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Abstract: The paper concerns research on electronics-embedded safety systems. The authors focus 
on the optimization of the energy consumed by multitasking real-time systems. A new flexible and 
reconfigurable multi-core architecture based on pipeline processing is proposed. The presented 
solution uses thread-interleaving mechanisms that allow avoiding hazards and minimizing 
unpredictability. The proposed architecture is compared with the classical solutions consisting of 
many processors and based on the scheme using one processor per single task. Energy-efficient task 
mapping is analyzed and a design methodology, based on minimizing the number of active and 
utilized resources, is proposed. New techniques for energy optimization are proposed, mainly, clock 
gating and switching-resources blocking. The authors investigate two main factors of the system: 
setting the processing frequency, and gating techniques; the latter are used under the assumption 
that the system meets the requirements of time predictability. The energy consumed by the system 
is reduced. Theoretical considerations are verified by many experiments of the system's 
implementation in an FPGA structure. The set of tasks tested consists of programs that implement 
Mälardalen WCET benchmark algorithms. The tested scenarios are divided into periodic and non-
periodic execution schemes. The obtained results show that it is possible to reduce the dynamic 
energy consumed by real-time applications' meeting their other requirements. 

Keywords: real time; multitask; energy-efficient; time-predictable; safety systems; hardware design; 
FPGA; clock gating; resource-usage optimization 
 

1. Introduction 
Real-time embedded systems represent one of the most important segments of the 

modern electronics market. They are one of the crucial parts of the safety systems 
operating in medicine, military, control systems, etc. One can observe the constant growth 
of the expectations of real-time systems over the years. Users require from such systems 
the highest reliability and long-lasting, failure-free operation. As real-time systems can 
now be found in mobile and remote applications, a new challenge arises—low power 
consumption. Thus, new techniques and design methodologies that allow minimizing the 
energy required by embedded systems have been intensively investigated for the last few 
decades. 

The present paper concerns a low-level approach to time-predictable systems. The 
authors focus on the hardware design of real-time system architectures. The research 
analyzes different solutions of PRET architectures [1] with respect to the various cost 
parameters. The main effort has been toward the minimization of the total energy 
consumed by the system. All investigations and practical experiments have been carried 
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out on original architecture, developed in the Department of Electronics, Electrical 
Engineering and Microelectronics (formerly, the Institute of Electronics) [2–4]. 

The paper is organized in the following way: the second section discusses the related 
work and briefly describes alternative solutions concerning hardware, as well as software, 
elements of time-predictable real-time systems. Section 3 presents different architectures 
of time-predictable systems, wherein the authors analyze the main building blocks of the 
solutions that are tested in this research. The fourth section contains theoretical analyses 
of time-predictable systems and formulates the main quality metrics that are used in the 
analyses. Section 5 presents selected results of the practical experiments carried out under 
different multitask systems' configurations. The authors emphasize the analysis of the 
energy consumed by the solutions that meet timing requirements, i.e., in which the 
deadlines of all tasks are satisfied. Finally, the last section summarizes the paper, discusses 
the results, draws conclusions, and formulates areas for further research. 

2. Related Work 
One of the main requirements of real-time systems is their predictability, i.e., given a 

set of some hard tasks [5,6], they must meet their deadlines. The problem has been 
recognized by researchers from all over the world [1,3,5,7–10] for many years now. During 
the DAC 2007 conference, Edwards and Lee [1] formulated the PRET (precision time 
machines) philosophy and, since then, the problem of time predictability has been 
intensively investigated and many interesting solutions in the field have been proposed. 
The authors of the PRET idea [1] suggest the introduction of pipeline processing with a 
thread-interleaving mechanism [11] that allows reducing hazards. Wilhelm, in [10], gives 
a detailed overview of many issues concerning the design and modeling of real-time 
systems; among others, he pointed out that ‘pipeline analysis is a highly complex part of the 
overall analysis because, (…) most pipelines do not have compact, efficiently updatable abstract 
domains’. This survey outlines that the time predictability of embedded systems requires 
a detailed analysis of many issues covering hardware, software design, communication 
between modules and system layers, and task scheduling. Many authors have pointed out 
how important is analysis of the critical paths (cases) of a system. In [12], the reader can 
find a very detailed analysis of many aspects of worst cases involving single tasks and 
various cases of their execution, task-mapping processes, operating systems, and memory 
operations (especially caches); the authors introduce special traces for this purpose. 
Wilhelm [10] describe various techniques of WCET analysis, from single-core 
architectures to multi-core approaches, proposing a very interesting cache analysis. 
Another paper, [3], describes an interesting time-predictable architecture where the worst-
case analysis is performed dynamically during the system run, and, based on a set of 
factors, the scheduling of tasks is corrected online. This analysis is carried out in the high- 
and system-level abstraction using the SystemC language. Authors of [7] present 
MPSoCBench, a simulation toolset that allows the simulation of a system consisting of a 
set of scalable, virtual multiprocessors on-chip (MPSoCs). This environment has enabled 
the development and testing of new applications, methodologies, parallel software, and 
hardware components. Moreover, the toolset is provided with algorithms and 
mechanisms that allow dynamic voltage and frequency scaling (DVFS) and, thus, 
controlling the overall system throughput and power consumption. The authors of the T-
CREST project [9] have developed a time-predictable, multi-core platform consisting of 
Patmos processors [13] connected by a network-on-a-chip. They provide a set of worst-
case timing (WCET) analysis tools and a dedicated compiler, allowing the parallelization 
of data processing. The description is available in opensource code (Java). The entire 
platform has been tested in communication use-cases of examples of practical 
applications. 

