
����������
�������

Citation: Eder, J.; Franceschetti, M.;

Lubas, J. Dynamic Controllability of

Processes without Surprises. Appl.

Sci. 2022, 12, 1461. https://doi.org/

10.3390/app12031461

Academic Editor: Ricardo

Colomo-Palacios

Received: 23 December 2021

Accepted: 27 January 2022

Published: 29 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Dynamic Controllability of Processes without Surprises
Johann Eder *,† , Marco Franceschetti † and Josef Lubas †

Department of Informatics-Systems, Universität Klagenfurt, 9020 Klagenfurt, Austria;
marco.franceschetti@aau.at (M.F.); josef.lubas@aau.at (J.L.)
* Correspondence: johann.eder@aau.at
† These authors contributed equally to this work.

Abstract: Dynamic controllability guarantees that a process control can steer the execution of a business
process without violating any temporal constraints although some tasks have uncontrollable durations.
However, it has been shown that dynamic controllability may lead to process executions with the unde-
sirable property that tasks have to be started or ended on extremely short notice. Sudden termination
forces the agent to immediately terminate the execution of a process task without any prior notice in or-
der to meet some temporal constraints. Semi-dynamic controllability guarantees dynamic controllability
and the absence of sudden termination. Here, we show that dynamic controllability may also lead to the
problem of sudden start, which forces the immediate start of a process task without prior notice. We
formalize all constellations of temporal constraints causing sudden start and sudden termination in a
process. We propose a technique to design processes in which activities can be dynamically dispatched
without these surprises, i.e., with advance notice, and extend the notion of semi-dynamic controllability
by also considering the sudden start. This leads to a sound and complete algorithm for checking the
semi-dynamic controllability of time-constrained processes.

Keywords: process scheduling; contingent durations; sudden start; sudden termination; dynamic
controllability

1. Introduction

The progress of business process technology in the last decades led to a wide-spread
adoption of process management across enterprises and organizations [1]. A business
process consists of a set of tasks that are executed in coordination to achieve a goal, provide
a service or produce a product (cf. [2,3]). For effective process management, modeling and
verification of the temporal aspects of a business process are crucial [4].

Temporal aspects which may be included as part of a business process model are
deadlines, task durations and other temporal constraints such as minimum and maximum
time span between events [5]. Given a process model including temporal aspects, its
verification has the goal of checking whether the model meets certain quality criteria.
In particular, it is essential to know beforehand whether time failures, i.e., violations of
temporal constraints, can be avoided with effective scheduling strategies for the dispatching
of activities. Or in other terms, whether the controller of a business process (e.g., the
process enactment service) can follow a strategy to execute the process without violating
any temporal constraints [6]. In such a strategy, however, controllers have to cope with
uncertainty and have to react to observations of external events.

The source of uncertainty that controllers have to cope with is the duration of process
activities. In particular, researchers in the field of time management agree on distinguishing
between two types of activities, depending on their duration [7]. On the one hand, there
are activities whose duration is under the control of the execution environment (a process
manager, a dispatching agent, an information system, ...). On the other hand, there are
activities whose duration cannot be controlled, but merely observed at run time. These
uncontrollable durations (and the corresponding activities) are called contingent. Frequent

Appl. Sci. 2022, 12, 1461. https://doi.org/10.3390/app12031461 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12031461
https://doi.org/10.3390/app12031461
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-6050-468X
https://orcid.org/0000-0001-7030-282X
https://orcid.org/0000-0002-2343-9863
https://doi.org/10.3390/app12031461
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12031461?type=check_update&version=2

Appl. Sci. 2022, 12, 1461 2 of 27

causes of uncertain durations are the invocation of external services or the dependencies
on other controllers in cross-organizational processes (see e.g., [8]) where service level
agreements provide duration intervals.

For processes with contingent activities, dynamic controllability [6,7] is the notion for
temporal correctness that is preferred to, e.g., the satisfiability of temporal constraints.
Satisfiability requires the existence of one possible instance of a process that satisfies all
temporal constraints. On the contrary, dynamic controllability requires that there exists a
dynamic execution strategy for the process controller to set the start and end of activities
in response to all possible durations of contingent activities revealed at run time. We
refer to [9,10] as examples of techniques that can be adopted to efficiently check dynamic
controllability of processes.

Despite being a much desirable property for a time-constrained process, dynamic
controllability can present an undesirable side effect. Indeed, a dynamically controllable
process might admit only dynamic execution strategies that force (1) some activities to start,
without knowing yet when they need to finish (sudden termination), and (2) some activities
to start immediately without prior notice (sudden start). We use the term sudden to describe
such phenomena since they require, at run time, to schedule the termination, resp. start of
a process activity immediately, without giving the executor any time to prepare for such
an event.

In our prior work [11], we have addressed the sudden termination problem. We
characterized semi-contingent activities, which require to set their duration, resp. their
deadline, when they start, i.e., their duration can be chosen by the controller, but only until
they start. In particular we have shown in detail one sudden termination pattern, and only
sketched other patterns that may lead to such a sudden termination.

This paper is an extension of the work in [11]. As such, it covers all sudden termination
patterns shown in [11] in more detail, and addresses the additional problem of sudden start.
So the research question driving this extended paper is: how to determine whether the start
and end events of process tasks can be scheduled with a given advance notice, meeting all temporal
constraints, despite uncertainties?

Here, we propose a technique to support process designers in checking whether it is
possible to steer a process with the guarantee that no sudden (start or end) event needs be
dispatched at run time. The additional contributions of this paper with respect to [11] are
the following:

• The characterization of the sudden start problem in addition to the sudden termination
problem, which might arise in dynamically controllable processes.

• The procedure for the transformation of sudden start problems to sudden termination
problems and the proof of its correctness.

• The detailed formal analysis of all the patterns potentially causing a sudden termination.
• A procedure to check whether a process model is semi-dynamically controllable, i.e.,

whether its events can be dynamically scheduled with a warning time, such that all
temporal constraints are met despite uncertainties.

The remainder of this paper is structured as follows: in Section 2, we illustrate the
problem and introduce the necessary background with the help of examples. In Section 3,
we introduce a lean process model that allows the formulation of the problem. We formalize
the sudden termination and sudden start problems, and semi-dynamic controllability in
Section 4. In Section 5, we formalize the patterns that can induce the sudden termination
problem, and show how to solve it. In Section 6, we show how to transform the sudden
start problem into a sudden termination problem. In Section 7, we show how to check
semi-dynamic controllability. In Section 8, we provide an implementation of a checking
procedure. In Section 9, we discuss related work, and in Section 10 we draw conclusions.

Appl. Sci. 2022, 12, 1461 3 of 27

2. Background and Motivation
2.1. Dynamic Execution Strategies

The goal of all this research into correctness of temporally constrained process models
is to check at design time, whether it is possible to avoid temporal problems at run time.
Temporal problems are primarily time failures, i.e., the violation of a temporal constraint.

So let us first have a look at run time. A process controller dispatches tasks according
to the process model and the evolving execution history. The process model defines a
partial order on tasks expressed typically by sequence, split and join nodes in the process
model [4]. For all tasks the minimum and the maximum duration are known. The process
controller has to observe temporal constraints, which are defined as maximum or minimum
time gaps between the start and end event of tasks.

The controller assigns a time-point when a task has to be started. For each task the
controller can do this assignment up to this very start-time. When does a task end? For some
tasks the duration is determined by the environment, by “nature”, by other parties. The
controller only knows that the end-time of such a task is between minimum and maximum
duration after its start-time. These contingent durations [10] can only be observed by the
controller, but the controller cannot influence them. For an example, the (regular) transfer
of some funds between accounts at different banks in the EU takes between a minimum of
0 and maximum of 4 days, without the possibility for sender or receiver to influence the
duration. The controller has to take this imponderability into account when controlling the
execution of a process. For non-contingent durations, however, the controller might set not
only the start-time but also the end-time (to any value between minimum and maximum
duration after start).

For some process models, the controller is able to assign time-points for the events
(start and end of tasks) such that the execution does not violate any temporal constraint,
before the whole process even starts. We call such process models strongly controllable [6].

However, not all process models are strongly controllable. For an example, a process
transfers some amount from one account to another at another bank. A constraint requires
that within two days after the transfer is finished (the amount is credited at the recipient
account) a notification should be sent out. It is easy to see that it is not possible to set a start
date for the send-notification task before it is known how long the transfer took (between 0
and 4 days). Nevertheless, if the controller reacts dynamically after observing the actual
duration, it is always possible to assign a start date for the send-notification task such
that the constraint is satisfied. The controller can have a dynamic strategy for assigning
execution time-points.

In general, at a time-point τ the controller knows about all events (start and end of
tasks) that happened before τ. According to this information the controller assigns time
points greater than τ to some start- and end-events of tasks, which did not yet take place.
The controller applies an execution strategy determining at a given time point τ which values
to assign to which event as a function of the process model and the history of the process
execution up to τ.

Such an execution strategy has to consider, in particular, the observed contingent
duration of tasks. If such a dynamic execution strategy exists, which guarantees that for all
possible contingent durations the controller can assign time-points dynamically in a way
that no constraint is violated, we call the process dynamically controllable [6].

Of course, not all process models are dynamically controllable. For an example, there
is no dynamic execution strategy to avoid violating the constraint “the notification has to
be sent 2 days before the amount is credited at the receiving account”. The process with
this constraint is not dynamically controllable. Any assignment strategy for the “send-
notification” task could lead to a violation of the constraint, due to the uncertainty in the
time required for the money transfer.

Dynamic controllability is the most refined notion for temporal correctness of process
models [6], as it is the most relaxed notion that still has the property that execution without

Appl. Sci. 2022, 12, 1461 4 of 27

time failures is possible for all observable uncertainties. In other words, if a process is not
dynamically controllable, the controller cannot avoid that time failures might occur.

The question, whether it is possible to check at design time whether a process model
is dynamically controllable, attracted a lot of attention in research (see, e.g., [6,9,12–14].
Formal checks are necessary, as testing typically suffers from the combinatorial explosion of
considering all possible combinations of durations of contingent activities. Recently rather
efficient checking procedures were proposed and proven to be sound and complete [15].
The quest for efficient procedures for checking process models with additional control
structures, constraint types, etc., however, still continues.

Nevertheless, also execution strategies for dynamically controllable process models
can have problems or inconveniences as we showed in [11]. The controller might set the
end-time of a non-contingent task at any time before that end-time. In particular, in the
time frame between minimum and maximum duration after the start-time, the controller
might even order to stop the task immediately. All viable dynamic execution strategies
might make it necessary that the execution of a task with a non-contingent duration has to
start without knowing its deadline yet. The controller has to suddenly force such a task
to stop: the problem of sudden termination. We elaborate this phenomenon below in detail
and complement it with the problem of sudden start: the execution of a task has to start
immediately, without advance notice.

Of course, it depends on the type of activity and the context whether sudden start
or sudden termination is acceptable. For some activities a sudden termination poses no
problem, e.g., for waiting tasks: it may be fine to start a waiting task without knowing
when it must end. However, for other activities (see examples below), a sudden termination
is highly undesirable, unacceptable or even impossible. This is the case, e.g., for process
tasks involving human actors, or invoking external services: a human actor may not
accept being abruptly forced to stop performing a calculation but would prefer to know
in advance when the calculation results are due in order to properly perform the task.
Similarly, for an external service invocation it may be necessary to receive a result before
being able to proceed with the process. Similar examples can be found for sudden start:
for instance, it would be impossible for a lab technician to immediately start executing
a task of analysis of hazardous material without a prior notice that would allow her to
wear protective equipment before. In such a case, a prior notice of 30 min may be required
for the technician to get ready to perform the analysis. Therefore, we argue that we have
to represent in the process model, whether sudden start and sudden termination are
acceptable for a task. The rest of the paper describes procedures for checking, at design
time, whether these surprises could happen and whether it is in the power of the controller
to prevent such surprises.

