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Abstract: Autonomous vehicles (AVs) enable drivers to devote their primary attention to non-driving-
related tasks (NDRTs). Consequently, AVs must provide intelligibility services appropriate to drivers’
in-situ states and in-car activities to ensure driver safety, and accounting for the type of NDRT being
performed can result in higher intelligibility. We discovered that sleeping is drivers’ most preferred
NDRT, and this could also result in a critical scenario when a take-over request (TOR) occurs. In this
study, we designed TOR situations where drivers are woken from sleep in a high-fidelity AV simulator
with motion systems, aiming to examine how drivers react to a TOR provided with our experimental
conditions. We investigated how driving performance, perceived task workload, AV acceptance,
and physiological responses in a TOR vary according to two factors: (1) feedforward timings and (2)
presentation modalities. The results showed that when awakened by a TOR alert delivered >10 s prior
to an event, drivers were more focused on the driving context and were unlikely to be influenced by
TOR modality, whereas TOR alerts delivered <5 s prior needed a visual accompaniment to quickly
inform drivers of on-road situations. This study furthers understanding of how a driver’s cognitive
and physical demands interact with TOR situations at the moment of waking from sleep and designs
effective interventions for intelligibility services to best comply with safety and driver experience
in AVs.

Keywords: automated driving; intelligibility; take-over request; feedforward; modality; sleeping

1. Introduction

Autonomous vehicle (AV) technologies, such as Adaptive Cruise Control (ACC) and
Advanced Driver Assistance Systems (ADAS) that correspond to Society of Automotive
Engineering (SAE) Level 1 or 2, have become common, if minor, components of vehicles
available today [1]. These partial vehicle automations have spurred the development of
more advanced AV technologies. Consequently, drivers expect better performance and
increased safety [2]. Even with improved capabilities, AVs must operate properly to earn
driver trust and acceptance [3,4].

However, trust is a human factor that is easily lost. If a driver does not recognize the
route the AV is following or is unsatisfied with automated driving, for instance, they might
take over vehicle operation, and because today’s vehicle systems can easily switch between
automatic and manual modes [5–7], often with a slight (perhaps mistaken) tap of the brake
pedal or steering wheel, driver acceptance of AV technology can be lost.

In addition to performance improvements, AVs must provide context-based and
intelligent information about an upcoming event (e.g., a speed bump or an accident) to earn
driver trust. These feedforward alerts allow the driver to respond properly to the situation
and trust that AV is assuming control for a good reason [8]. This information must include
both a description of the vehicle’s actions (i.e., ‘How’) and the reason for those actions
(i.e., ‘Why’) based on its artificial intelligence (AI). When these ‘How’ and ‘Why’ messages
are accompanied with varying modality types (auditory, visual, and auditory + visual),
especially with multi-modality, driver trust and satisfaction with driving performance
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increases [9]. As it relates to AV intelligibility—how the vehicle represents to drivers what
it knows, how it knows, and what it is doing based on its AI system—trust also depends
on how politely the vehicle provides the information and how well the interface mimics
human behavior [10–15].

Besides contextual information provided by the vehicle, trust toward AVs is affected
by drivers’ in-situ states, which vary with task load. As SAE Levels of Driving Automation
rise from Level 0 (no automation/the driver is fully responsible for driving) to Level 5
(fully autonomous vehicle), drivers can increasingly perform various Non-Driving Related
Tasks (NDRTs), each with its own task load. While performing a high-load task, that is,
a task that requires continual attention such as texting or sleeping, drivers may not be
available to accept intelligibility services, or information pushed from the vehicle to the
driver based on contextual operation. If the AV’s warning of an upcoming long curve
prevents the driver from spilling a beverage, for example, the driver will be more satisfied
with the AI system. However, continuous alerts when the driver cannot attend to them
will lead to an interruptive user experience. Thus, intelligibility is defined by how well the
AV provides context-based and intelligent information about upcoming events according
to the NDRTs that drivers are performing.

Some studies have explored how NDRTs affect user experience in AVs, though research
on sleeping while driving is scarce. Yet, drivers most preferred to sleep while driving an
AV (Table 1) and decreased engagement in driving (whilst adopting a higher level of
automation) could increase drowsiness and the likelihood of falling asleep [16,17].

Table 1. Preferred in-car activities (n = 100), ranked in order of preference [18].

Non-Driving Related Task Preference of In-Car Activities (%)

Sleeping 21

Looking out of the windshield 17

Personal Digital Assistant (PDA) 1: Listening
to music 15

Eating/Drinking 12

PDA 3: Talking on a phone 10

PDA 2: Using a tablet PC 8

PDA 4: Working with a laptop 6

Other 11

Of course, one way that AVs promote driver safety is through Take-over Requests (TOR),
wherein the vehicle prompts the driver to assume control. However, TORs that occur while
the driver is asleep could be missed and thus lead to accidents. Therefore, to better ensure
intelligibility as well as driver safety, AVs should be aware of drivers’ in-situ states, or the
NDRT that the driver is performing, and intervene by providing appropriate information.

In this study, we examine how drivers react to the presentation manner of TORs
provided with varying modalities and feedforward timings at the moment of waking
from sleep (between subjects) and then how subjects perform when driving manually.
Our experiment studies drivers during automated driving in order to identify appropri-
ate feedforward timing and modalities for a TOR by answering the following research
questions:

• RQ1. How can awakened drivers negotiate a TOR situation? What, then, are the
effects on drivers in this TOR situation?

• RQ2. How do driving performance (i.e., the ability to regain safe control of the car)
and physiological and subjective responses change based on a TOR with varying
modalities and timing after waking from sleep?

• RQ3. To be knowledgeable and safe in an AV, what timing- and modality-based
information do drivers prefer?
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2. Related Works
2.1. Non-Driving Related Tasks in Automated Driving

Since the beginning of vehicle studies, many studies have implemented NDRTs as
secondary tasks [19–21]. They have been used to induce driver distraction and increase
the mental demand of driving while performing the primary task in a vehicle (i.e., manual
driving), as well as in automated driving. These NDRTs can be classified as either standard-
ized tasks that induce visual, auditory, manual, or cognitive load, such as asking the subject
(driver) to count objects [22], recall words [23], press tiles under recall [24], or naturalistic
NDRTs, such as reading, playing games, and texting. Standardized tasks (e.g., surrogate
reference task and N-back task) effectively manipulate task demands or workloads [25–28],
thereby precisely inducing the targeted state in the study participants.

