let χ0
i be the true value of location i, then we have

eG
i = ‖χG

i − χ0
i ‖ , eV

i = ‖χV
i − χ0

i ‖ (16)

where eG
i is the measurement error of the GNSS system at time i and eV

i is the estimation
error of the visual SLAM system at time i. According to the Pauta criterion, a classical
method in metrology, it is possible to perform error analysis on a measurement error
that is subject to Gaussian distribution. When the deviation between the measurement
error and the average value exceeds n times the standard deviation (which traditionally
recommended value of coefficient n is usually 3), the measurement error can be regarded
as an extreme error.

It is assumed that the measurement error of the GNSS system conforms to the Gaussian
distributed N ∼ (0, σ2

G), and the estimation error of the visual SLAM system conforms
the Gaussian distributed N ∼ (0, σ2

V). For the one-dimensional Gaussian distribution of
errors, if the error is within the confidence interval, the error value is considered to be
within the normal range, and if it exceeds the confidence interval, it is considered to be in
the abnormal range. Therefore, the size of the confidence interval can be regarded as the
limit error and the threshold of the system. According to the 3σ principles, the confidence
probability of the true value in the confidence interval [µ− 3σ, µ + 3σ] is 99.73%. At this
time, the probability that the measurement error exceeds the range is only 0.27%.

The GNSS/Visual SLAM system is a joint system fused with the GNSS system and
the visual SLAM system, and its joint probability density is two-dimensional. The joint
probability density function of the GNSS/Vision SLAM system is

f (xG, xV) =
1

2πσGσV
√

1− ρ2
exp

{
− 1

2(1− ρ2)

[
(xG − µG)

2

σ2
G

− 2ρ
xGxV

σGσV
+

(xV − µV)
2

σ2
V

]}
(17)

During the verification process, the localization of the two systems are independent of
each other, and the GNSS system is not related to the visual SLAM system, where ρ = 0.
According to the nature of the normal distribution, the joint probability density function
can be simplified to

f (xG, xV) =
1

2πσGσV
exp

[
−1

2

(
x2

G
σ2

G
+

x2
V

σ2
V

)]
(18)

For the GNSS/Vision SLAM system, set the confidence interval
D{xG ∈ (−a, a), xV ∈ (−b, b)}, and the probability P{(xG, xV) ∈ D} can be calculated as

P{(xG, xV) ∈ D} =
∫ a
−a

∫ b
−b

1
2πσGσV

exp
[
− 1

2

(
x2

G
σ2

G
+

x2
V

σ2
V

)]
dxGdxV

= 1√
2πσG

∫ a
−a exp

[
− x2

G
2σ2

G

]
dxG · 1√

2πσV

∫ b
−b exp

[
− x2

V
2σ2

V

]
dxV

(19)
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According to Equation (17), (xG, xV) within the confidence interval D can be regarded
as normal values, and (xG, xV) outside the confidence interval D is regarded as outliers.
Besides, through the Equation (17), the confidence interval D{xG ∈ (−a, a) , xV ∈ (−b, b)}
that meets the PD requirements can be calculated. At this time, the limit error of the GNSS
system is eG = a and the limit error of the visual SLAM system is eV = b. Since the two
systems are independent of each other, according to the confidence interval, the confidence
probability of the GNSS system PxG in this range and the confidence probability of the
visual SLAM system PxV in this range can be obtained from

PxG =
1√

2πσG

∫ a

−a
exp

[
−

x2
G

2σ2
G

]
dxG , PxV =

1√
2πσV

∫ b

−b
exp

[
−

x2
V

2σ2
V

]
dxV (20)

The PFA and the PMD of the system are related to the setting of the threshold Ed.
If the threshold is high, it will cause missed detection, and if the threshold is low, it will
cause false alarms. When there is no GNSS spoofing, if Ed ≥ ‖χG

i − χ̂V
i ‖, the result of the

localization is correct (TP). On the contrary, if Ed < ‖χG
i − χ̂V

i ‖, the detection threshold of
the GNSS/Vision SLAM system is less than the confidence probability, normal points will
be predicted as abnormal points (FN). According to the principle “the sum of the two sides
of the triangle is greater than the third side”, we get

‖χG
i − χ̂V

i ‖ ≤ max‖χG
i − χ0

i ‖+max‖χV
i − χ0

i ‖ = eG + eV (21)

Therefore, the threshold Ed needs to meet

Ed ≥ eG + eV (22)