2.2. Sudden Termination

To be self-contained, we briefly revise the small example from [11] to explain the
sudden termination problem. Consider the simplified procurement process in Figure 1.
The controller may choose the duration of semi-contingent task A for arranging shipment
of goods between 5 and 7 days. A is bound to a contingent task R of receiving payment
that lasts between 3 and 5 days. A lower-bound constraint (lbc) demands that the end of A is
at least 3 days after the end of R to allow a customer to cancel the order. An upper-bound
constraint (ubc) states that A has to finish within 4 days after R to guarantee timely delivery.
Now, let’s assume R should start at time point 10, and hence ends anytime between 13 and
15. Is there a choice for the start time and duration of A satisfying the constraints? After
some trials you see: no! A might, e.g., start at 12 and end between 17 and 19, but 19 is too
late, if R ends at 13, and 17 is too early, if R ends at 15. At 12 the end of R is unknown.

One can observe that it is impossible to determine a duration for A such that for all
possible durations of R the constraints are satisfied. The end of the ongoing activity A can
only be scheduled when the end of R has been observed.

Appl. Sci. 2022, 12, 1461 5 of 27

Process Order
[1, 2] non-cont.

Arrange Shipment
[5, 7] semi-cont.

Receive Payment
[3, 5] cont.

Deliver Goods
[2, 7] non-cont.

lbc(R.e, A.e, 3),

ubc(R.e, A.e, 4)

Figure 1. Example process with a potential sudden termination of an activity.

As shown in [11], treating semi-contingent activities for checking dynamic control-
lability is not obvious and requires special strategies. Indeed, if they are considered as
non-contingent activities, they may be subject to a sudden termination. Instead, if they are
treated as contingent activities, we are unnecessarily strict and reject processes that could
be scheduled without sudden termination. Therefore, in [11], we introduced the notions
of semi-contingent activities and semi-dynamic controllability to adequately deal with such
activities and their durations.

There exist various semi-contingent activities for which the end time is decided when
they start, and cannot further be changed. An example is executing a batch computation
using a configurable cloud Virtual Machine service. A client can choose the VM config-
uration, setting the memory and number of CPU cores, before starting the computation.
The execution time depends on the VM configuration. Once the computation starts, the
client cannot force it to terminate to get the results faster, but needs to wait for completion.
Another example is shipping a package with express delivery service or regular service.
Once the package is handed in to the courier and shipment starts, the delivery time is set
and cannot be changed, e.g., after 1 day for express and 3 days for regular service.

2.3. Sudden Start

We explain the sudden start problem with another small example. Figure 2 depicts a
simplified manufacturing process. The process starts with the preprocessing of some raw
materials, which takes 20 to 24 h, depending on the quality of the materials. Subsequently,
assembly of component A and of component B start, requiring 3 to 5 h, and 1 to 2 h,
respectively. The time required for assembling component A cannot be controlled, since it
also heavily depends on the quality of the raw material. Afterwards, the two components
are assembled (2 to 4 h), and finally the product can be packaged. The final assembly must
start at least 1 h and at most 2 h after completion of component A assembly.

One can observe that, due to the uncontrollable duration of component A assembly,
it is not known when final assembly has to start, until the task has to start, which means
that it cannot be scheduled beforehand. Similar to the sudden termination, such a behavior
may as well be unacceptable, or impossible. Especially for activities that require some
preparation, it would be desirable, instead, that the agent receives an advance notice some
time k before the activity has to start.

An example for an activity whose start time should be known in advance from the
administrative workflows is, for an employee, being asked to write a report immediately,
interrupting any other task that was being performed before. An example from the aviation
industry is boarding a plane: the boarding time should be announced at least 30 min prior
to its start, otherwise passengers might not make it in time to reach the gate. Similar and
from the same domain, the air traffic control should communicate to the pilot of a plane,
flying on hold due to high traffic, the landing time at least 5 min in advance, in order for
the plane to perform the necessary maneuvers. Or, before telling the cabin crew to sit
for (imminent) landing, the pilot gives them an advance notice 5 min before (“prepare for
landing”), so that the crew will not be put in danger and forced to rush to their seats.

In Section 4 we will show how to address the sudden start problem, by transforming it
into a sudden termination problem, such that the start time of an activity can be scheduled
with an advance of k time units.

Appl. Sci. 2022, 12, 1461 6 of 27

Preprocess Raw
[20, 24] non-cont.

Assembly A
[3, 5] cont.

Assembly B
[1, 2] non-cont.

Final Assembly
[2, 4] non-cont.

lbc(A.e, F.s, 1),

ubc(A.e, F.s, 2)

Figure 2. Example process with a potential sudden start of an activity.

3. Process Model
3.1. Process Model with Temporal Constraints

As we have shown in [11], a minimal process model is sufficient to capture the
patterns for which sudden start and sudden termination may occur without loss of general
applicability. The process model we consider supports the most common control flow
patterns found in the practice, as shown in [16]: sequence, parallel splits and joins, and
exclusive splits and joins.

The temporal aspect of the process model includes activity durations, process deadline,
and upper- and lower-bound constraints between events (i.e., start and end of activities).
We measure time in chronons, representing, e.g., hours, days, ..., which have domain the
set of natural numbers, and are on an increasing time axis starting at zero. On such a time
axis, we measure a duration as the distance between two points. A point on the time axis is
defined by its distance from zero.

In order to be able to talk about the sudden start and sudden termination, durations
(and the corresponding activities) can be contingent, semi-contingent and non-contingent.
Contingent durations cannot be controlled, thus it cannot be known when the correspond-
ing activities will actually terminate. Non-contingent durations, on the other hand, can
be controlled by the process controller at any time. This means, in particular, that the
corresponding activities are allowed to start without knowing the time when they have to
end, i.e., they can be suddenly terminated. Semi-contingent durations require to know, at
the start time of the corresponding activities, when they must terminate. So the process
controller can set the duration (hence their end time) of a semi-contingent activity until the
activity starts.

Definition 1 (Process Model). A process P is a tuple (N, E, C, k, Ω), where:

• N is a set of nodes n with n.type ∈ {start, activity, xor− split, xor− join, par− split, par−
join, end}. Each n ∈ N is associated with n.s and n.e, the start and end event of n. From N
we derive the set of all node events Ne =

⋃{n.s, n.e|n ∈ N}.
• E is a set of edges e = (n1, n2) defining precedence constraints, which mean that node n2 is

executed after the execution of n1 is completed.
• C is a set of temporal constraints:

– duration constraints d(n, nmin, nmax, durationtype) ∀n ∈ N, where nmin,
nmax ∈ N, durationtype ∈ {c, sc, nc}, stating that n takes some time in [nmin, nmax].
n can be contingent (durationtype = c), semi-contingent (durationtype = sc), non-
contingent (durationtype = nc);

– upper-bound constraints ubc(a, b, δ), where a, b ∈ Ne, δ ∈ N, requiring that b ≤ a + δ;
– lower-bound constraints lbc(a, b, δ), where a, b ∈ Ne, δ ∈ N, requiring that b ≥ a + δ.

• k : N → N is a function that associates each node n ∈ N with a required advance notice k(n)
for its start, meaning that if n has to start at time t, this has to be known at a time k(n) before
t. We call such a point in time the dispatcher event n.d of n.

• Ω ∈ N is the process deadline (the longest admissible duration between start.s and end.e).

Figure 3 shows the representation of the process in Figure 2 according to the process
model of Definition 1.

We now define the temporal semantics of the process model.

Appl. Sci. 2022, 12, 1461 7 of 27

start P PS A

B

PJ F end

Ne = {start.s, start.e, P.s, P.e, PS.s, PS.e, A.s, A.e, B.s, B.e, PJ.s, PJ.e, F.s, F.e, end.s, end.e}
C = {d(start, 0, 0, nc), d(P, 20, 24, nc), d(PS, 0, 0, nc), d(A, 3, 5, c), d(B, 1, 2, c),

d(PJ, 0, 0, nc), d(F, 2, 4, sc), d(end, 0, 0, nc), ubc(A.s, F.s, 2), lbc(A.e, F.s, 1)}
k(F) = 5, k(n) = 0 for n 6= F
Ω = 42

Figure 3. Process model for the process of Figure 2. Sets N (nodes) and E (edges) are represented as
a graph.

3.2. Temporal Semantics

We define the temporal semantics of temporally constrained process definitions by
defining which executions of a process definition are admissible [4], through the concept
of valid scenario. A scenario represents a run of a process (i.e., a process instance) with
assignments of timestamps specifying:

• when each event (starting and ending of process steps) occurred, and
• when each advance notice for the start of an activity is given.

Essentially, a scenario is a mapping of events to timestamps, independent of who
assigns these timestamps. Hence, we define a scenario as follows:

Definition 2 (Scenario). Let P(N, E, C, k, Ω) be a process model. A scenario for P is a function
σ : Ne ∪ {n.d|n ∈ N} → N, assigning:

• to each start event n.s of a node n a timestamp σ(n.s), denoted as n.s;
• to each end event n.e of a node n a timestamp σ(n.e), denoted as n.e;
• to each dispatcher event n.d a timestamp σ(n.d), denoted as n.d, at which the notice of start of

n is given.

A scenario is valid, if it is such that all temporal constraints are satisfied:

Definition 3 (Valid Scenario). Let P(N, E, C, k, Ω) be a process model. Let σ be a scenario for P.
σ is a valid scenario for P iff:

1. ∀(n1, n2) ∈ E, σ(n1.e) ≤ σ(n2.s);
2. ∀d(n, nmin, nmax, [c|sc|nc]) ∈ C, σ(n.s) + nmin ≤ σ(n.e) ≤ σ(n.s) + nmax;
3. ∀ubc(a, b, δ) ∈ C, σ(b) ≤ σ(a) + δ;
4. ∀lbc(a, b, δ) ∈ C, σ(a) + δ ≤ σ(b);
5. σ(end.e) ≤ σ(start.s) + Ω;
6. ∀k(n) > 0, σ(n.d) + k(n) ≤ σ(n.s).

An example for a scenario for the example process of Figure 3 is given by the map-
ping σ = {start.s → 0, start.e → 0, P.s → 1, P.e → 22, PS.s → 23, PS.e → 23, A.s →
23, A.e → 27, B.s → 24, B.e → 26, PJ.s → 27, PJ.e → 27, F.s → 29, F.e → 33, end.s →
33, end.e → 33, k(F) → 24}. One can verify that the scenario fulfills all requirements 1-6
from Definition 3, hence it is valid.

A scenario is an assignment that results from following an execution strategy (also
called schedule), which states when each controllable event should occur and when each
advance notice should be given. For a process to be dynamically controllable, it is necessary
that there exists a dynamic execution strategy, in which the decision about starting and
ending activities is made based on the timestamp of all earlier events. In particular, a

Appl. Sci. 2022, 12, 1461 8 of 27

process is dynamically controllable if a dynamic execution strategy for it exists, which leads
to a valid scenario.

Several approaches have been developed in prior work for checking the dynamic
controllability of processes. Here, we consider the approach based on mapping a process
model to a Simple Temporal Network with Uncertainty (STNU), and applying constraint
propagation methods that are proven to be sound and complete for checking STNU dynamic
controllability, such as [9]. We present our approach in detail in Section 7.

