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Abstract: ICIs are a standard of care in several malignancies; however, according to overall response
rate (ORR), only a subset of eligible patients benefits from ICIs. Thus, an ability to predict ORR
could enable more rational use. In this study a ML-based ORR prediction model was built, with
patient-reported symptom data and other clinical data as inputs, using the extreme gradient boosting
technique (XGBoost). Prediction performance for unseen samples was evaluated using leave-one-out
cross-validation (LOOCV), and the performance was evaluated with accuracy, AUC (area under
curve), F1 score, and MCC (Matthew’s correlation coefficient). The ORR prediction model had a
promising LOOCV performance with all four metrics: accuracy (75%), AUC (0.71), F1 score (0.58),
and MCC (0.4). A rather good sensitivity (0.58) and high specificity (0.82) of the model were seen
in the confusion matrix for all 63 LOOCV ORR predictions. The two most important symptoms for
predicting the ORR were itching and fatigue. The results show that it is possible to predict ORR
for patients with multiple advanced cancers undergoing ICI therapies with a ML model combining
clinical, routine laboratory, and patient-reported data even with a limited size cohort.

Keywords: ePRO; machine learning; prediction model; irAE; immune checkpoint inhibitor; prognosis;
ORR; treatment response

1. Introduction

Immune checkpoint inhibitors (ICIs) are standard-of-care treatments in several ma-
lignancies, both in adjuvant and advanced settings [1–12]. However, treatment response
assessment of the ICIs differs from traditional cancer therapies, with unique tumor response
patterns such as pseudo- and hyperprogression [13]. Furthermore, the temporal association
of radiological response to treatment may sometimes be obscure. While only a subset of
patients responds to ICIs, novel tools to assess the treatment response are needed when
aiming to improve patient care and the clinical value of ICIs.

Artificial intelligence (AI)-based analytics have gained growing interest in the field of
cancer care. Machine learning models have been shown to predict responses to a variety
of standard-of-care chemotherapy regimens from gene expression profiles of individual
patients with high accuracy [14,15]. Furthermore, deep learning systems have shown
promising results, especially in cancer diagnostics [16]. AI-based methods can be used
to analyze vast data pools to create predictive and prognostic analytics for generating
value-based healthcare assets. In addition, recent data show that machine learning (ML)
algorithms could identify patients with cancer who are at risk of short-term mortality [17].
Tumor immunology is a very complex entity, and it is clear that none of the single factors
known so far can predict benefit for ICI therapy with high accuracy. Therefore, it is
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likely that using multiple inputs would result in prediction models with higher sensitivity
and specificity.

A comprehensive and timely assessment of patients’ symptoms is feasible via elec-
tronic (e) patient-reported outcomes (PROs) [18–20]. ePROs have been shown to improve
quality of life (QoL) and survival and decrease emergency clinic visits in cancer patients re-
ceiving chemotherapy and in lung cancer follow-up [21,22]. Numerous studies have linked
ICI treatment benefit to the presence of physician-assessed immune-related adverse events
(irAEs), but the prognostic role of ePROs is an uninvestigated area [23–25]. While ML-
based methodology can comprise numerous variable data sources to generate prediction
models [26], the association of irAEs to ICI treatment benefit together with the complexity
of tumor immunology generates an interesting landscape to investigate ML-based models.

We have previously shown that the real-world symptom data collected with the
Kaiku Health ePRO tool from cancer patients receiving ICI therapy align with the data
from clinical trials and that correlations between different symptoms occur, which might
reflect therapeutic efficiency, side effects, or tumor progression [27,28]. We first explored
the possibilities of ML-based prediction models on ePROs to create prediction models of
symptom continuity of cancer patients receiving ICIs and showed that it is feasible [29].
Based on our previous work on ML modeling and the ePRO symptom correlations, we
speculated that if symptoms can predict irAEs, symptoms could work as a surrogate
to irAEs. That hypothesis was confirmed in our latest research showing that ML-based
prediction models using ePRO and electronic health care record (EHR) data as an input can
predict the presence and onset of irAEs with a high accuracy [30].

The aim of this study was to investigate whether it is possible to predict objective re-
sponse rate (ORR) in patients undergoing ICIs for advanced cancers. Thus, pseudonymized
and aggregated ePRO symptom data collected with the Kaiku Health ePRO tool, laboratory
values, and demographics, in addition to prospectively collected clinician-assessed treat-
ment responses and irAE data, were used to train and tune a prediction model built using
an open-source Python library XBoost (extreme gradient boosting algorithm) to assess
clinical response to ICI treatment.

