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Featured Application: The MATANA framework is particularly suited for critical embedded sys-
tems that want to design and integrate flexible attack detection mechanisms based on microarchi-
tectural signal observation.

Abstract: Microarchitectural attacks exploit target hardware properties to break software isolation
techniques used by the processor. These attacks are extremely powerful and hard to detect since
the determination of the program execution’s impact on the microarchitecture is at the same time
not precisely understood and not easily observable at the software layer. Some approaches have
attempted to benefit from existing hardware to better understand and detect the microarchitectural
attacks (i.e., Hardware Performance Counters or Arm CoreSight), but such hardware was not meant
to be used for cybersecurity, with reduced choice on observable signals and limited throughput of
information. In this paper, we propose MATANA, an open and adaptive reconfigurable hardware/
software co-designed framework. Combining fine-grained analysis of microarchitectural signals
and software support, MATANA allows to design and assess detection mechanisms for attacks by
characterizing their microarchitectural effects—in particular, microarchitectural attacks, but also
some high-level attacks such as return-oriented programming attacks. The paper also describes a
prototype implementation, built with a RISC-V softcore processor Rocket running Linux 4.15 on
a Virtex-6 FPGA. We successfully used MATANA to analyze cache side-channel attacks and build
attack detection logic from two different perspectives: instruction-based and memory-access-based.
We also successfully detected return-oriented programming attacks by exhibiting a specific behavioral
pattern on the microarchitecture.

Keywords: attacks detection; hardware/software co-design; side-channel attacks; return-oriented
programming; RISC-V

1. Introduction

With the emergence of attacks targeting hardware microarchitecture, including Cache
Side-Channel Attacks (CSCAs) such as Flush + Reload [1] and Prime + Probe [2], and tran-
sient execution attacks such as Spectre [3] and Meltdown [4], a deep understanding of
the system’s microarchitecture and the study of how the microarchitecture is affected by
the software execution has become a very important research issue. Microarchitectural
information describes the inner state of the hardware, which is supposed to be transparent
to the software. This microarchitectural information includes both storage information,
such as a register indicating whether the current execution is a speculative execution,
and timing information, such as the execution time of one access to the cache. Many mi-
croarchitectural attacks consist in collecting and analyzing microarchitectural information
in order to gain knowledge about other processes sharing the same hardware. For example,
in Flush + Reload, the attacker measures the access time to a specific memory address,
they can then infer whether this address is in the cache and deduce whether the victim
process accessed the same address or not. This use of microarchitectural information breaks
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the hypothesis of interprocess isolation and can be used by an attacker to discover and
exploit vulnerabilities.

Different prevention mechanisms, from pure hardware to pure software solutions,
have already been proposed in the literature [5,6]. They mainly involve disabling the opti-
mizations, enforcing resources isolation, or enforcing constant-time execution. However,
these mechanisms are not sufficient for several reasons. As microarchitectural attacks often
rely on hardware-level optimization, an always-active prevention mechanism may impede
the performances of the processor or the software, which may be unacceptable in some
situations. Furthermore, hardware modifications, such as the partitioning of hardware
resources, also require privileged software to identify the nature of different software and
manage the use of these partitions, which may be quite complicated in complex environ-
ments. Finally, it is very difficult to design prevention mechanisms that cover all the attack
surface at the microarchitecture level, mainly because this attack surface is not clearly
identified currently. As a consequence, it is important to design and implement detection
mechanisms that complement the prevention mechanisms.

From the attack detection point of view, the fact that the microarchitectural information
is hardly accessible to software makes it difficult to implement efficient and easy-to-use
countermeasures against the microarchitectural attacks, and more generally, to characterize
the footprint of attacks on the microarchitecture. Existing runtime analysis and detection
of microarchitectural attacks mainly rely on Hardware Performance Counters (HPCs) [7].
Available on most modern processors, HPCs store counts of microarchitectural events of
the processor using a set of special-purpose registers. These HPCs can be analyzed by
software in order to build some behavior model of either malicious or legitimate processes.
Even if HPCs have been used to successfully detect some cache attacks on cryptographic
algorithms (RSA, AES, . . . ), they suffer from inherent limitations: First, almost all of the
proposed detection algorithms are based on software detection. Compared with dedicated
hardware solutions, the cost can be prohibitive in a complex environment composed
of numerous processes running in parallel. Second, proposed techniques usually lack
generality and adaptability. In particular, they use a limited set of attacks to validate their
proposals. Overall, none of these solutions are sufficient to address the multiplicity of
the attacks and their mutation capabilities. In this paper, we propose a reconfigurable
framework based on the analysis of microarchitectural signals for the detection of several
classes of attacks, especially microarchitectural attacks, called MATANA. Our solution
is based on a reconfigurable fabric, deeply integrated into a processor fabric, aimed at
capturing meaningful internal signals by executing a set of detection algorithms and alerting
the system in case of an attack.

To assess the validity of the approach, i.e., the use of a fully reconfigurable fabric for
detection purposes, we evaluated our solution with a frequency gap between the detection
module and the processor. We implemented MATANA into the RISC-V Instruction Set
Architecture (ISA) [8] softcore processor Rocket [9] with Linux support on the Xilinx ML605
Field Programmable Gate Array (FPGA) platform. We successfully analyzed and designed
detection mechanisms for two classes of attacks that exploit different mechanisms: a class
of attacks that exploit microarchitecture without altering the control flow of a program
(i.e., CSCAs); a class that alters the control flow (i.e., Return-Oriented Programming [ROP]
attack). For the first class of attacks, we based our detection on instruction patterns and
memory access patterns; we found no false positive for the first approach and a few
ones for the second with better sensitivity. For the second class of attacks, we detected
alteration on the control flow by defining some metrics and thresholds on attack-free
benchmarks and applied them to evaluate attack benchmarks. We also successfully detected
attacks with no false positives. The source code of our framework, including MATANA
hardware architecture, software stack, and the use cases described in Section 5, is available
at https://gitlab.laas.fr/matana (accessed on 10 January 2022).

The contributions of the paper are as follows:

https://gitlab.laas.fr/matana
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• A novel microarchitectural signal runtime monitoring and analysis framework, which
allows better understanding of interactions between software and microarchitecture
at runtime;

• A methodology that enables, from the analysis of purposely chosen microarchitectural
signals, the detection of various families of attacks via the characterization of their
microarchitectural footprints;

• An open source framework implementation that can run on real hardware with
Linux kernel;

• A deep presentation and analysis of two use cases in which we successfully built an
appropriate detection logic for CSCAs and ROP attacks.

The paper is organized as follows. Section 2 is dedicated to the state of the art
and presents some technical solutions dealing with the extraction of microarchitectural
information and their relevance for intrusion detection. Section 3 provides an overview of
MATANA and presents the considered threat model, the integration process into a target
system, and the global detection methodology. Section 4 presents the detailed architecture
of MATANA, both hardware and software. Section 5 describes two use cases of attack
detection, i.e., CSCAs and ROP attacks on a RISC-V target system. Section 6 discusses
the advantages and limitations of our framework, and Section 7 draws some conclusions
and perspectives.

2. Related Work

As this paper is aimed at designing attack detection mechanisms at the microarchitec-
ture level, the related work in this section focuses on existing methods that aim at collecting
and analyzing microarchitectural signals and their use for attack detection.