In Section 2 we gave examples of dynamically controllable processes that are affected
by sudden termination and sudden start. In the next section, we give a formalization
of the sudden termination and sudden start problems. We then define semi-dynamic
controllability as the possibility to have a dynamically controllable process, which can be
scheduled without any sudden termination or sudden start.

4. Sudden Termination and Sudden Start Problems, and Semi-Dynamic Controllability

In the following, we assume that a given process model P is dynamically controllable.
With the terms condition, resp. constraint we indicate that a constraint is either explicitly
stated in P or that it can be derived from the explicit constraints in P. Techniques for
deriving implicit constraints from explicit ones are presented in Section 7. Finally, with the
symbol Φ we designate the set of all implicit and explicit constraints valid in P.

4.1. Sudden Termination Problem

We briefly recap here the characterization of the sudden termination problem for a
semi-contingent activity, and the conditions that have to be satisfied, such that a sudden
termination problem might occur [11]. First, we highlight the distinction between sudden
termination constellation (STC) and sudden termination pattern (STP). In an STP, con-
straints can only be satisfied with the sudden termination of an activity, while in the more
general STC, it might depend on the controller, whether a sudden termination actually
occurs. In an STP, sudden termination needs to necessarily happen, while in an STC that is
not an STP it is possible to avoid sudden termination.

We have shown in prior work that an STC requires at least two constraints between
two activities. Given two activities C (contingent) and S (semi-contingent), a sudden
termination means that the admissible times for ending S depend on the observation of the
end of C, and this is not known when S starts. This requires the existence of a constraint c1
between the end events of C and S.

A sudden termination only occurs if C and S have to be executed concurrently, i.e., it
is not possible that they are executed sequentially. This requires an additional constraint c2.
When the end event S.e of S can always be executed before the end event C.e of C, it cannot
depend on the observed duration of C. In a similar way, if S can always start after C has
ended, the duration of C is already known at the start of S.

In an STC, for all possible start times of C, there exist certain start times for S, such that,
no matter how long S is enforced to take, some (uncontrollable) durations of C exist, which
lead to the violation of some temporal constraint in the process. Instead in an STP, for all
possible start times of C, for all start times for S, no matter how long S is enforced to take,
some (uncontrollable) durations of C exist, which lead to the violation of some temporal
constraint in the process.

Definition 4 (Sudden Termination Constellation and Pattern). Let P be a dynamically con-
trollable process. Let S and C be activities in P, with duration constraints d(S, S.dmin, S.dmax, sc)
and d(C, C.dmin, C.dmax, c). Let Φ be the set of constraints in P.

S and C are in a sudden termination constellation (STC) iff
∀C.s ∃S.s ∀S.dmin ≤ S.d ≤ S.dmax ∃C.dmin ≤ C.d ≤ C.dmax : ¬Φ

S and C are in a sudden termination pattern (STP) iff
∀S.s, C.s ∀S.dmin ≤ S.d ≤ S.dmax ∃C.dmin ≤ C.d ≤ C.dmax : ¬Φ

Appl. Sci. 2022, 12, 1461 9 of 27

We use the notation STCS,C to indicate that S and C are in a sudden termination constellation,
and STPS,C for a sudden termination pattern.

If there is an STP in a process, sudden termination cannot be avoided without changing
the process model. If there is an STC but not an STP, the execution of a process can be
dynamically scheduled so that all constraints are met and sudden termination is avoided.
We are interested in verifying in which cases it is possible to prevent an STC to become
an STP, i.e., whether the process controller is able to schedule the process without sudden
termination.

4.2. Sudden Start Problem

In which cases is an activity required to suddenly start? Similar to the sudden termi-
nation, a required sudden start is due to the existence of some temporal constraint, which
binds a start event to some other uncontrollable (contingent) event. Thus, it is not possible
to schedule the start event in advance, but it is required to react to the observation of the
occurrence of a contingent event.

In an SSC, for all possible start times of C, there exist certain start times for S and some
advance notice w at least equal to k(S), such that some (uncontrollable) durations of C
exist, which lead to the violation of some temporal constraint in the process. Instead in an
SSP, for all possible start times of S and for all possible advance notice w at least equal to
k(S), for all start times for C, some (uncontrollable) durations of C exist, which lead to the
violation of some temporal constraint in the process.

Definition 5 (Sudden Start Constellation and Pattern). Let P be a dynamically controllable
process. Let S and C be activities in P, with C having duration constraint d(C, C.dmin, C.dmax, c).
Let Φ be the set of constraints in P.

S and C are in a sudden start constellation (SSC) iff
∀C.s ∃S.s ∃w ∈ N : S.s− w ≥ k(S) ∃C.dmin ≤ C.d ≤ C.dmax : ¬Φ

S and C are in a sudden start pattern (SSP) iff
∀S.s, w ∈ N : S.s− w ≥ k(S), ∀C.s ∃C.dmin ≤ C.d ≤ C.dmax : ¬Φ

We use the notation SSCS,C to indicate that S and C are in a sudden start constellation, and
SSPS,C for a sudden start pattern.

Similar to the STP, if there is an SSP in a process, sudden start cannot be avoided,
without changing the process. If there is an SSC but not an SSP, the execution of a process can
be dynamically scheduled in a way to both observe all constraints and avoid sudden start.

4.3. Semi-Dynamic Controllability

The constellation of constraints leading to an STP or to an SSP does not violate
dynamic controllability of processes. Indeed, we have shown that there exist dynamically
controllable processes exhibiting an STP or in an SSP. Therefore, the notion of dynamic
controllability turns out to be not sufficiently adequate: it allows semi-contingent activities
to start without knowing yet when they must end, or it allows activities to start without
prior notice. In [11], we defined semi-dynamic controllability as a specialization of dynamic
controllability that recognizes the need to know the required end time for a semi-contingent
activity at its start time. Here, we extend that definition, including the requirement that no
activity may be forced to suddenly start, if it demands prior notice of start.

Definition 6 (Semi-Dynamic Controllability). Let P be a process. P is semi-dynamically
controllable (sdc) iff P is dynamically controllable (dc), and @ S, C ∈ P.N: STPS,C or SSPS,C.

The notion of semi-dynamic controllability introduced here is stricter than the notion
of dynamic controllability, since it requires (1) that a process is dynamically controllable,
(2) that no semi-contingent activity is involved in a sudden termination, (3) that no activity
is involved in a sudden start pattern.

Appl. Sci. 2022, 12, 1461 10 of 27

5. Sudden Termination Constellations and Patterns

Here, we show patterns of mutually constrained semi-contingent and contingent
activities, which may lead to the sudden termination of the semi-contingent activity. These
patterns cover all the meaningful configurations of temporal constraints between pairs of
events. For each of these patterns, we show additional necessary and sufficient conditions
that need to hold, to guarantee that sudden termination cannot occur. With these results,
we will develop a procedure to check semi-dynamic controllability of process definitions.

5.1. Sudden Termination Constellation and Pattern STP-1

We start by presenting the most fundamental constraint constellation for an STP. In
this constellation, the end events of a contingent activity C and a semi-contingent activity
S are connected by one upper- and one lower-bound constraint: ubc(C.e, S.e, w), and
lbc(C.e, S.e, v).

The only uncertainty in the constellation is the non-controllable actual duration of C.
The constraint ubc(C.e, S.e, w) requires that S.e ≤ C.e + w. For actual durations S.d, resp.
C.d of activities S, resp. C, this requires that S.s + S.d ≤ C.s + C.d + w. The constraint
lbc(C.e, S.e, v) requires that C.e + v ≤ S.e.

The Sudden Termination Pattern 1 (STP-1) (see Figure 4) is defined as follows: a con-
tingent activity C and a semi-contingent activity S, with constraints ubc(C.e, S.e, w) and
lbc(C.e, S.e, v) as above are in an STP-1, if there is no way to schedule the start of S and the
start of C, such that the value for the end of S can be fixed, when S starts.

...
C

contingent
[C.dmin, C.dmax]

...

...
S

semi-contingent
[S.dmin, S.dmax]

...

ubc(C.e, S.e, w)lbc(C.e, S.e, v)

Figure 4. Sudden Termination Pattern 1 (STP-1).

Definition 7 (Sudden Termination Pattern: STP-1). Let P be a dynamically controllable pro-
cess. Let S and C be activities in P, with the duration constraints d(S, S.dmin, S.dmax, sc) and
d(C, C.dmin, C.dmax, c). Let ubc(C.e, S.e, w) and lbc(C.e, S.e, v) be constraints in P.

S and C are in STP-1, iff ∀S.s, C.s ∀S.dmin ≤ S.d ≤ S.dmax ∃C.dmin ≤ C.d ≤ C.dmax :
S.s + S.d > C.s + C.d + w, or S.s + S.d < C.s + C.d + v.

We now present the sufficient and necessary conditions for checking whether an STP
might occur for a given pair of activities S and C.

We observe that if the constraints S.s > C.e and C.s > S.e do not hold in P, then the
general precondition for the existence of a sudden termination problem is satisfied.

Theorem 1. Let P be a dynamically controllable process. Let S be a semi-contingent activity, and C be
a contingent activity in P, with duration constraints d(S, S.dmin,
S.dmax, sc) and d(C, C.dmin, C.dmax, c). Let ubc(C.e, S.e, w) and lbc(C.e, S.e, v) be constraints in P.

A sudden termination of S cannot occur, iff C.dmax + v ≤ S.e− C.s ≤ C.dmin + w holds in P.

Proof. We show that C.dmax + v < S.e− C.s ≤ C.dmin + w is a necessary and sufficient
condition that the activities S and C are not in an STP.

Necessary condition: we show that if the condition does not hold, a sudden termination
might occur. If the condition does not hold then @S.s, S.d, C.s with C.dmax + v < S.e−C.s ≤
C.dmin + w. This is only possible if C.dmax + v > C.dmin + w.

We now assume that C and S are in an STP. This means that ∀C.s, S.s there is no S.d such
that ∀C.d the constraints hold: S.s + S.d ≤ C.s + C.d + w and S.s + S.d ≥ C.s + C.d + v.

Appl. Sci. 2022, 12, 1461 11 of 27

Hence @S.d such that ∀C.d: C.d + v ≤ S.s + S.d − C.s ≤ C.d + w. Which requires in
particular, that @S.d to satisfy C.dmax + v ≤ S.e− C.s ≤ C.dmin + w.

Sufficient condition: We show that if the inequality holds, sudden termination does
not occur. We show that ∃C.s, S.s, S.d such that ∀C.dmin ≤ C.d ≤ C.dmax the constraints
are satisfied, i.e., C.s + C.d + v ≤ S.s + S.d ≤ C.s + C.d + w, which holds since ∀C.dmin ≤
C.d ≤ C.dmax: C.d + v ≤ C.dmax + v ≤ S.s + S.d− C.s ≤ C.dmin + w ≤ C.d + w.

With Theorem 1 we can derive conditions for a process model to be dynamically
controllable and such that an STP-1 cannot occur in it. In particular, the conditions require
the process model to include a particular pair of a lower- and an upper-bound constraint
between the start of S and the start of C.

Theorem 2. Let P be a process. Let S be a semi-contingent activity, and C be a contingent
activity in P with duration constraints d(S, S.dmin, S.dmax, sc) and d(C, C.dmin, C.dmax, c). Let
ubc(C.e, S.e, w) be a constraint in P.