An important factor that determines the quality of contemporary ICs is power 
consumption. In general, the power consumption is affected by circuit currents (leakage, 
standby, short-circuit, etc.) [14]. There are four basic techniques for minimizing power 
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dissipation in embedded electronic systems: voltage scaling, frequency scaling, power 
gating, and clock gating. As is well known, many theoretical considerations, as well as 
practical experiments, have shown that the energy consumed by electronic circuits 
strongly depends on the operating frequency [2,8,9,15–18]. 

The experiments also showed that very often, the need to reduce energy consumption 
entails a reduction in system performance [2]. In the case of real-time applications, when 
task deadlines are crucial, making the final design decision is very difficult. Usually, it is 
a trade-off between energy and system performance [9]. Kim et al. [15] presents 
experiments on ARM’s LITTLE real-time architecture that show a strong correlation 
between the energy and the system performance; its authors try to accommodate real-time 
task deadlines, working in mobile applications, into the system throughput. Li has made 
some interesting theoretical considerations in his paper [8] regarding energy and time-
constrained task scheduling on multiprocessor computers. He proposes several 
algorithms working with discrete clock-frequency and voltage-supply levels. Li also 
proves that the problem of minimizing schedule length with energy consumption 
constraints and the problem of minimizing energy consumption with schedule length 
constraints are NP-hard, even on a uniprocessor computer with only two speed levels. In 
[16] one can find a set of interesting experiments carried out on different structures of real-
time systems. The authors show that the correlation between the real-time system speed 
and overall system power dissipates and some factors thereof, such as thread-level 
parallelism, communication models, and the microarchitectures of general-purpose 
processors. Xie et al. [17] proposes a set of task-scheduling algorithms based on the 
combination of two different approaches, global DVFS (dynamic voltage and frequency 
scaling called, GDES) that moves tasks to processor slacks, generating minimum dynamic 
energy consumption, and non-DVFS (NDES), energy-efficient scheduling based on the 
concept of deadline slacks analysis. Eventually, there are some scheduling techniques 
based on AI algorithms and heuristics, such as machine learning [15] or linear 
programming [18]. 

Coherency and organization of the memory systems have a strong impact on time 
predictability [1,5,13]. Generally, it is recommended to avoid caches in real-time systems. 
As many works have reported, the scheduling of tasks and their mapping to available 
resources also may balance the system loading and better use its capacities [2,19–22]. The 
methodology proposed in [19] uses a group-based, energy-efficient dual-priority 
scheduling (GEDP) that isolates different types of tasks and, thus, allows avoiding 
disruption and minimizing the context switches between tasks. On the other hand, [20] 
presents a hierarchical approach to task scheduling (HDA), in which the mapping process 
takes into account the dependencies between tasks, which, as a result, allows better 
management of resources and organization of communication in the system. The authors 
of [21] suggest the usage of a dynamic mechanism that analyzes the resource load during 
tasks’ execution. Specialized resource load and resource power managers allow 
controlling the dynamic power consumption via a on/off switching mechanism. The 
industrial approach is presented in [22]; the authors analyze many aspects of the practical 
applications of real-time systems and point out the limitations of multicore architectures. 
Many other interesting techniques may improve the processing quality of a multitask 
system, such as using the benchmark-based approach [7] or the appropriate 
synchronization of system clusters [23]. The authors of [24] have discussed and shown a 
very interesting methodology of clock gating that allows the efficient use of system 
modules and reducing the overall system energy. [25] present clock gating applied to a 
group of flip-flops, and the entire procedure is preceded by a detailed analysis of the 
activity of the blocks. The authors of [26] also show a clock-gating strategy that is 
successfully applied to dataflow designs based on streaming processing and implement 
it in FPGA structures. [27] deals with FPGA implementations of embedded systems as 
well, but the authors primarily attend to the power gating that allows dynamically 
controlling the power supply of the utilized modules. They propose a special CAD flow 
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methodology, which is tested in a robotic application used in endoscopy. [28] presents an 
approach based on state-retentive power gating and the cyclic switching on/off of the 
power supplying the system modules. The authors of [29] propose a selective state-
retention power-gating (SSRPG) mechanism based on circuit analysis at the gate level. 
This approach allows up to a 78% reduction in the used resources. 