If GNSS spoofing occurs, the spoofing terminal generally has three steps to achieve the
purpose of spoofing. First, track and obtain the real satellite signal received by the receiver,
perform the calculation, and continue to track the movement of the target. Secondly, when
the spoofing terminal considers that the tracking is stable, the spoofing terminal increases
the power of the spoofing signal so that the GNSS receiver receives the satellite signal sent
by the spoofing terminal. Finally, when the spoofing terminal believes that the high-power
signal it sends has replaced the real signal of the GNSS receiver, the spoofing terminal will
mix the spoofing information into its high-power signal, so that the receiver will receive
the false signal sent by the spoofing terminal and calculate a wrong position. For GNSS
forwarding spoofing, the spoofing terminal will add a certain amplitude of spoofing to
each satellite signal after tracking the satellite signal received by the GNSS receiver [10].
Then, the equation of the pseudorange ρ̂i after spoofing becomes

ρ̂i =

√
(xA −

(
xS

i + δx))
2
+ (yA −

(
yS

i + δy))
2
+ (zA −

(
zS

i + δz))
2
+ ctuA + ερ(t) (23)

After the GNSS receiver receives the false signal and resolve it, the calculated co-

ordinate of GNSS system becomes
¯
χ

G

i = (xA − δx, yA − δy, zA − δz). At this time, the
localization calculated by the receiver will increase offset of δi = (−δx,−δy,−δz). Then,
we have

¯
χ

G

i = χG
i − δi (24)

where
¯
χ

G

i is the GNSS coordinate calculated by GNSS after being spoofed. The forwarding
spoofing deviation ψi at time i becomes

ψi = ‖
¯
χ

G

i − χ̂V
i ‖ (25)
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At this time, if Ed < ‖¯χ
G

i − χ̂V
i ‖, the spoofing will be identified by our method and

the result of the localization is correct (TN). On the contrary, if Ed ≥ ‖
¯
χ

G

i − χ̂V
i ‖, the

detection threshold of the GNSS/Vision SLAM system is too large, the spoofing point will
be predicted as a normal point (FP). According to the principle “the sum of the two sides of
the triangle is greater than the third side”, we get

‖¯χ
G

i − χ̂V
i ‖ ≤ ‖

¯
χ

G

i − χ0
i ‖+ ‖

¯
χ

V

i − χ0
i ‖ = ‖χ

G
i − δi − χ0

i ‖+ ‖
¯
χ

V

i − χ0
i ‖ ≤ δi + eG + eV (26)

Therefore, Ed needs to meet

Ed < ‖¯χ
G

i − χ̂V
i ‖ ≤ δi + eG + eV (27)

As for the selection of the inducing spoofing threshold Es, the inducing spoofing
threshold should satisfy the following equation

i+W

∑
t=i
‖χG

t − χ̂V
t ‖ < Es <

i+W

∑
t=i
‖¯χ

G

t − χ̂V
t ‖ (28)

For inducing spoofing, spoofing terminal usually imposes a small drift which usually
does not exceed the accuracy of the GNSS system [22]. At this time, if the limit error of
the joint positioning accuracy of the system is considered, it will increase the probability
of missed detection because the threshold is too high to detect small drift. Therefore, the
inducing spoofing threshold Es needs to be greater than the cumulative standard deviation
of the system (σ is the standard deviation of the GNSS/Visual SLAM system) and less than
the cumulative limit error of the system.

Es ≥W · σG , Es ≥W · σV , Es ≥W · σGV and Es < W · (eG + eV) (29)

Normally, we do not know the value of the spoofing signal, so we choose

Ed = eG + eV, Es= W · σ (σ ∈ {σG, σV, σGV}) (30)

It can be seen that the value of the localization threshold is related to the positioning
performance of the sensors and the window size. In Section 4, we conduct a simulation
analysis on the selection of the threshold according to the positioning performance of the
selected sensor and the window size.

3.4. Smoothing Localization Method

In the smoothing localization method, there are mainly two stages: the initialization
stage and the stable operation process. In the initialization phase, the external parameters
(RGV, tGV) of the camera are estimated based on the measurement data of GNSS and visual
SLAM system, so that the visual SLAM frame after calibration and the GNSS frame are
both in the ENU coordinate system. External parameters are also a prerequisite for the real-
ization of the localization verification process. In the stable operation process, the external
parameters need to be continuously updated and optimized based on the verified GNSS
data. In this phase, one of two smoothing localization strategies is selected according to the
input verification flags. If GNSS spoofing occurs, the spoofed GNSS result will be input
into the external parameter optimization process, causing errors in the calculation results
of the external parameters and affecting the coordinate conversion results of the visual
SLAM data frame. However, we do not know when the GNSS spoofing attack will happen.
We assume that no spoofing occurred in the initial phase, and that the spoofing attack
occurred only during the stable operation phase. Therefore, we need to initial the external
parameters in the initialization stage, providing input for the localization verification.
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In order to ensure the reliability of the initialization phase, we set a localization
verification sliding window (the size of the localization verification window is set to h) to
optimize the external parameters. Suppose that at the current time i, the coordinate vector
of the mobile terminal in the ENU coordinate system calculated by the GNSS data frame is
χG

i , and the coordinate vector of the visual SLAM data frame in the camera body coordinate
system is χV

i . For the data frames in the localization verification sliding window, the
distance errors are minimized according to the Umeyama algorithm [23], and the rotation
matrix and translation matrix of GNSS and visual SLAM system are estimated, as shown in
the following formula:

min F(RGV
i , tGV

i ) =


1
h

i
∑

j=1
‖χG

j − (RGV
i × χV

j + tGV
i )‖2, i < h

1
h

i
∑

j=i−h+1
‖χG

j − (RGV
i × χV

j + tGV
i )‖2, i ≥ h

(31)