A sudden termination of S cannot occur, iff constraints lbc(C.s, S.e, C.dmax + v) and ubc(C.s,
S.e, C.dmin + w) hold in P.

Proof. The constraints express exactly the condition in Theorem 1. Hence in a process
model P including these constraints S and C cannot be in an STP-1.

5.2. Sudden Termination Constellation and Pattern STP-2

We define STP constellation STP-2 (see Figure 5) as follows: a contingent activity C and
a semi-contingent activity S with constraints ubc(C.e, S.e, w) and lbc(C.s, S.e, v) as above
are in an STP, if there is no way to schedule the start of S and the start of C, such that the
value for the end of S can be fixed, when S starts.

...
C

contingent
[C.dmin, C.dmax]

...

...
S

semi-contingent
[S.dmin, S.dmax]

...

ubc(C.e, S.e, w)lbc(C.s, S.e, v)

Figure 5. Sudden Termination Pattern 2 (STP-2).

Definition 8 (Sudden Termination Pattern 2). Let P be a dynamically controllable process. Let
S and C be activities in P, with the duration constraints d(S, S.dmin, S.dmax, sc) and d(C, C.dmin,
C.dmax, c). Let ubc(C.e, S.e, w) and lbc(C.s, S.e, v) be constraints in P.

S and C are in a sudden termination pattern STP-2 iff ∀S.s, C.s ∀S.dmin ≤ S.d ≤ S.dmax
∃C.dmin ≤ C.d ≤ C.dmax : S.s + S.d > C.s + C.d + w, or S.s + S.d < C.s + v.

In the following we derive conditions to check whether an STP-2 might occur for a
given pair of activities S and C.

Theorem 3. Let P be a dynamically controllable process. Let S be a semi-contingent activ-
ity, and C be a contingent activity in P, with duration constraints d(S, S.dmin, S.dmax, sc) and
d(C, C.dmin, C.dmax, c). Let ubc(C.e, S.e, w) and lbc(C.s, S.e, v) be constraints in P.

A sudden termination of S cannot occur, iff v < S.e− C.s ≤ C.dmin + wholds in P.

Proof. Please refer to Appendix A.1.

Appl. Sci. 2022, 12, 1461 12 of 27

Theorem 4. Let P be a process. Let S be a semi-contingent activity, and C be a contingent
activity in P with duration constraints d(S, S.dmin, S.dmax, sc) and d(C, C.dmin, C.dmax, c). Let
ubc(C.e, S.e, w) and lbc(C.s, S.e, v) be a constraint in P.

A sudden termination of S cannot occur, iff both the constraints lbc(C.s, S.e, v) and ubc(C.s,
S.e, C.dmin + w) hold in P.

Proof. The constraints express exactly the condition described in Theorem 3. Hence in a
process model P including these constraints S and C cannot be in an STP-2.

5.3. Sudden Termination Constellation and Pattern STP-3

We define STP constellation STP-3 (see Figure 6) as follows: a contingent activity C and
a semi-contingent activity S with constraints ubc(C.s, S.e, w) and lbc(C.e, S.e, v) as above
are in an STP, iff there is no way to schedule the start of S and the start of C, such that the
value for the end of S can be fixed, when S starts.

...
C

contingent
[C.dmin, C.dmax]

...

...
S

semi-contingent
[S.dmin, S.dmax]

...

ubc(C.s, S.e, w) lbc(C.s, S.e, v)

Figure 6. Sudden Termination Pattern 3 (STP-3).

Definition 9 (Sudden Termination Pattern 3). Let P be a dynamically controllable process. Let
S and C be activities in P, with the duration constraints d(S, S.dmin, S.dmax, sc) and d(C, C.dmin,
C.dmax, c). Let ubc(C.s, S.e, w) and lbc(C.e, S.e, v) be constraints in P.

S and C are in a sudden termination pattern STP-3 iff ∀S.s, C.s ∀S.dmin ≤ S.d ≤ S.dmax
∃C.dmin ≤ C.d ≤ C.dmax : S.s + S.d > C.s + w, or S.s + S.d < C.s + C.d + v.

In the following we derive conditions to check whether an STP-3 might occur for a
given pair of activities S and C.

Theorem 5. Let P be a dynamically controllable process. Let S be a semi-contingent activity, and
C be a contingent activity in P, with duration constraints d(S, S.dmin, S.dmax, sc) and d(C, C.dmin,
C.dmax, c). Let ubc(C.s, S.e, w) and lbc(C.e, S.e, v) be constraints in P.

A sudden termination of S cannot occur, iff C.dmax + v < S.e− C.s ≤ w holds in P.

Proof. Please refer to Appendix A.2.

Theorem 6. Let P be a process. Let S be a semi-contingent activity, and C be a contingent
activity in P with duration constraints d(S, S.dmin, S.dmax, sc) and d(C, C.dmin, C.dmax, c). Let
ubc(C.s, S.e, w) and lbc(C.e, S.e, C.dmax + v) be constraints in P.

A sudden termination of S cannot occur, if the constraints lbc(C.s, S.e, C.dmax + v) holds in P.

Proof. The constraints express exactly the condition described in Theorem 5. Hence in a
process model P including these constraints S and C cannot be in an STP-3.

5.4. Sudden Termination Constellation and Pattern STP-4

A Sudden Termination Pattern STP-4 (see Figure 7) is defined as follows: a contingent ac-
tivity C and a semi-contingent activity S with constraints ubc(C.e, S.e, w) and lbc(C.e, S.e, v)
as above are in an STP, if there is no way to schedule the start of S and the start of C, such
that the value for the end of S can be fixed, when S starts. This means that for all admissible

Appl. Sci. 2022, 12, 1461 13 of 27

start times of S and C and all possible durations of S there is a possible duration of C such
that one of the constraints is violated.

...
C

contingent
[C.dmin, C.dmax]

...

...
S

semi-contingent
[S.dmin, S.dmax]

...

ubc(C.e, S.e, w) lbc(C.e, S.e, v)

Figure 7. Sudden Termination Pattern 4 (STP-4).

Definition 10 (Sudden Termination Pattern 4). Let P be a dynamically controllable process. Let
S and C be activities in P, with the duration constraints d(S, S.dmin, S.dmax, sc) and d(C, C.dmin,
C.dmax, c). Let ubc(C.e, S.e, w) and lbc(C.s, S.s, v) be constraints in P.

S and C are in a sudden termination pattern STP-4 iff ∀S.s, C.s ∀S.dmin ≤ S.d ≤ S.dmax
∃C.dmin ≤ C.d ≤ C.dmax : S.s + S.d > C.s + C.d + w, or S.s < C.s + v.

In the following we derive conditions to check whether an STP-4 might occur for a
given pair of activities S and C.

Theorem 7. Let P be a dynamically controllable process. Let S be a semi-contingent activ-
ity, and C be a contingent activity in P, with duration constraints d(S, S.dmin, S.dmax, sc) and
d(C, C.dmin, C.dmax, c). Let ubc(C.e, S.e, w) and lbc(C.s, S.s, v) be constraints in P.

A sudden termination of S cannot occur, iff S.dmin + v < S.e− C.s ≤ C.dmin + w holds in P.

Proof. Please refer to Appendix A.3.

Theorem 8. Let P be a process. Let S be a semi-contingent, and C be a contingent activity in P with
duration constraints d(S, S.dmin, S.dmax, sc) and d(C, C.dmin, C.dmax, c). Let ubc(C.e, S.e, w) and
lbc(C.s, S.s, v) be constraints in P.

A sudden termination of S cannot occur, iff the constraints lbc(C.s, S.e, S.dmin + v) and
ubc(C.s, S.e, C.dmin + w) hold in P.

Proof. The constraints express exactly the condition described in Theorem 7. Hence in a
process model P including these constraints S and C cannot be in an STP-4.

5.5. Sudden Termination Constellation and Pattern STP-5

A Sudden Termination Pattern STP-5 (see Figure 8) is defined as follows: A contingent ac-
tivity C and a semi-contingent activity S with constraints ubc(C.e, S.e, w) and ubc(S.s, C.e, v)
as above are in an STP, iff there is no way to schedule the start of S and the start of C, such
that the value for the end of S can be fixed, when S starts. This means that for all admissible
start times of S and C and all possible durations of S there is a possible duration of C such
that one of the constraints is violated.

...
C

contingent
[C.dmin, C.dmax]

...

...
S

semi-contingent
[S.dmin, S.dmax]

...

ubc(C.e, S.e, w)ubc(S.s, C.e, v)

Figure 8. Sudden Termination Pattern 5 (STP-5).

Appl. Sci. 2022, 12, 1461 14 of 27

Definition 11 (Sudden Termination Pattern 5). Let P be a dynamically controllable process. Let
S and C be activities in P, with the duration constraints d(S, S.dmin, S.dmax, sc) and d(C, C.dmin,
C.dmax, c). Let ubc(C.e, S.e, w) and ubc(S.s, C.e, v) be constraints in P.

S and C are in a sudden termination pattern STP-5 iff ∀S.s, C.s ∀S.dmin ≤ S.d ≤ S.dmax
∃C.dmin ≤ C.d ≤ C.dmax : S.s + S.d > C.s + C.d + w, or C.s + C.d > S.s + v

In the following we derive conditions to check whether an STP-5 might occur for a
given pair of activities S and C.

Theorem 9. Let P be a dynamically controllable process. Let S be a semi-contingent activ-
ity, and C be a contingent activity in P, with duration constraints d(S, S.dmin, S.dmax, sc) and
d(C, C.dmin, C.dmax, c). Let ubc(C.e, S.e, w) and ubc(S.s, C.e, v) be constraints in P.

A sudden termination of S cannot occur, iff C.dmax + S.dmin − v < S.e− C.s ≤ C.dmin + w
holds in P.

Proof. Please refer to Appendix A.4.

Theorem 10. Let P be a process. Let S be a semi-contingent, and C be a contingent activity in P
with duration constraints d(S, S.dmin, S.dmax, sc) and d(C, C.dmin, C.dmax, c). Let ubc(C.e, S.e, w)
and lbc(C.s, S.s, v) be constraints in P.

A sudden termination of S cannot occur, iff the constraints lbc(C.s, S.e, C.dmax + S.dmin − v)
and ubc(C.s, S.e, C.dmin + w) hold in P.

Proof. The constraints express the condition described in Theorem 9. Thus in a process
model including these constraints S and C cannot be in an STP-5.

5.6. Sudden Termination Constellation and Pattern STP-6

A Sudden Termination Pattern STP-6 (see Figure 9) is defined as follows: A contingent ac-
tivity C and a semi-contingent activity S with constraints ubc(C.e, S.e, w) and ubc(S.s, C.s, v)
as above are in an STP, if there is no way to schedule the start of S and the start of C, such
that the value for the end of S can be fixed, when S starts. This means that for all admissible
start times of S and C and all possible durations of S there is a possible duration of C such
that one of the constraints is violated.

...
C

contingent
[C.dmin, C.dmax]

...

...
S

semi-contingent
[S.dmin, S.dmax]

...

ubc(C.e, S.e, w)ubc(S.s, C.s, v)

Figure 9. Sudden Termination Pattern 6 (STP-6).

Definition 12 (Sudden Termination Pattern 6). Let P be a dynamically controllable process. Let
S and C be activities in P, with the duration constraints d(S, S.dmin, S.dmax, sc) and d(C, C.dmin,
C.dmax, c). Let ubc(C.e, S.e, w) and ubc(S.s, C.s, v) be constraints in P.

