

Appl. Sci. 2022, 12, 1630. https://doi.org/10.3390/app12031630 www.mdpi.com/journal/applsci

Article

An Analysis of the Impact of Gating Techniques
on the Optimization of the Energy Dissipated
in Real-Time Systems
Ernest Antolak * and Andrzej Pułka

Department of Electronics, Electrical Engineering and Microelectronics, Faculty of Automatic Control, Elec-
tronics, and Computer Science, Silesian University of Technology, ul. Akademicka 16, 44-100 Gliwice, Poland;
andrzej.pulka@polsl.pl
* Correspondence: ernest.antolak@polsl.pl

Abstract: The paper concerns research on electronics-embedded safety systems. The authors focus
on the optimization of the energy consumed by multitasking real-time systems. A new flexible and
reconfigurable multi-core architecture based on pipeline processing is proposed. The presented
solution uses thread-interleaving mechanisms that allow avoiding hazards and minimizing
unpredictability. The proposed architecture is compared with the classical solutions consisting of
many processors and based on the scheme using one processor per single task. Energy-efficient task
mapping is analyzed and a design methodology, based on minimizing the number of active and
utilized resources, is proposed. New techniques for energy optimization are proposed, mainly, clock
gating and switching-resources blocking. The authors investigate two main factors of the system:
setting the processing frequency, and gating techniques; the latter are used under the assumption
that the system meets the requirements of time predictability. The energy consumed by the system
is reduced. Theoretical considerations are verified by many experiments of the system's
implementation in an FPGA structure. The set of tasks tested consists of programs that implement
Mälardalen WCET benchmark algorithms. The tested scenarios are divided into periodic and non-
periodic execution schemes. The obtained results show that it is possible to reduce the dynamic
energy consumed by real-time applications' meeting their other requirements.

Keywords: real time; multitask; energy-efficient; time-predictable; safety systems; hardware design;
FPGA; clock gating; resource-usage optimization

1. Introduction
Real-time embedded systems represent one of the most important segments of the

modern electronics market. They are one of the crucial parts of the safety systems
operating in medicine, military, control systems, etc. One can observe the constant growth
of the expectations of real-time systems over the years. Users require from such systems
the highest reliability and long-lasting, failure-free operation. As real-time systems can
now be found in mobile and remote applications, a new challenge arises—low power
consumption. Thus, new techniques and design methodologies that allow minimizing the
energy required by embedded systems have been intensively investigated for the last few
decades.

The present paper concerns a low-level approach to time-predictable systems. The
authors focus on the hardware design of real-time system architectures. The research
analyzes different solutions of PRET architectures [1] with respect to the various cost
parameters. The main effort has been toward the minimization of the total energy
consumed by the system. All investigations and practical experiments have been carried

Citation: Antolak, E.; Pułka, A. An

Analysis of the Impact of Gating

Techniques on the Optimization of

the Energy Dissipated in Real-Time

Systems. Appl. Sci. 2022, 12, 1630.

https://doi.org/10.3390/app12031630

Academic Editor: Steve Beeby

Received: 7 December 2021

Accepted: 31 January 2022

Published: 4 February 2022

Publisher’s Note: MDPI stays

neutral with regard to jurisdictional

claims in published maps and

institutional affiliations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/license

s/by/4.0/).

Appl. Sci. 2022, 12, 1630 2 of 22

out on original architecture, developed in the Department of Electronics, Electrical
Engineering and Microelectronics (formerly, the Institute of Electronics) [2–4].

The paper is organized in the following way: the second section discusses the related
work and briefly describes alternative solutions concerning hardware, as well as software,
elements of time-predictable real-time systems. Section 3 presents different architectures
of time-predictable systems, wherein the authors analyze the main building blocks of the
solutions that are tested in this research. The fourth section contains theoretical analyses
of time-predictable systems and formulates the main quality metrics that are used in the
analyses. Section 5 presents selected results of the practical experiments carried out under
different multitask systems' configurations. The authors emphasize the analysis of the
energy consumed by the solutions that meet timing requirements, i.e., in which the
deadlines of all tasks are satisfied. Finally, the last section summarizes the paper, discusses
the results, draws conclusions, and formulates areas for further research.

2. Related Work
One of the main requirements of real-time systems is their predictability, i.e., given a

set of some hard tasks [5,6], they must meet their deadlines. The problem has been
recognized by researchers from all over the world [1,3,5,7–10] for many years now. During
the DAC 2007 conference, Edwards and Lee [1] formulated the PRET (precision time
machines) philosophy and, since then, the problem of time predictability has been
intensively investigated and many interesting solutions in the field have been proposed.
The authors of the PRET idea [1] suggest the introduction of pipeline processing with a
thread-interleaving mechanism [11] that allows reducing hazards. Wilhelm, in [10], gives
a detailed overview of many issues concerning the design and modeling of real-time
systems; among others, he pointed out that ‘pipeline analysis is a highly complex part of the
overall analysis because, (…) most pipelines do not have compact, efficiently updatable abstract
domains’. This survey outlines that the time predictability of embedded systems requires
a detailed analysis of many issues covering hardware, software design, communication
between modules and system layers, and task scheduling. Many authors have pointed out
how important is analysis of the critical paths (cases) of a system. In [12], the reader can
find a very detailed analysis of many aspects of worst cases involving single tasks and
various cases of their execution, task-mapping processes, operating systems, and memory
operations (especially caches); the authors introduce special traces for this purpose.
Wilhelm [10] describe various techniques of WCET analysis, from single-core
architectures to multi-core approaches, proposing a very interesting cache analysis.
Another paper, [3], describes an interesting time-predictable architecture where the worst-
case analysis is performed dynamically during the system run, and, based on a set of
factors, the scheduling of tasks is corrected online. This analysis is carried out in the high-
and system-level abstraction using the SystemC language. Authors of [7] present
MPSoCBench, a simulation toolset that allows the simulation of a system consisting of a
set of scalable, virtual multiprocessors on-chip (MPSoCs). This environment has enabled
the development and testing of new applications, methodologies, parallel software, and
hardware components. Moreover, the toolset is provided with algorithms and
mechanisms that allow dynamic voltage and frequency scaling (DVFS) and, thus,
controlling the overall system throughput and power consumption. The authors of the T-
CREST project [9] have developed a time-predictable, multi-core platform consisting of
Patmos processors [13] connected by a network-on-a-chip. They provide a set of worst-
case timing (WCET) analysis tools and a dedicated compiler, allowing the parallelization
of data processing. The description is available in opensource code (Java). The entire
platform has been tested in communication use-cases of examples of practical
applications.