As AV technology improves, however, drivers will have more opportunities to disen-
gage from driving-related tasks (manual driving) and engage in naturalistic NDRTs, such
as leisure, eating, and working [29]. Recent studies on AVs have incorporated NDRTs that
drivers are more likely to engage in, for example, playing games to evaluate the TOR tran-
sition time [30], watching videos to examine visual cognitive load in TOR scenarios [31,32],
and sending text messages with a smartphone to evaluate TOR presentation interfaces [33].
Employing naturalistic NDRTs increases the ecological validity of findings and enables
accurate reflection of actual driver distraction; however, it is difficult to manipulate task
demands or workload [34,35]. Therefore, as automated driving technology improves, it
is necessary to design more practical NDRTs in automated driving and verify them in an
in-car ecological environment.

In actual automated driving, however, NDRTs may be accompanied by external sce-
narios (i.e., slowly driving car ahead, long curve, traffic congestion, etc.). These external
scenarios affect awareness of the situation and ‘user interruptibility’ with respect to intelligi-
bility services, which process the availability of users to engage in just-in-time intervention
in AVs [36]. Therefore, when incorporating external scenarios and practical NDRTs, it is
important to reflect on the practical situation of drivers in the era of automated driving. For
example, Frison et al. confirmed the importance of external scenarios (e.g., varying road
type and traffic volume) on users’ experience and acceptance of automated driving through
a simulator study [37]. Ataya et al. claimed that external scenarios (e.g., passing another car,
rerouting navigation, stopping the car) and NDRTs influence the user experience through a
survey (n = 360) [38].

To understand what kind of NDRTs are preferred among naturalistic NDRTs in AVs,
Yeo et al. conducted a survey and reported that sleeping is the most preferred (Table 1);
recently, other studies have also raised the need for research on TORs while sleeping.
For instance, several studies have recently reported on how drowsiness [16] and sleep-
ing [17,39,40] affect responses to TORs. Prior research has also raised the critical question of
how to handle drowsiness and even sleeping as a naturalistic NDRT in a TOR situation [41].
Building on this prior work, we believe that examining the most preferred and naturalistic
NDRT in an AV becomes critically important when a TOR situation is coupled with it,
thereby we chose to examine how drivers wake from sleep when a TOR occurs.

2.2. Sleeping as an NDRT and Its Implementation

Sleeping is one of the most common NDRTs and is likely to occur during monotonous
and lengthy sections of automated driving [16,17]. When waking from sleep in an AV,
the driver is likely to experience sleep inertia, a state of increased drowsiness and hyper-
vigilance, as well as decreased mental and physical functions, presenting new driving
risks [39,42]. Studies on sleep inertia have examined how safely drivers resume manual
driving after a TOR and how sleep inertia affects driving performance [17,39,40]. It has
been reported that drivers who wake up within 60 s of a TOR can safely take over and
drive. While these studies explored ways to successfully take over for safe driving, our
study focuses more on the presentation manner of the TOR, especially the modality type
and feedforward timing.
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Diverse trials and studies have been conducted to induce sleep and drowsiness in
drivers. In manual driving, a number of studies have attempted to simulate either drowsi-
ness or sleep during driving by restricting subjects’ normal sleep patterns (sleep depriva-
tion). These methods included prohibiting sleep, conducting experiments at night [43,44],
impairing subjects’ motor response time with alcohol [45], or conducting the same experi-
ment twice in one day (day and night sessions) [43–47]. These methods are effective for
inducing drowsiness in drivers.

Recently, there have been studies on sleep and drowsiness in drivers in automated
driving, owing to the improvements in AV technology [16,17,40]. Attempts to induce sleep,
drowsiness, and fatigue of drivers were not different from the methodology used in manual
driving. Experiments in sleep deprivation were primarily conducted when drivers were
tired, at midnight or early in the morning; Vogelpohl et al. instructed drivers to sleep for
up to 5 h the day before the test drive, and the experiment began at midnight [16]. This
method focuses on returning home at night in situations where there is insufficient sleep or
poor sleep quality. Wörle et al. instructed test subjects to sleep up to 4 h the day before their
experiment, which began at 6 a.m. [17,42]. These methods were used to induce drowsiness
in drivers and make it easier to fall asleep.

As our experimental design requires multiple sessions to test the waking experience,
we needed to induce the waking experience for several sessions. In general sleep studies,
regardless of the vehicle used, Punjabi et al. and Jiang et al. used a sleep latency time of 9.5
to 12 min to induce sleep in drivers [48,49]. Our study adopted this sleep latency time for
closing the eyes over 12 min. Additionally, to maximize cognitive demand upon waking
up, a blurring effect was activated on drivers’ screens, which gradually became clearer
with time [50].

2.3. Physiological Data Role and Its Aims in Automated Driving

Higher quality intelligibility services require the AV to be aware of the driver’s physical
and cognitive states, as user experience depends on the driver’s activities and states of affect
and cognition. The importance of the driver’s state is known as ‘opportune moments’ to
intervene [51], or ‘user interruptibility’, which determines driver availability of intelligibility
services [36].

Various approaches for detecting a driver’s state and distraction have been developed
by measuring driving performance, such as braking, steering, and other driving-related
measures [52], and by tracking eye and head position [53,54] and physiological responses.
However, to better understand the transition and fluctuation of the driver’s state in the
event and time series, we adopted a method of measuring physiological responses. Prior
research has measured multi-dimensional physiological data to understand driver dis-
tractions and opportune moments for when to intervene during a TOR [33,55]. Du et al.
examined drivers’ psychophysiological responses to TORs in different NDRTs, traffic
density, and TOR-lead time conditions [55]. Wintersberger et al. proposed an attentive
user interface and evaluated whether its features precisely timed TOR notifications at
task boundaries (sending a message), and showed that TOR notifications led to better
TOR/NDRT performance, less stress, and higher trust/acceptance [33].

Ultimately, the goal is to build a machine learning model to continuously monitor the
driver’s state [55–58], as physiological state is a significant reference for complementary
indicators of trust. Sheng et al., for instance, collected physiological data to understand
the dynamic change of drivers’ trust during automation for the purpose of improving
the safety and performance and automated driving [59]. Many studies have attempted
to accurately verify drivers’ physiological states and measure the degree of arousal via
electroencephalography (EEG), galvanic skin response (GSR), electrocardiography (ECG),
eye-tracking data, and more [57,60,61] in both manual and automated driving. Heart rate
(HR) is especially useful as an indicator of operator effort [62], and GSR represents the
mental workload in a driving scenario [63,64].
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Building on this prior work, we collected driver’s physiological responses as a measure
of various psychophysiological states, including arousal, cognitive load, and trust.

In this study, HR, GSR, and EEG were collected to observe patterns between the
modalities and feedforward timings of TOR conditions and to better understand and
interpret the subject’s situation. Unlike simple observation, sensor data confirms the
subject’s in-situ condition, information with which the AV system can provide optimal
information for the driving context. GSR and HR were analyzed to support our results and
for triangulation.