S and C are in a sudden termination pattern STP-6 iff ∀S.s, C.s ∀S.dmin ≤ S.d ≤ S.dmax
∃C.dmin ≤ C.d ≤ C.dmax : S.s + S.d > C.s + C.d + w, or C.s > S.s + v.

In the following we derive conditions to check whether an STP-6 might occur for a
given pair of activities S and C.

Appl. Sci. 2022, 12, 1461 15 of 27

Theorem 11. Let P be a dynamically controllable process. Let S be a semi-contingent activ-
ity, and C be a contingent activity in P, with duration constraints d(S, S.dmin, S.dmax, sc) and
d(C, C.dmin, C.dmax, c). Let ubc(C.e, S.e, w) and ubc(S.s, C.e, v) be constraints in P.

A sudden termination of S cannot occur, iff S.dmin − v < S.e− C.s ≤ C.dmin + w holds in P.

Proof. Please refer to Appendix A.5.

Theorem 12. Let P be a process. Let S be a semi-contingent, and C be a contingent activity in P
with duration constraints d(S, S.dmin, S.dmax, sc) and d(C, C.dmin, C.dmax, c). Let ubc(C.e, S.e, w)
and lbc(C.s, S.s, v) be constraints in P.

A sudden termination of S cannot occur, iff the constraints lbc(C.s, S.e, S.dmin − v) and
ubc(C.s, S.e, C.dmin + w) hold in P.

Proof. The constraints express exactly the condition described in Theorem 11. Hence in a
process model P including these constraints S and C cannot be in an STP-6.

5.7. Recap of the STP Constellations

Table 1 summarizes the key information of the patterns presented in this section. In
the first column of the table, we report all possible constellations between a contingent and
a semi-contingent activity that could cause a sudden termination problem. In the second
column, we report the corresponding condition whose fulfillment guarantees that sudden
termination cannot occur. The third column translates in form of temporal constraints the
condition of the second column. According to Theorems 2–12, these are the constraints that
have to be added in a process model, to ensure that sudden termination is avoided.

In Section 7 we apply these results for checking whether a process can be scheduled
without any sudden termination. The idea is that, for each STC in a process P, we include
the additional constraints that guarantee the absence of a sudden termination. Then we
check the resulting process for dynamic controllability. If it is dynamically controllable,
then (with Theorems 2–12) it is also semi-dynamically controllable.

Table 1. Sudden termination constellations, with conditions to avoid sudden termination, and
constraints to add to check for semi-dynamic controllability.

Constraints Condition to Avoid Sudden Termination Constraints to Add

ubc(C.e, S.e, w)
lbc(C.e, S.e, v) C.dmax + v ≤ S.e− C.s ≤ C.dmin + w lbc(C.s, S.e, C.dmax + v)

ubc(C.s, S.e, C.dmin + w)

ubc(C.e, S.e, w)
lbc(C.s, S.e, v) v < S.e− C.s ≤ C.dmin + w lbc(C.s, S.e, v)

ubc(C.s, S.e, C.dmin + w)

ubc(C.s, S.e, w)
lbc(C.e, S.e, v) C.dmax + v < S.e− C.s ≤ w lbc(C.s, S.e, C.dmax + v)

ubc(C.e, S.e, w)
lbc(C.s, S.s, v) S.dmin + v < S.e− C.s ≤ C.dmin + w lbc(C.s, S.e, S.dmin + v)

ubc(C.s, S.e, C.dmin + w)

ubc(C.e, S.e, w)
ubc(S.s, C.e, v) C.dmax + S.dmin − v < S.e− C.s ≤ C.dmin + w lbc(C.s, S.e, C.dmax + S.dmin − v)

ubc(C.s, S.e, C.dmin + w)

ubc(C.e, S.e, w)
ubc(S.s, C.s, v) S.dmin − v < S.e− C.s ≤ C.dmin + w lbc(C.s, S.e, S.dmin − v)

ubc(C.s, S.e, C.dmin + w)

6. Transforming Sudden Start into Sudden Termination

We now show that we can treat the problem of the sudden start as a sudden termination
problem. Hence, the same techniques for verifying whether a process can be scheduled
without sudden termination can also be used to verify whether a process can be scheduled
without sudden start, having a k-advance notice for the start events. The approach is based
on transforming a process definition with tasks with k-warning into a process definition
with explicit waiting tasks, which bears the same temporal semantics.

Appl. Sci. 2022, 12, 1461 16 of 27

Definition 13 (Process Model Transformation). Let P(N, E, C, k, Ω) be a process as in Defini-
tion 1. Let Nw be a set of new (waiting) nodes: ∀n ∈ N, k(n) > 0 ∃waitn ∈ Nw, waitn.type =
activity. Let xbc(a, b, δ) = ubc(a, b, δ) or lbc(a, b, δ). Then Ψ(P) (P extended with waiting tasks)
is a new process P′(N′, E, C ′, k′, Ω) where:

• N′ = N ∪ Nw;
• C ′ = C ∪ Cw ∪ Ce \ Cs, where:

– Cw = {d(waitn, k(n), h, sc)|waitn ∈ Nw, h ∈ N, h > Ω} ∪
{lbc(start.s, waitn.s, 0)|waitn ∈ Nw} ∪
{ubc(waitn.e, n.s, 0)|waitn ∈ Nw} ∪
{lbc(waitn.e, n.s, 0)|waitn ∈ Nw};

– Cs = {xbc(t, n.s, δ)|k(n) > 0} ∪ {xbc(n.s, t, δ)|k(n) > 0};
– Ce = {xbc(t, waitn.e, δ)|xbc(t, n.s, δ) ∈ Cs} ∪

{xbc(waitn.e, t, δ)|xbc(n.s, t, δ) ∈ Cs};
• k′(n) = 0 ∀n ∈ N′.

Essentially, the transformed process model is the original process model augmented
with a waiting task waitn for each activity n whose start requires a k-advance notice. The
minimum duration of this waiting task is equal to k(n), and the maximum duration is a
large enough horizon value. In addition, all temporal constraints binding the start event
of n are remapped to refer to the end event of waitn, and the start event of n is required to
take the same timestamp of the end event of waitn.

We show that the transformation is sound and complete, i.e., the transformed process
model is such that any valid scenario for it is also a valid scenario for the original process
model, and vice versa. This follows from the observation that the end time of a waiting
task waitn coincides with the start time of the associated activity n: waitn.e = n.s.

Lemma 1 (Soundness). Let P(N, E, C, k, Ω) be a process model; let Ψ(P) = P′(N′, E, C ′, k′, Ω)
be a process model obtained by applying the transformation of Definition 13 to P. Then all valid
scenarios σ′ for P′ there is a valid scenario σ for P.

Proof. Let S be any activity requiring advance notice k(S) in P. Let waitS be the waiting
task associated to S in P′. Let Γ be the set of constraints on S.s in P; let Γ′ be the set of
corresponding constraints on waitS.e in P′. Let σ′ be a valid scenario for P′. Let σ be the
projection of σ′ over the elements of P.

From ubc(waitS.e, S.s, 0), lbc(waitS.e, S.s, 0) ∈ C ′, and σ′ valid, then it follows that
waitS.e = S.s.

Since waitS.e = S.s, and σ′ is valid, it follows that:

• ∀ubc(a, waitS.e, δ): S.s ≤ a + δ;
• ∀ubc(waitS.e, b, δ): b ≤ S.s + δ;
• ∀lbc(a, waitS.e, δ): S.s ≥ a + δ;
• ∀lbc(waitS.e, b, δ): b ≥ S.s + δ.

which means that Γ′ satisfied by σ′ in P′ ⇒ Γ satisfied by σ in P.
From d(waitS, k(S), h, sc), ubc(waitS.e, S.s, 0), lbc(waitS.e, S.s, 0) ∈ C ′, and σ′ valid, it

follows that S.s ≥ waitS + k(S) in P′. So ∃kS ∈ σ with kS = waitS : kS + k(S) ≤ S.s in P.
All other process elements of P are the same in P′. Thus, all other time point assign-

ments of σ′ that meet constraints in P′, correspond to time point assignments of σ that meet
constraints in P. So σ is a valid scenario for P.

Lemma 2 (Completeness). Let P(N, E, C, k, Ω) be a process model; let Ψ(P) = P′(N′, E, C ′,
k′, Ω) be a process model obtained by applying the transformation of Definition 13 to P. Then for all
valid scenarios σ for P there exists a valid scenario σ′ for P′.

Appl. Sci. 2022, 12, 1461 17 of 27

Proof. The proof can be constructed like the proof of soundness, with the difference that
the timestamp for each advance notice kS is assigned to the start event of the waiting task
waitS.

Figure 10 shows the process model resulting from the application of the transformation
Definition 13 to the process model of Figure 3.

We can now show that we can treat the sudden start of an activity in a process model
P as the sudden termination of its associated waiting task in the transformed process
model P′.

start P PS A

B

PJ F

waitF

end

Ne = {start.s, start.e, P.s, P.e, PS.s, PS.e, A.s, A.e, B.s, B.e, PJ.s, PJ.e, waitF.s, waitF.e,
F.s, F.e, end.s, end.e}

C = {d(start, 0, 0, nc), d(P, 20, 24, nc), d(PS, 0, 0, nc), d(A, 3, 5, c), d(B, 1, 2, c),
d(PJ, 0, 0, nc), d(waitF, 5, 43, sc), d(F, 2, 4, sc), d(end, 0, 0, nc),
lbc(start.s, waitF.s, 0), ubc(waitF.e, F.s, 0), lbc(waitF.e, F.s, 0), ubc(A.s, waitF.e, 2),
lbc(A.e, waitF.e, 1)}

k(n) = 0 ∀n
Ω = 42

Figure 10. Process model resulting from the transformation of the process of Figure 3.

Theorem 13 (Sudden Start as Sudden Termination of a Waiting Task). Let P(N, E, C, k, Ω) be
a process model; let P′(N′, E, C ′, k′, Ω) be a process model obtained by applying the transformation
of Definition 13 to P. Let S and C be activities in P, with d(C, C.dmin, C.dmax, c) and k(S) > 0.
Let waitS be the waiting task associated to S in P′. Then SSPS,C in P⇒ STPwaitS ,C in P′.

Proof. The waiting task is a semi-contingent activity in an STP and corresponds to the
precedence constraint of S.

From SSPS,C and Definition 5 it follows that ∀S.s, w : S.s− w ≥ k(S), ∀C.s ∃C.dmin ≤
C.d ≤ C.dmax : ¬ΦP, where ΦP is the set of constraints in P.

From the transformation, waitS is the semi-contingent waiting task associated to S in
P′. All temporal constraints on S.s are bound to waitS.e in P′.

So ∀waitS.e, w : waitS.e− w ≥ k(S), ∀C.s ∃C.dmin ≤ C.d ≤ C.dmax : ¬Φ′P, where Φ′P
is the set of constraints in P′.

In particular, since waitS.dmin = k(S) ≤ waitS.d ≤ waitS; dmax, we can say that
∀waitS.e, w : waitS.e− w ≥ waitS.dmin, ∀C.s ∃C.dmin ≤ C.d ≤ C.dmax : ¬Φ′P.

In other words, ∀waitS.s, C.s ∀waitS.dmin ≤ waitS.d ≤ waitS.dmax ∃C.dmin ≤ C.d ≤
C.dmax : ¬ΦP′ that is STPwaitS ,C in P′, which corresponds to a sudden termination pattern
for waitS in P′ (STPwaitS ,C).