An important factor that determines the quality of contemporary ICs is power
consumption. In general, the power consumption is affected by circuit currents (leakage,
standby, short-circuit, etc.) [14]. There are four basic techniques for minimizing power

Appl. Sci. 2022, 12, 1630 3 of 22

dissipation in embedded electronic systems: voltage scaling, frequency scaling, power
gating, and clock gating. As is well known, many theoretical considerations, as well as
practical experiments, have shown that the energy consumed by electronic circuits
strongly depends on the operating frequency [2,8,9,15–18].

The experiments also showed that very often, the need to reduce energy consumption
entails a reduction in system performance [2]. In the case of real-time applications, when
task deadlines are crucial, making the final design decision is very difficult. Usually, it is
a trade-off between energy and system performance [9]. Kim et al. [15] presents
experiments on ARM’s LITTLE real-time architecture that show a strong correlation
between the energy and the system performance; its authors try to accommodate real-time
task deadlines, working in mobile applications, into the system throughput. Li has made
some interesting theoretical considerations in his paper [8] regarding energy and time-
constrained task scheduling on multiprocessor computers. He proposes several
algorithms working with discrete clock-frequency and voltage-supply levels. Li also
proves that the problem of minimizing schedule length with energy consumption
constraints and the problem of minimizing energy consumption with schedule length
constraints are NP-hard, even on a uniprocessor computer with only two speed levels. In
[16] one can find a set of interesting experiments carried out on different structures of real-
time systems. The authors show that the correlation between the real-time system speed
and overall system power dissipates and some factors thereof, such as thread-level
parallelism, communication models, and the microarchitectures of general-purpose
processors. Xie et al. [17] proposes a set of task-scheduling algorithms based on the
combination of two different approaches, global DVFS (dynamic voltage and frequency
scaling called, GDES) that moves tasks to processor slacks, generating minimum dynamic
energy consumption, and non-DVFS (NDES), energy-efficient scheduling based on the
concept of deadline slacks analysis. Eventually, there are some scheduling techniques
based on AI algorithms and heuristics, such as machine learning [15] or linear
programming [18].

Coherency and organization of the memory systems have a strong impact on time
predictability [1,5,13]. Generally, it is recommended to avoid caches in real-time systems.
As many works have reported, the scheduling of tasks and their mapping to available
resources also may balance the system loading and better use its capacities [2,19–22]. The
methodology proposed in [19] uses a group-based, energy-efficient dual-priority
scheduling (GEDP) that isolates different types of tasks and, thus, allows avoiding
disruption and minimizing the context switches between tasks. On the other hand, [20]
presents a hierarchical approach to task scheduling (HDA), in which the mapping process
takes into account the dependencies between tasks, which, as a result, allows better
management of resources and organization of communication in the system. The authors
of [21] suggest the usage of a dynamic mechanism that analyzes the resource load during
tasks’ execution. Specialized resource load and resource power managers allow
controlling the dynamic power consumption via a on/off switching mechanism. The
industrial approach is presented in [22]; the authors analyze many aspects of the practical
applications of real-time systems and point out the limitations of multicore architectures.
Many other interesting techniques may improve the processing quality of a multitask
system, such as using the benchmark-based approach [7] or the appropriate
synchronization of system clusters [23]. The authors of [24] have discussed and shown a
very interesting methodology of clock gating that allows the efficient use of system
modules and reducing the overall system energy. [25] present clock gating applied to a
group of flip-flops, and the entire procedure is preceded by a detailed analysis of the
activity of the blocks. The authors of [26] also show a clock-gating strategy that is
successfully applied to dataflow designs based on streaming processing and implement
it in FPGA structures. [27] deals with FPGA implementations of embedded systems as
well, but the authors primarily attend to the power gating that allows dynamically
controlling the power supply of the utilized modules. They propose a special CAD flow

Appl. Sci. 2022, 12, 1630 4 of 22

methodology, which is tested in a robotic application used in endoscopy. [28] presents an
approach based on state-retentive power gating and the cyclic switching on/off of the
power supplying the system modules. The authors of [29] propose a selective state-
retention power-gating (SSRPG) mechanism based on circuit analysis at the gate level.
This approach allows up to a 78% reduction in the used resources.

3. Different Configurations of Real-Time Systems
The research on time-predictable architectures has been carried out in the Faculty of

Automatic Control, Electronics and Computer Science for several years. The first papers
therefrom were devoted to real-time systems' dynamic scheduling of tasks. In 2009, the
proposal of a time-predictable architecture was presented [4]. That solution met all PRET
assumptions [1] and contained a flexible thread-interleaving mechanism [11] (Figure 1).
The architecture was implemented as a high-level behavioral VHDL model and
implemented in Xilinx Virtex 5 FPGA platform. Another approach has been developed in
SystemC as an abstract model of time-predictable architecture [3] with the Threads’ State
Controller (Figure 2) responsible for the generation of threads’ identifiers. The thread
switching (control) mechanism was based on tracing several factors reflecting the
dynamic progress of tasks and approaching deadlines. For a few years, the group has been
working on a low-level approach, i.e., on hardware architectures of time-predictable
systems. Recently the authors have proposed a few algorithms that allow directing the
synthesis towards energy-efficient solutions [2]. In this paper, the different multi-task
architectures of safety-critical systems are compared. The analysis starts with the classical
approach based on the scheme of a single task per single core and ends with a pipeline
processor with interleaved threads.

