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Abstract: Software defect prediction technology can effectively detect potential defects in the software
system. The most common method is to establish machine learning models based on software metrics
for prediction. However, most of the prediction models are proposed without considering the
confounding effects of size metric. The size metric has unexpected correlations with other software
metrics and introduces biases into prediction results. Suitably removing these confounding effects to
improve the prediction model’s performance is an issue that is still largely unexplored. This paper
proposes a method that can causally remove the negative confounding effects of size metric. First,
we quantify the confounding effects based on a causal graph. Then, we analyze each confounding
effect to determine whether they are positive or negative, and only the negative confounding effects
are removed. Extensive experimental results on eight data sets demonstrate the effectiveness of our
proposed method. The prediction model’s performance can, in general, be improved after removing
the negative confounding effects of size metric.

Keywords: defect prediction; size metric; confounding effect; casual graph; logistic regression;
generalized additive models

1. Introduction

With the development of information technology, various software systems make
people’s daily lives highly informative. These software systems were closely related to
the country’s economic revitalization and social development, and therefore ensuring the
quality of the software system is crucial. Software defects are an essential factor that affects
software system quality [1,2], and software developers should search for software defects
to improve the software system quality [3]. In particular, the current software development
process is often agile. Software practitioners must often launch software products within a
limited time, making it impossible to set aside enough time for software testing; therefore,
it is a luxury for software products to be thoroughly tested. Software defect prediction can
effectively predict potential software defects, allowing testers to devote more resources to
software modules that are more likely to have defects.

Software defect prediction is an effective means to discover potential software defects.
The most commonly used method of software defect prediction is to use software metrics
to establish the predictive model based on machine learning technology [4–8]. Many
classic machine learning models achieved excellent results in software defect prediction,
such as Logistic Regression (LR) [9], Support Vector Machine (SVM) [10], Neural Network
(NN) [11], Naive Bayes (NB) [12].

However, in traditional machine learning, there is an assumption that there are weak
correlations between variables, and these correlations cause confounding and bring bi-
ases into the prediction results [13,14]. Due to the inherent characteristics of software

Appl. Sci. 2022, 12, 1387. https://doi.org/10.3390/app12031387 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12031387
https://doi.org/10.3390/app12031387
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app12031387
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12031387?type=check_update&version=2


Appl. Sci. 2022, 12, 1387 2 of 13

metrics, the size metric has undesirable correlations with other metrics. These undesir-
able correlations bring redundancy and make the size metric a powerful confounder [15].
The confounder size metric could conceal the actual predictive ability of the metrics, mak-
ing the prediction result unsatisfactory. Emma et al. [15] first examined the confounding
effects of size metric and strongly recommended that the confounding effects of size metric
should be removed before building the predictive model. Later, other researchers [16,17]
also paid attention to this issue. However, they focused more on verifying the existence of
the confounding effects rather than proposing a method to remove them.

The Linear Confounding Effect Removal Method (LCERM) [17] was generally applied
in the medical field. This method represents the confounding effects of the linear regression
model and removes the confounding effects directly from the original data. However, it is
not suitable for the field of software defect prediction for two reasons: one is that linear-
based methods cannot express well the relationship between software metrics; there exist
nonlinear correlations between the determined software metrics, so the linear method’s
applicability is poor. The second is that removing confounding effects is not certainly
conducive to software defect prediction. The bias caused by confounding could be a positive
or negative bias. Positive bias is beneficial for prediction; negative bias is the opposite. Our
ultimate goal is to improve the prediction model’s performance, and therefore we should
retain the positive biases and remove the negative biases.

This paper proposes a Causally Removing Negative Confound Effects Method
(CRNCEM). Under the causal graph [18] framework, the proposed removal method meets
theoretical interpretability and empirical effectiveness. Concretely, first, we appropriately
quantify the confounding effects according to the structure of the causal graph. The quan-
tification process applies a Generalized Additive Model (GAM) [19], which can analyze the
complex nonlinear relationship between metrics. Second, we selectively remove negative
confounding effects. We use correlation analysis to determine whether each confounding
has a negative or positive effect. The negative confounding effects are subtracted from
the original data to get nonconfounding data. The revised data could be used to estab-
lish the defect prediction model. On eight datasets, we verified the effectiveness of the
CRNCEM. In the experiments, LR was applied as the basic classify. Compared with that of
LR and LCERM + LR, the CRNCEM + LR has an improvement of 1.3–5.2% under the F1
score (F1) indicator, and the CRNCEM + LR performs better than NN predictive model.
The experimental results show that our method effectively improves the performance of
the prediction model.