From Theorem 13 it follows that, if the waiting task in a transformed process P′ is not
in a sudden termination pattern, then the associated activity is not in a sudden start pattern
in the original process P:

Corollary 1 (Absence of Sudden Start). Let P be a process model; let S, C be activities in P such
that SSPS,C. Let P′ be the process model obtained by applying the transformation of Definition 13
to P, with waitS the waiting task associated to S. Then ¬STPwaits ,C in P′ ⇒ ¬SSP(S, C) in P.

Proof. Follows directly from the proof of Theorem 13.

Appl. Sci. 2022, 12, 1461 18 of 27

From Corollary 1 we conclude that for treating a process with sudden start, we
can transform the process with the transformation of Definition 13, and apply sudden
termination avoidance techniques to the new process model.

Given a process P, if the process P′ obtained with the transformation of Definition 13
is semi-dynamically controllable, then no activity in the process is required, at run time, to
suddenly start or suddenly terminate.

Thus, we only need to focus on the sudden termination problems, to automatically
solve also any sudden start problem.

7. Checking Semi-Dynamic Controllability with STNUs

Here, we present an approach based on mapping process models into temporally
equivalent temporal constraint networks to operate on a process model, resulting in:

1. deriving all implicit constraints in the process model. The temporal constraints
causing an STC or STP need not necessarily to be explicitly stated in the process
model, but may be implicitly induced by the explicit temporal constraints in the
process model. Therefore, we need to compute the set of all (implicit) constraints for
identifying all possible STCs.

2. checking semi-dynamic controllability of the process model. Checking whether a
process model is semi-dynamically controllable requires applying some dynamic
controllability checking procedure, as per Theorems 2–12.

We start by showing how to map a process model into an STNU.

7.1. Mapping to STNUs

Several previous works, e.g., [17], have shown how to check whether a process model
such as the process in Figure 1 is dynamically controllable by mapping it into a temporally
equivalent STNU (Simple Temporal Network with Uncertainty) [10]. The idea is that a
process model is dynamically controllable if and only if its equivalent STNU is dynamically
controllable.

To be self-contained, we repeat here the most important aspects of STNUs, and refer the
reader to [10] for details. Essentially, an STNU is a directed graph, with nodes representing
time points and edges representing binary constraints between time points. A special
time point Z, or zero, marks the reference in time, after which all other time points occur.
Edges in an STNU can be non-contingent or contingent. Non-contingent edges represent
constraints that must be enforced by the execution environment by assigning appropriate
values to the time points. Contingent edges (also called links), instead, represent constraints
that are guaranteed to hold, but the corresponding time point assignments can only be
observed, not controlled by the execution environment.

In line with prior work, we consider the usual notation (A, B, δ) for non-contingent
edges from A to B with weight δ, which require that B ≤ A + δ; and (AC, l, u, C) for
contingent links between AC and C, which state that C occurs some time between l and u
after AC.

We also briefly recap the rules for mapping a process model P into a temporally
equivalent STNU S here:

• Each n.i ∈ P.Ne is mapped into a node in S;
• Each (n1, n2) ∈ P.E is mapped into a non-contingent edge (n2.s, n1.e, 0) in S; (start.s,

zero, 0) is added to S;
• Each duration constraint d(n, nmin, nmax, [sc|nc]) ∈ P.C is mapped into a pair of non-

contingent edges (n.s, n.e, nmax) and (n.e, n.s,−nmin) in S;
• Each duration constraint d(n, nmin, nmax, c) ∈ P.C is mapped into a contingent link

(n.s, nmin, nmax, n.e) in S;
• Each constraint ubc(a, b, δ) ∈ P.C is mapped into a non-contingent edge (a, b, δ) in S;
• Each constraint lbc(a, b, δ) ∈ P.C is mapped into a non-contingent edge (b, a,−δ) in S;
• Process deadline P.Ω is mapped into a non-contingent edge (start.s, end.e, Ω).

Appl. Sci. 2022, 12, 1461 19 of 27

Figure 11 shows the STNU derived by applying the above mapping rules to the process
model of Figure 1. In the figure, we adopted the usual graphical notation for STNUs, with
contingent edges dashed and inverted with respect to non-contingent edges, and labeled
with the name of the contingent time point. For a more compact presentation and without
loss of temporal information, in the figure we did not include nodes resulting from the
mapping of the par-split and par-join.

Z

start P.s P.e

A.s A.e

B.s B.e

WF .s WF .e

F.s F.e end

24

−20 ae : 3

AE : −5

be : 1

BE : −2

43

−5

4

−2
0

0

0

0

0

0

00

0

0

−1
2

42

Figure 11. STNU derived from the example process shown in Figure 2, transformed as in Figure 10.

7.2. Checking Dynamic Controllability

Researchers have developed several techniques for checking the dynamic controlla-
bility of STNUs. The most efficient techniques, e.g., the one presented in [9], are based
on deriving implicit constraints from the existing explicit constraints according to some
constraint propagation rules.

Constraint propagation applies the propagation rules until either no new implicit
edges can be derived (full propagation), or a negative cycle, in the usual sense of graph
theory, is derived. In the first case, the STNU, hence its originating process, is dynamically
controllable. Otherwise, a constellation of contradicting constraints generating a negative
cycle exists, and the STNU is not dynamically controllable. Applying constraint propaga-
tion, it is possible to see, for instance, that no negative cycle can be derived in the STNU in
Figure 11, thus it is dynamically controllable.

So applying a constraint propagation procedure to an STNU on the one hand derives
all implicit constraints that hold if the given explicit constraints hold, and on the other
hand determines whether the STNU is dynamically controllable. With this observation,
and applying the results of Section 5, we show that it is possible to design a procedure for
checking semi-dynamic controllability of process models.

7.3. Checking Semi-Dynamic Controllability

In Algorithm 1 we describe a possible procedure for checking semi-dynamic controlla-
bility. First, a process model P is mapped into an STNU T by applying the mapping rules.
A data structure ST is created for listing the STNU nodes representing semi-contingent
activities, and for identifying sudden termination patterns.

The STNU T is checked for dynamic controllability by applying any constraint prop-
agation procedure check_dc(T). As discussed above, the procedure has the side effect
of computing the closure of the set of explicit and implicit constraints. If the procedure
returns True, the STNU, hence the process, is dynamically controllable (dc); otherwise, the
algorithm terminates. If T is dc, procedure f ind_stp(T, ST) searches and returns all STPs in
the STNU.

Appl. Sci. 2022, 12, 1461 20 of 27

Algorithm 1 Check semi-dynamic controllability

1: Input: Process P
2: T := map_to_STNU(P)
3: ST := get_semicontingent_nodes(P, T)
4: if (¬check_dc(T)) then
5: return False
6: else
7: STP := f ind_stp(T, ST)
8: while (STP 6= ∅) do
9: p := extract_ f irst(STP)

10: T := T ∪ compute_resolving_constraints(p)
11: if (¬check_dc(T)) then
12: return False
13: else
14: STP := STP ∪ f ind_stp(T, ST)
15: end if
16: end while
17: end if
18: return True

Then, the following three steps are repeated as long as the network is dc and there are
unresolved STPs:

1. For each STP p found, edges corresponding to the constraints to resolve p to avoid
the STP are added to T.

2. Check for dynamic controllability is performed, deriving additional implicit con-
straints that may have been introduced with the new edges.

3. A new search for unresolved STPs is performed.

If, at the end of the repeated execution of the three steps, T remains dc, then it is also
sdc and the algorithm returns True.

Applying the algorithm, one can verify that the process of the running example is not
sdc, due to the negative cycle derived in Figure 12 between WF.s and A.e, formed by the
edges with weights −6 and 5.

Z

start P.s P.e

A.s A.e

B.s B.e

WF .s WF .e

F.s F.e end

24

−20 ae : 3

AE : −5

be : 1

BE : −2

43

−5

4

−2

0

0

0

0

0

0

00

0

0

−1
2

−6

5

42

Figure 12. STNU resulting from the application of Algorithm 1 to the process of Figure 2.

Theorem 14. Algorithm 1 is a sound and complete procedure to check the semi-dynamic controllability.

Proof. In [9] it has been shown that the procedure we apply for dc check is sound and
complete. In Section 5 we enumerated all constellations between a contingent and a semi-
contingent activity that could lead to a sudden termination. For each of the constellations
we derived additional constraints and we showed that these constraints are necessary and

Appl. Sci. 2022, 12, 1461 21 of 27

sufficient to be able to avoid sudden termination, if the network with these additional
constraints is dc. The procedure f ind_stp(T, ST) delivers all constellations described in
Section 5. The procedure is monotonic as it only adds constraints but does not remove
a constraint.

8. Implementation and Evaluation
8.1. Materials and Methods

To evaluate our proposed approach, we have implemented Algorithm 1 in Java, and
measured the times for its execution on a number of randomly generated process models.
We ran our experiments on a Windows 10 physical machine with an i7 CPU and 16 GB
of RAM.

As test data, we randomly generated a set 50 processes of different sizes in terms
of number of process steps and temporal constraints. We structured the test set into five
subsets of processes having similar size: 10N for processes of size (around) 10 activities,
20N for 20, 30N for 30, 40N for 40 and 50N for 50. Each subset contains 10 processes;
all the processes in a same subset have the same number of temporal constraints. Since
Algorithm 1 maps processes into STNUs, and STNUs do distinguish between conditional
(xor) and unconditional (and) splits, for the processes in the test set we consider the overall
number of split nodes with no distinction between xor- and and-splits. The smallest process
resulted in an STNU with 25 nodes; the largest process resulted in an STNU with 129 nodes.
We report an overview on the test set in Table 2. We regard the range of process sizes used
for the experiments as representative of most of the cases found in practical applications.

Table 2. Overview of the sets of processes used for the experimental evaluation. Each set contains
10 randomly generated processes.

Subset Min STNU Nodes Max STNU Nodes UBCs/LBCs Min Splits Max Splits

10N 25 29 2 1 3
20N 45 51 4 1 4
30N 67 79 6 2 7
40N 91 107 8 4 12
50N 113 129 10 5 13

8.2. Results and Discussion

We report the minimum, maximum and average measured execution times for the
various process sizes in Table 3, and the average only in Figure 13. On average, executing
Algorithm 1 on a process of size (around) 10 in 10N required 0.13 s; in 20N, 0.83 s; in 30N,
6.29 s; in 40N, 18.94 s; in 50N, 41.00 s.

The nonlinear increase in the execution times is explained by the repeated execution
of the dynamic controllability checking procedure, called at line 11 of Algorithm 1 for each
STP in a process. It is known that checking dynamic controllability for STNUs is O(N4),
where N is the number of STNU nodes [18]. Nevertheless, the proposed procedure is
executed only during the design phase of a process, and has no impact on the run time
performance of a process execution.

The results gathered from the experimental evaluation indicate that the required
computation times are acceptable for a design time execution. Interestingly, these results
are such despite the fact that Algorithm 1 introduces into the STNU new constraints to
solve the STPs, and repeatedly executes a dynamic controllability checking procedure. We
conclude that the proposed approach is applicable for most practical applications that
require checking at design time for semi-dynamic controllability of process models.

Appl. Sci. 2022, 12, 1461 22 of 27

Table 3. Overview of the measured minimum, maximum and average times for executing Algorithm 1
on the processes of the test set.

Subset Min Time [ms] Max Time [ms] Average Time [ms]

10N 78 250 134
20N 484 1438 829
30N 4177 9340 6291
40N 11,865 26,558 18,936
50N 29,971 50,910 40,995

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

10N 20N 30N 40N 50N

Ti
m

e
[s

]

Process subset

Figure 13. Results of the evaluation.