Figure 1. Dynamically scheduled PRET architecture with thread-interleaving and memory
developed in IE SUT [4].

START

Deadline

Penalty

Clock

Thread
selection

WR_Req

To the Memory
Wheel and

Pipeline
controller

zero

D

P Deadline
Range Reg.

Thread
Mode Reg. Sequence

Look Up
Table

Th_ID

Even
Sequence

Counter
mod 16

Counter
7 to 0

Deadline
observer

Appl. Sci. 2022, 12, 1630 5 of 22

Pipeline Processor

Threads’ State
Memory

Global Memory

Dynamic Interleave
Controller

Memory Access Control Unit
MACU

Threads’ State
Controller

ThID RS*IOThID

RS*

PS*

Th ready
ID IO Data

ReadThData

IO Grant Data

CC

FILL
REQEST

ThEnd

*RS – Registers State
*PS - Program State

Figure 2. Architecture of a single-core SystemC model of the PRET architecture [3].

3.1. Classical Simple Core Architecture (STP)
Figure 3 presents the idea of a simple processor [30] that needs five clock cycles to

execute a single instruction. The architecture consists of five phases: instruction fetch (IF),
instruction decoding (ID), execution (EXE), memory operations (MEM), and write-back-
to-the-register files (WR) (Figure 3a). The diagram presented on the right side (Figure 3b)
shows the occupation of the processor stages (phases) by a given task (Th1) during the
subsequent clock cycles. In the paper, this architecture is called STP (single-thread
processing). It realizes the following scheme: a single task processed by a single core. In
the case of the first simple safety systems, it had been a very reliable solution, ensuring
time predictability because the executed task is not disturbed by any additional program
or interruption to be handled by a given core. However, in contemporary embedded
systems, such a solution is very seldom and very expensive. The main drawback of this
solution is that the available resources are not efficiently used during the calculations, i.e.,
the processor’s phases are utilized, at most, at 20% of is capacity.

IF

ID

EXE

MEM

WB

register
file

PC

Control
unit

IF

ID

EXE

MEM

WB

Th1

-

IF

ID

EXE

MEM

WB

-

Th1

-

-

-

IF

ID

EXE

MEM

WB

-

-

Th1

-

-

IF

ID

EXE

MEM

WB

-

-

-

Th1

-

IF

ID

EXE

MEM

WB

-

-

-

-

Th1

-
-

-

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

(a) (b)

Figure 3. Structure of a classical simple processor (a) and subsequent instruction’s cycles (b).

3.2. Simple Core with Clock-Gating Mechanism (STP CG)
The modification of the previous solution is depicted in Figure 4. In this structure, a

clock gating technique [14,24] was used to efficiently use only those resources that are
needed in a given phase of the processing. In the presented structure the clock signal is
selectively blocked, i.e., only the modules utilized in the currently performed phase of the
instruction cycles are clocked, whilst the clock signal is blocked to the rest of those
processor resources belonging to inactive phases in a given moment. As is presented
below, this modification allows radically reducing the dynamic power dissipated in the
core.

Appl. Sci. 2022, 12, 1630 6 of 22

Figure 4. Structure of a classical simple processor with the clock gating of unused phases.

3.3. Multithread Core with Pipeline Processing (MTP)
Recently, an interesting multicore architecture has been published by the team from

the Faculty of Automatic Control, Electronics and Computer Science [2]. This structure
consists of many cores that can process many threads (tasks). Figure 5 presents the
structure of a single core that processes different threads on its pipeline stages, i.e., it is
able to switch between replicated resources. Moreover, it is shown that the architecture of
a single core is flexible and the length of the pipeline (the number of its stages) can be
adjusted to the properties of the executed programs (tasks). The length of the pipeline can
vary from 5 to 12 stages (Figure 6a,b). The five-staged pipeline consists of the same phases
as the above-described simple core (STP). The fully extended architecture, depicted in
Figure 6b, consists of 12 stages. The original stage instruction fetch had been divided into
three sub-stages: select bank and instruction address (SBIA), responsible for determining
the next instruction (every thread has its own program counter); proper IF; and select
instruction (SI), in which an appropriate output register (corresponding to the appropriate
thread identifier) is selected. Similarly, the instruction decoding (ID) and the memory
access (MA) phases have also been split into a few sub-stages, in which a given memory
(MEM) and general-purpose registers (GPR) are addressed. However, in the case of
processing based on thread interleaving, one needs to remember that the frequency of the
appearance of a given thread in the pipeline is limited. This problem has been discussed
in many papers [2,11]. As a consequence of this fact, to ensure appropriate performance
of the system and the meeting of deadlines, the operating frequency must be increased.
Taking into account one of the main goals of the paper, which is reducing the total energy
consumed by the system and considerations thereof in the next section, the experiments
have been limited to the shortest pipeline. Figure 5 also illustrates the problem of data
exchange between a given thread and its memory and between different threads. This
mechanism is described in [2], but, here, it is omitted because, for the current paper, it is
not the main issue concerning energy-efficient design.