2.1. Hardware Event Counters

HPCs are special-purpose registers located inside the processor that count the number
of occurrences of microarchitectural events, such as L1 cache miss, instruction retired, bus
access, branch misprediction, etc. In most modern processors, the number of events that can
be monitored ranges from twenty to more than a few hundreds, but only a limited set can
be selected at a time, around 2 to 8 for many processors. The HPCs were mostly designed
to measure the performance of software running on top of a given processor and to help in
optimizing the software. Although HPCs are not designed for security, there is significant
use of HPCs for microarchitectural attack detection in several research works since they
are easily accessible by software [7,10]. The proposed approaches involve profiling the
software with the counted events in order to either identify the characteristics of attacks
(so-called signature-based approach [11,12]), identifying the characteristics of a legitimate
software (so-called anomaly-based approach [13]), or a mix of them [14]. The profiling can
be performed with machine learning algorithms [10,11,13,14] or using some heuristics [12].

Similar to HPC, Chen et al. proposed CC-Hunter [15], which adds event monitoring
logic in shared hardware and counts whenever one process uses specific hardware resources
that are already occupied by another process. It allows the detection of Covert Timing
Channels (CTCs), which use the leak of microarchitectural timing information to secretly
communicate between different processes. PMUe [16] proposed the detection of ROP
attacks based on modified HPCs. It contains a hardware logic recognizing short instructions
separated by branch misprediction events, which is a typical ROP pattern.

However, existing hardware event counters approaches only focus on counters in a
small and predefined list, without discussing a systematic approach to evaluate various
microarchitectural events and find what events can efficiently contribute to detect attacks.

2.2. Instruction Tracing

Arm CoreSight [17] is another microarchitectural monitoring technology available
for off-the-shelf processors. Arm CoreSight is a debug and trace technology inside Arm’s
System-on-Chip (SoC). Its Program Trace Macrocell [18] collects instruction traces by means
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of tracing key instructions, such as branch, exception, and synchronization. These traces
can be accessed via the bus or debug port. To the best of our knowledge, there is no
microarchitectural attack detection using Arm CoreSight but some papers mention its use
for research works in Dynamic Information Flow Tracking (DIFT) [19] and code reuse
detection [20]. The proposed approaches consist of capturing representative traces inside
the processor, then decompressing and analyzing these traces inside the FPGA. Compared
with hardware event counters, Arm CoreSight provides much fine-grained information
about the software’s execution, and the analysis can proceed in parallel inside the FPGA to
reduce the execution time of the detection process. However, limited by the bus structure,
the FPGA can only obtain little information when running continuous analysis.

Similar hardware monitoring techniques that target the fine-grained instruction and
data trace of the processor have also been proposed in different academic research works.
Several tag-based monitoring techniques for DIFT have been notably proposed. The Raksha
architecture [21] consists in modifying the pipeline to include tag related memory, tag
propagation, and verification logic, while FlexCore [22] and Harmoni [23] use a dedicated
component. Trace-based monitoring techniques have also been proposed to allow collection
and analysis of the execution trace. LBA [24] performs the analysis on a general-purpose
core; PHMon [25] performs the analysis on a coprocessor; while REHAD [26] describes a
solution to detect Flush + Reload attack by means of a dedicated component. Among these
works, only FlexCore and REHAD discuss the use of reconfigurable hardware for flexible
detection logic structure, and only REHAD targets microarchitectural attack detection.
However, even in REHAD—the detection algorithm design phase—the generality of the
approach for several classes of attacks and an exhaustive evaluation of the attack detection
are not provided.

2.3. Hardware Signal Probing

To observe more fine-grained arbitrary signals inside the SoC, hardware signal probing
techniques, such as Xilinx ChipScope [27] or Intel SignalTap [28] can be used. Such probes
can be directly connected to the chosen signal: sample signal values at each clock cycle,
store them in a buffer, and send this buffer via debug port when a trigger condition is
reached. Such probes are commonly used to debug the hardware, where debug information
is received and analyzed by another system (Host). Although it benefits from fine-grained
and flexible monitoring capabilities, the data transfer throughput is still limited by the
debug port. Hardware signal probing techniques can be a solution for passive off-chip
analysis, but are not suitable for the continuous monitoring of large amount of fine-grained
signals. Perhaps due to this reason, we do not have knowledge of any application of this
technology for security purposes.

However, some less flexible propositions—such as the monitoring of a small amount
of selected microarchitectural signals directly in hardware—have been proposed to enforce
the security of a specific hardware component. For instance, LiD-CAT [29] monitors cache-
related signals and performs detection with a state machine constructed based on a formal
description of cache information leakage attacks.

The study of the current research works shows, in our opinion, that there is a real need
for a more open and free framework that can monitor a large amount of microarchitectural
signals in real time, based on real software and hardware, to design and evaluate different
detection techniques for some specific attacks. MATANA is designed to fill this gap. A
comparison of MATANA with previously presented solutions can be found in Table 1.
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Table 1. Comparison of different attack detection systems based on the analysis of microarchitectural
signals. Reconfigurability is classified high if some reconfigurable fabric is used, limited if some
configuration bits that change the hardware’s behavior exist, and no if the reconfigurability is not
possible or not discussed. Note: CTC = Covert Timing Channel, CSCA = Cache Side-Channel Attack,
ROP = Return-Oriented Programming, DIFT = Dynamic Information Flow Tracking.

Implemented Protection against Monitored Reconfigurability Methodology
Microarch Attacks Control-Flow Attacks Signals Type Provided

HPC-based [10–14] unspecific no event limited no
CC-Hunter [15] CTCs detection no event limited no
PMUe [16] no ROP detection event no no
Wahab et al. [19] no DIFT instruction high no
Lee et al. [20] no ROP detection instruction high no
Raksha [21] no DIFT instruction + tag limited no
FlexCore [22] no DIFT instruction high no
Harmoni [23] no DIFT instruction + tag limited no
LBA [24] no DIFT instruction no no
PHMon [25] no DIFT instruction limited no
REHAD [26] CSCAs detection no instruction high no
LiD-CAT [29] CSCAs detection no cache internal no no
MATANA unspecific unspecific any high yes

3. Overview of MATANA

This section provides a detailed overview of our methodology to detect attacks by
characterizing their microarchitectural fingerprint using MATANA. We first introduce the
assumptions and threat model considered in the paper; then, we describe the required
modifications of the target system (both software and hardware) and present our itera-
tive methodology to design detection algorithms suited for detecting some specific class
of attacks.

3.1. Assumptions and Threat Model

We consider an attacker with regular user privileges. The threat model considered
is the following: (1) the attacker does not have any physical access to the system; (2) the
attacker can execute any userland attack and victim process; (3) the attacker has full control
of the attack process; (4) the attacker cannot directly read the memory content of the victim
process but can bypass interprocess isolation mechanisms using microarchitectural infor-
mation. The detection algorithms are implemented both in hardware and software (inside
the target system kernel). As a consequence, we also make the assumption that the kernel
of the target system is trusted. As we assume that the attacker does not have any physical
access to the system, the nonintrusive side-channel attacks based on physical access—such
as power measurement analysis—are out of the scope of this paper, as they do not modify
the system state and their behavior stays invisible at the microarchitectural level. Fault
injection attacks are also out of the scope of this paper, as they could damage the hardware
detection logic (such as laser beams that could create bit flips in the detection logic).