3. Different Configurations of Real-Time Systems 
The research on time-predictable architectures has been carried out in the Faculty of 

Automatic Control, Electronics and Computer Science for several years. The first papers 
therefrom were devoted to real-time systems' dynamic scheduling of tasks. In 2009, the 
proposal of a time-predictable architecture was presented [4]. That solution met all PRET 
assumptions [1] and contained a flexible thread-interleaving mechanism [11] (Figure 1). 
The architecture was implemented as a high-level behavioral VHDL model and 
implemented in Xilinx Virtex 5 FPGA platform. Another approach has been developed in 
SystemC as an abstract model of time-predictable architecture [3] with the Threads’ State 
Controller (Figure 2) responsible for the generation of threads’ identifiers. The thread 
switching (control) mechanism was based on tracing several factors reflecting the 
dynamic progress of tasks and approaching deadlines. For a few years, the group has been 
working on a low-level approach, i.e., on hardware architectures of time-predictable 
systems. Recently the authors have proposed a few algorithms that allow directing the 
synthesis towards energy-efficient solutions [2]. In this paper, the different multi-task 
architectures of safety-critical systems are compared. The analysis starts with the classical 
approach based on the scheme of a single task per  single core and ends with a pipeline 
processor with interleaved threads. 

 
Figure 1. Dynamically scheduled PRET architecture with thread-interleaving and memory 
developed in IE SUT [4]. 
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Figure 2. Architecture of a single-core SystemC model of the PRET architecture [3]. 

3.1. Classical Simple Core Architecture (STP) 
Figure 3 presents the idea of a simple processor [30] that needs five clock cycles to 

execute a single instruction. The architecture consists of five phases: instruction fetch (IF), 
instruction decoding (ID), execution (EXE), memory operations (MEM), and write-back-
to-the-register files (WR) (Figure 3a). The diagram presented on the right side (Figure 3b) 
shows the occupation of the processor stages (phases) by a given task (Th1) during the 
subsequent clock cycles. In the paper, this architecture is called STP (single-thread 
processing). It realizes the following scheme: a single task processed by a single core. In 
the case of the first simple safety systems, it had been a very reliable solution, ensuring 
time predictability because the executed task is not disturbed by any additional program 
or interruption to be handled by a given core. However, in contemporary embedded 
systems, such a solution is very seldom and very expensive. The main drawback of this 
solution is that the available resources are not efficiently used during the calculations, i.e., 
the processor’s phases are utilized, at most, at 20% of is capacity. 
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Figure 3. Structure of a classical simple processor (a) and subsequent instruction’s cycles (b). 

3.2. Simple Core with Clock-Gating Mechanism (STP CG) 
The modification of the previous solution is depicted in Figure 4. In this structure, a 

clock gating technique [14,24] was used to efficiently use only those resources that are 
needed in a given phase of the processing. In the presented structure the clock signal is 
selectively blocked, i.e., only the modules utilized in the currently performed phase of the 
instruction cycles are clocked, whilst the clock signal is blocked to the rest of those 
processor resources belonging to inactive phases in a given moment. As is presented 
below, this modification allows radically reducing the dynamic power dissipated in the 
core. 
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Figure 4. Structure of a classical simple processor with the clock gating of unused phases. 

3.3. Multithread Core with Pipeline Processing (MTP) 
Recently, an interesting multicore architecture has been published by the team from 

the Faculty of Automatic Control, Electronics and Computer Science [2]. This structure 
consists of many cores that can process many threads (tasks). Figure 5 presents the 
structure of a single core that processes different threads on its pipeline stages, i.e., it is 
able to switch between replicated resources. Moreover, it is shown that the architecture of 
a single core is flexible and the length of the pipeline (the number of its stages) can be 
adjusted to the properties of the executed programs (tasks). The length of the pipeline can 
vary from 5 to 12 stages (Figure 6a,b). The five-staged pipeline consists of the same phases 
as the above-described simple core (STP). The fully extended architecture, depicted in 
Figure 6b, consists of 12 stages. The original stage instruction fetch had been divided into 
three sub-stages: select bank and instruction address (SBIA), responsible for determining 
the next instruction (every thread has its own program counter); proper IF; and select 
instruction (SI), in which an appropriate output register (corresponding to the appropriate 
thread identifier) is selected. Similarly, the instruction decoding (ID) and the memory 
access (MA) phases have also been split into a few sub-stages, in which a given memory 
(MEM) and general-purpose registers (GPR) are addressed. However, in the case of 
processing based on thread interleaving, one needs to remember that the frequency of the 
appearance of a given thread in the pipeline is limited. This problem has been discussed 
in many papers [2,11]. As a consequence of this fact, to ensure appropriate performance 
of the system and the meeting of deadlines, the operating frequency must be increased. 
Taking into account one of the main goals of the paper, which is reducing the total energy 
consumed by the system and considerations thereof in the next section, the experiments 
have been limited to the shortest pipeline. Figure 5 also illustrates the problem of data 
exchange between a given thread and its memory and between different threads. This 
mechanism is described in [2], but, here, it is omitted because, for the current paper, it is 
not the main issue concerning energy-efficient design. 
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Figure 5. Architecture of a single core with pipeline processing and a thread-interleaving 
mechanism. 
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Figure 6. Basic 5-staged pipeline (a) and the most advanced 12-staged pipeline (b) of the multithread 
processor. 