IF

ID

EXE

MEM

WB

Task

CLK
Ctrl

1

0

0

0

0

IF

ID

EXE

MEM

WB

Task
CLK
Ctrl

0

1

0

0

0

Cycle 1 Cycle 2

CLK CLK

Appl. Sci. 2022, 12, 1630 7 of 22

Figure 5. Architecture of a single core with pipeline processing and a thread-interleaving
mechanism.

Appl. Sci. 2022, 12, 1630 8 of 22

MEM1 MEM2 MEMn

IF MUX

EXE

MEM

GPR2

IF

ID

GPR1 GPRn

WB DEMUX

Pipeline
Stage:

1:

2:

3:

4:

5:

MEM1 MEM2 MEMn

MEM MUX

EXE DEMUX

GPR MUX

MEM1 MEM2 MEM ...

Select Bank and Instruction Adress

Instruction Fetch

Select Instruction

GPR1

Select GPR Bank

ID

Shift

ALU

EXE

GPR2 GPR ...

1:

2:

3:

4:

5:

6:

7:

8:

MEM1 MEM2 MEM ...

Select Bank and MEM Data Adress

MEM Data Fetch

Select MEM Data

GPR1 GPR2 GPR ...

9:

10:

11:

12:

Instruction Fetch
Ins. Decode

Execute
M

em
ory Access

W
B

(a) (b)

Figure 6. Basic 5-staged pipeline (a) and the most advanced 12-staged pipeline (b) of the multithread
processor.

3.4. Multithread Pipeline Processors with Memory-Gating Mechanisms (MTP RG)
The fourth analyzed architecture (Figure 7) is supported by the special control unit

responsible for efficient memory resources. This unit controls the enabling signal
delivered to the RAM block of the threads. In the case of the five-staged pipeline, only two
stages, IF and MEM, have unlocked access to the memory (Figure 7). The threads
occupying the remaining three stages TH2, TH3, and TH5 (shaded rectangles), in a given
moment do not need to communicate with the memory, so these memories can be set to
an idle state. As further experiments show, the RAM-gating (RG) mechanism reduces the
power consumed by the memory blocks during their idle cycles when the blocks are not
used.

Appl. Sci. 2022, 12, 1630 9 of 22

TH1: IF

TH2: ID

TH4: MEM

TH5: WB

M
EM

 M
U

X
DEM

UX

TH1 MEM
TH2 MEM
TH3 MEM
TH4 MEM
TH5 MEM

MEM
CLK
Ctrl

CLK

TH3: EXE

IF M
UX

1

0

0

1

0

Figure 7. Multi-thread core architecture with pipeline processing and thread interleaving, wherein
memory-gating mechanisms are implemented.

3.5. The Main Motivation of the Research and Proposed Methodology
The main objective of the paper is to present an energy-efficient approach to the

design of multitask, real-time systems. As is mentioned above, the authors have
developed their own original real-time system architecture and proposed a set of effective,
energy-efficient scheduling techniques that allow meeting task deadlines [2]. In this paper,
other techniques commonly used in the design flow of energy-efficient embedded
systems, namely gating techniques, have been tested. For this purpose, the authors have
developed a set of different models and proposed various system configurations
(scenarios). Then, a series of empirical experiments are done, to find clear criteria when
the proposed solution, based on multitasking pipelining processing, is competitive with
a single-task processing unit. The impact of the interleaving mechanism on reducing the
system performance is also investigated and its limitations are analyzed. Then, all
obtained results are compared. Finally, some design recommendations concerning the
configuration of the system architecture are formulated.

4. Metrics Used
As is mentioned above, the main requirement of real-time systems is their

predictability, i.e., all hard tasks [5] must meet their deadlines. This is the first and the
strongest criteria of the design process. To make quantitative analysis possible, the
appropriate model of a processed task is necessary. In [2] the following task model is
proposed: 𝑇௜ = { 𝐶௜, 𝑀௜, 𝐷௜} (1)

where:
Ci—the number of instructions of the program to execute the i-th task (except Mi);
Mi—the number of memory access instructions of the i-th task; and
Di—the deadline of the i-th task.
For a given system configuration another parameter, M_dur [2], is defined. It reflects

the worst-case delay time for the memory operations. M_dur stands for the number of
clock cycles necessary for memory operations and it is important in case of non-
independent tasks, i.e., those threads that exchange data with one and other. From the
task model (1) one can express the task frequency, TF, factor that describes the processing
rate for the i-th task: 𝑇𝐹௜ = 𝐶௜ + 𝑀௜ ∙ 𝑀_𝑑𝑢𝑟𝐷௜ (2)

Few algorithms presented in [2] show how to map tasks to available processing cores
based on TF factors and meeting assumed design constraints (throughput, power, size,
etc.). Of course, in the case of the simple architecture (Section 3.1), the task frequency
multiplied by the number of the clock cycles corresponding to the instruction cycle (here,

Appl. Sci. 2022, 12, 1630 10 of 22

five) is equivalent to the minimum working frequency of the core processing the task.
Meeting this requirement ensures the time predictability of the simple architecture.

In the case of MTP (multitasking processing cores) architectures, other issues need to
be considered and worst cases need to be analyzed. For the multitask architectures ana-
lyzed in this paper, the following requirement for the deadline of the i-th task is used: 𝐷௜ ≤ 𝐶௜ ∙ 𝑀𝑖𝑛௜௡ௗ௜௦௧௔௡௖௘𝐹௦௬௦ (3)

where:
Di—the deadline of the the i-th task;
Fsys—the operating frequency of the system; and
Minindistance—the minimal interleaving distance between pipeline stages of the same

task.
Minindistance, used in equation (3) , corresponds to the minimum number of steps that

must separate successive instructions of the same task. For the pipeline processing, Minin-

distance also equals the minimum number of clock cycles separating successive instructions
of the program. This requirement is a condition for avoiding hazards in pipelined pro-
cessing [11]. As to the operating frequency of the system Fsys, its value depends on a few
factors [2]: a core loading, i.e., how many tasks are mapped to it, the total sum of tasks’
frequencies, and how many cores the overall system architecture consists of.