3.2. MATANA Design Flow

Figure 1 presents the design flow to integrate MATANA into a target system. MATANA
follows a white box approach, where a precise description of the microarchitecture is re-
quired as well as a description of the target attack that must be detected. The design flow is
split into four main steps:

1. From the description of the microarchitecture of the target and the description of the
attack, selection of the relevant internal signals that are modified when the target
attack is performed, and design of the associated detection algorithm. More details
on the methodology are provided in Section 3.3.
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2. Patch of the target microarchitecture to output the signals (identified in step 1) towards
the Detection Module. This Detection Module must also be connected to the system
bus to communicate with software and connected to the processor interrupt system.
More details are provided in Section 4.

3. Patch of the system kernel to allow communications from/to the Detection Module
and the handling of interrupt requests.

4. Integration of the patched software and hardware into the final target system.

Target system
generator

Attack
description

Monitored
signals list

Attack detection
algorithm

Target
patched

Target patching

Target microarchi-
tectural description

MATANA
configured

MATANA configuring
(hardware and software)

MATANA
blank module

Target system with
MATANA integrated

Figure 1. Design flow for integrating MATANA into a target system.

3.3. Methodology for Designing Attack Detection Algorithms

Figure 2 describes our iterative methodology to design and implement attack detection
using MATANA. The methodology is composed of five steps:

1. Signal Selection. This step aims at selecting the most appropriate monitored signals
for attack detection. As the methodology is iterative, this selection may be refined at
each iteration. At first, a large number of different signals can be chosen, ranging from
some generally useful signals such as the instruction flow (since microarchitectural
attacks are based on relatively small instruction patterns) to some attack specific
signals such as cache and memory events. For the following iterations, the selection
of monitored signals may be adjusted according to the experimentation results in step
4 by removing some less-efficient signals or adding some related signals.

2. Probe Connection. The probe connection step consists in choosing a proper clock
domain crossing technique used for connecting each selected signal to the Detection
Module, with consideration of information quantity, area overhead, and detection
accuracy. This step is only required if the Detection Module is not running at the
same frequency as the processor. This distinction is important since, in the case of
a reconfigurable Detection Module, the frequency may be much smaller that the
processor’s core. We illustrate the detection method at low frequency in Section 5.2.
For more information regarding transmission techniques, the reader can refer to
Section 4.3.

3. Detection Logic Design. This step aims at designing the detection algorithm intended
to be implemented into the Detection Module. The inputs of the algorithm are the
signals selected in step 1, and the output is an alert when an attack occurs. The
algorithm itself can be designed based on the expected behavior of target components,
the properties of target attacks, or be adapted from any previously known detection
algorithms. Thanks to the fast reconfigurability offered by MATANA, a “trial and
error” methodology is possible to investigate different detection methods for a given
attack. Since no assumption is required on the type of algorithm, simple techniques
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such as heuristic-based pattern matching to more sophisticated ones based on state
machine or machine learning can also be evaluated.

4. Benchmarking. This step aims at carrying out some experiments to assess the rel-
evance of the attack detector (with signals, connections, and algorithms defined
in previous steps) by means of some appropriate benchmarks. For this purpose,
MATANA is equipped with an Operating System (OS) aimed at running sufficient
benchmarks to evaluate the accuracy of the detection. In our approach, we chose one
benchmark that represents an effective attack, and the others were picked from state
of the art benchmarks to cover the majority of applications, i.e., mainly CoreMark and
Embench. Let us note that without any benchmark, MATANA can also evaluate the
stability of the detector since the OS is always running in background. If the detection
logic implemented exhibits too many false positives or false negatives, it is necessary
to go back to step 1 or 3 and to improve either the selection of signals or the design of
the detection logic itself.

5. Deployment. When the detection logic exhibits a good detection rate, a final step
consists in optimizing the solution for its deployment in final products. To our view-
point, the best choice for the final product is a reconfigurable Detection Module for
detection flexibility, with fixed monitored signals integrated into the target component
in order to reduce performance impact. For a Detection Module that is supposed
to detect multiple attacks, the size of reconfigurable fabric should be sufficient to
contain at least each algorithm and ideally multiple algorithms at the same time.
For that purpose, some additional place is needed to allow the evolution of detection
algorithms and the monitored signals should be the concatenation of all required
signals. Other classical optimization must also be done in this step, such as reducing
hardware resource utilization, optimizing for frequency and power consumption, and
revisiting the performance impact of software support, while maintaining adequate
detection efficiency.

Figure 2. Methodology for attack detection using MATANA.

MATANA can also serve as an experimentation platform to evaluate the effectiveness
of attack mitigation for a given hardware component (ideally a soft IP core) in a real
execution environment. For example, it is possible to integrate a new cache within the SoC
and analyze the correlation between the microarchitectural signals and some victim secret
using steps 1 to 4.

4. MATANA Detailed Architecture

MATANA architecture is presented in Figure 3. MATANA is built on top of a target
system and is composed of one or multiple probes, a Detection Module, and connections.
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Processor Core

Other
components

Probe

Probe

Detection Module
(Software)

Detection Module
(Hardware)

Detection
patterns

MMIO registers

(Optional) Slow clock domain

System Bus

Target System
(open source)

MATANA
Probes and Connections

MATANA
Detection Module

Probed signals

Interrupt

master slave

Figure 3. MATANA architecture.

4.1. Hardware Architecture

Probes are integrated on target components that are supposed to be monitored in order
to extract their internal signals’ values (called probed signals in the following). The target
components must allow additional connections. The presence and placement of these
probes is crucial in the architecture because the quality of the detection highly depends
on the analysis of these signals. If the different probes are adequately placed on the target
components, they can provide a large cycle-accurate data set that gives a precise view of
the system state, which is essential to build appropriate detection logic.

The Detection Module is a combination of hardware and software, and is the core
component in which the detection algorithms are implemented. It has been designed as a
stand-alone module at both the hardware and software level, for better modularity of the
system. The hardware part of the Detection Module (called hardware Detection Module in
the following) is implemented in a fully reconfigurable fabric to perform different custom
runtime analyses on probed signals. It is equipped with a set of Memory-Mapped I/O
(MMIO) registers and memory zone, and provides its intermediate results to the software
part of the module (called software Detection Module in the following) located in the
system kernel. Additionally, the hardware Detection Module can send interruptions to
the processor by means of the interrupt link, in case the hardware requires an immediate
intervention of the software—for example, when an attack is detected. It is up to the
software Detection Module to decide whether it is a real attack and what action to take,
as it benefits from a more global and accurate view of the execution environment. We did
not add any other signal from the Detection Module to the target components, because this
would require modification of the target components so that they can handle these signals.

By default, the probed signals are directly connected to the hardware Detection Module.
This dedicated Probe Connection (which does not require any shared bus) guarantees high
throughput and low-latency data transfer that is unaffected by other system activities.
However, when the hardware Detection Module is configured in a slower clock domain,
other Probe Connections are needed, as presented in Section 4.3.