2. Materials and Methods

The study subjects (n = 31) consisted of patients recruited to the prospective KISS trial
investigating ePRO follow-up of cancer patients receiving ICIs at Oulu University Hospital.
In brief, the trial included patients with advanced cancers (non-small cell lung cancer,
melanoma, genito-urinary cancers, and head and neck cancers) treated with anti-PD-(L)1s
in outpatient settings with the availability of internet access and email. At the initiation of
the treatment phase (within 0–2 weeks from the first anti-PD-(L)1 infusion), the patients
received an email notification to complete the baseline electronic symptom questionnaire
of 18 symptoms and did so weekly thereafter until treatment discontinuation or six months
of follow-up. The symptoms tracked by the Kaiku Health ePRO tool are potential signs
and symptoms of immune-related adverse events, and symptom selection is based on the
reported publications of the following clinical trials: CheckMate 017 (NCT01642004), Check-
Mate 026 (NCT02041533), CheckMate 057 (NCT01673867), CheckMate 066 (NCT01721772),
CheckMate 067 (NCT01844505), KEYNOTE-010 (NCT01905657), and OAK (NCT02008227).

Besides recording the presence of a symptom, a severity algorithm of the ePRO tool
grades the symptom according to the Common Terminology Criteria for Adverse Events
(CTCAE) protocol, from 0 to 4, with no (0), mild (1), moderate (2), severe (3), and life-
threatening (4) categories. In addition to ePRO-collected symptoms, data on demographics,
treatment responses according to the Response Evaluation Criteria in Solid Tumors (RECIST
1.1), irAEs (nature of AE, date of onset and resolving, dates of change in AE severity, and
the highest grade based on CTCAE classification), and laboratory values were prospectively
collected prior and during the treatment period.

The KISS trial was approved by the Northern Ostrobothnia Health District ethics
committee (number 9/2017), Valvira (number 361), and details of the study are publicly
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available at clinicaltrials.gov (NCT03928938). The study was conducted in accordance with
the Declaration of Helsinki and Good Clinical Practice guidelines.

The ML-based prediction model was built using the extreme gradient boosting algo-
rithm, implemented using an open-source Python library XGBoost, which is widely used
for classification problems. Gradient boosting is an ensemble learning algorithm; thus, it is
an ensemble of many decision trees—usually tens or hundreds—which are weak learners
but, when combined using the gradient boosting approach, form a strong learner capable
of capturing complex relationships in the training data.

The aim of this study was to create a ML-based model for predicting the presence
of complete response (CR) or partial response (PR) based on evolving digitally collected
patient-reported symptoms, the presence of physician-confirmed irAE, and laboratory
values collected in a prospective manner from cancer patients receiving ICI therapies
in the KISS trial [26]. The included data consisted of symptom data that were graded
by the algorithm of the ePRO tool according to CTCAE, automatically via application
programming interface (API)-fetched laboratory data (bilirubin, hemoglobin, ALP, ALT,
platelets, leukocytes, creatinine, thyrotropin, and neutrophils) from the baseline (prior
to the first drug infusion) throughout the treatment phase, demographics (age and sex),
treatment responses, and the presence of irAEs at response assessment (yes/no), as well as
the time (weeks) from therapy initiation.

ORR was defined as the proportion of patients in whom PR or CR responses were
seen as the best overall response (BOR) according to RECIST 1.1. Stable disease (SD) was
categorized as a non-response together with progressive disease (PD). Closest preceding
laboratory values and reported symptoms, both as changes from the baseline, were linked to
the treatment responses; thus, the timelines of ePROs, irAEs, and BORs were synchronized
according to dates. In addition, the model accounted for whether the patient had had a
diagnosed irAE prior to/at the time of response evaluation.

Treatment responses according to RECIST 1.1 were divided into binary categories.
The output of the prediction model is a continuous value [0,1] depicting the probability
for the positive event, i.e., objective response (CR or PR) versus no objective response
(SD + PD) (Figure 1). With a classification threshold of 0.5, the continuous probabilities
were converted into binary outcomes, i.e., when the predicted probability for the positive
event is greater than 0.5, prediction is labeled positive (CR or PR as treatment response),
and if less than 0.5, then negative (SD or PD as a treatment response). Thus, the modeling
methodology used in this study follows a general framework of binary classification in ML.

Prediction performance of the model for unseen samples was evaluated using leave-
one-out cross-validation (LOOCV), which trained and tested 63 models, each time itera-
tively leaving one sample (related to one of the clinician-assessed treatment responses) out
as a test set. Multiple response assessments across the same patients were used to create
a timeline of best overall responses (BORs); however, in every time point analyzed, the
parameters differ, comprising a new sample. Furthermore, the used gradient boosting
trees-based algorithm (XGBoost) can handle intercorrelated observations or features, and,
thus, correlated input parameters do not cause problems for the modeling.