3.4. Multithread Pipeline Processors with Memory-Gating Mechanisms (MTP RG) 
The fourth analyzed architecture (Figure 7) is supported by the special control unit 

responsible for efficient memory resources. This unit controls the enabling signal 
delivered to the RAM block of the threads. In the case of the five-staged pipeline, only two 
stages, IF and MEM, have unlocked access to the memory (Figure 7). The threads 
occupying the remaining three stages TH2, TH3, and TH5 (shaded rectangles), in a given 
moment do not need to communicate with the memory, so these memories can be set to 
an idle state. As further experiments show, the RAM-gating (RG) mechanism reduces the 
power consumed by the memory blocks during their idle cycles when the blocks are not 
used. 
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Figure 7. Multi-thread core architecture with pipeline processing and thread interleaving, wherein 
memory-gating mechanisms are implemented. 

3.5. The Main Motivation of the Research and Proposed Methodology 
The main objective of the paper is to present an energy-efficient approach to the 

design of multitask, real-time systems. As is mentioned above, the authors have 
developed their own original real-time system architecture and proposed a set of effective, 
energy-efficient scheduling techniques that allow meeting task deadlines [2]. In this paper, 
other techniques commonly used in the design flow of energy-efficient embedded 
systems, namely gating techniques, have been tested. For this purpose, the authors have 
developed a set of different models and proposed various system configurations 
(scenarios). Then, a series of empirical experiments are done, to find clear criteria when 
the proposed solution, based on multitasking pipelining processing, is competitive with 
a single-task processing unit. The impact of the interleaving mechanism on reducing the 
system performance is also investigated and its limitations are analyzed. Then, all 
obtained results are compared. Finally, some design recommendations concerning the 
configuration of the system architecture are formulated. 

4. Metrics Used 
As is mentioned above, the main requirement of real-time systems is their 

predictability, i.e., all hard tasks [5] must meet their deadlines. This is the first and the 
strongest criteria of the design process. To make quantitative analysis possible, the 
appropriate model of a processed task is necessary. In [2] the following task model is 
proposed: 𝑇௜ = { 𝐶௜, 𝑀௜, 𝐷௜} (1)

where: 
Ci—the number of instructions of the program to execute the i-th task (except Mi); 
Mi—the number of memory access instructions of the i-th task; and 
Di—the deadline of the i-th task. 
For a given system configuration another parameter, M_dur [2], is defined. It reflects 

the worst-case delay time for the memory operations. M_dur stands for the number of 
clock cycles necessary for memory operations and it is important in case of non-
independent tasks, i.e., those threads that exchange data with one and other. From the 
task model (1) one can express the task frequency, TF, factor that describes the processing 
rate for the i-th task: 𝑇𝐹௜ =  𝐶௜ + 𝑀௜ ∙ 𝑀_𝑑𝑢𝑟𝐷௜  (2)

Few algorithms presented in [2] show how to map tasks to available processing cores 
based on TF factors and meeting assumed design constraints (throughput, power, size, 
etc.). Of course, in the case of the simple architecture (Section 3.1), the task frequency 
multiplied by the number of the clock cycles corresponding to the instruction cycle (here, 
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five) is equivalent to the minimum working frequency of the core processing the task. 
Meeting this requirement ensures the time predictability of the simple architecture. 

In the case of MTP (multitasking processing cores) architectures, other issues need to 
be considered and worst cases need to be analyzed. For the multitask architectures ana-
lyzed in this paper, the following requirement for the deadline of the i-th task is used: 𝐷௜ ≤  𝐶௜ ∙ 𝑀𝑖𝑛௜௡ௗ௜௦௧௔௡௖௘𝐹௦௬௦  (3)

where: 
Di—the deadline of the the i-th task; 
Fsys—the operating frequency of the system; and 
Minindistance—the minimal interleaving distance between pipeline stages of the same 

task. 
Minindistance, used in equation (3) , corresponds to the minimum number of steps that 

must separate successive instructions of the same task. For the pipeline processing, Minin-

distance also equals the minimum number of clock cycles separating successive instructions 
of the program. This requirement is a condition for avoiding hazards in pipelined pro-
cessing [11]. As to the operating frequency of the system Fsys, its value depends on a few 
factors [2]: a core loading, i.e., how many tasks are mapped to it, the total sum of tasks’ 
frequencies, and how many cores the overall system architecture consists of. 