For the flexibility in the design phase, i.e., to allow the evaluation of different detection
algorithms based on different probed signals, as described in Section 3.3, the target com-
ponents, hardware Detection Module, and its connections are located on a reconfigurable
fabric such as an FPGA. Other parts of the target system may be outside of it, as long
as the synchronization is properly configured. Let us underline that this framework is
independent of the ISA, which means that many systems are compliant with MATANA
as long as (1) the target components can output some internal signals and (2) access to a
system bus and an interrupt link are provided to the reconfigurable part.
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The design phase is intended to easily assess different detection algorithms. At the
end of this phase, i.e., when some relevant detection algorithms are identified and adopted,
the integration of these algorithms into final products (manufacturing phase, as described
in Figure 2) only necessitates that the hardware Detection Module and some specific
required I/O are located in the reconfigurable fabric to preserve flexibility (as shown in
dotted rectangle in Figure 3). This configuration allows the integration of probes into
high-frequency target components, thus providing a balance between design effort, SoC
performance, and detection flexibility for future attacks. The experiments we carried out
seem to confirm this choice, as we show in Section 5 that we are able to design efficient
detectors with few and standard signals for two completely different classes of attacks.
Let us note that the set of probed signals may evolve according to the processor’s version
to include new relevant signals and increase the accuracy of the detection. Anyway,
it remains possible for previous versions to build a detector for new attacks (even if
not perfect), thanks to the implemented probes available in this version, by purposely
reconfiguring the detection algorithms implemented in the Detection Module.

4.2. Software Support

The hardware Detection Module may be used alone in order to collect and analyze the
probed signals and provide results to the outside, using the debug port, for further offline
analysis. This would be very similar to hardware signal probing techniques but slightly
better because the analysis of the different signals enables the output of more meaningful
information. However, hardware-only analysis is too restrictive to our viewpoint because
(1) some detection logics are quite difficult to implement in hardware; (2) it cannot benefit
from important information that can be retrieved from the global state of the runtime
environment; and (3) when an attack is detected, the hardware Detection Module can
only perform limited actions defined by the physical logic implemented, which may be
insufficient for a complex system. For that purpose, we argue that the software part in the
Detection Module of MATANA framework is important.

The software Detection Module is located in the system kernel, and, as mentioned
in the threat model, is considered trusted. Its main functionalities consist of (but are not
limited to) the following: (1) providing additional high-level information to the hardware
Detection Module, such as the current Process Identifier (PID); (2) performing runtime
data analysis that is not easily feasible or too costly at the hardware level; (3) dynamically
adjusting the configuration of the hardware Detection Module by setting values to MMIO
registers; (4) handling interruptions sent by hardware Detection Module; (5) performing
postrun data collection and analysis.

Let us note that this framework does not require any modification on userland pro-
grams executed (either benign or malicious), e.g., to include tags or special instructions. It
guarantees that MATANA is compatible with existing software environments and, as only
few modifications are required at kernel level, it can be widely used even for nonembed-
ded applications.

A typical use case scenario of MATANA is as follows: the hardware Detection Module
processes probed signals with information and the configuration sent by the software
Detection Module and places the analysis result into the MMIO registers. Then, by means
of an interruption or a polling mechanism, the software Detection module can fetch the
MMIO register’s content and perform a more powerful analysis.

4.3. Probe Connection Types for Low-Frequency Attack Detection

The hardware Detection Module can be integrated into the target components and
share the same communication channels to the software. However, when deploying
MATANA on the final system, placing the hardware Detection Module separately from the
rest of the system for better modularity, using a reconfigurable fabric, and benefiting from
the flexibility on detection algorithms implemented are important to deal with attacks that
are constantly evolving. For that purpose, we have to consider that the hardware Detection
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Module may be asynchronous and run at a lower frequency than the target components. In
that case, the Detection Module’s I/O must be properly synchronized. For that purpose,
we propose several synchronization approaches for probed signals that aim at reducing
the hardware logic complexity while preserving sufficient information transmitted for
attack detection.

The proposed Probe Connection types are shown in Figure 4, with a target component’s
frequency divN times higher than the hardware Detection Module’s frequency:

A Parallel Connection collects all signals in divN adjacent cycles and sends them in
parallel to the hardware Detection Module. This connection type maximizes the preserva-
tion of the information collected and pinpoints the state of the signals at a specific time,
but requires more synchronization logic and internal logic to process it.

A Preprocessing Connection preprocesses and buffers the probed signal, then sends
the processed data to the hardware Detection Module. It provides a balance between
the hardware resource utilization and the amount of useful data transmitted, and can
reduce analysis effort in the hardware Detection Module. For example, this logic can
count some hardware event occurrences or extract the instruction traces, and provide the
possibility to implement existing detection solutions based on a hardware event counter or
instruction tracing.

An Extraction Connection is a special and simple case of Preprocessing Connection
that picks one interesting signal in a window of divN samples. It can be used where the
signal value rarely changes or where some loss of data is acceptable with respect to the
accuracy of the detection. It preserves the time of occurrence of events, which is useful for
detecting time-based information leakage in microarchitectural attacks, and this property
is not guaranteed by the use of a simple FIFO.

1) Parallel Connection

Probe vt vt−1 vt−2 vt−3 Buffered value in divN cycles

Detection Module

6n

6 6
6 6

n ∗ divN

2) Preprocessing Connection

Probe vt Preprocess & Buffer Detection Module6n 6
m

3) Extraction Connection

Probe vt vt−1 vt−2 vt−3 Buffered value in divN cycles

Select one valuable signal Detection Module

6n

6n

Figure 4. Probe connection types for low-frequency hardware Detection Module.

Let us note that these connection types can be mixed, i.e., different signals from the
same probe can use different connection types.

5. Use Cases of Attack Detection with MATANA

In this section, we present our experimentation platform and two use cases of attack
detection using MATANA. The detection strategies are constructed following the steps
described in Section 3. The first use case considers a common microarchitectural timing
attack—the so-called Prime + Probe; the second use case considers an attack altering the
control flow, i.e., ROP attack. We demonstrate that, with quite simple heuristics, our
methodology allows the identification of a malicious behavior even in the case of a complex
system equipped with an OS executing a wide range of typical activities.
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5.1. Platform Setup

A prototype of MATANA has been implemented on a Xilinx ML605 evaluation board
equipped with a Xilinx Virtex-6 FPGA running a Linux kernel 4.15.

We chose to build our target system with the Chipyard SoC generation framework
v1.3 [30], which contains a RISC-V ISA softcore processor Rocket [9], since it is open source,
actively maintained, and easily reconfigurable. Rocket is an in-order processor core, we
configured it to 64 bit, medium size (with support of virtual memory, no Floating-Point
Unit (FPU)), an L1 instruction cache, and an L1 data cache).

Figure 5 presents the hardware structure of the target system. The hardware part of
MATANA is completely integrated in Chipyard (represented in blue color in Figure 5).
To ease the integration process, all MATANA-related files have been written in chisel [31],
a Scala-based hardware design language used by Chipyard that can be compiled to Verilog
code, especially to ease the signals connection inside the target system and be still com-
patible for different SoC parameters. The probing is mainly done inside the Rocket core
to monitor the processor’s internal signals, such as the instructions executed, the memory
addresses accessed, and some hardware events.

Rocket Core

L1D L1I

Tile Bus

Probe

System Bus

Peripheral Bus

Hardware
Detection
Module

UART

UART
PHY

Control Bus

BootROM

Interrupt
Controller

BlockRAM

L2 Cache

Memory Bus

DDR Controller
(Xilinx)

DDR
PHY

Generated with Chipyard

Target System
(open source)

MATANA
Probes and Connections

MATANA
Detection Module

Figure 5. Hardware architecture of MATANA prototype implemented on FPGA.