2.4. Take-Over Requests and Situational Awareness

Unexpected scenarios can occur at any time on the road, and malfunctioning AV
sensors or restricted driving environments (e.g., an unrecognized lane due to heavy rain or
a construction zone) [16] could threaten driver safety. Thus, one of the biggest challenges
in automated driving research is the TOR, when the AV must transfer control to the driver.

For a safe TOR [65] with drivers’ in-situ NDRTs [66–68], studies have focused on
finding the proper timing of feedforward notifications and methods to provide TOR in-
formation (e.g., tactile, visual, or auditory) [69–71], as well as driver reaction time for
deactivating automated driving and assuming vehicle control [23,24,33,61]. Although
prior studies have investigated influences on the driver performance, such as reaction,
task time, and lane deviation according to NDRTs (e.g., interacting with smartphone and
entertainment console), more research is needed to determine how sleep influences driver
performance when assuming vehicle control, especially after a TOR, and how effectively
and safely TORs can be presented in that scenario. Further, sleeping may leave drivers
unable to immediately perform at the same level as manual drivers [32]. Indeed, recent
events have demonstrated the significance of improving our understanding of this scenario.
For instance, a Tesla driver was filmed asleep at the wheel as his semi-autonomous vehicle
cruised down the highway [72,73]. This is a potentially risky real-world situation that
requires greater understanding of TORs to avoid negative repercussions.

Since every NDRT carries a different task load, drivers’ situational awareness—their
attention to or accurate knowledge of the driving scenario [19]—differs when engaging
in manual driving after a TOR. Situational awareness is ‘the perception (level 1) of the
elements in the environment within a volume of time and space, the comprehension (level 2)
of their meaning and the projection (level 3) of their status in the near future’ [74]. Several
studies that have measured situational awareness dealt with perception in Endsley’s model
as the time required to look at the side mirror and speedometer measured by the time of
first glance after the TOR [16,75–77]. Our study updates the scope of situational awareness
as the time until drivers safely project after becoming aware of a situation. Drivers who
quickly glance at the side mirror and speedometer but do not act, do not successfully
complete the take-over; non-action could carry significant safety risks. Therefore, in order
to guarantee that the driver has achieved the projection, the time for deceleration leading
to ‘performance of action’ was counted in parallel with a TOR based on the time it took for
the driver to observe the speed limit.

3. Exploring Take-Over Requests When Waking from Sleep

This study examines the sleep-based scenario as potentially the most preferred and
critical NDRT, research that we consider a first-of-its-kind study. Typical studies of TORs
focus on when and how drivers can take over an AV and drive safely. TOR studies on
sleeping drivers so far, however, have focused on identifying not the presentation manner
but how long it takes for an awakened driver to negotiate a TOR situation and drive safely.
Instances where a TOR abruptly occurs due to malfunction or external environment can
be fatal, especially for sleeping drivers. Hence, the goal of this study is to examine how
drivers react to a TOR provided with varying modalities and feedforward timings when
they wake from sleep and must perform manual driving. The following illustrates the
experimental design of this study.
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3.1. Apparatus
3.1.1. Driving Simulation Setup

Automated driving was performed on a high-fidelity driving simulator by reflecting
motion forces toward the driver’s seat to convey the feeling of real driving [50,78] (Figure 1).
The driving scene was displayed on three side-by-side 32” monitors (5760 × 1080) with
seamless 144 Hz resolution. To implement manual driving after the TOR, our simulator
was equipped with a steering wheel and brake and accelerator pedals (Logitech G920). The
built-in red button on the steering wheel was coded to deactivate automated driving and
thus enable manual driving.

Figure 1. Driving simulator setup. (Left) high-fidelity driving simulator with motion platform;
(Right) blue border indicates physiological measures; yellow border indicates setup for non-driving
related tasks; black border indicates the vehicle interface (visual message and remaining time).

3.1.2. AV Design

In this study, we establish SAE Level 3 (conditional automation) [79] to implement
a TOR situation at a construction zone where driving authority can be transferred from
vehicle to driver. As driver trust is important in AVs, assistive as well as intuitive interfaces
should be considered in AV design. To minimize split-attention and the degradation
factor of user experience (UX) for the interaction between drivers and information, all
visual information was provided with a HUD. Moreover, the remaining time encouraging
deactivation of automated driving after a TOR was displayed on the left side of the driver’s
field of view with a radial progress bar to assist in TOR [80,81] (Figure 1). Furthermore,
to enable greater intelligence in supporting interaction services, guidelines for human
and AI interaction were applied to our simulated AV. Before beginning, for example, the
AV politely explained the functional operations that it could perform through the TTS
system. Contextually relevant information was provided based on the driver’s current
environment [82].

3.1.3. Physiological Sensors Setup

Physiological data including EEG, HR, and GSR were collected at 500 Hz using the
Cognionics data acquisition software. Physiological signals and trigger time were sent
from an EEG headset to the data acquisition software on a PC via Bluetooth. Among
physiological sensors, the collection of EEG data was intended for (i) sleep stage classifica-
tion, and (ii) measurement of driver cognitive load and trust. However, unlike using wet
electrodes in a static environment, the dry EEG amplified the effect of a motion artifact.
Thus, EEG data were not included for further analysis and only GSR and HR data were
used as complementary indicators.
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3.2. TOR Delivery Conditions

The experiment was counterbalanced across subjects with a 3×2 design (Types of
modality: (i) auditory, (ii) visual, (iii) auditory + visual) × (Feedforward timings before
TOR: (i) 5 s, (ii) 10 s). A between-subject design was used to better control the learning
effect on our sleeping scenario and to minimize the time required to participate in the
experiment as well as the boredom, disengagement, and inattention that accompanies
continuous sleeping simulation.

The choice of 5 s and 10 s as feedforward timings before TORs is to study the message
delivery in urgent scenarios. Whether the situation is urgent or non-urgent is determined
by the time given to complete the take-over. This classification, consequently, affects the
take-over completion time. For instance, the driver who received 8 s to complete the
take-over completed it in 5 s, and the driver who received 45 s completed it in 15 s [83].
In another study, when a sleeping driver was given up to 60 s, which corresponds to a
non-urgent situation, approximately 25 s was enough time to complete the take-over [17,40].
However, in unexpected scenarios, take-overs can only be requested urgently, and the time
required for sleeping drivers to take over in those situations may differ from the results of
previous studies. Urgent TOR scenarios, despite their importance, have not been as widely
explored as those of non-urgent situations. In our experiment, the feedforward timings
were set to be delivered 5 s and 10 s before, which was designed for urgent TORs at the
moment of waking from sleep.

Feedforward timings were assigned to each modality session alternatively. With the
above six conditions, the AV provided a TOR with the assigned modality and feedforward
timing as an AV approached a construction zone; inside the construction zone, traffic cones
were placed in a twisting pattern at 3 m intervals to create a demanding situation (Figure 2).

Figure 2. Diagram of the main section of the experiment including the transition of automated driv-
ing and manual driving course; this session was repeated with three modality conditions (auditory,
visual, and auditory + visual).