Our main contributions include the following aspects:

1. We focused on a seldom studied issue: removing the confounding effects of size
metric for software defect prediction. These confounding effects are objective and
bring biases in the prediction results.

2. We are the first to consider selectively removing confounding effects. We proposed
the CRNCEM, which causally quantifies the confounding effect, and then determines
and removes the negative effect that is not conducive to defect prediction.

3. We conduct comprehensive experiments, and the results demonstrate the superiority
of CRNCEM for software defect prediction.

The rest of the paper is organized as follows: Section 2 reviews related works; Section 3
interprets the proposed CRNCEM; Section 4 introduces experiments and the analysis of
the results; and Section 5 is the conclusion.

2. Related Works

The software engineering research community is very interested in software defect
prediction and made many efforts to use software metrics to predict software defects [4–8].
Software defect prediction is a two-category task: software modules that contain potential
defects must be distinguished from the remainder. Researchers generally used machine
learning techniques to establish prediction models. Many classic machine learning methods
are excellent in software defect prediction content, such as LR [9,20–22], NN [11], SVM [10],
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and NB [12]. The LR is the most commonly used classification method, and it also achieved
the best predictive performance [23–25]. The most well-known and commonly used LR for
software defect prediction is a two-step LR model [26–28]. The first step is to select metrics
that are suitable indicators for defect prediction. More suitable indicators have better
defect prediction performance, since not all software metrics have useful predictability.
The second step involves using the metrics selected in the previous step to establish a
multivariate LR model for prediction.

However, these studies did not consider the confounding effects of size metric. To the
best of our knowledge, Emma et al. [15] were the first to paid attention to the confounding
effects of size metric. They questioned the traditional modeling methods, and they also
believed that the size metric would obscure the predictive ability of software metrics
and bring biases into the prediction results. Based on a C++-based telecommunications
software, they empirically verified their hypothesis. The results showed that size metric
has confounding effects on most software metrics. Moreover, they concluded that the
size metric is a powerful confounder, and they strongly suggested that size metric must
be controlled before establishing a defect prediction model. However, due to the use of
threshold-based experimental methods, the selected threshold affects the experimental
results. Later, Zhou et al. [16] proposed a method to test the confounding effect based on
linear regression. They conducted experiments on a general data set containing 55 software
metrics and came to the same conclusion as Emma et al. Still, the normality assumptions
are rarely specious when modeling software defects with linear regression [29]. After that,
a method based on logistic regression was proposed [29]. In this method, a bivariate
logistic regression was used to evaluate the relationship between a single software metric
and defect-proneness with and without the size metric. Zhou et al. [17] introduced a
mathematical model based on logistic regression to detect whether and how confounding
affects the prediction results. They also applied a linear regression-based confounding
removal method for software defect prediction. After removing the confounding effects
of size metric, the LR-based prediction model performed well under the effort-aware
indicators. However, their model did not have universal applicability under commonly
used indicators for machine learning models such as F1. We followed their idea about
how to remove the confounding effects from metrics. Unlike the linear-based method
they used, we applied the nonlinear method to quantify and remove only the negative
confounding effects.

3. Method
3.1. Confounding Effects of Size Metric

The concept of confounding is popular in the field of health sciences [30]. It refers to the
situation where the relationship between variables is erroneously obscured or emphasized
by a third variable [31]. The third variable is usually called a confounder.

In the field of software defect prediction, size metric is a significant confounder. Size
metric may lead to overestimating or underestimating the predictive ability of software
metrics to defect-proneness, depending on the direction and magnitude of its confounding
effects [32].