When i < h, only the existing data frames in the localization verification sliding
window are optimized, and the initialization of (RGV, tGV) is not completed; when i = h,
the data frames in the window are full. After optimizing the data frames in the window,
the initialization of (RGV, tGV) is completed. When i > h, the system comes into the stable
operation process and it is still necessary to continue updating (RGV, tGV) according to
Equation (31).

During the initialization process, GNSS verification is not performed. At this time,
a smoothing localization strategy S1 will be adopted: update the external parameters
(RGV, tGV) of the camera to obtain the coupling localization result of GNSS/Visual SLAM.

After the initialization phase, spoofing detection is required. The system is always
vigilant and verifies every GNSS data frame when it arrives to determine whether GNSS
spoofing occur. We use the external parameters generated at the previous time and the
visual data frame at the current time to invert the position offset of the GNSS at the current
time and then, select the verified GNSS data frames to mutually optimize the external
parameters according to Equations (16) and (20). If the GNSS data frame does not meet
the verification conditions, it is directly discarded. Only GNSS data frames that meet
the verification conditions will enter the process of external parameter optimization and
update. So, check the time and localization verification flag CT

i and CL
i . If CT

i = 0, it means
that the current GNSS frame has passed the time verification and can enter the localization
verification. If CL

i = 0, it means that the current GNSS frame has also passed the localization
verification. Thus, the visual SLAM data frame and the GNSS data frame of the current time
i can perform smoothing localization method. The smoothing localization strategy S1 is
still adopted at this time i in order to optimize the cumulative error of visual SLAM system.

Otherwise, if CL
i = 1, the smoothing localization strategy S2 is adopted: do not

update the external parameters (RGV, tGV) of the camera. The camera pose obtained at the
previous update time (RGV

i−1, tGV
i−1), and the rotation and translation matrix (Ri−1,i, ti−1,i) of

the camera between the frame fi−1 and frame fi are used to calculate the GNSS/Visual
SLAM coupled localization result. That is

χGV
i =


[

RGV
i tGV

i
0 1

]
χV

i ∀CP
i , ∀CT

i (i < h) or CP
i = 0 , CT

i = 0 (i ≥ h) (S1)[
Ri−1,i ti−1,i

0 1

][
RGV

i-1 tGV
i-1

0 1

]
χV

i others (S2)
(32)

It can be seen from Equation (32) that the acquisition of χGV
i is related to (RGV, tGV) and

(Ri−1,i, ti−1,i). In order to optimize the error of χGV
i , we divide the constrained optimization

term into two parts, that is

min f (TGV, Ti−1,i) = min (
n

∑
i=1
‖χG

i − TGVχV
i ‖

2
i∈S1

+
n

∑
i=1
‖χV

i − Ti−1,iχ
V
i−1‖

2
) (33)
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where TGV is the homogeneous transformation matrix of (RGV, tGV) and Ti−1,i is the ho-
mogeneous transformation matrix of (Ri−1,i, ti−1,i). The first part of the optimization

n
∑

i=1
‖χG

i − TGVχV
i ‖

2
i∈S1

is only for the GNSS data frame and visual SLAM data frame using

the smoothing localization strategy S1. This part optimizes the reprojection error between
the coordinates χGV

i of the mobile terminal and the coordinates χG
i of the GNSS measure-

ment results. The second part of the optimization
n
∑

i=1
‖χV

i − Ti−1,iχ
V
i−1‖

2 is for all visual

SLAM data frames, and this part optimizes the reprojection error of the two frames between
the camera frames through the transformation of the rotation and translation matrix Ti−1,i.

After the constrained optimization of Equation (33), the coordinates of the mobile
terminal χGV = (χGV

1 , χGV
2 , . . . , χGV

n ) are finally obtained, which are the localization results
of the GNSS/Visual SLAM system to the mobile terminal calculated by the smoothing local-
ization method. A flow-chart of GNSS spoofing identification and smoothing localization
method is shown in Figure 4.
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4. Simulation results
4.1. Experimental Conditions and Data Set

In order to analyze the proposed GNSS spoofing identification and smoothing lo-
calization method based on GNSS/Visual SLAM system (referred to as PTC-SLM), this
paper selects the commonly used autonomous driving data set KITTI [24,25] for simulation
verification and performance evaluation. The rural and urban scenes in the KITTI datasets
are used, and the ground-truth of the two scenes are shown in Figure 5. The sensors we use
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are a GNSS navigation system and a binocular vision system composed of two identical
gray-scale cameras. The parameters of sensors are shown in Table 1.
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Table 1. List of sensor simulation parameters.