9. Related Work

Semi-contingent activities and semi-dynamic controllability have been introduced
in our previous work [11], which, to the best of our knowledge, was the first to address
them. Here, we extended the work in [11] with an extensive formalization of the sudden
termination patterns, a formalization of the sudden start problem, and a mapping of sudden
start into sudden termination. The most relevant related work, therefore, is in the areas
of (a) formulation of temporal constraints in process models, (b) checking consistency
and controllability of time-aware process models, and (c) scheduling and monitoring of
process execution.

For general overviews of process time management, we refer to [5,12,19]. The work
in [20] marks a milestone in the representation of temporal aspects in process models, as it
presents a formalization of time patterns and their semantics, based on the analysis of re-
curring temporal constraints in a wide number of real world process models. Nevertheless,
despite being a thorough investigation, it did not identify semi-contingent activities and
the problems of sudden start and sudden termination. With this work, we established a
number of (anti-)patterns of temporal constraints, which may lead to potentially undesir-
able behaviors during the execution of a process, and which designers should look for in
their process models to prevent such behaviors.

The focus of this work is on business processes with temporal constraints. Several pre-
vious works focused on the verification of deadlines and temporal constraints in business
processes, see, e.g., [21–24]. Similarly to our proposed approach based on STNUs, these
approaches are based on network analysis, scheduling, and constraint networks. None
of these works, however, addressed the problem of induced sudden termination of tasks.
We integrate these verification approaches with the identification of a run-time behavior
that can be performed at design time, without the need to develop new formalisms for
temporal reasoning.

Appl. Sci. 2022, 12, 1461 23 of 27

More recent works such as [25,26] combined the temporal aspects of a process defi-
nition with other constraining dimensions, e.g., resource availability. Our work, instead,
currently focuses on the temporal dimension only. Looking into future research directions,
we regard these recent works as interesting starting points for a holistic investigation of the
problems of sudden termination and sudden start in processes.

Here, we concentrate on verifying process qualities at design time. We recognize that
design time is only one stage of the process lifecycle and prior work was indeed conducted
around the verification of temporal qualities at run time, e.g., pro-active monitoring of the
compliance of process instances to their process model [27–29]. Nevertheless, to the best of
our knowledge, all such approaches to monitoring and compliance checking address the
notion of satisfiability rather than dynamic controllability and do not consider the problem
of sudden termination. We consider it an interesting research opportunity to extend our
current work also to the run time of processes, e.g., exploring the possibility of pro-actively
giving warnings about the need to start or end tasks, even if they are not semi-contingent
or necessarily require advance notice.

A popular technology for gaining insights about process definitions is process mining [30].
Process mining relies on the existence of a large number of cases (process logs) for discover-
ing process definitions and being able to provide scheduling and monitoring information
about them. Thus, it is not adequate for new or frequently changing processes, or processes
with small number of instances. The approach we follow here, instead, relies on the exis-
tence and full knowledge of a process definition instead of logs in order to check for STPs
and SSPs, and to try to avoid them. So our approach can be adopted by designers without
the need to execute their processes and take the risk of incurring into run time problems.

The approach proposed here is based on mapping process definitions into Simple
Temporal Networks with Uncertainty (STNUs) [10]. Many research contributions have
been proposed in the last decades to the development of temporal constraint networks, in
particular introducing different notions of controllability and introducing more expressive
network models [7,10,14,31]. Here, while we do not develop any new type of temporal
constraint network, we contribute to the field by defining semi-dynamic controllability as a
specialization of dynamic controllability, which overcomes a class of undesirable behaviors
introduced by dynamic controllability.

10. Conclusions

Temporal constraints are essential aspects in many applications of information tech-
nologies and have to be considered both in the elicitation of requirements and in the design
of information systems. Research in temporal aspects of process modeling has two major
aims: increasing the accuracy of representing time-related properties and temporal require-
ments of business processes, and developing algorithms to check relevant properties of
processes at design time to avoid troubles at run time.

Here, we contribute to both aims. We found the current distinction between activities
with temporally controllable and not-controllable durations too coarse grained for many
practical applications, as it does not consider when the duration of an activity can be
determined. Consequently, we introduced the notion of semi-contingent activities, whose
duration can be controlled but not at all times. In particular, we found many application
domains, where the duration of an activity might be determined by the controller (the
process manager, scheduler, dispatcher, etc.) but only until the activity starts. When such
an activity starts, its duration cannot be changed any more. In addition, we also found
many applications where activities require an advanced notice before they may actually
start, and consequently introduced k-warning to represent these requirements.

Ignoring these aspects at design time leads to surprises at run time, to the problems of
sudden starts and sudden terminations. Modeling activities with semi-contingent durations,
in contrast, paves the way for checking at design time whether sudden starts and sudden
terminations can be avoided, as demonstrated with our proposed algorithm. The increased

Appl. Sci. 2022, 12, 1461 24 of 27

expressiveness of temporal process model and the checking procedures require additional
efforts, both for modeling temporal processes and for running the checking procedures.

The results presented here contribute to the engineering of temporal requirements.
Checking the semi-dynamic controllability of temporal constraints also means to check
whether requirements are in conflict. Therefore, the presented techniques support the
establishment of conflict-free requirements in early phases of system development and
help thus to avoid to build systems suffering from late discovery of conflicts between
requirements. A current limitation of these techniques is that they only check whether a
set of constraints has a conflict, but they do not identify the subsets of constraints which
are in conflict and they not support designers or requirements engineers to derive a set of
non-conflicting temporal constraints.

Taking a broader perspective, we regard this contribution as valuable also for process
managers, who can benefit from the successful execution of business processes without
surprises, which may otherwise affect the quality of process artifacts, outcomes and goals.
Reasoning about the possibility of a sudden start or sudden termination our approach
reduces the unpredictability of process execution and the necessity of taking precautions
to handle sudden starts and sudden terminations without being overly restrictive and
conservative in process planning and scheduling.

Author Contributions: Conceptualization, J.E., M.F. and J.L.; methodology, J.E. and M.F.; software,
J.L.; validation, J.E., M.F. and J.L.; formal analysis, J.E., M.F. and J.L.; writing—original draft prepara-
tion, J.E., M.F. and J.L.; writing—review and editing, J.E., M.F. and J.L.; visualization, M.F. and J.L.;
supervision, J.E.; All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data
can be found here: https://github.com/seluh/temporalvariables_prules (accessed on 23 December
2021). The code of the software used for the experiments reported in this study is publicly available.
This code can be found here: https://github.com/seluh/temporalvariables_prules (accessed on 23
December 2021).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Proofs

We include here the proofs to Theorems 3–11 of Section 5.

Appendix A.1. Proof to Theorem 3

Proof. We show that v < S.e− C.s ≤ C.dmin + w is a necessary and sufficient condition
that the activities S and C are not in an STP.

Necessary condition: we show that if the condition does not hold, a sudden termination
might occur. If the condition does not hold then @S.s, S.d, C.s with v < S.e − C.s ≤
C.dmin + w, which is only possible, if v > C.dmin + w.

We now assume that C and S are in an STP. This means that for all C.s, S.s there is no S.d
such that for all C.d the constraints holds: S.s+ S.d ≤ C.s+C.d+w and S.s+ S.d > C.s+ v.
Hence there is no S.d such that for all C.d: v < S.s + S.d− C.s < C.d + w. which requires
in particular, that there is no S.d to satisfy v < S.e− C.s ≤ C.dmin + w.

Sufficient condition: We show that if the inequality holds, sudden termination does
not occur. We show that ∃C.s, S.s, S.d such that ∀C.dmin ≤ C.d ≤ C.dmax the constraints
are satisfied, i.e., C.s + v < S.s + S.d < C.s + C.d + w, which holds since ∀C.dmin ≤ C.d ≤
C.dmax: v ≤ S.s + S.d− C.s ≤ C.dmin + w ≤ C.d + w.

https://github.com/seluh/temporalvariables_prules
https://github.com/seluh/temporalvariables_prules

Appl. Sci. 2022, 12, 1461 25 of 27

Appendix A.2. Proof to Theorem 5

Proof. We show that C.dmax + v < S.e− C.s ≤ w is a necessary and sufficient condition
that the activities S and C are not in an STP.

Necessary condition: we show that if the condition does not hold, a sudden termination
might occur. If the condition does not hold then @S.s, S.d, C.s with C.dmax + v < S.e−C.s ≤
w, which is only possible, if C.dmax + v > w.

We now assume that C and S are in an STP. This means that for all C.s, S.s there is no S.d
such that for all C.d the constraints holds: S.s+ S.d ≤ C.s+w and S.s+ S.d > C.s+C.d+ v.
Hence there is no S.d such that for all C.d: C.d + v < S.s + S.d− C.s < w. which requires
in particular, that there is no S.d to satisfy C.dmax + v < S.e− C.s ≤ w.

Sufficient condition: We show that if the inequality holds, sudden termination does
not occur. We show that ∃C.s, S.s, S.d such that ∀C.dmin ≤ C.d ≤ C.dmax the constraints
are satisfied, i.e., C.s + C.d + v < S.s + S.d < C.s + w, which holds since ∀C.dmin ≤ C.d ≤
C.dmax: C.d + v ≤ C.dmax + v ≤ S.s + S.d− C.s ≤ w.

Appendix A.3. Proof to Theorem 7

Proof. We show that S.dmin + v < S.e − C.s ≤ C.dmin + w is a necessary and sufficient
condition that the activities S and C are not in an STP.

Necessary condition: we show that if the condition does not hold, a sudden termination
might occur. If the condition does not hold then @S.s, S.d, C.s with S.dmin + v < S.e− C.s ≤
C.dmin + w, which is only possible, if S.dmin + v > C.dmin + w.

We now assume that C and S are in an STP. This means that for all C.s, S.s there is no S.d
such that for all C.d the constraints holds: S.s + S.d ≤ C.s + C.d + w and S.s + S.d > C.s +
S.d + v. Hence there is no S.d such that for all C.d: S.dmin + v < S.s + S.d−C.s < C.d + w.
which requires, in particular, that there is no S.d to satisfy S.dmin + v < S.s + S.d− C.s ≤
C.dmin + w.

Sufficient condition: We show that if the inequality holds, sudden termination does not
occur. We show that ∃C.s, S.s, S.d such that ∀C.dmin ≤ C.d ≤ C.dmax the constraints are
satisfied, i.e., C.s + S.dmin + v < S.s + S.d < C.s + C.d + w,

which holds since ∀C.dmin ≤ C.d ≤ C.dmax: C.d + S.dmin + v ≤ S.s + S.d − C.s ≤
C.dmin + w ≤ C.d + w.

Appendix A.4. Proof to Theorem 9

Proof. We show that C.dmax − v < S.e− C.s ≤ C.dmin + w is a necessary and sufficient
condition that the activities S and C are not in an STP.

Necessary condition: we show that if the condition does not hold, a sudden termination
might occur. If the condition does not hold then @S.s, S.d, C.s with C.dmax + S.dmin − v <
S.s + S.d− C.s ≤ C.dmin + w, which is only possible, if C.dmax + S.dmin − v > C.dmin + w.

We now assume that C and S are in an STP. This means that for all C.s, S.s there is no
S.d such that for all C.d the constraints hold: S.s + S.d ≤ C.s + C.d + w and S.s + S.d >
C.s + C.d + S.d− v

Hence there is no S.d such that for all C.d: C.d + S.dmin − v < S.s + S.d − C.s <
C.d + w. which requires, in particular, that there is no S.d to satisfy C.dmax + S.dmin − v <
S.s + S.d− C.s ≤ C.dmin + w.