Since the work presented here deals with energy optimization, it is also necessary to
analyze the issues that affect the dissipated dynamic power. A commonly used equation
[5] describing the relationship between the dynamic power consumed by the embedded
systems and its parameters is as follows: 𝑃ௗ௬௡௔௠௜௖ = 𝛼 ∙ 𝐶௅ ∙ 𝑉஽஽ଶ ∙ 𝐹௦௬௦ (4)

where:
α—expresses the switching activity of the system (it can be controlled);
CL—a constant that denotes the switching capacitance; and
VDD—the value of the voltage supply.
Formula (4) shows how the dynamic power consumed by the system can be con-

trolled. In the case of programmable devices (FPGA) where voltage supply and capaci-
tance usually cannot be changed, two factors can be modified: switching activity (α) and
the frequency of the system (Fsys). Previously published experiments [2] have been carried
out with the different scheduling algorithms, proving that both the reduction in frequency
and the associated need for more resources help to reduce the energy consumed by the
system. Thus, this research has been extended and the possibility of reducing the param-
eter α is also investigated.

Moreover, because different structures are compared and the cores can process only
a single task, another coefficient, AP—the average power necessary to execute a single
task—is introduced.

Additional metrics that allow comparing and analyzing various architectures con-
cern the amount of the utilized FPGA resources.

5. Experimental Results
In order to validate the approach to the multithread system design and support the

theoretical analysis, the authors carried out a series of practical experiments on hardware.
Each of the tested architectures was implemented and synthetized to the FPGA Xilinx
Virtex 7 platform [31]. A set of tasks based on the Mälardalen WCET benchmarks [32] was
implemented. Every case was precisely analyzed, and their main power and timing pa-
rameters were estimated. The experiments were divided into several groups. In the begin-
ning, the elementary structures, based on the scheme one task per single processor, for vari-
ous scenarios and structural solutions were tested. The clock gating of the unused phases

Appl. Sci. 2022, 12, 1630 11 of 22

was investigated and the dynamic power savings thereof were estimated. Then, the au-
thors investigated properties of the original architecture [2] based on multithread pipeline
processing with thread interleaving. The possibility of blocking some resources and the
impact of this treatment on energy savings was analyzed. As in the first group of the ex-
periments, the basic factors describing the system quality were estimated. Finally, the
properties of all structures were compared and some recommendations are made as to
when a particular solution should be used.

5.1. Simple Architecture Testing
First, the basic architecture (STP) was examined. The averaged results, obtained for

various WCET benchmarks [32] during these experiments, are gathered in Table 1. A
structure consisting of multiple processors, according to a scheme in which each core pro-
cesses only one task, was implemented. The first part of Table 1 presents these results and
the notation STP × N refers to a structure consisting of N cores. Then, structures were
modified (as described in Section 3.2), i.e., a clock-gating mechanism to block unused
stages of the processors was added (the second part of the table—rows denoted by the
symbols STP CG × N). These results showed that the proposed clock-gating mechanism
for idle core phases allowed us to achieve significant energy savings. The diagrams de-
picted in Figure 8 present the averaged results of the power savings achieved for the se-
lected structures by clock gating, which are compared with the appropriate STP structures
without clock-gating mechanisms for different frequencies. In turn, Figure 9 shows the
percentage power savings, depending on the size of the structure (the number of cores).
To make the results more objective, these graphs show the average power per task.

Table 1. Average results of the experiments with the simple architectures testing.

Scenario Frequency
(Fsys [MHz])

Total Power
(Pall [mW])

Cores' Power
(PCPU [mW])

FPGA Utilization
Slice LUT Slice Reg F7 Muxes F8 Muxes

STP × 5 25 175 54 7053 5206 1170 505
STP × 5 50 22 108 7053 5206 1170 505
STP × 5 100 328 215 7053 5206 1170 505
STP × 5 150 453 327 7053 5239 1170 505

STP × 10 25 231 11 14,091 10,376 2340 1010
STP × 10 50 332 22 14,091 10,376 2340 1010
STP × 10 100 551 438 14,091 10,376 2340 1010
STP × 10 150 786 66 14,091 10,439 2340 1010
STP × 20 25 34 219 28,167 20,716 4680 2020
STP × 20 50 549 437 28,166 20,716 4680 2020
STP × 20 100 986 873 28,167 20,716 4680 2020
STP × 20 150 1441 1315 28,167 20,790 4680 2020

STP CG × 5 25 125 23 7038 5303 1170 505
STP CG × 5 50 149 45 7038 5303 1170 505
STP CG × 5 100 198 9 7038 5303 1170 505
STP CG × 5 150 245 137 7038 5334 1170 505

STP CG × 10 25 147 45 14,061 10,573 2340 1010
STP CG × 10 50 192 88 14,061 10,573 2340 1010
STP CG × 10 100 284 176 14,061 10,573 2340 1010
STP CG × 10 150 379 271 14,061 10,634 2340 1010
STP CG × 20 25 19 88 28,107 21,113 4680 2020
STP CG × 20 50 279 175 28,107 21,113 4680 2020
STP CG × 20 100 456 348 28,107 21,113 4680 2020
STP CG × 20 150 644 536 28,107 21,190 4680 2020

Appl. Sci. 2022, 12, 1630 12 of 22

Figure 8. The average power savings per task for the architecture with a clock-gating mechanism
compared with the appropriate STP structure for different frequencies.