Sensor Model Sensor Error Number

GNSS OXTS RT 3003 open sky localization errors < 5 cm 1
Camera FL2-14S3M-C 1392 × 512 pixels, 1/2” Sony ICX267 CCD 2

In order to verify the proposed PTC-SLM method, we performed a spoofing simulation
on the GNSS data in the two KITTI datasets. From the analysis in Section 3.3, it can be
seen that the performance of GNSS spoofing in the mobile terminal is the deviation of the
localization domain. In the spoofing process, since the spoofing terminal does not know
the destination of the terminal, in order to deceive the terminal to the target point, it is
necessary to adjust the magnitude of the spoofing distance when each spoofing signal is
sent. Therefore, the GNSS spoofing attack shown in Equation (34) is injected into the GNSS
measurement data in the KITTI dataset.

l̂i = li − ∆li , b̂i = bi − ∆bi (34)

where li and bi are the actual measurement longitude and latitude of the terminal at time i,
∆li is the longitude error at time i and ∆bi is the latitude error at time i. In our forwarding
spoofing simulation, we pull the terminal to a place parallel to the actual direction of travel,
then the spoofing distance becomes a fixed value (∆li = ∆bi = δs). In our inducing spoofing
simulation, we gradually induce the terminal, so that every moment the spoofing terminal
will increase the spoofing distance by a small displacement. Assume that the spoofing
superimposed by the spoofing terminal is linearly increasing and assume the spoofing
starts at time i + 1, then the cumulative drift of inducing spoofing at time j (j > i) is

∆lj =
j

∑
t=i

∆lt =
j(j + 1)

2
∆ls , ∆bj =

j

∑
t=i

∆bt =
j(j + 1)

2
∆bs (35)
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where ∆ls and ∆bs are the distance of spoofing superimposed in the longitude and latitude
directions. After the spoofing attack is injected, the localizations of the mobile terminal are
gradually deviated from the correct track. If the GNSS spoofing is not detected in time, the
mobile terminal is likely to be kidnapped on other paths or directly damaged by a collision
accident. Next, we analyze the parameters of the PTC-SLM method to confirm that the
time and localization verification parameters are reasonable.

4.2. Parameter Analysis

This section analyzes the impact of time verification threshold and localization ver-
ification threshold on our proposed PTC-SLM method. Whether it is a time verification
threshold or a localization verification threshold, it is related to the frequency and accuracy
of the sensors in practical applications and possible spoofing scenes.

Under our experimental settings and scenes, first of all, for the time verification
threshold δT, the GNSS frame rate for the KITTI data set we selected is 10 fps, that is, the
interval between two GNSS frames is 0.1s, then when |δT| ≥ 0.05 s, the window time is
greater than 0.1s, there will be more GNSS frames that meet the time window requirements
and enter the time verification process, which will cause data misalignment and increase
the error of the method. Therefore, the time verification threshold must meet |δT| < 0.05 s.
So, we select δT = {0.01 s, 0.02 s, 0.03 s, 0.04 s, 0.05 s, 1 s} to calculate the absolute position
error (APE) of the PTC-SLM method, and the results are shown in Figure 6. Maximum
value (Max), average value (Mean), median value (Median), minimum value (Min), rmse
and std of the absolute position errors of the different time verification thresholds are
shown in Table 2.
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Table 2. Error parameters of the different time verification thresholds.

δT Max/m Mean/m Median/m Min/m Rmse/m Std/m

0.01 s 15.05 1.20 1.16 0.09 1.33 0.57
0.02 s 8.34 1.19 1.18 0.13 1.26 0.42
0.03 s 11.56 1.19 1.18 0.02 1.27 0.44
0.04 s 38.74 1.32 1.18 0.16 2.23 1.79
0.05 s 41.51 1.31 1.17 0.16 2.37 1.97
1.00 s 22.57 4.99 5.16 0.10 5.71 2.78

It can be seen that the change of δT affects the results of APE. As δT increases, the
rmse of the PTC-SLM method decreases first and then increases. When δT is too large
(such as δT = 1 s), the result of APE is wobbly, and the time verification loses its effect;
when δT = 0.02 s, the result of APE is the smallest, so in subsequent experiments, the time
verification threshold is selected as δT = 0.02 s.