Since the work presented here deals with energy optimization, it is also necessary to 
analyze the issues that affect the dissipated dynamic power. A commonly used equation 
[5] describing the relationship between the dynamic power consumed by the embedded 
systems and its parameters is as follows: 𝑃ௗ௬௡௔௠௜௖ =  𝛼 ∙ 𝐶௅ ∙ 𝑉஽஽ଶ ∙ 𝐹௦௬௦ (4)

where: 
α—expresses the switching activity of the system (it can be controlled); 
CL—a constant that denotes the switching capacitance; and 
VDD—the value of the voltage supply. 
Formula (4) shows how the dynamic power consumed by the system can be con-

trolled. In the case of programmable devices (FPGA) where voltage supply and capaci-
tance usually cannot be changed, two factors can be modified: switching activity (α) and 
the frequency of the system (Fsys). Previously published experiments [2] have been carried 
out with the different scheduling algorithms, proving that both the reduction in frequency 
and the associated need for more resources help to reduce the energy consumed by the 
system. Thus, this research has been extended and the possibility of reducing the param-
eter α is also investigated. 

Moreover, because different structures are compared and the cores can process only 
a single task, another coefficient, AP—the average power necessary to execute a single 
task—is introduced. 

Additional metrics that allow comparing and analyzing various architectures con-
cern the amount of the utilized FPGA resources. 

5. Experimental Results 
In order to validate the approach to the multithread system design and support the 

theoretical analysis, the authors carried out a series of practical experiments on hardware. 
Each of the tested architectures was implemented and synthetized to the FPGA Xilinx 
Virtex 7 platform [31]. A set of tasks based on the Mälardalen WCET benchmarks [32] was 
implemented. Every case was precisely analyzed, and their main power and timing pa-
rameters were estimated. The experiments were divided into several groups. In the begin-
ning, the elementary structures, based on the scheme one task per single processor, for vari-
ous scenarios and structural solutions were tested. The clock gating of the unused phases 
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was investigated and the dynamic power savings thereof were estimated. Then, the au-
thors investigated properties of the original architecture [2] based on multithread pipeline 
processing with thread interleaving. The possibility of blocking some resources and the 
impact of this treatment on energy savings was analyzed. As in the first group of the ex-
periments, the basic factors describing the system quality were estimated. Finally, the 
properties of all structures were compared and some recommendations are made as to 
when a particular solution should be used. 

5.1. Simple Architecture Testing 
First, the basic architecture (STP) was examined. The averaged results, obtained for 

various WCET benchmarks [32] during these experiments, are gathered in Table 1. A 
structure consisting of multiple processors, according to a scheme in which each core pro-
cesses only one task, was implemented. The first part of Table 1 presents these results and 
the notation STP × N refers to a structure consisting of N cores. Then, structures were 
modified (as described in Section 3.2), i.e., a clock-gating mechanism to block unused 
stages of the processors was added (the second part of the table—rows denoted by the 
symbols STP CG × N). These results showed that the proposed clock-gating mechanism 
for idle core phases allowed us to achieve significant energy savings. The diagrams de-
picted in Figure 8 present the averaged results of the power savings achieved for the se-
lected structures by clock gating, which are compared with the appropriate STP structures 
without clock-gating mechanisms for different frequencies. In turn, Figure 9 shows the 
percentage power savings, depending on the size of the structure (the number of cores). 
To make the results more objective, these graphs show the average power per task. 

Table 1. Average results of the experiments with the simple architectures testing. 

Scenario Frequency 
(Fsys [MHz]) 

Total Power 
(Pall [mW]) 

Cores' Power 
(PCPU [mW]) 

FPGA Utilization 
Slice LUT Slice Reg F7 Muxes F8 Muxes 

STP × 5 25 175 54 7053 5206 1170 505 
STP × 5 50 22 108 7053 5206 1170 505 
STP × 5 100 328 215 7053 5206 1170 505 
STP × 5 150 453 327 7053 5239 1170 505 

STP × 10 25 231 11 14,091 10,376 2340 1010 
STP × 10 50 332 22 14,091 10,376 2340 1010 
STP × 10 100 551 438 14,091 10,376 2340 1010 
STP × 10 150 786 66 14,091 10,439 2340 1010 
STP × 20 25 34 219 28,167 20,716 4680 2020 
STP × 20 50 549 437 28,166 20,716 4680 2020 
STP × 20 100 986 873 28,167 20,716 4680 2020 
STP × 20 150 1441 1315 28,167 20,790 4680 2020 

STP CG × 5 25 125 23 7038 5303 1170 505 
STP CG × 5 50 149 45 7038 5303 1170 505 
STP CG × 5 100 198 9 7038 5303 1170 505 
STP CG × 5 150 245 137 7038 5334 1170 505 

STP CG × 10 25 147 45 14,061 10,573 2340 1010 
STP CG × 10 50 192 88 14,061 10,573 2340 1010 
STP CG × 10 100 284 176 14,061 10,573 2340 1010 
STP CG × 10 150 379 271 14,061 10,634 2340 1010 
STP CG × 20 25 19 88 28,107 21,113 4680 2020 
STP CG × 20 50 279 175 28,107 21,113 4680 2020 
STP CG × 20 100 456 348 28,107 21,113 4680 2020 
STP CG × 20 150 644 536 28,107 21,190 4680 2020 
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Figure 8. The average power savings per task for the architecture with a clock-gating mechanism 
compared with the appropriate STP structure for different frequencies. 