We use a causal graph to illustrate a confounding effect of size metric, as shown in
Figure 1. To simplify the description, we use variable Z to represent the size metric, X
to represent one other software metric, and Y to represent defect-proneness. Software
metrics and defect-proneness are related, and software metrics are used to predict defect-
proneness; therefore, there are unidirectional edges XY and ZY. The unidirectional edge
represents the causal belief that means that X and Z are the antecedents to Y. The size
metric and the software metric have a not weak correlation, so there is bidirectional edge
ZX. The bidirectional edge represents a general association. Therefore, there are two
paths connecting X and Y, which are XY and XZY. The direct path XY represents the true
relationship between X and Y. The indirect path XZY contains the confounding effect of
Z. When exploring the relationship between X and Y, both paths are considered. As such,
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the obtained conclusion includes the confounding effect. To explore the true relationship
between X and Y, we must control Z to block path XZY. After that, only path XY is connected.
Then, the relationship between X and Y will not be affected by Z.

Figure 1. Path diagram illustrating confounding effect.

3.2. Method of Causally Removing Negative Confounding Effect

The prerequisite for the confounding effects of the size metric is that it is related to
other software metrics. In Figure 1, Z can explain part of X. If there is no this related part,
then there will be no edge between X and Z, so Z will not confound the correlation between
X and Y. We denote the unrelated part in X as X′. Hence, X′ is the part of X that has nothing
to do with Z, and the correlation between X′ and Y is not affected by the confounder Z.
Based on the above analysis, we quantify the confounding effects of size metric. Then,
we use the correlation-based method to analyze the direction of the confounding effects.
We know that high correlation usually means the great predictive ability of one software
metric for the software defect. We compare CorXY (the correlation between X and Y) with
CorX′Y (the correlation between X′ and Y). If CorXY is the larger one, it means that Z
hurts the predictive ability of X; in other words, confounding has a negative effect. This
confounding effect should be removed. On the contrary, if CorX′Y is the larger one, it means
that Z enhances the predictive ability of X, and the confounding has a positive effect. This
confounding effect should be retained.

Based on the above, we propose the CRNCEM, and Algorithm 1 presents the pseu-
docode. The CRNCEM is generally divided into two steps. The first step is to quantify the
value of the confounding effect; the second step is to analyze the confounding effect, and
then remove the negative confounding effect, which is not conducive to defect prediction.
For each metric except the size metric:

Step 1: Quantify the confounding effect

Since there are complex nonlinear relationships between the size metric and other
metrics, we choose a generalized additive model (GAM) to quantify the confounding effects.
GAM is a data-driven model with a strong ability to analyze the nonlinear relationship
and does not require any assumptions between variables. The mathematical expression of
GAM is as shown:

B = β0 +
k

∑
i=1

fi(Ai) (1)
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in which coefficients β0 is a constant, function fi(Ai) is a smoothing function determined
by the explained variables themselves [19], and K is the number of independent variables.

First, we use the GAM to fit a metric by size metric, as shown in formula (2).

X = β0 + fi(Z) (2)

Then, we use the size metric to predict that metric. As shown in formula (3), X̂ means
the prediction value. Letβ̂0 and f̂ be the sample estimates for β0 and f , respectively. X̂ is
the explained part of X.

X̂ = β̂0 + f̂i(Z) (3)

Therefore, X′ can be expressed as X minus the explained part of X, as shown in
formula (4). Indeed, X′ is equal to the prediction error [33].

X′ = X− X̂ (4)

Step 2: Remove the negative confounding effect

Pearson coefficient is used to analyze the confounding effect. Pearson coefficient is the
most commonly used statistics indicator for the correlation between variables. The formula
is as follows:

p(X, Y) =
Cov(X, Y)√
Var[X]Var[Y]

(5)

in which Cov[] represents covariance, Var[] representative variance.
We use formula (5) to calculate the Pearson coefficients between the original metric X

and defect-proneness Y, signed as pxy; Pearson coefficients between the nonconfounding
metric X′ and defect-proneness Y, signed as px′y. Compare pxy and px′y, and if pxy is larger,
we keep the original X; otherwise, replace X with X′.

Algorithm 1 CRNCEM.