According to the analysis in Section 3.3, after the GNSS/visual SLAM system is
combined, Ed is related to the extreme error eG of the GNSS system and the extreme error
eV of visual SLAM system which are related to the accuracy of the sensors in different
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systems. For the GNSS and visual SLAM system in the KITTI dataset, we first calculate the
σG of the GNSS system and the σV of visual SLAM system separately through simulation
when there is no GNSS spoofing occurs (σG = 1.15 m, σV = 1.47 m). Then, substitute the
value into Equation (19) and obtain the joint probability of the GNSS/visual SLAM system,
as shown in Figure 7.
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Figure 7. The joint probability density distribution of the GNSS/visual SLAM system. (a) Total joint
probability, (b) Joint probability greater than 99.37%.

From the simulation results of the joint probability density distribution, it is known
that the confidence interval for the joint probability density of the GNSS/visual SLAM
system to be greater than 99.37% is D{xG ∈ (−3.4, 3.4), xV ∈ (−4.8, 4.8)}. That is, the
limit error of the GNSS system is eG = 3.4 m, the limit error of the visual SLAM system is
eV = 4.8 m. Therefore, according to Equation (30), the localization verification threshold of
the system is calculated as Ed = eG + eV = 8.2 m.

In order to analyze the influence of the location verification threshold of forward-
ing spoofing on the algorithm, the segment from 380 s to 410 s of the data set is ex-
posed to a GNSS forwarding spoofing with 10m spoofing distance. Then, we select
Ed = {0.5 m, 2.62 m, 3.45 m, 4.41 m, 8.2 m, 9.35 m, 10.82 m, 16.4 m} according to several
extreme values of the system and performed simulations (σG + σV = 2.62 m, 3σG = 3.45 m,
3σV = 4.41 m, eG + eV = 8.2 m, eG + eV + σG = 9.35 m, eG + eV + σV = 10.82 m,
2(eG + eV) = 16.4 m). At the same time, we applied a ∆li = ∆bi = 15 m spoofing offset
to GNSS system and analyzed the absolute position error (APE) of the PTC-SLM method
with different localization verification thresholds. The APE simulation result is shown in
Figure 8 and some error parameters of the different localization verification thresholds are
shown in Table 3.

It can be seen that the change of Ed affects the trend of APE under different localization
verification thresholds. With the increase of Ed, the rmse of the APE changes from large
to small and then increases. When the value of localization verification threshold is very
small (for example Ed = 0.5 m), the PTC-SLM method will diverge during the initialization
phase, making the initialization of the GNSS/Visual SLAM system fail, causing the PTC-
SLM method invalid. When Ed = 9.35 m and Ed = 10.82 m, after being spoofed by GNSS
spoofing terminal, the Visual SLAM system has been spoofed by GNSS due to detection
failure. When GNSS spoofing stops, the offset of GNSS data frame exceeded the threshold,
false alarms continue to occur. When the value of localization verification threshold is
very large (for example Ed = 16.4 m), the PTC-SLM method cannot detect GNSS spoofing
and the method is invalid. Therefore, the minimum distance of GNSS spoofing that our
method can detect is limited to 2Ed. Among them, when Ed = 8.2 m, the absolute error of
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the method is the smallest, which is consistent with the theoretical analysis. So we set the
localization verification threshold as Ed = eG + eV = 8.2 m in the subsequent experiments.
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Table 3. Error parameters of the different localization verification thresholds of forwarding spoofing.

Ed Max/m Mean/m Median/m Min/m Rmse/m Std/m

0.50 m 60.84 24.55 19.78 0.43 30.66 18.37
2.62 m 3.42 1.22 1.19 0.06 1.28 0.38
3.45 m 3.84 1.22 1.18 0.06 1.28 0.40
4.41 m 4.08 1.23 1.20 0.11 1.29 0.40
8.20 m 2.95 1.22 1.19 0.07 1.27 0.36
9.35 m 19.65 3.28 1.28 0.19 5.46 4.37

10.82 m 18.26 1.88 1.20 0.09 3.11 2.48
16.4 m 11.32 1.82 1.19 0.11 2.98 2.36

In order to analyze the influence of the location verification threshold of induc-
ing spoofing on the algorithm, the segment from 450 s to 460 s of the data set is ex-
posed to a GNSS inducing spoofing (a 0.5 m distance is superimposed at each GNSS
localization moment). We assume the size of the window W is 10. Then, we selected
Es = {8.2 m, 11.5 m, 13.1 m, 14.7 m, 26.2 m, 34 m, 48 m, 82 m} according to several val-
ues of the system and performed simulations (eG + eV = 8.2 m, W · σG = 11.5 m,
W · σV = 14.7 m, W · (σG +σV) = 26.2 m, W · eG = 34 m, W · eV = 48 m, W · (eG + eV) = 82 m).
The results of absolute position error (APE) under the PTC-SLM method with different
localization verification thresholds of inducing spoofing are shown in Figure 9 and some
error parameters of the different localization verification thresholds are shown in Table 4.
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Table 4. Error parameters of the different localization verification thresholds of inducing spoofing.