Figure 9. The average power savings per task for the architecture with clock-gating mechanism
compared with the appropriate STP structure for the number of tasks (cores).

It is worth noting that these savings were achieved with virtually the same hardware
resources with only a slight increase in Slice Registers (less than 2%).

5.2. Experiments with Multitasking Cores (MTP)
The next group of experiments concerned multitasking architectures (MTP) with

thread-interleaving mechanism [2]. During the experiments, the same (as previously) set
of WCET benchmarks was used. The most representative results were selected and are
presented in Table 2. Again, the first experiments were conducted with the original mul-
titasking architecture [2]—the first five rows of the table contain symbols of the form: MTP
K p i × n. K denotes the number of pipeline stages; i stands for the number of cores; and n
is the number of tasks processed by a single core. The second part of Table 2 (rows 6–10)
gathers results for the structure built of multitasking cores with the memory operations-
blocking mechanism (Figure 7). These architectures are denoted by symbols of the form:
MTP RG K p i × n. The meaning of symbols is the same as for the MTP architectures.

Appl. Sci. 2022, 12, 1630 13 of 22

Table 2. Selected results of the experiments with the multitask cores with interleaved pipelines.

Scenario
Frequency

(Fsys [MHz]) Minindistance
Cores' Power
(PCPU [mW])

FPGA Utilization
Slice LUT Slice Reg F7 Muxes F8 Muxes

MTP 12p 1 × 30 150 30 1028 25,208 18,494 6850 3030
MTP 5p 2 × 15 75 15 646 26,039 16,888 6712 3030
MTP 5p 3 × 10 50 10 427 34,596 17,450 6741 3030
MTP 5p 5 × 6 30 6 262 35,795 18,489 6215 3030
MTP 5p 6 × 5 25 5 217 36,687 19,024 6240 3030

MTP RG 12p 1 × 30 150 30 963 25,008 18,521 6763 3030
MTP RG 5p 2 × 15 75 15 613 26,274 16,922 6654 3030
MTP RG 5p 3 × 10 50 10 391 34,908 17,493 6741 3030
MTP RG 5p 5 × 6 30 6 243 36,202 18,541 6210 3030
MTP RG 5p 6 × 5 25 5 200 36,982 19,026 6240 3030

The analysis of the results shows that, similar to the previous case (STP), the number
of resources used in both solutions, i.e., MTP and MTP RG, are comparable. Figure 10
presents the averaged results of the power savings achieved for selected structures with
RAM gating compared with appropriate MTP structures for different frequencies, while
Figure 9 shows the percentage power savings by structure configuration (the number of
tasks per core). As in the STP case, the results presented in all diagrams shows the average
power per task. In Section 4, another coefficient, AP, was defined as the average power
necessary to execute a single task. Figure 11 presents some results concerning the depend-
ence of relative AP savings on frequency for MTP RG architectures compared with the
basic MTP scenario. These results showed that, in the range of tested frequencies, the dif-
ferences for individual configurations (scenarios) did not exceed 2.5%. The characteristics
had some local extrema, which were related to the matching with the FPGA chip resources
during the high-level synthesis. After a certain threshold, all configurations showed a
monotonic increase of the consumed power ratio with frequency.

Figure 10. The average power savings per task for the architecture with a RAM-gating mechanism
compared with the appropriate MTP structure.

Appl. Sci. 2022, 12, 1630 14 of 22

Figure 11. The average power savings per task for the architecture with a RAM gating mechanism
compared with the appropriate MTP structure for different frequencies.

5.3. Global Comparisons of All Tested Structures
These group of experiments concerned comparisons and evaluations of different

structures that executed the same work, i.e., the same set of tasks. For this purpose, an-
other factor—SP, the system productivity—was defined. It is expressed by: 𝑆𝑃 = 𝑁் ∙ 𝐹௦௬௦𝑀𝑖𝑛௜௡ௗ௜௦௧௔௡௖௘ (5)

where NT is the number of processed tasks.
Table 3 presents the results for eight different structures with the same productivity,

SP = 150. Additionally, the power and resource savings are presented in separate dia-
grams, Figure 12 and 13, respectively. In the latter case, all structures contained the same
amount of switching resources (F8 Muxes), which is why they are not presented in the
diagram. In both diagrams, the basic STP × 30 structure was used as a reference architec-
ture. The results depicted in the first diagram (Figure 12) concern the basic system's pro-
cessing of up to 30 tasks, showing that the best results were obtained from the simple
architecture with a clock-gating mechanism. Quite good results were obtained for pipe-
lined (multitasking) solutions when properly configured, i.e., when multiple cores with
appropriately chosen (reduced) frequencies were used.

Table 3. Results obtained for different systems with the same productivity: SP = 150.

Scenario Frequency
(Fsys [MHz])

Minindistance Cores' Power
(PCPU [mW])

FPGA Utilization
Slice LUT Slice Reg F7 Muxes F8 Muxes

STP × 30 25 5 322 42,243 31,057 7020 3030
STP × 30 CG 25 5 130 42,251 31,660 7020 3030

MTP 5p 3 × 10 50 10 427 34,596 17,450 6741 3030
MTP 5p 5 × 6 30 6 262 35,795 18,489 6215 3030
MTP 5p 6 × 5 25 5 217 26,274 16,922 6654 3030

MTP RG 5p 3 × 10 50 10 391 34,908 17,493 6741 3030
MTP RG 5p 5 × 6 30 6 243 36,202 18,541 6210 3030
MTP RG 5p 6 × 5 25 5 200 36,982 19,026 6240 3030

Appl. Sci. 2022, 12, 1630 15 of 22

Figure 12. The comparison of power savings per task relative to the architecture consisting of single-
task cores (STP) for different structures with SP = 150.