Input: Original data (X presents a software metric; Z presents size metric; Y presents
defect-proneness)

Output: Revised data
1: for Each metric do
2: Using GAM to fit X by Z, obtain X := β̂0 + f̂i(Z)
3: Predict X by Z, obtain X̂ = β̂0 + f̂i(Z)
4: Calculate X’= X− X̂
5: Calculate Pearson coefficient pxy and px′y
6: if pxy < px′y then
7: replace X with X′

8: end if
9: end for

4. Experiments and Results
4.1. Datasets

In this study, the experimental data come from eight cleaned data sets of the metric
data program (MDP) repository. The MDP is commonly used in the field of software defect
prediction. Each data set is composed of instances, and each instance represents a software
module. Every instance contains a variety of static code metrics, including McCabe and
Halstead, and the metrics indicate the quality of code from different perspectives. If the
software model has one or more defects, the corresponding instance is labeled as defective;
otherwise, the corresponding instance is labeled as nondefective. Table 1 shows the general
characteristics of the eight data sets, including the number of instances, metrics, and
defective and nondefective instances, as well as the proportion of defective instances.
The software defect rates of the data sets vary from 1% to 35%. We use line of code as the
size measure.
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Table 1. Data sets from metric data program (MDP).

Dataset Instances Metrics Defect Nondefect Defect Rate

CM1 344 37 42 302 12%
KC1 2096 21 325 1771 16%
KC3 200 39 36 164 18%
MC1 9277 38 68 9209 1%
MC2 127 39 44 83 35%
MW1 264 37 27 237 10%
PC3 1125 37 140 985 12%
PC4 1399 37 178 1221 13%

4.2. Presence of Confounding Effects

For each data set, we applied the proposed method introduced in Section 3.2. Then
we count the number of metrics affected by the positive effects and the number of metrics
affected by the positive effect. As shown in Table 2, we can know that negatively affected
metrics are significantly less than the positively affected metrics in all data sets. This is the
reason why removing all the confounding effects without distinguishing the direction does
not necessarily contribute to defect prediction. The numbers in the number row of Table 2
correspond to the numbers of metric names listed in Table 3. These names are the metric
names that are negatively confounded by the size metric in each data set.

We verified our method’s ability to remove confounding effects on the metrics listed
in Table 3. The odds-ratio-based method was applied to analyze the extent of confounding
effects, and the greater value obtained meant the metric suffered a greater extent of con-
founding effect. Table 4 lists the results before and after applying CRNCEM. The indexes
in Table 4 correspond to that of Table 3, and the bold value means that the metric suffers a
lesser extent of confounding effect. The results in Table 4 show that our method effectively
removes the confounding effects on most metrics (47 from 50). Figure 2 shows this result
more intuitively. Our method performed badly only on the numbers 7, 16, and 17 metrics.

In the machine learning field, the p-value represents the significance of the variable.
A smaller p-value means more statistical evidence for the higher significance of the variable
and a stronger correlation between the independent and dependent variables. Usually,
the p-value threshold is set to 0.05. The Table 5 lists the p-values (metrics listed in Table 3
against defect-proneness by LR) before and after applying CRNCEM. Our method effec-
tively reduces the metrics’ p-value, even under the threshold of 0.05. This indicates that the
CRNCEM enhances the ability of metrics to predict defect-proneness.

Figure 2. Results of analysis of confounding effects.
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Table 2. Number of metrics affected by positive and negative confounding effects.

CM1 KC1 KC3 MC1 MC2 MW1 PC3 PC4

Positive 30 19 34 30 36 30 22 26
Negatie 6 1 4 7 2 6 14 10
Number 1–6 7 8–11 12–18 19–20 21–26 27–40 41–50

Table 3. List of metrics affected by negative confounding effect.

No. Metric No. Metric

1 LOC_CODE_AND_COMMENT 26 PERCENT_COMMENTS
2 DESIGN_DENSITY 27 BRANCH_COUNT
3 EDGE_COUNT 28 CYCLOMATIC_COMPLEXITY
4 ESSENTIAL_COMPLEXITY 29 DECISION_COUNT
5 ESSENTIAL_DENSITY 30 DESIGN_COMPLEXITY
6 NODE_COUNT 31 DESIGN_DENSITY
7 LOC_CODE_AND_COMMENT 32 ESSENTIAL_COMPLEXITY
8 DECISION_DENSITY 33 ESSENTIAL_DENSITY
9 DESIGN_DENSITY 34 LOC_EXECUTABLE