 
Figure 9. The average power savings per task for the architecture with clock-gating mechanism 
compared with the appropriate STP structure for the number of tasks (cores). 

It is worth noting that these savings were achieved with virtually the same hardware 
resources with only a slight increase in Slice Registers (less than 2%). 

5.2. Experiments with Multitasking Cores (MTP) 
The next group of experiments concerned multitasking architectures (MTP) with 

thread-interleaving mechanism [2]. During the experiments, the same (as previously) set 
of WCET benchmarks was used. The most representative results were selected and are 
presented in Table 2. Again, the first experiments were conducted with the original mul-
titasking architecture [2]—the first five rows of the table contain symbols of the form: MTP 
K p i × n. K denotes the number of pipeline stages; i stands for the number of cores; and n 
is the number of tasks processed by a single core. The second part of Table 2 (rows 6–10) 
gathers results for the structure built of multitasking cores with the memory operations-
blocking mechanism (Figure 7). These architectures are denoted by symbols of the form: 
MTP RG K p i × n. The meaning of symbols is the same as for the MTP architectures. 
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Table 2. Selected results of the experiments with the multitask cores with interleaved pipelines. 

Scenario 
Frequency 

(Fsys [MHz]) Minindistance 
Cores' Power 
(PCPU [mW]) 

FPGA Utilization 
Slice LUT Slice Reg F7 Muxes F8 Muxes 

MTP 12p 1 × 30 150 30 1028 25,208 18,494 6850 3030 
MTP 5p 2 × 15 75 15 646 26,039 16,888 6712 3030 
MTP 5p 3 × 10 50 10 427 34,596 17,450 6741 3030 
MTP 5p 5 × 6 30 6 262 35,795 18,489 6215 3030 
MTP 5p 6 × 5 25 5 217 36,687 19,024 6240 3030 

MTP RG 12p 1 × 30 150 30 963 25,008 18,521 6763 3030 
MTP RG 5p 2 × 15 75 15 613 26,274 16,922 6654 3030 
MTP RG 5p 3 × 10 50 10 391 34,908 17,493 6741 3030 
MTP RG 5p 5 × 6 30 6 243 36,202 18,541 6210 3030 
MTP RG 5p 6 × 5 25 5 200 36,982 19,026 6240 3030 

The analysis of the results shows that, similar to the previous case (STP), the number 
of resources used in both solutions, i.e., MTP and MTP RG, are comparable. Figure 10 
presents the averaged results of the power savings achieved for selected structures with 
RAM gating compared with appropriate MTP structures for different frequencies, while 
Figure 9 shows the percentage power savings by structure configuration (the number of 
tasks per core). As in the STP case, the results presented in all diagrams shows the average 
power per task. In Section 4, another coefficient, AP, was defined as the average power 
necessary to execute a single task. Figure 11 presents some results concerning the depend-
ence of relative AP savings on frequency for MTP RG architectures compared with the 
basic MTP scenario. These results showed that, in the range of tested frequencies, the dif-
ferences for individual configurations (scenarios) did not exceed 2.5%. The characteristics 
had some local extrema, which were related to the matching with the FPGA chip resources 
during the high-level synthesis. After a certain threshold, all configurations showed a 
monotonic increase of the consumed power ratio with frequency. 

 
Figure 10. The average power savings per task for the architecture with a RAM-gating mechanism 
compared with the appropriate MTP structure. 
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Figure 11. The average power savings per task for the architecture with a RAM gating mechanism 
compared with the appropriate MTP structure for different frequencies. 

5.3. Global Comparisons of All Tested Structures 
These group of experiments concerned comparisons and evaluations of different 

structures that executed the same work, i.e., the same set of tasks. For this purpose, an-
other factor—SP, the system productivity—was defined. It is expressed by: 𝑆𝑃 =  𝑁் ∙ 𝐹௦௬௦𝑀𝑖𝑛௜௡ௗ௜௦௧௔௡௖௘ (5)

where NT  is the number of processed tasks. 
Table 3 presents the results for eight different structures with the same productivity, 

SP = 150. Additionally, the power and resource savings are presented in separate dia-
grams,  Figure 12 and 13, respectively. In the latter case, all structures contained the same 
amount of switching resources (F8 Muxes), which is why they are not presented in the 
diagram. In both diagrams, the basic STP × 30 structure was used as a reference architec-
ture. The results depicted in the first diagram (Figure 12) concern the basic system's pro-
cessing of up to 30 tasks, showing that the best results were obtained from the simple 
architecture with a clock-gating mechanism. Quite good results were obtained for pipe-
lined (multitasking) solutions when properly configured, i.e., when multiple cores with 
appropriately chosen (reduced) frequencies were used. 