Figure 13. The comparison of resources savings relative to the architecture consisting of single-task
cores (STP) for different structures with SP = 150.

As to Figure 13, describing the resource savings, one can observe that the best results
could be achieved for the low number of multitasking cores processing many tasks. How-
ever, in such cases, it is usually necessary to increase the frequency, and this entails in-
creasing the power margin. This was due to the fact that, in the case of STP-type architec-
tures, the number of cores had to be increased, while, for MTP structures, the frequency
had to be increased in order to meet all hard deadlines. This is also shown in in Figure 14,
which presents the absolute values of the average power consumed by a single task in
different scenarios. Definitely, the best solution was this scenario: one task per a single
core with clock gating (STP CG). However, because of the natural limitations of such a
solution, in many cases, multitasking equivalents should be considered.

Appl. Sci. 2022, 12, 1630 16 of 22

Figure 14. The comparison of the average dynamic power consumed by a single task by different
structures with SP = 150.

5.4. Quantitative Analysis—The Maximum Processed Tasks
Figure 15 presents the hypothetical (theoretical estimation) limits of each of the tested

configurations. These limitations become more evident when we are dealing with a safety
system, wherein resources are replicated. In such cases, the same task may be executed
concurrently by two or more identical processors. Of course, we must remember that
when we decide to switch to the multitasking pipelined architecture (MTP), in order to
maintain predictability, the operating frequency must be increased. Table 4 contains com-
parisons between the main parameters of different MTP scenarios.

Figure 15. Comparison of the hypothetical structure capacity—estimation of the maximum number
of tasks that can be executed in various scenarios (the system configurations).

Appl. Sci. 2022, 12, 1630 17 of 22

Table 4. Results obtained for different systems with the same productivity: SP = 150.

Scenario
Frequency

(Fsys [MHz])
Maximum Number

of Tasks
Maximum Number

of Cores
Minimum Total Average

Power per Core (AP [mW])
MTP RG core 30 task 150 360 12 32.10
MTP RG core 15 task 75 345 23 20.43
MTP RG core 10 task 50 260 26 13.03
MTP RG core 6 task 30 250 42 8.10
MTP RG core 5 task 25 245 49 6.67

STP CG 25 215 215 4.33

Figure 16 shows the relationship between the minimum achievable power per task
and the maximum system capacity corresponding to the maximum number of tasks that
the system can perform. Each point of the graph was further described by a configuration
(scenario) for which this minimum could be achieved. The characteristics showed a clear
upward trend, i.e., if we want to process more and different tasks, it is necessary to change
the architecture to multitasking, and this involves raising the system frequency. As a re-
sult, the average dynamic power consumption increased. This should be considered while
multitasking embedded systems with strong power constraints are designed.

Figure 16. Relationship between the maximum number of processed tasks (system capacity) and the
minimum possible value of the power per task for a Xilinx Virtex 7 device. The points are denoted
by scenario type (configurations).

5.5. Analyses of Mixed System Configurations
In the next stage, the authors conducted experiments with a system containing mixed

structures and configurations. The frequencies were scaled, i.e., different cores could op-
erate at different speeds and cores processed different numbers of tasks. Such a situation
is obviously possible from the point of view of a time-predictable system only under the
assumption that tasks have been grouped [19], i.e., tasks processed by different cores do
not communicate with one another. Figure 17 presents the relationship between the aver-
age power consumed by a single task and the operating frequency for the tested configu-
ration, while Figure 18 shows the results obtained for the mixed scenarios, i.e., different
frequencies and different tasks allocated to cores. All cases presented in Figure 18 have

Appl. Sci. 2022, 12, 1630 18 of 22

the same SP factor. These diagrams show that the best results were obtained for the system
working with a single frequency, i.e., all cores clocked at the same frequency.

Figure 17. Relationship between the average power per task and the operating frequency for differ-
ent MTP RG structures (various numbers of tasks processed by a single core).

Appl. Sci. 2022, 12, 1630 19 of 22

Figure 18. Comparison of the total dynamic power consumed by mixed structures for a different
number of cores and various configurations of cores (all cases for SP = 150).

5.6. Supplementary Discussion of Results
In this paper, several architectures of time-predictable systems were compared. All

the structures were implemented in hardware. The possibility of reducing the energy con-
sumed by the system was examined using two techniques: frequency scaling and clock
gating. The proposed hardware structures were the original solution, based on thread in-
terleaving. Making a simple comparison with the solutions presented in other works is
difficult from this point of view, because either those works were implemented on com-
mercial architectures or they dealt with dedicated applications. Table 5 contains a com-
parison with the research presented in [26]. That work was also implemented on the same
FPGA chip, a Xilinx Virtex 7, and the authors of [26] also used the gating method for en-
ergy reduction. The percentage resource consumption and the percentage energy reduc-
tion using the gating technique were compared. It turned out that, for both STP- and MTP-
type structures, the results reported in the current paper were better. The results (shown
in Table 5) indicated a significant increase in hardware requirements when using the gat-
ing technique in the solution presented in [26]; up to more than 38% for Slice LUTs and
about 17% for the other resources. In the solution presented here, these changes were neg-
ligible. Furthermore, in the case of reducing the dynamic power dissipated in the system,
the current solution gave at least twice-better results. This is due to the fact that, despite
operating at a low hardware level, in the presented solution the gating procedure was
implemented at the instruction level rather than at the signal level.

Appl. Sci. 2022, 12, 1630 20 of 22

Table 5. Comparison of the results obtained for STP CG and MTP RG with [26].