Es Max/m Mean/m Median/m Min/m Rmse/m Std/m

8.2 m 36.18 17.18 21.56 0.40 21.40 12.75
11.5 m 16.55 1.57 1.22 0.06 2.33 1.73
14.7 m 16.54 1.54 1.21 0.06 2.31 1.72
26.2 m 23.36 1.67 1.19 0.12 3.03 2.53
34 m 24.91 1.70 1.20 0.08 3.19 2.71
48 m 27.67 1.76 1.19 0.06 3.51 3.04
82 m 85.13 3.00 1.20 0.04 10.62 10.19

It can be seen that the change of Es affects the trend of APE under different localization
verification thresholds. With the increase of Es, the rmse of the APE changes from large to
small and then increases. When Es is small (for example Es = 8.2 m), the cumulative error
calculated by PTC-SLM exceeds the threshold due to the influence of sensor cumulative
measurement errors. When there is no induced spoofing, false alarms occur and cause
normal GNSS frames to be discarded and the localization results of visual SLAM system
will produce cumulative errors because there is no GNSS frame to optimize the absolute
position. When Es is large (for example, Es = 82 m), the PTC-SLM method cannot detect
GNSS spoofing in time, and missed detection occurs, so that the localization result of
PTC-SLM is induced by the GNSS spoofing and large errors are generated. Among them,
when Es = 14.7 m, PTC-SLM can detect GNSS induced spoofing in time, and its absolute
error is the smallest, which is consistent with the theoretical analysis. Therefore, we set the
localization verification threshold as Es = W · σV = 14.7 m in subsequent experiments.

5. Experimental Analysis under Forwarding Spoofing Attack

In order to verify the effect of the PTC-SLM method, we simulated two GNSS spoofing
scenes of forwarding spoofing attack and induced spoofing attack. In this section, only the
experimental analysis under the forwarding spoofing attack is analyzed. We try to compare
PTC-SLM method with the GNSS method and VINS-Fusion method [7]. The GNSS method
is the results of GNSS receiver and it will be directly affected after GNSS spoofing occurs.
The VINS-Fusion method is a coupled algorithm of GNSS and visual SLAM. After GNSS
spoofing occurs, the obtained spoofed GNSS results will enter the back-end optimization
process, which will affect the final localization result of VINS-Fusion method. In the
following passage, we compare the three algorithms in rural and urban scenes.

5.1. Rural

For the rural scene shown in Figure 5a, the segment from 100 s to 150 s of the data set
is exposed to a GNSS spoofing with 20 m spoofing distance. Figure 10 shows the absolute
position errors of GNSS, VINS-Fusion, and PTC-SLM after GNSS forwarding spoofing
attacks. Figure 11 shows the trajectory of the three methods. Their maximum value (Max),
average value (Mean), median value (Median), minimum value (Min), rmse and std of the
absolute position errors of the three methods are shown in Table 5 below.

It can be seen that when the GNSS method fails to detect GNSS spoofing attacks, the
GNSS localization results are directly affected by GNSS spoofing, and the absolute position
error of GNSS method grows immediately as the GNSS spoofing attacks occur as shown in
the blue curve in Figure 10. The error on trajectory is shown in Figure 11a. The rmse of
GNSS increased to 6.459 m.

The VINS-Fusion method uses GNSS and visual SLAM data to obtain the localization.
With the injection of GNSS spoofing, the localization result of VINS-Fusion will gradually
deviate from the normal track. When the GNSS attack is lifted, the localization result of
VINS-Fusion will return to the normal track. The absolute position error is shown in the
brown curve in Figure 10, and the error on the trajectory is shown in Figure 11b. The rmse
of VINS-Fusion is 6.644 m.
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Table 5. Error parameters of the three methods in rural scene.

Method Max/m Mean/m Median/m Min/m Rmse/m Std/m

GNSS 21.088 3.138 1.252 0.508 6.459 5.646
VINS-Fusion 27.421 3.310 1.304 0.398 6.644 5.761

PTC-SLM 2.928 1.285 1.217 0.383 1.342 0.390

The PTC-SLM method can detect GNSS forwarding spoofing attacks in time by in-
verting GNSS signals, and adopt a smoothing localization strategy to suppress the impact
of GNSS spoofing. The absolute position error is shown in the green curve in Figure 10,
and the error on the trajectory is shown in Figure 11c. It can be seen that the localization
trajectory result basically coincides with the ground-truth (reference), and the rmse of
PTC-SLM is 1.342 m, with an improvement of 79.223% compared with the GNSS method.