10 LOC_EXECUTABLE 35 PARAMETER_COUNT
11 GLOBAL_DATA_DENSITY 36 HALSTEAD_DIFFICULTY
12 CYCLOMATIC_COMPLEXITY 37 HALSTEAD_EFFORT
13 DESIGN_COMPLEXITY 38 HALSTEAD_PROG_TIME
14 GLOBAL_DATA_COMPLEXITY 39 NUM_UNIQUE_OPERANDS
15 HALSTEAD_DIFFICULTY 40 NUMBER_OF_LINES
16 HALSTEAD_EFFORT 41 BRANCH_COUNT
17 HALSTEAD_PROG_TIME 42 CYCLOMATIC_COMPLEXITY
18 MAINTENANCE_SEVERITY 43 DESIGN_COMPLEXITY
19 PARAMETER_COUNT 44 EDGE_COUNT
20 HALSTEAD_CONTENT 45 ESSENTIAL_COMPLEXITY
21 LOC_CODE_AND_COMMENT 46 ESSENTIAL_DENSITY
22 DECISION_DENSITY 47 LOC_EXECUTABLE
23 DESIGN_DENSITY 48 PARAMETER_COUNT
24 PARAMETER_COUNT 49 NODE_COUNT
25 HALSTEAD_DIFFICULTY 50 NUM_UNIQUE_OPERATORS

Table 4. Results of analyzing the extent of confounding effects.

No. Before After No. Before After

1 1.10484079 0.28503274 26 0.39090061 0.29508718
2 0.14999267 0.10896084 27 1.25104075 0.57190734
3 1.21986822 0.17888081 28 1.37456997 0.75384506
4 1.52170872 0.26126476 29 1.22532643 0.51697049
5 1.417992 0.04117915 30 1.34782366 0.74316556
6 1.30598938 0.18745917 31 0.21131936 0.0981697
7 1.02329347 1.39972728 32 0.54911514 0.09985847
8 1.82762755 0.06118248 33 1.20388571 0.51786812
9 1.88311737 0.12962644 34 1.45755614 0.74346193

10 1.01205966 0.06075898 35 0.75490994 0.18276533
11 0.26350997 0.15513292 36 0.16204335 0.046405
12 1.2228172 0.63065639 37 1.26829314 0.52093941
13 1.09302779 0.49116623 38 1.41444823 0.78327196
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Table 4. Cont.

No. Before After No. Before After

14 1.21360581 0.62377762 39 1.42134641 0.80776073
15 1.60637049 0.54697256 40 1.23076289 0.58067971
16 1.01512873 7.66267773 41 1.020563 0.42465768
17 1.01512873 7.66266016 42 1.01249155 0.39076503
18 5.14091233 0.21524267 43 0.92956176 0.54646159
19 0.59778389 0.11330263 44 1.07764792 0.5408485
20 1.41457559 0.02526074 45 0.69516539 0.54811949
21 0.80556418 0.05279058 46 0.54736503 0.05080965
22 0.24675853 0.07165685 47 1.06996538 0.0952129
23 0.75537306 0.256155 48 0.16973463 0.02677171
24 0.55150994 0.01352926 49 1.13618234 0.60511507
25 1.28668765 0.28035742 50 3.14271644 0.11579495

Table 5. p value for metric against defect-proneness by Logistic Regression (LR).

No. p (Before) p (After) No. p (Before) p (After)

1 0.552089 0.000426 26 0.645646 0.592678
2 0.062499 0.052427 27 0.152232 0.0955
3 0.009475 0.001651 28 0.149536 0.056501
4 0.07769 0.049576 29 0.270153 0.145442
5 0.838962 0.30189 30 0.108692 0.000983
6 0.008734 0.001084 31 0.907629 0.305661
7 0.860716 4.51 × 10−10 32 0.892005 9.28 × 10−5

8 0.907209 0.875188 33 0.529383 0.091709
9 0.799039 0.617127 34 0.029144 0.000474

10 0.002145 0.007784 35 0.002593 0.001247
11 0.340842 0.25716 36 0.470502 9.49 × 10−8

12 0.000773 2.52 × 10−21 37 0.773238 0.408584
13 0.058539 2.84 × 10−26 38 0.773237 0.408584
14 0.357811 0.007715 39 0.002727 0.000638
15 0.000165 2.37 × 10−23 40 4.52 × 10−6 1.13 × 10−11