We also made several choices to ease and increase the accuracy of the evaluation
process: (1) The detection logic has been implemented as a userland program for testing
purposes, as it allows the test of different software implementations without regenerating
the kernel image and rebooting the system; it is intended to be integrated into the Linux
kernel after the testing phase in order to benefit from the protection at kernel level. (2) A
Linux kernel module has been developed to manage the communications between the
hardware and software Detection Module. (3) The Linux kernel has been patched to
automatically capture the current PID at context switch.

The Linux kernel binary was generated based on the freedom-u-sdk project v1.0 [32],
version 4.15, with integration of MATANA. The software part of our prototype was com-
piled with GCC toolchain version 9.2.0 for cross compilation; the toolchain was compiled
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with the option rv64imac since the hardware part of our target system does not have
any FPU.

5.2. Use Case: Prime + Probe Cache Attack Detection

In this section, we present the application of our methodology to detect a practical
Prime + Probe attack using MATANA.

5.2.1. Technical Background

Memory cache is the hardware component that is designed to speed up the processor’s
access to the main memory. It is built on the temporal and spatial locality principle of
memory access, i.e., the same location and the nearby location of a recently accessed location
is likely to be used again in the near future. If data access is required by the processor,
and the data are not in the cache, the corresponding data and nearby data are read from
the memory and loaded into the cache for likely future access (so-called a cache miss).
If the data is in the cache, the access is quicker (so-called a cache hit). The correspondence
between the main memory and the cache is usually based on physical addresses, as shown
in Figure 6. For the L2 cache of our prototype, the lower bits of the address correspond to
the offset in a cache line (the basic unit of the cache, usually 64 bytes), the medium bits of
the address correspond to the cache set index (64 sets), and the higher bits of the address
constitute the tag used to determine if a given cache line contains data from this specific
memory address location. One set can have multiple cache lines; for example, our L2 cache
is 8-way associative, which means that each cache set contains 8 cache lines. One address
that is mapped to a given cache set can then be placed on one of the 8 cache lines based on
a replacement policy, for example, Least Recently Used (LRU).

Tag Set index Line offset

0612

Figure 6. Cache indexing for 64-set cache and 64-byte cache line.

Prime + Probe is a powerful CSCA that benefits from this access acceleration property
of the cache. It only requires that the attacker’s process and the victim’s process share
the same physical cache at the same time. For example, processes running on different
CPUs of the same system that share the Last Level cache can satisfy this requirement [33].
The global attack works in three phases: the preparation phase, the attack phase itself,
and the analysis phase.

In the preparation phase, the attacker needs to locate one or multiple cache sets of
interest to monitor and, for each set, find 8 addresses (for a 8-way associative cache) that
are located in the given set but with different tags. The attack phase’s assembly code is
shown in Listing 1. The first step is called Prime, in which the attacker accesses in turn the
8 addresses previously identified. Due to the replacement policy of the cache, all 8 cache
lines of this selected set are occupied by the attacker’s data. Then, in a second step, so-
called Wait, the attacker’s process waits for the victim process to execute. During this step,
if the victim uses the set, some victim’s data are loaded in the set and evict the attacker’s
data. The third step is so-called Probe, in which the attacker accesses the 8 previously
identified addresses and measures the total access time. The access is arranged in the form
of a linked list (i.e., the value of the next address is stored in the contents of the previous
address) and in inverse order of Prime phase to prevent the prediction of accesses and the
self-replacement due to LRU. If the victim process did not use the set monitored by the
attacker in the Wait step, then all the 8 attacker’s data are still in the cache, and access to
these data generates 8 cache hits, which corresponds to a fast access. If the victim process
used this set, then some attacker’s data were evicted and the access to these data generates
a cache miss, which corresponds to a slow access. By repeating Prime, Wait, and Probe
(Probe can be served as a Prime for the next round of Prime + Probe), the attacker learns a
sequence of accesses of the victim process on monitored sets, which allows them to deduce
some of the victim’s secret information in the Analysis phase.
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Listing 1. One round of Prime + Probe operation on RISC-V.

1 rdcycle a2
2 ld a5 ,0(a5) ; Prime: 8 accesses
3 ld a5 ,0(a5)
4 ld a5 ,0(a5)
5 ld a5 ,0(a5)
6 ld a5 ,0(a5)
7 ld a5 ,0(a5)
8 ld a5 ,0(a5)
9 ld a5 ,0(a5)

10 rdcycle a4
11 ... ; Wait for victim to execute
12 rdcycle a2 ; Measure access time
13 ld a5 ,0(a5) ; Probe: 8 accesses
14 ld a5 ,0(a5) ; Can serve as Prime for next round
15 ld a5 ,0(a5)
16 ld a5 ,0(a5)
17 ld a5 ,0(a5)
18 ld a5 ,0(a5)
19 ld a5 ,0(a5)
20 ld a5 ,0(a5)
21 rdcycle a4 ; Measure access time
22 ... ; Next round of Prime + Probe

CSCAs can also be used as part of other attacks. For example, Spectre and Meltown
attack expose information leaked from other microarchitectural side channels to the cache,
then use CSCA to read the secret information; rowhammer [34] attack needs to frequently
evict memory lines out of the cache, which corresponds to the Prime phrase of CSCAs,
in order to perform direct access to main memory. For these reasons, we argue that
providing detection solutions for CSCA is particularity valuable.

5.2.2. Determination of a Suitable Attack Benchmark

The validation phase (i.e., step 4 in our methodology) requires a suitable attack bench-
mark parallel to more common benchmarks. In addition to a set of schoolbook implemen-
tations of Prime + Probe, we would like to assess that our detection algorithm is able to
secure the execution of a sensible application by detecting Prime + Probe attack at runtime.
In our case, we focused on the Prime + Probe attack of the last round of AES described
in [2] and implemented the attack on our target system with the help of an adapted version
of the Mastik tool [35]. This attack is applied to the C implementation of AES in OpenSSL
1.1.1k, which is based on the well-known T-Table optimization. This does not reduce the
generality of the approach since the Prime + Probe gadget remains but is integrated into a
more sophisticated attack.

To test different attack scenarios, we implemented two versions of this attack: (1) a
SingleProcess version where the attack code and the victim code run in the same process;
(2) a SharedMemory version where the attack code and the victim code run in separate
processes and exchange plaintexts and ciphertexts via a shared memory. In both versions,
the attack works as follows. First, the attacker performs a Prime on the cache. Second,
the attacker provides a random plaintext to the victim and waits until the victim provides
the encrypted plaintext. Third, the attacker checks the cache with a Probe. Notice that with
our setup, the full key recovery is possible with 3000 different random plaintexts for the
SingleProcess version.