5.2. Urban

For the urban scene shown in Figure 5b, the simulation is the urban scene where the
mobile terminal is spoofed and pulled to another road. So, we choose the segment from
380 s to 430 s of the data set and the terminal is exposed to a GNSS spoofing with 133 m
spoofing distance, and the mobile terminal is simulated to be deflected to the adjacent road.
Figure 12 shows the absolute position errors of GNSS, VINS-Fusion and PTC-SLM after
GNSS forwarding spoofing attacks. Figure 13 shows the movement trajectory of the three
methods of GNSS, VINS-Fusion, and PTC-SLM. Their maximum value (Max), average
value (Mean), median value (Median), minimum value (Min), rmse and std of the absolute
position errors of the three methods are shown in Table 6.
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Table 6. Error parameters of the three methods in urban scene.

Method Max/m Mean/m Median/m Min/m Rmse/m Std/m

GNSS 134.439 9.610 1.153 0.189 33.918 32.528
VINS-Fusion 153.538 10.060 1.224 0.096 33.361 31.808

PTC-SLM 23.868 1.261 1.182 0.067 1.579 0.950

It can be seen that when the GNSS method suffers GNSS forwarding spoofing, the
GNSS localization results are directly affected by the GNSS forwarding spoofing and are
incorrectly located on an adjacent road. The absolute position error of GNSS method is
shown in the blue curve in Figure 12. The error on trajectory is shown in Figure 13a and
the rmse of GNSS method increased to 33.918 m.

With the injection of GNSS forwarding spoofing, the localization results of the VINS-
Fusion method will deviate from the normal track. When the GNSS attack is removed, the
localization results after the VINS-Fusion method will oscillate and gradually return to the
right track. The absolute position error is shown in the brown curve in Figure 12, and the
error on the trajectory is shown in Figure 13b. The rmse of VINS-Fusion is 33.361 m.

The absolute position error of the PTC-SLM method is shown in the green curve in
Figure 12. It can be seen that the PTC-SLM method is positioned smoothly, and the error
on the trajectory is shown in Figure 13c. It can be seen that the localization result is still
basically coincident with the reference, and the rmse is 1.579 m, with an improvement of
95.345% compared with the GNSS method.
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6. Experimental Analysis under Inducing Spoofing Attack

In this section, only the experimental analysis under the GNSS inducing spoofing
attack is analyzed in rural and urban scenes. We try to compare it with the GNSS method,
VINS-Fusion method, and PTC-SLM-Forward method. The PTC-SLM-Forward method in
this section is in the case where the PTC-SLM algorithm only considers forwarding spoofing
identification (set Ed = 8.2 m , Es = 2000 m to invalidate the induced identification) and
can only identify forwarding spoofing but not induced spoofing. The PTC-SLM method in
this section can identify both forwarding spoofing and induced spoofing.

6.1. Rural

For the rural scene shown in Figure 5a, the segment from 450 s to 485 s of the data set
is exposed to a GNSS inducing spoofing (a 0.5 m distance is superimposed at each GNSS
localization moment). Figure 14 shows the absolute position errors of GNSS, VINS-Fusion,
PTC-SLM (forwarding method only) and PTC-SLM after GNSS inducing spoofing attacks.
Figure 15 shows the trajectory of the four methods. Their maximum value (Max), average
value (Mean), median value (Median), minimum value (Min), rmse and std of the absolute
position errors of the four methods are shown in Table 7.
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It can be seen that the GNSS localization results are directly affected by GNSS inducing
spoofing, and the absolute position error of GNSS method grows gradually as the GNSS
inducing spoofing attacks occur as shown in the blue curve in Figure 14. The error on
trajectory is shown in Figure 15a. The rmse of GNSS increased to 24.497 m. The localization
result of VINS-Fusion will gradually deviate from the normal track and the absolute



Appl. Sci. 2022, 12, 1386 22 of 25

position error is shown in the brown curve in Figure 14, and the error on the trajectory is
shown in Figure 15b. The rmse of VINS-Fusion is 21.191 m.

Table 7. Error parameters of the four methods in rural scene.