16 0.311558 0.02087 41 0.702683 7.92 × 10−14

17 0.311559 0.02087 42 0.818782 3.91 × 10−15

18 0.036333 2.76 × 10−14 43 0.530805 3.02 × 10−11

19 0.205085 0.012515 44 0.110961 9.89 × 10−12

20 0.200439 0.078343 45 0.023705 4.35 × 10−14

21 0.637238 0.378287 46 0.035566 2.31 × 10−6

22 0.838157 0.80505 47 3.01E-08 1.1 × 10−22

23 0.795415 0.460198 48 0.003991 0.000727
24 0.892006 0.769109 49 0.046255 1.94 × 10−9

25 0.100987 0.001942 50 1.55 × 10−5 5.89 × 10−10

4.3. Experiments for Software Defect Prediction

To verify the effectiveness of CRNCEM for software defect prediction, we selected the
LR as the basic classifier. We compared CRNCEM + LR with LR and LCERM + LR with NN.
For each model, we conducted 20 experiments on each dataset. In each experiment, we
randomly selected 70% defective instances and 70% nondefective instances as the training
data, and the remaining data was selected as the test data. We use the widely used F1
to evaluate the prediction model objectively. F1 considers the precision rate and recall
rate, and it can be interpreted as the harmonic average. We ran the experiments on the
R platform.

The description of baselines is as follows:
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1. LR: a two-step logistic regression is widely used in software defect prediction con-
tent. The first step is to build univariate logistic regression for each software metric
against defect-proneness, and then choose those metrics with significant correlations
(p-value < 0.05). The second step is to establish a multivariate logistic regression to
predict the defects of the chosen metrics in the first step;

2. LCERM + LR: first, the linear regression-based confounding removal method is
applied to remove the confounding effects of size metric. Then, we use the revised
data to build the above LR model.;

3. NN: to improve the predictive ability of the NN model, we oversample the defect
instances, standardize the original data, and perform Principal Component Analysis
(PCA) transformation. After that, the processed data are used for a three-layer NN
model to predict defects.

4.4. Results

Through extensive experiments, we empirically verified the effectiveness of the proposed
CNCERM. Tables 6–13 show the experimental results, concluding precision rate, recall rate, F1
score, and improved F1 score. Figures 3–5 intuitively present each model’s performance.

Table 6. Results of CM1.

Dataset Model Precision Recall F1 Impr F1

CM1

LR 34.3% 20.3% 24.3% *

4.1%LCERM + LR 40.9% 13.1% 18.0%
NN 13.1% 49.2% 19.9%

CRNCEM + LR 32.7% 26.2% 28.4%
The * indicates the best performance of the compared models.

Table 7. Results of KC1.

Dataset Model Precision Recall F1 Impr F1

KC1

LR 58.4% 20.5% 30.1%

2.3%LCERM + LR 60.0% 21.7% 31.8% *
NN 14.0% 59.2% 22.6%

CRNCEM + LR 62.8% 23.6% 34.1%
The * indicates the best performance of the compared models.

Table 8. Results of KC3.

Dataset Model Precision Recall F1 Impr F1

KC3

LR 49.6% 31.4% 36.8% *

3.3%LCERM + LR 65.1% 14.5% 21.4%
NN 19.2% 43.6% 27.8%

CRNCEM + LR 49.5% 35.5% 40.1%
The * indicates the best performance of the compared models.

Table 9. Results of MC1.

Dataset Model Precision Recall F1 Impr F1

MC1

LR 58.6% 22.6% 32.2% *

5.2%LCERM + LR 57.4% 23.1% 31.8%
NN 0.7% 62.1% 1.4%

CRNCEM + LR 63.7% 27.4% 37.4%
The * indicates the best performance of the compared models.
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Table 10. Results of MC2.

Dataset Model Precision Recall F1 Impr F1

MC2

LR 51.4% 49.6% 49.9% *

1.5%LCERM + LR 57.3% 31.8% 39.9%
NN 31.9% 47.9% 36.5%

CRNCEM + LR 51.9% 51.8% 51.4%
The * indicates the best performance of the compared models.

Table 11. Results of MW1.

Dataset Model Precision Recall F1 Impr F1

MW1

LR 43.0% 21.1% 26.5% *

1.3%LCERM + LR 47.1% 18.9% 25.3%
NN 10.1% 50.0% 16.6%

CRNCEM + LR 48.5% 22.2% 27.8%
The * indicates the best performance of the compared models.

Table 12. Results of PC3.