Sufficient condition: We show that if the inequality holds, sudden termination does
not occur. We show that ∃C.s, S.s, S.d such that ∀C.dmin ≤ C.d ≤ C.dmax the constraints
are satisfied, i.e., C.s + C.d − S.d − v < S.s + S.d ≤ C.s + C.d + w, which holds since
∀C.dmin ≤ C.d ≤ C.dmax: C.d + S.dmin − v ≤ C.dmax + S.dmin − v ≤ S.s + S.d − C.s ≤
C.dmin + w ≤ C.d + w.

Appendix A.5. Proof to Theorem 11

Proof. We show thatS.dmin − v < S.e − C.s ≤ C.dmin + w is a necessary and sufficient
condition that the activities S and C are not in an STP.

Appl. Sci. 2022, 12, 1461 26 of 27

Necessary condition: we show that if the condition does not hold, a sudden termination
might occur. If the condition does not hold then @S.s, S.d, C.s with S.dmin − v < S.s + S.d−
C.s ≤ C.dmin + w, which is only possible, if S.dmin − v > C.dmin + w.

We now assume that C and S are in an STP. This means that for all C.s, S.s there is no S.d
such that for all C.d the constraints hold: S.s + S.d ≤ C.s + C.d + w and S.s > C.s + S.d− v

Hence there is no S.d such that for all C.d: S.dmin − v < S.s + S.d− C.s < C.d + w.
which requires, in particular, that there is no S.d to satisfy S.dmin − v < S.s + S.d− C.s ≤
C.dmin + w.

Sufficient condition: We show that if the inequality holds, sudden termination does
not occur. We show that ∃C.s, S.s, S.d such that ∀C.dmin ≤ C.d ≤ C.dmax the constraints
are satisfied, i.e., C.s + S.d− v < S.s + S.d ≤ C.s + C.d + w, which holds since ∀C.dmin ≤
C.d ≤ C.dmax: S.dmin − v ≤ S.s + S.d− C.s ≤ C.dmin + w ≤ C.d + w.

References
1. Van der Aalst, W.M. Business process management: A comprehensive survey. Int. Sch. Res. Not. 2013, 2013, 507984. [CrossRef]
2. Dumas, M.; Rosa, M.L.; Mendling, J.; Reijers, H.A. Fundamentals of Business Process Management, 2nd ed.; Springer:

Berlin/Heidelberg, Germany, 2018. [CrossRef]
3. Weske, M. Business Process Management—Concepts, Languages, Architectures, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2019.

[CrossRef]
4. Eder, J.; Panagos, E.; Rabinovich, M. Time constraints in workflow systems. In Advanced Information Systems Engineering; Springer:

Berlin/Heidelberg, Germany, 1999; pp. 286–300.
5. Cheikhrouhou, S.; Kallel, S.; Guermouche, N.; Jmaiel, M. The temporal perspective in business process modeling: A survey and

research challenges. Serv. Oriented Comput. Appl. 2015, 9, 75–85. [CrossRef]
6. Combi, C.; Posenato, R. Controllability in temporal conceptual workflow schemata. In Business Process Management; Springer:

Berlin/Heidelberg, Germany, 2009; pp. 64–79.
7. Vidal, T. Handling contingency in temporal constraint networks: From consistency to controllabilities. J. Exp. Theor. Artif. Intell.

1999, 11, 23–45. [CrossRef]
8. Eder, J.; Lehmann, M.; Tahamtan, A. Choreographies as federations of choreographies and orchestrations. In Proceedings of the In-

ternational Conference on Conceptual Modeling, Tucson, AZ, USA, 6–9 November 2006; Springer: Berlin/Heidelberg, Germany,
2006; pp. 183–192.

9. Cairo, M.; Rizzi, R. Dynamic Controllability Made Simple. In Proceedings of the 24th International Symposium on Temporal
Representation and Reasoning (TIME 2017), LIPIcs, Mons, Belgium, 16–18 October 2017; Volume 90, pp. 8:1–8:16.

10. Morris, P.H.; Muscettola, N. Temporal dynamic controllability revisited. In Proceedings of the AAAI, Pittsburgh, PA, USA, 9–13
July 2005; pp. 1193–1198.

11. Eder, J.; Franceschetti, M.; Lubas, J. Scheduling Processes Without Sudden Termination. In Enterprise, Business-Process and
Information Systems Modeling; Springer: Berlin/Heidelberg, Germany, 2020; pp. 117–132.

12. Eder, J.; Panagos, E.; Rabinovich, M. Workflow Time Management Revisited. In Seminal Contributions to Information Systems
Engineering; Springer: Berlin/Heidelberg, Germany, 2013; pp. 207–213.

13. Hunsberger, L.; Posenato, R. Dynamic Controllability Checking for Conditional Simple Temporal Networks with Uncertainty:
New Sound-and-Complete Algorithms based on Constraint Propagation. In Proceedings of the 25th International Symposium on
Temporal Representation and Reasoning (TIME 2018), Warsaw, Poland, 15–17 October 2018; Volume 120, p. 14.

14. Zavatteri, M.; Viganò, L. Conditional simple temporal networks with uncertainty and decisions. Theor. Comput. Sci. 2019,
797, 77–101. [CrossRef]

15. Cairo, M.; Rizzi, R. Dynamic controllability of simple temporal networks with uncertainty: Simple rules and fast real-time
execution. Theor. Comput. Sci. 2019, 797, 2–16. [CrossRef]

16. Zur Muehlen, M.; Recker, J. How much language is enough? Theoretical and practical use of the business process modeling
notation. In Seminal Contributions to Information Systems Engineering; Springer: Berlin/Heidelberg, Germany, 2013; pp. 429–443.

17. Eder, J.; Franceschetti, M.; Köpke, J. Controllability of business processes with temporal variables. In Proceedings of the
34th ACM/SIGAPP Symposium on Applied Computing, Limassol, Cyprus, 8–12 April 2019; ACM: New York, NY, USA, 2019;
pp. 40–47.

18. Morris, P. A structural characterization of temporal dynamic controllability. In Proceedings of the International Conference
on Principles and Practice of Constraint Programming, Nantes, France, 25–29 September 2006; Springer: Berlin/Heidelberg,
Germany, 2006; pp. 375–389.

19. Combi, C.; Pozzi, G. Temporal conceptual modelling of workflows. In Conceptual Modeling-ER 2003; Springer: Berlin/Heidelberg,
Germany, 2003; pp. 59–76.

20. Lanz, A.; Reichert, M.; Weber, B. Process time patterns: A formal foundation. Inf. Syst. 2016, 57, 38–68. [CrossRef]
21. Bettini, C.; Wang, X.; Jajodia, S. Temporal reasoning in workflow systems. Distrib. Parallel Databases 2002, 11, 269–306. [CrossRef]

http://doi.org/10.1155/2013/507984
http://dx.doi.org/10.1007/978-3-662-56509-4
http://dx.doi.org/10.1007/978-3-662-59432-2
http://dx.doi.org/10.1007/s11761-014-0170-x
http://dx.doi.org/10.1080/095281399146607
http://dx.doi.org/10.1016/j.tcs.2018.09.023
http://dx.doi.org/10.1016/j.tcs.2018.11.005
http://dx.doi.org/10.1016/j.is.2015.10.002
http://dx.doi.org/10.1023/A:1014048800604

Appl. Sci. 2022, 12, 1461 27 of 27

22. Cardoso, J.; Sheth, A.; Miller, J.; Arnold, J.; Kochut, K. Quality of service for workflows and web service processes. J. Web Semant.
2004, 1, 281–308. [CrossRef]

23. Guermouche, N.; Godart, C. Timed model checking based approach for web services analysis. In Proceedings of the ICWS
2009. IEEE International Conference on Web Services, Los Angeles, CA, USA, 6–10 July 2009; IEEE: Piscataway, NJ, USA, 2009;
pp. 213–221.

24. Marjanovic, O.; Orlowska, M.E. On modeling and verification of temporal constraints in production workflows. Knowl. Inf. Syst.
1999, 1, 157–192. [CrossRef]

25. Watahiki, K.; Ishikawa, F.; Hiraishi, K. Formal verification of business processes with temporal and resource constraints. In
Proceedings of the 2011 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Anchorage, AK, USA, 9–12
October 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1173–1180.

26. Zavatteri, M.; Combi, C.; Viganò, L. Resource controllability of workflows under conditional uncertainty. In Proceedings of the
International Conference on Business Process Management, Vienna, Austria, 1–6 September 2019; Springer: Berlin/Heidelberg,
Germany, 2019; pp. 68–80.

27. Hashmi, M.; Governatori, G.; Lam, H.P.; Wynn, M.T. Are we done with business process compliance: State of the art and
challenges ahead. Knowl. Inf. Syst. 2018, 57, 79–133. [CrossRef]

28. Ly, L.T.; Maggi, F.M.; Montali, M.; Rinderle-Ma, S.; van der Aalst, W.M. Compliance monitoring in business processes:
Functionalities, application, and tool-support. Inf. Syst. 2015, 54, 209–234. [CrossRef]

29. Pichler, H.; Wenger, M.; Eder, J. Composing time-aware web service orchestrations. In Proceedings of the International Conference
on Advanced Information Systems Engineering, Amsterdam, The Netherlands, 8–12 June 2009; Springer: Berlin/Heidelberg,
Germany, 2009; pp. 349–363.

30. van der Aalst, W.M.; Schonenberg, M.; Song, M. Time prediction based on process mining. Inf. Syst. 2011, 36, 450–475. [CrossRef]
31. Lanz, A.; Posenato, R.; Combi, C.; Reichert, M. Controlling time-awareness in modularized processes. In Enterprise, Business-

Process and Information Systems Modeling; Springer: Berlin/Heidelberg, Germany, 2016; pp. 157–172.

http://dx.doi.org/10.1016/j.websem.2004.03.001
http://dx.doi.org/10.1007/BF03325097
http://dx.doi.org/10.1007/s10115-017-1142-1
http://dx.doi.org/10.1016/j.is.2015.02.007
http://dx.doi.org/10.1016/j.is.2010.09.001

	Introduction
	Background and Motivation
	Dynamic Execution Strategies
	Sudden Termination
	Sudden Start

	Process Model
	Process Model with Temporal Constraints
	Temporal Semantics

	Sudden Termination and Sudden Start Problems, and Semi-Dynamic Controllability
	Sudden Termination Problem
	Sudden Start Problem
	Semi-Dynamic Controllability

	Sudden Termination Constellations and Patterns
	Sudden Termination Constellation and Pattern STP-1
	Sudden Termination Constellation and Pattern STP-2
	Sudden Termination Constellation and Pattern STP-3
	Sudden Termination Constellation and Pattern STP-4
	Sudden Termination Constellation and Pattern STP-5
	Sudden Termination Constellation and Pattern STP-6
	Recap of the STP Constellations

	Transforming Sudden Start into Sudden Termination
	Checking Semi-Dynamic Controllability with STNUs
	Mapping to STNUs
	Checking Dynamic Controllability
	Checking Semi-Dynamic Controllability

	Implementation and Evaluation
	Materials and Methods
	Results and Discussion

	Related Work
	Conclusions
	Proofs
	Proof to Theorem 3
	Proof to Theorem 5
	Proof to Theorem 7
	Proof to Theorem 9
	Proof to Theorem 11

	References