3.3. Proactive Message Design
3.3.1. Notification Sound

A notification sound accompanied all messages and was provided before both auditory
and visual messages to signal the importance of upcoming events [84]. Two notification
sounds were designed: a non-urgent sound (e.g., when the driver receives a text message)
and an urgent sound that repeatedly cycles between high and low amplitudes, similar to
a siren ((1) in Table 2). Non-urgent sounds were provided in all events except the urgent
TOR event.

3.3.2. Visual Message

In consideration of the limitations to driver memory, the TOR visual message consists
of a ‘How’ message with a pictogram and a ‘Why’ message with a small amount of
text ((2) in Table 2). ‘How’ message pictograms were selected to represent frequently
performed behaviors (e.g., acceleration, deceleration, etc.), which are part of driver long-
term memory [85], and were designed based on common pictograms to support drivers’
quick interpretation [31]. ‘Why’ messages were provided textually because drivers cannot
realistically remember pictograms for all possible situations—due to their short-term
memory—and while the pictograms that support ‘How’ messages represent frequent
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behaviors, there are too many reasons why drivers would need to complete a TOR, and
thus attempting to provide visual cues for each situation could cause confusion.

Table 2. Two-fold message presented to drivers: Type (A), (B). (1) Notification Sound: (A) non-ur-
gent sound, (B) urgent sound; repetitive waveform implies higher urgency. (2) Visual Message: (A)
when automated driving is available and activated, (B) when the autonomous vehicle cannot drive
(take-over request); ‘How’ message is represented by the pictogram: (A) steering wheel without the
driver’s hands; (B) steering wheel with the driver’s hands and ‘Why’ message text. (3) Auditory
Message: the original text message before the text-to-speech process.

Type (1) Notification Sound (2) Visual Message (3) Auditory Message

(A) ‘Start automated driving.’

(B)
‘Construction site!

Road recognition is difficult,
so switch to manual driving.’

3.3.3. Auditory Message

In order to prevent the UX element from failing in terms of providing service, an
auditory message was designed based on honorifics [10]. Considering that trust can
be directly related to the quality of intelligibility, providing speech-based information
is important [86,87]. Messages provided in the experiment used a text-to-speech (TSS)
program ((3) in Table 2). A notification sound was provided first, followed by auditory
messages.

4. Participants

Our sample included 31 subjects (age: M = 23.3; SD = 3.2, gender ratio: male = 22;
female = 9) between 18 and 30 years old, recruited through a Social Network Service (SNS)
for students, researchers, and nearby residents as a voluntary application. Experiment
participation was restricted to subjects with a driver’s license; those with more driving
experience were preferred. Their driving experiences ranged from 0 to 10 years (0–2 years
= 19; 3–4 years = 5; 5–10 years = 7). After completing all experiment sessions, subjects were
paid USD 17 for participation. The study was approved by the Institutional Review Board.

5. Procedure

Upon visiting the laboratory, recruited subjects were provided with a detailed intro-
duction to the experiment. Then, a learning session was performed to acquaint subjects
with samples of modality-based messages and manual driving for familiarity with our
driving simulation testbed. They were asked to fill out a demographic questionnaire, which
included basic questions, such as name, age, gender, and occupation. The questionnaire
also asked whether subjects had experience using automated driving functions (i.e., ACC,
ADAS) and how far they drove each year. Data from demographic questions were not
utilized for further analysis. While filling out a survey, EEG, GSR, and HR sensors were
attached on the scalp, palm, and earlobe in advance for the stabilization of data collection,
and then the experiment began.

Driving began on an urban road with 1.5 min of automated driving to allow the
subjects to become familiar with the automation, followed by a monotonous road. A
sleeping driver who attempts to wake up and perform tasks immediately is challenged by
eye discomfort and pain due to light exposure (photophobia) and a temporary inability
to see objects clearly due to sleep inertia (visual degradation). To elicit photophobia and
approximate the experience of visual degradation during the sleep scenario, the driver was
asked to wear a sleep shade and the screen showed a blurry effect that faded gradually
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(~8 s) during the TOR [50]. Hence, with a feedforward timing of 10 s, study participants
could clearly see the road conditions, whereas with a feedforward timing of 5 s, their vision
would be less clear but gradually become clearer over the next 3 s.

While wearing the sleep shade, subjects were instructed to close their eyes comfortably
and try to sleep. The time for wearing a sleep shade was defined in regard to sleep latency,
the amount of time it takes to go from being fully awake to sleeping. Punjabi et al. examined
the association between multiple sleep latency tests, an objective measure of daytime sleep
trends in the general population (a sample of 261 females and 371 males), with a sleep
latency time of up to 12 min [48]. Jiang et al. set a sleep latency of more than 9.5 min to
investigate physiological effects [49]. Hence, our study chose a longer duration based on
the prior literature and set the time as 12 min wearing a sleep shade.

After 12 min, the AV provided a TOR message at the construction zone. To prevent
participants from ignoring the TOR, we designed a two-fold message: a notification sound
followed by a TOR message with varying modalities. The notification alarm alerts par-
ticipants that the vehicle will soon deliver information. Before the experiment, we asked
participants to remove the sleep shade as soon as they heard the notification sound that
preceded the TOR message and lasts for 2 s. After removing the sleep shade, drivers deacti-
vated the automated driving by pressing a red button on the steering wheel, maintaining
a central position between the winding traffic cones through the construction zone. Lane
deviation and number of traffic cones hit were used to measure distraction and violation.
After finishing the course, the vehicle informed the driver that it could resume automated
driving. The AV then drove approximately 1.5 min to give the driver a short rest before
resuming the study session. After completing each session, subjects were instructed to
fill out the interim questionnaire for machine acceptance (an indicator of trust) [8] and
NASA-TLX (an indicator of workload). This process was repeated three times with different
modality types, and the experiment was finished with a post-experiment questionnaire
that ascertained subjects’ experiences.

6. Evaluation Metrics

To observe drivers’ behavioral and empirical responses under the TOR situation in a
sleep-based scenario, multidimensional measures were collected to indicate each driver’s
condition—such as driving performance, subjective response, and physiological data—with
the assigned condition. These measures were collected to identify driving stability, the
proper feedforward timing to deactivate automated driving, and the time taken by the
driver to become aware of a situation after the TOR.

The time required to accept the TOR was measured to find the safe feedforward timing
for drivers asleep at the wheel. Lane deviation was measured to ascertain how safely
drivers drove through the construction zone while maintaining a central position between
the winding traffic cones. The deviated distance from the central position is as below:

Deviated distance (m) =

√
((x2 − x1)

2 + (y2 − y1)
2) (1)

where x1 and y1 are the coordinates of central position between winding traffic cones, x2, y2
are the midpoint coordinates of AV; the shorter the deviated distance, the safer the driving.