Dataset Model Precision Recall F1 Impr F1

PC3

LR 48.0% 16.4% 23.6% *

5.0%LCERM + LR 46.3% 16.3% 23.6%*
NN 12.4% 50.1% 19.5%

CRNCEM + LR 48.7% 21.0% 28.6%
The * indicates the best performance of the compared models.

Table 13. Results of PC4.

Dataset Model Precision Recall F1 Impr F1

PC4

LR 74.3% 42.2% 53.6% *

2.1%LCERM + LR 71.7% 34.5% 46.2%
NN 12.3% 44.6% 19.1%

CRNCEM + LR 72.9% 45.6% 55.7%
The * indicates the best performance of the compared models.

We have the following observations and analysis:

(1) Our proposed CNCERM can effectively improve the performance of the LR model.
Compared with that of LR, the F1 value of CNCERM+LR improved by 4.1% in CM1,
4.0% in KC1, 3.3% in KC3, 5.2% in MC1, 1.5% in MC2, 1.3% in MW1, 5.0% in PC3,
and 2.1% in PC4, with an average of 3.3%. Compared with the best performance of
LR and LCERM + LR (indicated by * in Tables 6–13), the F1 value of CNCERM + LR
increases by 4.1% in CM1, 2.3% in KC1, 3.3% in KC3, 5.2% in MC1, 1.5% in MC2, 1.3%
in MW1, 5.0% in PC3, 2.1% in PC4, with an average 3.1%. Among all three prediction
models with LR as the classifier, CNCERM + LR performs best.

(2) CNCERM + LR performs better than LR, shown in Figure 3, which verifies that the
confounding effects of the size metric do affect the prediction performance of LR.
The proposed CNCERM can effectively quantify the confounding effects of the class
metric and then analyze the direction of the confounding effects. After removing the
negative confounding effects, LR significantly improves.

(3) LCERM + LR performs worse than LR in general, as shown in Figure 3, which means
that the traditional confounding removal method is unsuitable for software defect pre-
diction and an inappropriate removal method cannot improve the LR’s performance.
Moreover, removing the confounding effects of size metric is not necessarily beneficial
to software defect prediction. We should only remove the negative confounding
effects that are not conducive to defect prediction.
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(4) Figure 3 intuitively shows that CNCERM + LR performs better than LCERM + LR,
indicating that our proposed CNCERM is more suitable for software defect predic-
tion than the linear-based confounding removal method. The predictive ability of
LCERM+LR is worse than that of LR, and the predictive ability of CNCERM + LR is
stronger than that of LR. The existing confounding removal methods are not suitable
for software defect prediction, which further illustrates the necessity of this article.

(5) Figure 4 intuitively shows that CNCERM + LR and LR have similar precision rates,
and each has wins and losses but not much difference. Figure 5 shows that
CNCERM + LR has slightly better recall performance than that of LR. These points
are why CNCERM + LR has better F1 values; that is to say, C can effectively increase
the recall rate of LR, thereby increasing the F1 value of the model.

(6) We compare CNCERM + LR and NN, and CNCERM+LR has more significant F1
values than that of NN, as shown in Figure 3. By analyzing Figures 4 and 5, we
know that the NN model does not perform well in the precision rate, but it performs
smoothly in the recall rate and generally has a better performance than that of the
CNCERM + LR. The F1 value can comprehensively consider the precision and recall
rates. Based on the F1 values, we can conclude that CNCERM + LR has a better
predictive ability than that of NN.

Figure 3. F1 values of four models on eight data sets.

Figure 4. Precision rates of four models on eight data sets.
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Figure 5. Recall rates of four models on eight data sets.

5. Conclusions

This paper focuses on a seldom studied but critical issue: removing a size metric’s
confounding effects to improve the prediction model’s performance. The confounding
effects bring biases into the prediction results. We propose a method named Causally
Removing Negative Confound Effects Method (CNCERM) that could remove the negative
confounding effects of size metric. First, we quantify the confounding effects of the size
metric, then we analyze the directions of the confounding effects, and finally, we selec-
tively remove the negative confounding effects from all. Extensive experimental results
verify the effectiveness of CNCERM. Compared with that of Logistic Regression (LR),
Linear Confounding Effect Removal Method (LCERM) + LR, and Neural Network (NN),
CNCERM + LR achieves the best performance on the F1 in eight NASA data sets.
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