For the schoolbook Prime + Probe benchmark, we implemented the standard cache
line profiling, i.e., loop of a Prime—an access to a specific address and a Probe (which also
acts as a Prime operation). There are three versions of this program, one that probes only
set 0, one that probes set 1, and one that probes all 64 sets.
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5.2.3. Design of the Detection Algorithm

In this section, we present the different heuristic patterns that we identified for
Prime + Probe attack detection by following the aforementioned methodology described in
Section 3.3. For this experiment, the reconfigurable hardware Detection Module is set
at 1/16 of the processor’s frequency. The clock cycle of the hardware Detection Module
is called DM cycle in the following. For each benchmark (including attack-related ones),
the following steps were followed: (1) reset the internal state of the detection module
and start monitoring; (2) execute the program under test; (3) stop monitoring and collect
information stored in MMIO registers. To evaluate the impact of the experimental setup,
we also executed the setup with no program executed, and to test the impact of the OS, we
executed the standard system call sleep as in other benchmarks. During the run, the soft-
ware Detection Module sends the PID at context switch to the hardware Detection Module
to help identify kernel-related activities.

The benchmarks are built by means of the same toolchain described in Section 5.1.
The benchmarks include (1) all 3 CoreMark runs, (2) all 11 CoreMark-PRO programs for
single context, (3) all 19 Embench programs with time measurement using rdcycles, (4) the
Dhrystone benchmark, and (5) the Stream benchmark with DSTREAM_ARRAY_SIZE=32768.
These benchmarks are selected in order to represent a large range of common algorithms
that make use of the CPU and the main memory.

1. Signal Selection. Three categories of signals seem relevant to detect Prime + Probe
attacks. First, instruction-flow-related signals, i.e., the instruction currently executed
as well as the instruction valid signal in the processor’s pipeline are useful to identify
instruction patterns. Second, as cache side-channel attacks perform a lot of carefully
chosen memory access, the signals associated to the memory access seem relevant.
We chose the virtual address sent in the processor’s pipeline and the physical address
obtained in the L1 data cache. Third, inspired by some detection techniques based on
HPCs proposed in several research papers [12,14], several cache events (cache miss,
cache access, and cache TLB miss) are also relevant.

2. Probe Connection. The instruction signals are collected by means of a Parallel Connec-
tion that is more suited in order to preserve the maximum value and time information.
The address and the cache event signals are collected by means of an Extraction
Connection, in such a way that we only keep one single valid address and one single
cache event per DM cycle. This choice was purposely made because the memory
accesses take multiple cycles in a cache hit and even more in a cache miss. This was
confirmed by our experimentation, showing that one value per DM cycle is enough to
preserve sufficient information for detection.

3/4. Detection Logic Design./Benchmarking. Prime + Probe attacks are closely linked
to the time measurement, which can be performed by means of various instructions
that are dependent on the target processor ISA. By analyzing the code presented in
Listing 1, we note that there are always two time measurement instructions (so-called
timer instructions in the following) relatively close to each other used to measure
the time to access 8 memory addresses. To identify this pattern, we developed two
different heuristics: InstTimer, which analyses the use of specific instructions; MemAc-
cess, which tries to identify patterns in memory access. For evaluation purposes, each
heuristic has been associated to a counter to evaluate the occurrence of the correspond-
ing pattern during the benchmark’s execution. Table 2 provides the evaluation of the
two heuristics for the proposed benchmarks.

For InstTimer, we set a detection window and count the use of specific timer instruc-
tions within. The detection window starts at the first detection of a timer instruction; if
another specific instruction occurs during the window, we increment the InstTimer counter.
For the Target processor ISA (i.e., RISC-V), the set of instructions are rdcycle, rdtime, and
rdinstret. As we can see in Table 2, this approach is very effective and does not exhibit
false positives.
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Table 2. Evaluation of the Prime detection using the instruction-flow-based (InstTimer) and memory-
access-based (MemAccess) pattern counters. For each program, the column nb. of detection is the
counter value at the end of the execution, and mean period is the mean cycles between two counter’s
increment. Cycles are expressed as DM cycles. Sets of benchmarks are noted with * and only the mean
value is represented.

Program Cycles
InstTimer MemAccess

Nb. of Detection Mean Period Nb. of Detection Mean Period

CoreMark * 53,452,817 0 N/A 161 332,005
CoreMark-PRO parser 67,632,009 0 N/A 29,174 2318
CoreMark-PRO others * 1,163,695,064 0 N/A 7854 148,166
Embench * 43,957,696 0 N/A 162 271,344
Dhrystone 11,242,585 0 N/A 175 64,243
STREAM 40,513,182 0 N/A 140 289,380
Attack SingleProcess 108,337,476 572,429 189 1,339,213 81
Attack SharedMemory 724,951,250 553,060 1311 926,154 783
Cache Profiling set 0 976,975 39,985 24 118,522 8
Cache Profiling set 1 816,452 39,985 20 116,022 7
Cache Profiling all set 15,594,885 1,299,297 12 5,294,473 3
No program 112,200 0 N/A 77 1457
Sleep 1 168,206 0 N/A 96 1752

For MemAccess, since the number of cache lines in a set is 8 in our implementation,
the pattern detection tries to identify the presence of 8 consecutive memory accesses
typically used in Prime. More precisely, we extract from the memory address the cache
tag and cache set index, and increment the counter when the target set has been recently
used but not the tag. For this second heuristic, we also obtained interesting results: as it
can be observed in Table 2, this heuristic exhibits some false positives, but the occurrence
of the pattern is much more important in case of an attack. In addition, the mean number
of cycles between two increments of MemAccess is much shorter than for InstTimer, which
means that MemAccess is also very sensitive. This can be an interesting approach when,
for instance, an untrusted black box software must be executed and we want to carefully
analyze its behavior related to cache attack. Let us note that:

• Regarding InstTimer, the timer-instruction-based pattern may be limited when cache
attacks are not based on such timer instructions, but adopt a less-accurate timing
measurement strategy by using other mechanisms such as a kernel library or a counter
in a loop in a different core. To cover this kind of attack, it is possible to check the
physical address of the library function (provided by the software Detection Module)
or the loop counter (found using instruction-based or address-based pattern matching)
and look for access to these suspicious addresses instead of timer instruction.

• Some attacks, such as rowhammer, only use cache eviction and do not need any time
measurement. Thus, the timing-instruction-based approach is not effective and the
memory-access-instruction-based approach should be investigated instead.

• The MemAccess is indirectly an estimation of the misuse of the cache. Basically, access-
ing data within a specific set but with addresses with different tags very often breaks
both temporal and spatial locality principles. As a consequence, an investigation on
the adaptation of software to carefully use the cache would be an interesting approach
to take advantage of the sensitivity of MemAccess to secure the execution, especially
for critical systems that have dedicated software.

• We also tested other heuristics, such as detection strategies based on cache event
occurrence per DM cycle or based on consecutive load instruction to access a list of
address. However, as these detection patterns exhibited false positive and negative
rates that were not satisfying, they were not sufficiently relevant to discriminate
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between attack benchmarks and normal benchmarks, and are not presented here. Let
us underline that we took advantage of MATANA’s flexibility to quickly assess the
accuracy and precision of given approaches, which is the strength of our methodology.

5.2.4. Area Footprint

Table 3 provides the area footprint of the solution in 3 scenarios: InstTimer only,
MemAccess only, and InstTimer + MemAccess. The area of the unprotected SoC is presented
for comparison purposes. The full implementation (i.e., InstTimer + MemAccess) basically
increases the number of Flip-Flops used by 12%, and the number of LUTs by 5%. The
main area overhead is due to the synchronization for the Detection Module connections
and the Parallel Connection required by InstTimer for the instruction flow signals. Some
room for improvement is possible by revisiting the synchronization strategy and detection
algorithms. We can also note that the combination of two completely different detection
logics requires only 58% Flip-Flops of the sum of the two. This is due to the fact that
many parts of the detection logic can be shared, especially the bus connection and some
configuration registers.