Table 3. Results obtained for different systems with the same productivity: SP = 150. 

Scenario Frequency 
(Fsys [MHz]) 

Minindistance Cores' Power 
(PCPU [mW]) 

FPGA Utilization 
Slice LUT Slice Reg F7 Muxes F8 Muxes 

STP × 30 25 5 322 42,243 31,057 7020 3030 
STP × 30 CG 25 5 130 42,251 31,660 7020 3030 

MTP 5p 3 × 10 50 10 427 34,596 17,450 6741 3030 
MTP 5p 5 × 6 30 6 262 35,795 18,489 6215 3030 
MTP 5p 6 × 5 25 5 217 26,274 16,922 6654 3030 

MTP RG 5p 3 × 10 50 10 391 34,908 17,493 6741 3030 
MTP RG 5p 5 × 6 30 6 243 36,202 18,541 6210 3030 
MTP RG 5p 6 × 5 25 5 200 36,982 19,026 6240 3030 
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Figure 12. The comparison of power savings per task relative to the architecture consisting of single-
task cores (STP) for different structures with SP = 150. 

 
Figure 13. The comparison of resources savings relative to the architecture consisting of single-task 
cores (STP) for different structures with SP = 150. 

As to Figure 13, describing the resource savings, one can observe that the best results 
could be achieved for the low number of multitasking cores processing many tasks. How-
ever, in such cases, it is usually necessary to increase the frequency, and this entails in-
creasing the power margin. This was due to the fact that, in the case of STP-type architec-
tures, the number of cores had to be increased, while, for MTP structures, the frequency 
had to be increased in order to meet all hard deadlines. This is also shown in in Figure 14, 
which presents the absolute values of the average power consumed by a single task in 
different scenarios. Definitely, the best solution was this scenario: one task per a single 
core with clock gating (STP CG). However, because of the natural limitations of such a 
solution, in many cases, multitasking equivalents should be considered. 
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Figure 14. The comparison of the average dynamic power consumed by a single task by different 
structures with SP = 150. 

5.4. Quantitative Analysis—The Maximum Processed Tasks 
Figure 15 presents the hypothetical (theoretical estimation) limits of each of the tested 

configurations. These limitations become more evident when we are dealing with a safety 
system, wherein resources are replicated. In such cases, the same task may be executed 
concurrently by two or more identical processors. Of course, we must remember that 
when we decide to switch to the multitasking pipelined architecture (MTP), in order to 
maintain predictability, the operating frequency must be increased. Table 4 contains com-
parisons between the main parameters of different MTP scenarios. 

 
Figure 15. Comparison of the hypothetical structure capacity—estimation of the maximum number 
of tasks that can be executed in various scenarios (the system configurations). 
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Table 4. Results obtained for different systems with the same productivity: SP = 150. 

Scenario 
Frequency 

(Fsys [MHz]) 
Maximum Number 

of Tasks 
Maximum Number 

of Cores 
Minimum Total Average 

Power per Core (AP [mW]) 
MTP RG core 30 task 150 360 12 32.10 
MTP RG core 15 task 75 345 23 20.43 
MTP RG core 10 task 50 260 26 13.03 
MTP RG core 6 task 30 250 42 8.10 
MTP RG core 5 task 25 245 49 6.67 

STP CG 25 215 215 4.33 

Figure 16 shows the relationship between the minimum achievable power per task 
and the maximum system capacity corresponding to the maximum number of tasks that 
the system can perform. Each point of the graph was further described by a configuration 
(scenario) for which this minimum could be achieved. The characteristics showed a clear 
upward trend, i.e., if we want to process more and different tasks, it is necessary to change 
the architecture to multitasking, and this involves raising the system frequency. As a re-
sult, the average dynamic power consumption increased. This should be considered while 
multitasking embedded systems with strong power constraints are designed. 

 
Figure 16. Relationship between the maximum number of processed tasks (system capacity) and the 
minimum possible value of the power per task for a Xilinx Virtex 7 device. The points are denoted 
by scenario type (configurations). 

5.5. Analyses of Mixed System Configurations 
In the next stage, the authors conducted experiments with a system containing mixed 

structures and configurations. The frequencies were scaled, i.e., different cores could op-
erate at different speeds and cores processed different numbers of tasks. Such a situation 
is obviously possible from the point of view of a time-predictable system only under the 
assumption that tasks have been grouped [19], i.e., tasks processed by different cores do 
not communicate with one another. Figure 17 presents the relationship between the aver-
age power consumed by a single task and the operating frequency for the tested configu-
ration, while Figure 18 shows the results obtained for the mixed scenarios, i.e., different 
frequencies and different tasks allocated to cores. All cases presented in Figure 18 have 
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the same SP factor. These diagrams show that the best results were obtained for the system 
working with a single frequency, i.e., all cores clocked at the same frequency. 