The number of traffic cones that drivers hit was counted. As a driving quality measure
for TOR and situational awareness, time to situation awareness was defined as the time
from the TOR beginning until the driver starts to drive under the posted speed limit of
30 km/h. We measured time for ‘performance of action’, which follows level 3 situa-
tional awareness and participant’s decision to guarantee that participants achieved level 3
situational awareness in Endsly’s model.

For the subjective responses, machine acceptance as the trust indicator and NASA-TLX
as the workload indicator were collected through interim questionnaires and individual
experiences. Preferences were collected through a post-experiment questionnaire. The
questionnaire, developed by CHIMe Lab at Stanford University, ranks machine acceptance
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on a 7-point Likert scale using adjectives such as ‘Intelligent’, ‘Helpful’, ‘Dominant’, and
‘Reliable’. These adjectives were tested for reliability using Cronbach’s α (α = 0.73), which
dictates that items are closely related as a group and acceptable for internal consistency if
the alpha value is over 0.7. With an average score of adjectives, trust toward AV could be
assessed. For the complementary indicator of the driver’s state, physiological data, such as
GSR and HR, were collected [59]. The evaluation metrics collected are as follows.
Driving performance

• Reaction time: time taken to deactivate automated driving;
• Lane deviation: deviation distance from the midpoint;
• Collision: number of traffic cones hit;
• Time to situation awareness: time from the TOR until the vehicle speed falls below the

speed limit.

Interim questionnaire

• Machine Acceptance: subjective measure of trust toward the AV;
• NASA-TLX: level of workload during manual driving after a TOR.

Physiological responses

• GSR, HR: complementary indicators of driver arousal that the TOR evokes.

7. Result

All subjects were provided with the assigned TOR conditions: timing of (i) 5 s and
(ii) 10 s and modalities of (i) auditory (A), (ii) visual (V), and (iii) auditory + visual (A+V).
While engaged in manual driving, driving performance and physiological and subjective re-
sponses were collected. Statistical analyses, such as independent sample t-test and one-way
ANOVA, were used for driving performance, self-reported questionnaires, and physiologi-
cal data between conditions to examine the drivers’ behavioral and empirical responses in
various perspectives: influences of feedforward timings and modality types focused on the
mean comparison between timings, modalities in each timing, and comparison of a single
modality with each timing. Behavioral and subjective measures are illustrated in a graph
divided into two parts; the section left of the dotted line denotes a comparison between
timings and the section to the right includes the types of modalities.

7.1. Driving Performance
7.1.1. Reaction Time

Both feedforward timing and modality type of the TOR are less likely to influence
reaction time. Drivers deactivated automated driving without weighted features on either
feedforwarding timings or modality types (Figure 3). There were no significant differences
between each feedforward timing; before 5 s (M = 3.77, SD = 1) and 10 s (M = 4.14,
SD = 1.16); t(30) = −0.97, p = 0.34 and modality type; F(2,45) = 0.48, p = 0.62 for 5 s and
F(2,45) = 0.62, p = 0.54 for 10 s. This implies that neither the feedforward timing nor the
type of modality account for the faster reaction time to deactivate the automated driving.
However, when the TOR is provided before 10 s, drivers deactivated automation in under
5 s, possibly because they were afforded more time to do so and spent more time becoming
fully aware of the situation.

7.1.2. Lane Deviation

In AV studies, deviation from the center of the lane is a common measure of driving
performance. Drivers with a TOR of 10 s (M = 0.56, SD = 0.22) drove with 48% less
deviation from center than those with a TOR of 5 s (M = 0.83, SD = 0.27); t(28) = 3.01,
p = 0.005 (Figure 4). However, there was no statistically significant difference between
modalities in each timing; F(2,42) = 0.89, p = 0.42 for 5 s and F(2,42) = 0.46, p = 0.63 for
10 s. The only significance in detail was between the auditory + visual modality in each
timing. Drivers who were provided with a TOR of 10 s performed safe driving better than
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in the 5 s condition; t(28) = 3.65, p = 0.001. These data indicate that contributions in the 10 s
condition were significantly better, by 85%, than the 5 s condition while using the auditory
+ visual modality.

Figure 3. Average reaction time after take-over request in a sleep-based scenario.

Figure 4. Deviated distance from the mid-point of traffic cones on both sides at the construction site;
higher values indicate unstable driving. (** p < 0.01; *** p < 0.001).

In other words, lane deviated distance for both auditory modality and visual modality
were not very different between feedforward timings. This indicates that uni-modality
(auditory modality and visual modality) induced safer manual driving than the multi-
modality because uni-modality requires less information processing.

During the experiment, some drivers experienced difficulty in safely staying in the
lanes because the feedforward timing of 5 s was too short. Two subjects failed at deacti-
vating the automated driving after a TOR and were not included in the analysis. These
participants did notice the TOR scenario and reacted to the situation, but they pressed a
button other than the deactivation button and failed to take-over. Because these participants
simply confused which button to press, but still managed to press a button, we believe their
failure is not due to time scarcity or deactivation modality. Rather, we believe temporary
cognitive decline induced by sleep inertia hindered their successful take-over.
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7.1.3. Collision

Drivers with a TOR of 10 s drove through the construction zone safer at 35% more
than 5 s; 5 s condition (M = 9.11, SD = 1.17) and 10 s (M = 6.73, SD = 1.55); t(28) = 4.75,
p = 0.000 (Figure 5). The number of traffic cones hit illustrates the level of driver violation
and distraction and showed more weighted tendencies with the lane deviation measure.

Figure 5. The number of collisions with traffic cones; a higher number indicates more hazardous
driving. There was a significant difference between modalities only for collision. (* p < 0.05; ** p < 0.01;
*** p < 0.001).

Significant differences between each feedforward timing were found mainly in au-
ditory (p = 0.005) and auditory + visual (p = 0.000) conditions, though not in the visual
modality. This signifies that drivers with the auditory modality and the auditory + visual
modality were highly influenced by the feedforward timing whereas drivers with the visual
modality were not. This implies that even if a TOR was provided 5 s before, drivers could
safely navigate the road with the same performance at the 10 s condition.

Unlike other driving performance metrics, the only difference in performance between
modalities was found in collision. In the 5 s condition, there was a significant difference
between modalities; F(2,42) = 7.1, p = 0.002 and drivers with the visual modality performed
manual driving at 35% better than the auditory modality (p = 0.019) and at 44% better than
the auditory + visual modality (p = 0.003). This implies that visually provided information
was effective in terms of safety.