The prediction performance of the model was evaluated with accuracy, AUC (area
under curve), F1 score, and MCC (Matthew’s correlation coefficient). Accuracy describes
how many predictions were correct as a percentage, and 100% indicates a perfect classifica-
tion. AUC is a commonly used performance metric for binary classification ranging from
0 to 1, where 0.5 is random guessing and 1 is perfect classification. F1 score is the weighted
average of precision (i.e., how many of the cases predicted as positive are positive) and
recall (how many of the positive cases are detected), which attains values between 0 and 1,
1 indicating perfect precision and recall. MCC summarizes all possible cases for binary
predictions: true and false positives, and true and false negatives. MCC can be considered
as a correlation coefficient between the observed and the predicted classifications, and it
attains values between −1 and 1, where 1 is perfect classification, 0 is random guessing,
and −1 indicates completely contradictory classification.
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Figure 1. Complete modeling framework for ORR prediction.

3. Results
3.1. ML Prediction Model

The initial ePRO dataset included 992 filled symptom questionnaires from the 31 ICI-
treated cancer patients in outpatient settings comprising 18 monitored symptoms collected
weekly using the Kaiku Health ePRO tool (Table 1). The irAE data included physician-
confirmed prospectively collected irAE (n = 26) data in the eCRFs of the KISS trial from
those 31 patients, containing initiation and end dates, CTCAE class and severity, and
nature (colitis, diarrhea, arthritis, rash, hyperglycemia, neutropenia, pneumonitis, itching,
cholangitis, mucositis, hypothyreosis, and hepatitis). Prospectively assessed treatment
responses (n = 63) by the study physicians were also retrieved from the eCRF. The patients
with partial (PR) or complete (CR) responses (n = 19) were characterized as responders,
while stable (SD) and progressive disease (PD) (n = 44) were categorized as a non-response.
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Table 1. The demographics of the study population.

n (%)

Age (median) 61.7

Gender

Male 21 (67.7)
Female 10 (32.3)

Tumor type

Melanoma 8 (25.8)
Lung cancer 12 (38.7)
GU cancer

H&N
7 (22.6)
4 (12.9)

Stage at diagnosis

Stage III 4 (12.9)
Stage IV 27 (87.1)

ECOG

0 20 (64.5)
1 11 (35.5)

The complete modeling framework for ORR prediction is illustrated in Figure 1. We
also tested several other commonly used ML models, such as logistic regression, elastic-net
regression, support vector machines, LightGBM, and random forests, but XGBoost had the
best performance with the LOOCV evaluation, and, thus, it was chosen as the model for
the study.

3.2. Performance Metrics for ORR Prediction

The model trained to predict ORR had a promising LOOCV performance with all
four metrics: accuracy, AUC, F1 score, and MCC. The accuracy of predicting ORR was 75%.
The AUC value (0.71) suggests a decent quality level of model performance. The F1 score
(0.58) indicates that the model was feasible in predicting the treatment response, which
was supported by the MCC value (0.40). In the confusion matrix for all 63 LOOCV ORR
predictions can be seen a rather good sensitivity (0.58) and a high specificity (0.82) of the
model (Figure 2). The false negatives (8/63 samples) were identified as the cases where
the prediction model did not predict a presence of objective treatment response for a test
dataset sample which was a true positive, i.e., CR or PR was present. The false positives
(also 8/63 samples), on the other hand, were the cases where the model predicted the
presence of CR or PR for the sample but the sample was a true negative, i.e., the response
was SD or PD.

3.3. Feature Importance Analysis

Figure 3 illustrates the feature importance from a model trained with all available
samples (n = 63). The displayed importances depict the relative average improvement in
prediction accuracy across all of the 100 decision trees in the model where a certain feature
is utilized. The importance of each feature should be considered as relative to the others.
As is presented in Figure 3, the two most important features for predicting the ORR were
itching and fatigue. Figure 3 reveals that roughly half of the features contributed to the
predictions. The features which do not contribute to the predictions could be removed from
the prediction model using feature selection, but it does not impact the model performance,
due to the tree structure of the used gradient boosting algorithm.
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Figure 2. Confusion matrix for predicted ORR. Upper-left corner shows correctly classified negative,
lower-right corner correctly classified positive, upper-right corner false positive, and lower-left corner
false negative samples. Negative samples consist of SD and PD responses and positive samples CR
and PR responses.

Figure 3. Feature importance of ORR prediction model trained with all available samples. The
displayed importances depict the relative average improvement in prediction accuracy across all
100 trees in the model where a certain feature is utilized. The importance of each feature should be
considered as relative to the others.
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4. Discussion

Digitalization is a global megatrend affecting the basic structures of human interaction.
Digital transformation of healthcare aims to deliver the positive impact of technology in
many forms, e.g., telemedicine, AI-aided medical devices, and vast data pools to create
predictive analytics. Evolving data show that electronic health record-based predictive
algorithms may improve clinicians´ prognostication and decision-making [31]. A recent
study on the use of radiomics and machine learning revealed that the algorithm utilizing
individual CT scans of advanced melanoma patients receiving single anti-PD-1 therapy out-
performed traditional RECIST 1.1 criteria in predicting treatment response [32]. However,
utilization of ePROs in creating ML algorithms is a novel approach.