 
Figure 17. Relationship between the average power per task and the operating frequency for differ-
ent MTP RG structures (various numbers of tasks processed by a single core). 
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Figure 18. Comparison of the total dynamic power consumed by mixed structures for a different 
number of cores and various configurations of cores (all cases for SP = 150). 

5.6. Supplementary Discussion of Results 
In this paper, several architectures of time-predictable systems were compared. All 

the structures were implemented in hardware. The possibility of reducing the energy con-
sumed by the system was examined using two techniques: frequency scaling and clock 
gating. The proposed hardware structures were the original solution, based on thread in-
terleaving. Making a simple comparison with the solutions presented in other works is 
difficult from this point of view, because either those works were implemented on com-
mercial architectures or they dealt with dedicated applications. Table 5 contains a com-
parison with the research presented in [26]. That work was also implemented on the same 
FPGA chip, a Xilinx Virtex 7, and the authors of [26] also used the gating method for en-
ergy reduction. The percentage resource consumption and the percentage energy reduc-
tion using the gating technique were compared. It turned out that, for both STP- and MTP-
type structures, the results reported in the current paper were better. The results (shown 
in Table 5) indicated a significant increase in hardware requirements when using the gat-
ing technique in the solution presented in [26]; up to more than 38% for Slice LUTs and 
about 17% for the other resources. In the solution presented here, these changes were neg-
ligible. Furthermore, in the case of reducing the dynamic power dissipated in the system, 
the current solution gave at least twice-better results. This is due to the fact that, despite 
operating at a low hardware level, in the presented solution the gating procedure was 
implemented at the instruction level rather than at the signal level. 
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Table 5. Comparison of the results obtained for STP CG and MTP RG with [26]. 

Method 
Resources Utilization Related to Non-Gated 

Solution [%] Dynamic Power Reduction Related to the 
Non-Gated Solution [%] Slice LUTs Slice Registers 

STP CG  100 101.9 59.6 
MTP RG 100.8 100 7.8 

[26] 138.7 116.9 4.0 

6. Conclusions and Further Work 
In this paper, the authors presented some considerations and practical experiments 

concerning the recently proposed multitasking architecture for a real-time system [2]. 
Some switching techniques that allowed efficiently handling the available resources and 
reducing the power consumed by the system were tested. These proposals were compared 
with a classical solution in a safety system based on the scheme of one dedicated processor 
per a single task (STP). The first technique was based on the introduction of a clock-gating 
mechanism to the classical STP architecture and it gave the best results—the greatest en-
ergy savings. Next, a series of experiments were conducted with a multitasking architec-
ture based on pipelined processing with task interleaving (MTP). This structure was mod-
ified by adding memory-resource switching (RAM gating). This modification also yielded 
a radical reduction of power. 

However, in the case of the scenario consisting of simple cores, wherein each core 
executed only a single task (STP), there were limitations. First of all, as the number of 
concurrently and independently working cores grew, the reliability of the system de-
creased. This problem became more evident when different tasks needed to cooperate 
with one another. Moreover, the capacity of the structure was limited and when the num-
ber of different tasks was too great it was impossible to use the STP architecture. 

In the authors’ opinion, the main contributions of the paper are: 
• the development of an original, energy-efficient, multicore architecture and its flexi-

ble models; 
• the extension of the developed multitasking structure with mechanisms and modules 

controlling the gating procedures; 
• the proposing of a set of metrics for analyzing the basic properties of real-time sys-

tems; and 
• having conducted a series of experiments, analyses of the obtained results, and the 

formulation of design guidelines that allowed selecting the optimal system configu-
ration (scenario). 
The research presented in the paper concerned mainly independent tasks. Different 

configurations (scenarios) of the system, which investigated the impact of two mecha-
nisms on dynamic power reduction, were analyzed. However, there were many issues not 
addressed in this paper, e.g., cooperating tasks that need to exchange data, synchroniza-
tion of tasks, complex memory operations, buses with energy-efficient protocols, cyclic 
execution of tasks, and the further gating of idle resources. In the literature, an additional 
power optimization technique was published, power gating [27–29]. However, the au-
thors decided to neglect this problem in this research. The main reason was that the paper 
dealt with FPGA structures, in which this technique is not common. Admittedly, in the 
structure of the chip on which the experiments were conducted, a Virtex 7, Xilinx, intro-
duced the possibility of power gating [33], but the application of this technique for real-
time systems is debatable. Problems with state retention and additional delays are not 
acceptable for time-predictable systems. Yet another idea for future consideration is a 
mixed system, consisting of STP CG cores and MTP RG processors. The authors also plan 
to extend their research into GALS (globally asynchronous, locally synchronous) circuits, 
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with cores working at different frequencies. All of these issues provide directions for fur-
ther research. 
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