Method Max/m Mean/m Median/m Min/m Rmse/m Std/m

GNSS 161.118 6.700 1.234 0.508 24.497 23.563
VINS-Fusion 145.038 7.083 2.632 0.042 21.191 19.972

PTC-SLM-Forward 53.149 3.130 1.234 0.281 8.508 7.911
PTC-SLM 16.120 1.780 1.240 0.401 2.870 2.251

The PTC-SLM-Forward method did not identify GNSS inducing spoofing attacks in
time but only when the forwarding spoofing deviation ψi satisfy the constraints of ψi > Ed.
At this time, the method determines that forwarding spoofing has occurred. The absolute
position error is shown in the green curve in Figure 14, and the error on the trajectory is
shown in Figure 15c. It can be seen that the localization trajectory offset is smaller than
the GNSS and VINS-Fusion methods, but larger than the PTC-SLM method. The rmse
of PTC-SLM-Forward is 8.508 m, with an improvement of 65.269% compared with the
GNSS method. The PTC-SLM method can detect GNSS inducing spoofing attacks in time
to suppress the impact of GNSS inducing spoofing. The absolute position error is shown in
the red curve in Figure 16, and the error on the trajectory is shown in Figure 17d. It can
be seen that the localization trajectory offset is the smallest and the rmse of PTC-SLM is
2.870 m, with an improvement of 88.284% compared with the GNSS method.
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6.2. Urban

For the urban scene shown in Figure 5b, the segment from 450 s to 470 s of the data set
is exposed to a GNSS inducing spoofing (a 0.5 m distance is superimposed at each GNSS
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localization moment). Figure 16 shows the absolute position errors of GNSS, VINS-Fusion,
PTC-SLM-Forward, and PTC-SLM after GNSS inducing spoofing attacks. Figure 17 shows
the movement trajectory of the four methods of GNSS, VINS-Fusion, PTC-SLM-Forward,
and PTC-SLM. Their maximum value (Max), average value (Mean), median value (Median),
minimum value (Min), rmse and std of the absolute position errors of the four methods are
shown in Table 8.

Table 8. Error parameters of the four methods in urban scene.

Method Max/m Mean/m Median/m Min/m Rmse/m Std/m

GNSS 98.237 3.152 1.158 0.189 11.802 11.373
VINS-Fusion 85.983 3.883 1.912 0.030 10.441 9.693

PTC-SLM-Forward 78.804 2.941 1.193 0.067 10.399 9.975
PTC-SLM 18.34 1.548 1.182 0.064 2.477 1.934

It can be seen that the absolute position error of GNSS method grows gradually as the
GNSS inducing spoofing attacks occur as shown in the blue curve in Figure 16. The error on
trajectory is shown in Figure 17a. The rmse of GNSS increased to 11.802 m. The localization
results of VINS-Fusion gradually deviate from the normal track and the absolute position
error is shown in the brown curve in Figure 16, and the error on the trajectory is shown in
Figure 17b. The rmse of VINS-Fusion is 10.441 m.

The PTC-SLM-Forward method did not identify GNSS inducing spoofing attacks in
time. The GNSS inducing spoofing is input into the smoothing localization process, so that
the localization result obtained by the PTC-SLM-Forward method is continuously shift
to the GNSS inducing localization direction. The absolute position error is shown in the
green curve in Figure 16, and the error on the trajectory is shown in Figure 17c. The rmse
of PTC-SLM-Forward is 10.399 m.

The PTC-SLM method can detect GNSS inducing spoofing attacks in time to suppress
the impact of GNSS inducing spoofing. The absolute position error is shown in the red
curve in Figure 16, and the error on the trajectory is shown in Figure 17d. When the GNSS
spoofing is identified and the GNSS frame is discarded, the PTC-SLM method maintains
the final localization output with the result calculated by the visual SLAM system and
generates a visual cumulative error. It can be seen that the rmse of PTC-SLM is 2.477 m,
with an improvement of 79.012% compared with the GNSS method.

Through the analysis results of Sections 5 and 6, it can be seen that the PTC-SLM
method can well identify GNSS forwarding spoofing and GNSS progressive spoofing and
can obtain better smoothing localization results compared with other methods. Besides,
the localization performance of PTC-SLM under forward spoofing attack is better than that
under progressive spoofing attack.

7. Conclusions

This paper proposes a GNSS spoofing identification and smooth localization method
for GNSS/Vision SLAM system. The time and localization results are offset of the GNSS
data through the visual SLAM data, and it is identified whether the time and localization
results of the GNSS exceed the time and localization verification threshold. According to
the identified verification flags, different smoothing localization strategies are selected, and
the localization results are optimized and adjusted using the sliding window to obtain
smoothing localization results.

The selection of the time verification and localization verification threshold of the
PTC-SLM method is related to the sensor performance (frequency and accuracy). For the
selected sensors used in the KITTI datasets, we analyzed the selection of the time and
localization verification threshold of the PTC-SLM method, and verified that the selection
of the threshold is related to the sensor frequency and sensor accuracy.

In addition, two scenes in the KITTI datasets are selected for simulation and evaluation.
In the simulation, we limited the size of the offset of the applied GNSS spoofing. By



Appl. Sci. 2022, 12, 1386 24 of 25

analyzing the performance comparison of the methods in different scenes, it is proved
that the PTC-SLM method can identify the GNSS forwarding spoofing attacks and GNSS
progressive spoofing attacks, and obtain smoothing localization results.
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