Table 3. Area footprint of MATANA for Prime + Probe.

Resources Base SoC InstTimer MemAccess InstTimer + MemAccess
(Unprotected) Module Alone Total Module Alone Total Module Alone Total

Flip-Flops 22,167 2448 24,615 2172 24,339 2669 24,836
LUTs 31,668 1620 33,288 946 32,614 1354 33,022
BlockRAM 26 0 26 0 26 0 26

5.3. Use Case: Return-Oriented Programming Attack Detection

The MATANA framework is relevant to analyze and detect other kind of attacks
insofar as they exhibit some specific microarchitectural behaviors. In this section, we
present a use case in which we successfully built a detection logic for ROP attacks in the
MATANA framework.

5.3.1. Technical Background

ROP [36] is an example of code reuse attacks. It manipulates return addresses to
redirect the control flow to a series of small pieces of assembly code (called gadgets) chosen
by the attacker from the target executable code itself or shared libraries. These gadgets
usually execute elementary actions, such as performing a computation on a register, and end
with a return instruction. This return instruction jumps to the caller function based on a
return address previously provided by the caller function; however, as the attacker controls
these return addresses, the return instruction actually jumps to a specific address chosen by
the attacker to continue the execution. The gadgets are run just as if they form part of the
victim program—with the same privilege, in the same memory zone. Unlike traditional
buffer overflow attacks, code reuse attacks do not write the code to be executed into the
memory, thus circumventing the protection of the type “Write xor Execute”, which disables
the executable stack. Other variants of ROP also exist, which do not use return addresses
but function calls or indirect jumps to link gadgets.

ROP attacks can be carried out in RISC-V platforms [37]. Unlike in x86, the return
address in RISC-V is not read from the stack, but from a register called ra. When calling a
function, the caller puts the current address into ra; when the function returns, it executes
the instruction ret (alias of jalr zero, 0(ra)), which jumps to the address pointed by ra.
In case of nested function calls, the content of the ra register is pushed on the stack and
restored when necessary. This allows an attacker who controls the stack to also control the
return address of the gadget in the function. One sample gadget on RISC-V is shown in
Listing 2.
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Listing 2. Example of a gadget in RISC-V built with our ROP generator: this simple gadget adds 1 to
the register a7 and can be used, for example, to prepare the value of a7 during a ROP chain execution.

1 gadget_a7plus1:
2 addi a7, a7, 1 ; Elemental action
3 ld ra , 0(sp) ; Read the next gadget address from the stack to ra
4 addi sp, sp, 8 ; Increment the stack pointer
5 ret ; Jump to the next gadget address stored in ra

5.3.2. Determination of a Suitable Attack Benchmark

As there has been no ROP attack benchmark published on RISC-V so far, we followed [37] and
wrote a Python script to generate ROP of various lengths and types of instructions in C and assembly
code. All generated attacks aim at spawning a shell, i.e., call execve("/bin/sh", {"/bin/sh"},
{NULL}, {NULL}). For that purpose, different registers must be set before calling the ecall
instruction: a7 is set to 221 (which identifies the execve syscall), and a0, a1, and a2 are set
according to the parameters of the syscall.

For the sake of simplicity, the ROP generator does not search and try to execute a ROP
chain in a given binary but instead generates gadget-style code that is directly injected
into the target executable. A memcpy is called to write the payload full of gadget addresses
in the stack and to overwrite the original return address. Thus, we are able to generate
ROP attacks with chains of gadgets of different lengths (number of returns called), with
different numbers of gadgets and different methods to set the registers. The actual gadgets
are spread in different locations of the memory to mimic the behavior of real attacks that
use different gadgets in different memory locations.

5.3.3. Design of the Detection Algorithm

For this use case, the hardware Detection Module is synchronized with the processor,
which means that the DM cycle is equal to the processor cycle. This configuration allows us
to simplify some part of the detection algorithm while the methodology can be adapted to
slower frequencies.

1. Signal Selection. As we were confident in the fact that ROP attacks can be detected
mainly by analyzing the instructions flow and identifying jump instructions, we only
selected signals related to this flow: 32-bit instruction signal and 1-bit instruction
valid signal.

2. Probe Connection. As the hardware Detection Module is synchronized with the
processor, no special Probe Connection is needed, which means that the probed
signals are directly connected to the hardware Detection Module’s inputs.

3. Detection Logic Design. A ROP attack is characterized by a certain number of con-
secutive short instruction sequences (so-called gadgets) that always ends with an
indirect jump instruction (jalr instruction). To detect this behavior, the number of
instructions between two jalr is traced at runtime. When a jalr occurs, we compare
the current instruction count to a threshold value called GadgetSizeThreshold to deter-
mine if it is a short gadget (GadgetSizeThreshold is empirically determined). We keep
track of the successive short gadgets executed in a dedicated register GadgetCounter
and consider an attack when a threshold value AttackThreshold is reached (this value is
also empirically determined). To take into account ROP chains that sometimes include
longer gadgets, we do not reset to 0 GadgetCounter when a long gadget is detected but
decrement the counter by 2 instead.

4. Benchmarking The test campaign was carried out in the same way as for the previous
use case: (1) reset all detection logic and start monitoring; (2) execute the program
under test; (3) stop monitoring and collect information (typically the GadgetCounter
value) stored in MMIO registers. The benchmarks used are also the same as in the
previous use case.
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The determination of a suitable GadgetSizeThreshold is highly dependent on existing
ROP attacks on a given ISA. To the best of our knowledge, there has been no exhaustive
study on the maximum size of the small gadgets used in ROP for RISC-V but some papers
show some proof of concept. Studies on x86 ISA [38,39] show that practical ROP attacks
generally require a gadget chain longer than 15 with at most 5 instructions for the small
gadgets (equivalent to 7 instructions in RISC-V due to the additional 2 instructions for the
management of return address register). For this reason, we studied several scenarios with
GadgetSizeThreshold ranging from 8 to 16. We evaluated the maximum GadgetCounter values
for all non-attack-related benchmarks. Results are provided in Table 4. From this table,
the determination of a suited AttackThreshold is quite straightforward and can be set as the
maximum value of the measured GadgetCounter of all benchmarks plus one.

Table 4. Maximum value of GadgetCounter observed with different values of GadgetSizeThreshold con-
figured in detection logic, during the non-attack-related benchmark’s execution. Sets of benchmarks
are noted with a *.