7.1.4. Time to Situational Awareness

Drivers with a TOR of 5 s took 27% less time to become aware of the situation than
participants who received a TOR of 10 s; 5 s condition (M = 6.1, SD = 0.67) and 10 s (M = 8.4,
SD = 1.49); t(28) = −5.45, p = 0.000 (Figure 6). We believe this is because a 5 s condition
increases temporal demand and puts pressure on the driver, thereby reducing the time it
takes to become aware of the situation. In other words, drivers who received a TOR of 10 s
would negotiate the situation relatively more relaxed than those who received a TOR of 5 s.

However, there was no significant difference between modalities in each timing; F(2,42)
= 1.94, p = 0.16 for 5 s and F(2,42) = 1.03, p = 0.36 for 10 s whereas there were significant
differences between all identical modalities in each timing; between auditory, visual, and
auditory + visual modalities; t(28) = −2.16, p = 0.039, t(28) = −4.04, p = 0.000, t(28) = −2.37,
p = 0.025. This implies that drivers with the 10 s condition spent more time becoming aware
of the situation in general regardless of modality type.
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Figure 6. Time to situation awareness; higher time means that it took a long time to be aware of the
situation and enact a safe take-over request. (* p < 0.05; *** p < 0.001).

In addition, drivers with the visual modality showed the most significant difference
between feedforward timings compared to other modality conditions because visual infor-
mation processing requires less time than auditory information, thereby helping drivers
become aware of the situation more quickly. On the other hand, both the auditory modality
and auditory + visual modality, where auditory information processing is inherent, requires
more time because auditory information is acquired continuously.

7.2. Interim Questionnaire
7.2.1. Machine Acceptance

When it comes to trust, as measured by the machine acceptance questionnaire, neither
modality nor timing elicited any statistically significant differences. There was no signif-
icant difference between the average scores of modalities for the 5 s condition (M = 4.31,
SD = 0.72) and 10 s (M = 4.39, SD = 0.67); t(30) = −0.33, p = 0.74 (Figure 7). Trust was
highest in both timings when information was provided visually. However, there was no
significant difference between modalities in each timing; F(2,45) = 0.01, p = 0.98 for 5 s and
F(2,45) = 0.38, p = 0.68 for 10 s. This implies that driver trust toward the AV is less likely to
be influenced by how the information is provided.

Figure 7. Machine acceptance; driver’s trust toward autonomous vehicle; higher values signify more trust.
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7.2.2. NASA-TLX

More workload was induced for the 5 s timing than for 10 s, but there was no significant
difference between the average workload of modalities for providing messages 5 s in
advance (M = 69.54, SD = 9.11) and 10 s (M = 67.35, SD = 10.08); t(28) = 0.62, p = 0.54
(Figure 8). There was also no significant difference between modalities in each timing;
F(2,42) = 0.16, p = 0.85 for 5 s and F(2,42) = 0.1, p = 0.9 for 10 s. This implies that driver
workload is less likely to be influenced by how the information is provided.

Figure 8. NASA-TLX; driver workload after take-over request; higher scores indicate higher work-load.

7.2.3. Appropriateness of Feedforward Timing

Scores on each feedforward timing of the TOR were collected in the post-experiment
questionnaire. Subjects were asked about whether they could distinguish between the
feedforward timing for 5 s and 10 s. Those who answered affirmatively were then asked
about the appropriateness of each timing, using a 7-point Likert scale. Approximately 71%
of total subjects could distinguish between feedforward timings of 5 s and 10 s (Figure 9).
There was a significant difference in the scores for 5 s (M = 1.77, SD = 0.92) and 10 s (M
= 5.64, SD = 1.05); t(21) = −13.729, p = 0.000. This indicates that the average score of 10 s
was viewed positively between ‘Slightly Agree’ and ‘Agree’, whereas the TOR of 5 s was
negatively assessed between ‘Strongly Disagree’ and ‘Disagree’. Hence, in the scenario
where the vehicle issues a TOR and the driver is awakened from sleep, the AV should notify
the driver at least 10 s before the event.

Figure 9. Self-reported evaluation for appropriate feedforward timing. (*** p < 0.001).

7.3. Physiological Responses

During the entire session, GSR and HR were measured to observe the transition of
the driver’s condition and compare vehicle intelligibility for complementary indicators. To
observe the effect between modality types and feedforward timing, analysis was performed
from the 5 s before the TOR to 15 s after the TOR. Both GSR and HR responses from all
test subjects were averaged by time and represented in the graph. GSR was collected
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with Ohm units but generalized to Siemens (S); HR was collected with beats per minute
(bpm). Physiological data are illustrated in the graph, and the same timing categories are
denoted by rectangular or circular markings: Lines with rectangular markings represent
the messages 5 s before and lines with circular markings represent 10 s (Figures 10–12).
Delta means were calculated to best describe the difference between before-and-after events
by subtracting the interval of −5 s to 0 s from the interval of 0 s to 15 s (Table 3) [88].

Figure 10. Average galvanic skin response waveforms including all types of modality and timing
conditions from −5 s to +15 s; higher galvanic skin response indicates greater arousal or cognitive load.

Figure 11. Average galvanic skin response of modalities on each timing between 5 s and 10 s.
Gal-vanic skin response waveform increases at the take-over request before 5 s condition.

7.3.1. Variation of Galvanic Skin Responses

Remarkable responses were found within the 5 s condition (p = 0.014), and the visual
(p = 0.033) and auditory + visual modalities (p = 0.031) were significantly higher by approx-
imately 7.3 and 6.1 times, respectively, than the auditory modality through a Dunnett T3
post hoc test (Figure 10, Table 3). Due to not being engaged in manual driving, or more
specifically the connected state of physical and cognitive attention, GSR data increased
significantly in comparison when t = −5. Red lines with rectangular markings were illus-
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trated as being high compared to lines with circular marking because the 5 s condition was
demanding to negotiate a critical TOR.

Figure 12. Average heart rate waveforms including all types of modality and timing conditions from
−5 to +15 s; higher heart rate response suggests more fear or anxiety.

Table 3. Before-and-after delta means of galvanic skin response and heart rate in relation to the
feedforward timings and modalities.

Timing
Modality

ANOVA
A V A+V

Delta Mean GSR
(from −5 s to 15 s)

5 s 2.07 15.04 12.69 F(2,27) = 5.03, p = 0.014
10 s 0.4 1.5 1.92 F(2,27) = 0.81, p = 0.46

Delta Mean HR
(from −5 s to 15 s)

5 s 2.97 2.97 1.65 F(2,36) = 0.82, p = 0.45
10 s 1.78 1.55 1.07 F(2,36) = 0.33, p = 0.72

For further analysis, the average of modalities with regard to the 5 s and 10 s conditions
is illustrated below (Figure 11). This indicates that drivers with a TOR of 5 s experienced
arousal. The orange line with the rectangular markings was highest, which indicates
that drivers provided with only the visual modality had the highest GSR level when
compared to other conditions, followed by the red line with the auditory + visual modality,
which indicates that drivers provided with the message that accompanies visual modality
experienced high workload [89].