In this study, we investigated ML modeling that combines prospectively collected
data on ePROs, demographics, laboratory values, irAEs, and treatment responses. The
aim of the study was to investigate whether these data inputs could be used to predict
treatment benefit from ICI therapies in metastatic cancers. The results showed that it is
possible to predict ORR with a high specificity, even using data from a patient cohort of
multiple cancer types. The study highlights the possibilities of using pooled data from
various sources for ML models and potentials of these models to improve the clinical value
of cancer treatments.

Parallel to traditional follow-up of cancer patients, ePROs enable capturing of symp-
toms in a timely and comprehensive manner, and it integrates the patients’ perspective
into the cancer care continuum [17,33]. Previous studies have provided evidence that
ePRO follow-up can improve QoL, reduce emergency clinic visits, and, more importantly,
improve survival in chemotherapy-treated patients with advanced cancers and in lung
cancer [20,21]. We have previously shown that ePRO follow-up is also feasible for cancer
patients receiving ICIs and that ePRO-collected symptom profiles mimic the AE results
of ICI registration studies [26,27]. In addition, our earlier studies have highlighted the
possibilities of ePRO data inputted ML models in facilitation of irAE detection, which could
improve their treatment [29]. Furthermore, since irAEs often are linked to improved out-
comes in patients treated with ICIs [23–26], we speculated that ePRO-collected symptom
data could be used to predict treatment benefit. Compared to healthcare professional-
collected symptoms, ePRO might provide additional value to the symptom assessment,
especially with low-grade symptoms without external presentation such as itching. As far
as we know, the present study is the first ever to combine ePRO-collected symptom data
with ML modeling to predict treatment response with ICIs.

Even though this has been intensively studied for years, there are no known universal
predictive factors for ICI benefit in cancer treatment suitable for clinical practice for multiple
cancer types [34]. Our results indicate that multiple data points and sources collected over
time can be used to generate an adaptive ML model able to predict treatment outcomes.
Due to the complexity of cancer immunology, we speculate that no single universal marker
for ICI benefit will be discovered, and more effort should be used in analyzing multidi-
mensional data, combining not only tumor features but also clinical data, such as ePRO
symptoms and routine laboratory values. Furthermore, our study suggests that ePRO data
could be used as a non-invasive indicator for immune activation and, therefore, surrogate
for ICI treatment benefit.

There are several limitations when interpreting our results. Our patient cohort is
limited in size, which could decrease the generalizability of the results. Our model had
high specificity for treatment benefit but only a moderate level of sensitivity, which might
relate to the small cohort size or be a general feature of these models. Nevertheless, the
used modeling methods and approaches were chosen to overcome the issues related to
imbalanced datasets, and intercorrelated parameters were selected to minimize such bias.
These methods and approaches included, e.g., utilization of sample weights (giving more
emphasis to the rare positive samples in model training), utilization of F1 score and MCC
as performance metrics, and using a regularized tree-based model, XGBoost. In addition,
our cohort consisted of ICI-monotherapy-treated patients, and the results might not be
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applicable to patients treated with ICI combinatory therapies. Thus, our model inevitably
requires validation in another, preferably larger, cohort. As far as we know, however, these
types of datasets are currently unavailable.

In our opinion, ML models should be incorporated into the digital symptom follow-up
of a cancer patient for optimal remote monitoring. The tool should include an interactive
ePRO approach connecting the patient and care unit in a timely fashion and, preferably,
also automatically integrate other clinical data such as laboratory values. When these
datasets are available in a sole platform, adaptive ML models such as the one built in the
present study can be used to bring additional important data, such as irAE and treatment
benefit probabilities, for clinical decision-making. This digital tool could personalize cancer
care and bring additional clinical value to the ICI treatments, especially considering the
high costs and undefined predictive factors.

5. Conclusions

In healthcare, knowledge representation as part of the clinical decision support system
is currently the most used AI approach. There are high hopes that AI could improve
healthcare with early diagnostics and improved care in a more cost-effective manner
compared to current measures. Yet the digital revolution in healthcare provides new ways
to both collect clinically relevant data from each patient and connect it to large data pools
of existing patient-level data for analysis with AI-based algorithms, aiming to personalize
treatment schemas and follow-up based on individual risk assessment.

In conclusion, our study highlights the possibility of generating ML models for ICI
treatment benefit. We used multiple inputs for the model, including ePRO symptom data,
which could serve as a non-invasive surrogate for immune activation. The main results
suggest that these models perform with a high specificity. Even though validation of the
results in larger cohorts is required, the promising results favor digital approaches in ICI
patient follow-up.
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