Program
GadgetSizeThreshold

8 9 10 11 12 13 14 15 16

CoreMark * 4 7 10 11 11 11 11 13 17
CoreMark-PRO * 4 7 10 11 11 11 11 13 54
Embench wikisort 4 758 788 800 801 801 801 801 801
Embench others * 4 7 10 11 11 11 11 13 17
Dhrystone 4 7 10 11 11 11 11 11 17
STREAM 4 7 7 11 11 11 11 11 17

For instance, for ROP attacks crafted with quite short gadgets (e.g., GadgetSizeThreshold
set to 8) we can observe that all benchmarks exhibit a maximum GadgetCounter value less
than 5. In that case, a AttackThreshold value of 5 is suited to detect ROP attacks with at
least 5 small gadgets of at most 8 instructions. If we increase the threshold of the number
of instructions for small gadgets, we observe that the minimal number of small gadgets
required to avoid false positives on the non-attack-related benchmarks (i.e., AttackThreshold)
also increases. Consequently, we can conclude that the accuracy of the detection depends
on the typical value of the maximum number of instructions in short gadgets. For instance,
for a GadgetSizeThreshold of 14, the detection covers ROP attacks of at least 12 chained short
gadgets. As stated before, we can expect practical ROP attacks on RISC-V to require about
15 small gadgets of at least 7 instructions, which is typically what our detection can cover
with an even security margin.

Let us note that the wikisort benchmark in Embench suit produces many false positives.
By inspecting the code, we found that it uses several small and noninline C functions such
as TestCompare, which could explain the long “short gadget chain” found by our detection
pattern. Finally, let us underline that PID information from kernel is especially important
to filter out the system activities and prevent the ROP attacks from escaping our detection
due to the context switch interruptions.

5.3.4. Area Footprint

The area overhead considering MATANA with our ROP detection pattern is 1.90% of
Flip-Flops and 1.95% of Look-Up Tables utilization compared with the base system. This
value is much smaller than in the previous use case, mainly because the Detection Module
is synchronized with the target component.

6. Discussion

MATANA is a framework suited for designing and implementing specific runtime
detection logics (both hardware and software) for different classes of attacks. Even if we
only described experiments for two specific attacks in this paper, we are highly confident
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that some suited detection logics can be designed and integrated in MATANA for other
classes of attacks. For instance, if we consider microarchitectural attacks such as Flush +
Reload and Spectre, we can observe that they both exhibit short sequences of repeated
instruction patterns and that they use hardware components such as the cache and the
branch predictor in a particular way. As a consequence, there is a high probability that
they are distinguishable from legitimate programs with patterns based on the instructions
executed and hardware events even at low frequency.

MATANA can of course be used along with other defense mechanisms to improve
detection efficiency. Existing attack detection techniques, such as those cited in Section 2,
can be a source of insight of probed signals and detection logics. Other classical detection
or mitigation mechanisms such as Control Flow Integrity and shadow stack can be imple-
mented in MATANA’s Detection Module, by using an isolated hardware memory zone
to store the control flow graph or shadow return address and performing a check when
encountering jump instructions. Finally, let us note that in addition to attack detection,
MATANA can be used to analyze the information leakage of hardware components or to
design more secure hardware components and more security-oriented HPCs.

Several limitations of MATANA can be identified. First, during the design phase,
a deep understanding of target components and attacks is necessary, with possibly a large
number of experiments required to identify interesting probed signals and design the ap-
propriate detection logic. This limitation is not really specific to MATANA but is rather due
to the complexity of attacks and defense mechanisms at the microarchitecture level. Second,
if new classes of attacks are discovered, and if they only partially impact the implemented
probed signals, the detection accuracy may be reduced compared with a detection system
built with a more specific set of probes. Indeed, as explained in Section 4.1, for final product
integration, we propose using a static set of limited probes and a reconfigurable Detection
Module for the best balance between performance and detection efficiency. Nevertheless,
in that case, we are still confident that the ability to build fine-tuned detection logics makes
it possible to build suited detection logics, even if not perfect. Third, since the detection
algorithms are both implemented in the hardware Detection Module and in a software
kernel module, the kernel module must be trusted. Several solutions may be proposed
for that purpose according to the architecture of the SoC considered. If the SoC embeds
a Trusted Execution Environment (TEE)—which is quite realistic for embedded critical
systems—which are the most likely to adopt protection mechanisms such as those proposed
in this paper, the privileged software may be implemented in the TEE. Otherwise, if the
SoC embeds an advanced OS, such as a Linux OS used in our experiments, some kernel
well-known hardening measures can be implemented. In case of a tiny OS, in which such
hardening measures cannot be implemented, the detection logics must only be integrated
in the hardware Detection Module, which only authorizes simple detection algorithms.

7. Conclusions

In this paper, we proposed MATANA, a framework that allows the design and in-
tegration of a flexible runtime attack detector for different classes of attacks that exhibit
specific footprints on the microarchitecture. The detection is based on the fine-grained
observation and analysis of different microarchitectural signals, obtained by inserting
probes in the target component. The flexibility of the detection is provided by the Detection
Module composed of reconfigurable hardware and software, which allow for updating of
detection logics at any moment if necessary. Different data transmission techniques have
been proposed to preserve high information throughput and timing information, even
with the presence of frequency discrepancies between reconfigurable hardware and the
target component. Our iterative methodology allows the design of different detection logics
according to experiment results in real environments.

An open-source system prototype has been implemented on FPGA, including a RISC-
V processor Rocket and running Linux 4.15. Two use cases are presented, in which we
describe how we were able to build suited detection logics for CSCAs and ROP attacks.
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These two use cases demonstrate that MATANA can be used for attacks of a different nature,
and that the built detector exhibits satisfying false positive and false negative detection
rates with quite simple heuristics, even with frequency differences.

Our study shows that hardware security does not have to be limited to static solutions
that cannot be modified after manufacturing or to solutions that only include a few pro-
grammable configuration bits. The security of systems over their lifetime can be enhanced
by reconfigurable hardware equipped with attack detection logics based on analysis of
microarchitectural signals. We believe this is particularly valuable today, when hardware
lifetime is relatively long compared with the evolution speed of software attacks, and the
fact that software attacks are able to target hardware vulnerabilities. Hardware component
or system designers should be aware of this possibility and consider including this adapt-
able security into their design. Researchers can use MATANA’s tools and methodology to
design and evaluate new attack detection algorithms on hardware and software, under-
standing microarchitectural behavior, without being limited by information provided by
existing hardware.

As for future work, we first plan to enrich our detection campaigns by submitting
other use cases of attacks to MATANA—such as Spectre/Meltdown for example. We also
think that it would be interesting to make MATANA more automatic and easy to use by the
research community. For example, automatically selecting signals based on the hardware’s
source code, or generating patterns that analyze the attack’s characteristic or the correlation
between signals and secret based on some formal description of the attack, could provide
useful and relevant enhancements. We also plan to investigate more complex detection
logics to estimate their cost in term of area footprint and execution time. Indeed, even
if the experiments we carried out so far tend to show that quite simple detection logics
are sufficient to exhibit satisfying detection rates, we think it interesting to investigate the
implementation of complex detection algorithms (such as Machine Learning algorithms) in
order to evaluate to what extent it is possible to implement such algorithms in MATANA,
both in hardware and software, to optimize the detection efficiency as well as the area
footprint on the reconfigurable fabric.
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The following abbreviations are used in this manuscript:

CSCA Cache Side-Channel Attack
CTC Covert Timing Channel
DIFT Dynamic Information Flow Tracking
FPGA Field Programmable Gate Array
FPU Floating-Point Unit
HPC Hardware Performance Counter
ISA Instruction Set Architecture
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LRU Least Recently Used
MMIO Memory-Mapped I/O
OS Operating System
PID Process Identifier
ROP Return-Oriented Programming
SoC System-on-Chip
TEE Trusted Execution Environment
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