7.3.2. Variation of Heart Rate

The results demonstrated a similar waveform that increases after the TOR with an
increase of GSR linearly, but variations in HR were not remarkably different between
5 s (p = 0.45) and 10 s (p = 0.72) or even modalities through a Dunnett T3 post hoc test.
Compared to the TOR (Figure 12), the GSR waveform (Figure 10) shows that HR was
delayed by approximately 5 s relative to GSR due to its characteristics. After 5 s, HR
increased linearly beyond 15 s. However, HR was not an indicative measure and did not
show the difference before-and-after a TOR compared to GSR data [88,90].

8. Discussion

In this study, we examined awakened drivers’ behavioral and empirical responses
to our experimental conditions and how these conditions relate to the safety of TORs. As
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sleeping is the most preferred NDRT, we focused on each driver’s moment of waking in
response to a TOR, thereby furthering research on a necessary issue.

Several studies have been recently conducted concerning TORs when drivers are
awakened from sleep (Table 4). The differences between our study and previous studies
are: (i) previous studies focused on how driving performance varies with elapsed time after
waking up (TOR), and (ii) we mimicked the waking up experience for several sessions,
by adopting a substitutional method to reproduce the moment of waking from sleep.
This study identifies how to properly provide information in an AV and the appropriate
feedforward timing for a TOR in a sleep-based scenario. To examine these issues and better
account for driver experience, significant matters such as feedforward timing and modality
type of information delivery were analyzed, focusing on influences toward the driver under
a TOR scenario.

Table 4. Summary of the brief foci on take-over request after sleep and the implementation method
of sleeping/waking up situation.

Published Year
and [Reference] Brief Focus of the Previous Studies Implementation Method of

Sleeping/Waking Up Situation

2020 [39] Investigate take-over time and the effect of sleep
inertia during 1~15 min after waking from sleep

Actual sleep of 15–20 min was performed in the
driving simulator

2020 [17] Investigate the ability of a driver to reengage in
manual driving after waking from sleep within 60 s

Sleep deprivation (<4 h) was used and experiment
was repeated twice, the main session (2nd) was
conducted at 6 a.m. whereas the familiarization
session (1st) was not defined

2021 [40] Assessed take-over behavior immediately after sleep
and driving behavior during the 10 min after sleep

Sleep deprivation (<4 h) was used and participants
were instructed not to consume caffeine

8.1. Effect of Feedforward Timing between 5 s vs. 10 s

Driving-performance-related evaluation metrics, such as number of collisions, lane
deviation, and time to situational awareness, showed that drivers could safely negotiate
the TOR in 10 s better than in 5 s. In contrast, measures such as reaction time and self-
reported measures, including trust and workload, did not show significant differences
between timings. This indicates that, as Vogelpohl et al. point out, reaction time may
not be a reliable measure of a successful TOR transition as automation deactivation itself
does not represent full transition back to manual driving [16]. Furthermore, subjective
ratings may not be precise enough to distinguish between the two conditions, even though
driving performance differed significantly. Hence, for safe driving, the importance of
driving performance measures and time to situational awareness precedes that of subjective
measures in designing intelligibility services in AVs.

8.2. Effect between Modalities

According to most evaluation metrics, drivers could not significantly distinguish
between modality-based information due to being highly focused on the urgent and de-
manding situation. The reason for this overall non-significant result could be because
drivers were more focused on the impending TOR event rather than the information, which
thus implies that drivers were less likely to be influenced by modality types. The only
significant difference among modalities was found on ‘collision’ within the 5 s condition,
where visual modality positively affected safety. This seems to be because hitting traf-
fic cones was an impactful violation and thus an intuitive measure compared to other
evaluation metrics.

Even though the participants’ visual channel had been handicapped by the photopho-
bia effect and visual degradation after removing the sleep shade, which in turn induced
higher cognitive load, the visual message led to better driving performance after TORs
than the auditory message. We believe this is due primarily to the time difference required
to provide a TOR between the two modalities. In our experiment, the visual message
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delivered complete information immediately, whereas the auditory message took 5 s to
complete. Since a TOR request imposes on drivers a high temporal demand, this difference
of a few seconds can affect driver experience. Consequently, although the auditory channel
has more leftover capacity during driving, which is mainly a visual activity, the visual
modality can convey information more quickly and thus induce better driving performance,
as measured by the number of collisions.

8.3. Interpretation of Reaction Time and Situational Awareness

Drivers deactivated the automated driving subjectively—some drivers acted promptly
whereas others did so leisurely, and thus reaction times within the 5 s and 10 s conditions
were not significantly different from each other. Situational awareness, however, showed
that drivers who were provided with a TOR of 10 s spent more time becoming aware of
the situation than 5 s, though both reaction time and situational awareness were measured
from the same starting point. Drivers with a TOR of 5 s deactivated the automated driving
without becoming fully aware of the situation because the TOR was impending. This
implies that at least 10 s or more is suitable for safely taking over the driving authority and
becoming fully aware of the situation.

Visual information was best for situational awareness because drivers could quickly
process it and thus use more time to become aware of the situation. Conversely, even though
multimodal information can facilitate perception of information more effectively [91,92],
auditory and auditory + visual information continuously provided information which
took more time to fully transfer and thus slowed situational awareness. Therefore, AVs
should provide concise and short information—predefined protocol or differentiated
signal/sound—in an impending situation to support manual driving.

8.4. Physiological Responses

The rise in the average level of GSR after the zero reference was remarkably higher
with visual and visual + auditory modalities than with just the auditory modality, especially
at the 5 s condition. This result indicates that visual messages aroused the driver more than
auditory messages alone. We assume this difference in arousal arises from sleep inertia-
induced photophobia and visual degradation effects. The photophobia effect and visual
degradation after waking seem to have hindered visual cognitive processing, imposing
additional load and stress to the drivers.

However, in 10 s cases, there was no significant difference between modalities. As
visual degradation, which diminishes over time, is equally set for both timing conditions,
drivers had more time and clearer vision to cope with the situation at the 10 s condition.
We believe this is the main reason behind the non-significance: Drivers could see the
message relatively clearly after visual degradation was relieved, and the modality effect,
consequently, had been equalized in the 10 s condition.

8.5. Relation between Driving Time and Sleep Inertia

Our study connects to the previous literature on sleep and TOR [17,40], extending the
findings from previous works by focusing on urgent TOR situations. Wörle et al. examined
TOR feedforward timing conditions of (i) 60 s [17] and (ii) 15 s [40] through subsequent
studies. Both studies evaluated driving performance after a TOR with recorded videos.
The performance measure of a TOR provided 15 s before an event was comparable to that
of the TOR delivered 60 s before, for a more extended period [40]. However, the findings
of our study revealed that drivers might suffer from low driving performance when the
message is delivered less than 10 s in advance.

Our study concentrates on the moments immediately after waking, while Wörle et al.
focus more on longer-term recovery from sleep inertia. Sometimes, AVs may request a take-
over urgently, regardless of the driver’s sleep condition. TORs in such urgent circumstances
are as important, if not more so, than typical TOR situations. Thus, we set the driving
time after a TOR to be 1 min in duration, paying more attention to the time when the sleep
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inertia-induced cognitive decline is the most severe. In conjunction with previous studies,
we believe our study results can inform AV design regarding delivery of TOR messages in
urgent scenarios. Our study contributes new knowledge of the TOR situations when a car
faces emergencies and the driver is sleeping.

9. Limitations
9.1. Adoption of Sleep-Based Scenario

Even though our novel method was robustly designed in terms of the physical and
cognitive experiences of drivers, it has several limitations before it can be applied to an
experiment testbed. First, the method that we adopted in this study is neither verified nor
generally used in this field, whereas many studies adopted a sleep deprivation method
to induce sleep. To better control our experimental conditions and prevent collection
of deteriorated data from repeated sleep deprivation methods following the number of
conditions, we need a better way that enables repeated experimental design and mimics
the moment of waking. Since our study deals with the situation at the moment of waking
from sleep, we decided to set 12 min of wearing a sleep shade for the sleep latency time
following studies that implemented the sleep situation [48,49].

Second, although our sleeping method mimics a sleep situation with high fidelity, it
should be tested to determine if it can effectively replace actual sleep. An attempt was
made to measure EEG to identify distinctive waveforms generated by sleeping drivers.
However, the frequency of impact between the driver’s head and the headrest complicated
collection attempts.

Lastly, instead of blocking light with a sleep shade to induce eye discomfort, utilizing
virtual reality or controlling light in the test space should be considered with regard to
reaction time. Moreover, the experiment was conducted with a laboratory-based driving
simulator, which may have influenced the immersiveness of such a demanding situation.
However, a driving environment is simpler in a simulator study than in the real world,
where drivers must cope with a large number of events; the amount of overall information
processing required of a driver is less in the simulator [93]. Furthermore, experimental
factors were intensively implemented in this concisely simulated setting. Therefore, we
believe that our simulation study can substitute for real-road experiments presenting
equivalent results and implications, and at the same time avoid hazardous issues from a
real-road experiment, such as a situation where a driver must negotiate a TOR situation
after taking off a sleep shade in the real world.

9.2. Motion Artifact and Noise in Electroencephalography (EEG) Signals

Based on the existing literature, we included an EEG headset in our experimental setup
to measure driver sleep stages [94,95], cognitive load [96,97], and trust [98–101]. However,
the EEG data were not included for analysis since frequent motion hindered our ability to
obtain reliable data from the dry electrodes. Our experimental settings to ensure ecological
validity, such as muscle movements to take off the sleep shades or head bumps on the
headrest during driving, generated motion artifacts frequently. Another major source of
noise signals was shifts of electrode positions after driving-related movements [102]. These
shifts were exacerbated by using dry electrodes which do not adhere to skin as well as wet
electrodes [103]. We suspect that a wet electrode EEG attached to the participant’s scalp
would relieve the issue of signal quality, and thereby allow sleep-stage classification and
reliable measurement of cognitive load and trust in ecologically valid settings.

9.3. Necessity of Alternative Survey for Subjective Measures

Inquiring about subjective experiences of trust and workload could be inappropriate
for the TOR delivery condition. It was difficult to evaluate driver experiences while
recognizing the fact that the empirical factors were caused by the intelligibility of AV
because drivers had been highly immersed in taking over driving authority and performing
manual driving with urgency after the sleep-based scenario. Perhaps a post-experiment
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survey cannot accurately reflect driver experiences; rather, adopting a real-time evaluation
method (e.g., contextual inquiry) or dividing the survey into sub-dimensions could better
represent the driver experiences.

10. Conclusions

We investigated how driving performance, perceived task workload, AV acceptance,
and physiological responses vary so as to present a guide and manner in which to align
intelligibility services for take-over request alerts that are appropriate to wake a driver from
sleep and the take-over scenario with the greatest needs. Drivers awakened by a take-over
request alert delivered >10 s prior to an event were more focused on the driving context
regardless of the presentation manner (i.e., situation awareness aid). The >10 s take-over
request alert allowed drivers more time to adapt to situations with the highest demand.
On the other hand, even take-over request alerts delivered within 5 s, if designed with an
appropriate presentation modality, significantly reduced the time drivers needed to safely
adapt to situations while maintaining equivalent levels of autonomous vehicle acceptance
and perceived task workload to take-over request alerts delivered in >10 s. In particular,
unlike take-over request alerts delivered in >10 s, a visual accompaniment was critical for
a safe take-over request delivered in <5 s. Data on physiological arousal also reveal that
visual or visual + auditory take-over request alerts are more efficient in higher temporal
demand situations (i.e., when delivered at fewer than 5 s rather than at greater than 10 s),
which helps drivers switch quickly to more attentive manual driving.

This study contributes to understanding the influence of take-over requests at the mo-
ment drivers wake from sleep, thereby delivering guidelines regarding take-over requests
in autonomous vehicles, focusing on when (feedforward timing) and how (modality type)
to inform drivers who wake from sleep. This research will support safer take-over requests
in conditional automation (level 3). Far beyond level 3, in higher automation (level 4~5)
where intelligibility services and non-driving related services are prevalent, this will also
contribute to the improvement of the manner and guidelines for when and how to best
inform drivers who wake from sleep in autonomous vehicles. This knowledge will be
useful for car developers who wish to design autonomous vehicles that best comply with
the safest guidelines for take-over requests aimed at sleeping drivers. This will also assist
researchers in conducting further in-depth research, as shown in future works below.

The current study sets out some avenues for future work. First, the foci of this study
are situations where take-over requests occur and drivers wake from sleep. We will conduct
more take-over request studies by extending to other non-driving related tasks, such
as eating/drinking, using media, and having a conversation with passengers, thereby
comparing how drivers in various situations react to take-over requests. This enhances
the manner in which an autonomous vehicle can provide take-over requests that consider
drivers’ in-situ situations (e.g., non-driving related tasks and the driver’s physical state
and distraction based on sensor data) and enables development of an intelligent system to
adaptively support driver-centered take-over requests in autonomous vehicles. Secondly,
as a means of implementing an intelligent system, development of a machine learning
model to automatically classify ‘user interruptibility’ is required. Hence, we will develop
a machine learning model for evaluation metrics that were collected in this study (e.g.,
driving performances, physiological responses, and other feature extraction from video
recordings). Lastly, this study is expected to be beneficial in its field for its exploration of
drivers’ reactions to take-over requests in enhanced reality (e.g., actual vehicle) and for
elements of its experimental design, such as sleep by time difference.
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