Method
Resources Utilization Related to Non-Gated

Solution [%] Dynamic Power Reduction Related to the
Non-Gated Solution [%] Slice LUTs Slice Registers

STP CG 100 101.9 59.6
MTP RG 100.8 100 7.8

[26] 138.7 116.9 4.0

6. Conclusions and Further Work
In this paper, the authors presented some considerations and practical experiments

concerning the recently proposed multitasking architecture for a real-time system [2].
Some switching techniques that allowed efficiently handling the available resources and
reducing the power consumed by the system were tested. These proposals were compared
with a classical solution in a safety system based on the scheme of one dedicated processor
per a single task (STP). The first technique was based on the introduction of a clock-gating
mechanism to the classical STP architecture and it gave the best results—the greatest en-
ergy savings. Next, a series of experiments were conducted with a multitasking architec-
ture based on pipelined processing with task interleaving (MTP). This structure was mod-
ified by adding memory-resource switching (RAM gating). This modification also yielded
a radical reduction of power.

However, in the case of the scenario consisting of simple cores, wherein each core
executed only a single task (STP), there were limitations. First of all, as the number of
concurrently and independently working cores grew, the reliability of the system de-
creased. This problem became more evident when different tasks needed to cooperate
with one another. Moreover, the capacity of the structure was limited and when the num-
ber of different tasks was too great it was impossible to use the STP architecture.

In the authors’ opinion, the main contributions of the paper are:
• the development of an original, energy-efficient, multicore architecture and its flexi-

ble models;
• the extension of the developed multitasking structure with mechanisms and modules

controlling the gating procedures;
• the proposing of a set of metrics for analyzing the basic properties of real-time sys-

tems; and
• having conducted a series of experiments, analyses of the obtained results, and the

formulation of design guidelines that allowed selecting the optimal system configu-
ration (scenario).
The research presented in the paper concerned mainly independent tasks. Different

configurations (scenarios) of the system, which investigated the impact of two mecha-
nisms on dynamic power reduction, were analyzed. However, there were many issues not
addressed in this paper, e.g., cooperating tasks that need to exchange data, synchroniza-
tion of tasks, complex memory operations, buses with energy-efficient protocols, cyclic
execution of tasks, and the further gating of idle resources. In the literature, an additional
power optimization technique was published, power gating [27–29]. However, the au-
thors decided to neglect this problem in this research. The main reason was that the paper
dealt with FPGA structures, in which this technique is not common. Admittedly, in the
structure of the chip on which the experiments were conducted, a Virtex 7, Xilinx, intro-
duced the possibility of power gating [33], but the application of this technique for real-
time systems is debatable. Problems with state retention and additional delays are not
acceptable for time-predictable systems. Yet another idea for future consideration is a
mixed system, consisting of STP CG cores and MTP RG processors. The authors also plan
to extend their research into GALS (globally asynchronous, locally synchronous) circuits,

Appl. Sci. 2022, 12, 1630 21 of 22

with cores working at different frequencies. All of these issues provide directions for fur-
ther research.

Author Contributions: Conceptualization, E.A. and A.P.; Methodology, E.A. and A.P.; Software,
E.A. Validation, E.A. and A.P.; Investigation, E.A. and A.P.; Resources, E.A. Writing—Original draft
preparation, A.P.; Writing—Review and editing E.A. and A.P.; Visualization, E.A. and A.P.; Super-
vision, A.P.; Funding acquisition, E.A. All authors have read and agreed to the published version of
the manuscript.

Funding: The work reported in the paper is partially supported by the European Social Funds; pro-
ject no POWR.03.02.00-00-I007/17-00 “CyPhiS—the program of modern PhD studies in the field of
Cyber-Physical Systems” and the Ministry of Science and Higher Education funding for statutory
activities, BKM-663/RAu-11/2021.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Simulation data and practical measurements were saved to files with
formats compatible with the software and hardware environment used during the described re-
search performed by the author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Edwards, S.A.; Lee, E.A. The Case for the Precision Timed (PRET) Machine. In Proceedings of the 44th ACM/IEEE Design

Automation Conference, New Orleans, LA, USA, 27–30 May 2007; pp. 264–265.
2. Antolak, E.; Pułka, A. Energy-Efficient Task Scheduling in Design of Multithread Time Predictable Real-Time Systems. IEEE

Access 2021, 9, 121111–121127. https://doi.org/10.1109/ACCESS.2021.3108912.
3. Golly, Ł.; Milik, A.; Pulka, A. High Level Model of Time Predictable Multitask Control Unit. IFAC Pap. 2015, 48, 348–353.
4. Pułka, A.; Milik, A. Multithread RISC Architecture Based on Programmable Interleaved Pipelining. In Proceedings of the IEEE

ICECS 2009 Conference, Medina-Hammamet, Tunisia, 13–16 December 2009; pp. 647–650.
5. Buttazzo, G.C. Hard Real-Time Computing Systems; Springer: New York, NY, USA, 2011.
6. Ruiz, P.A.; Rivas, M.A.; Harbour, M.G. Non-Blocking Synchronization Between Real-Time and Non-Real-Time Applications.

IEEE Access 2020, 8, 147618–147634. https://doi.org/10.1109/ACCESS.2020.3015385.
7. Duenha, L.; Madalozzo, G.A.; Santiago, T.; Moraes, F.G.; Azevedo, R. MPSoCBench: A benchmark for high-level evaluation of

multiprocessor system-on-chip tools and methodologies. J. Parallel Distrib. Comput. 2016, 95, 138–157.
8. Li, K. Energy and time constrained task scheduling on multiprocessor computers with discrete speed levels. J. Parallel Distrib.

Comput. 2016, 95, 15–28. https://doi.org/10.1016/j.jpdc.2016.02.006.
9. Schoeberl, M.; Abbaspour, S.; Akesson, B. T-CREST: Time-predictable multi-core architecture for embedded systems. J. Syst.

Archit. 2015, 61, 449–471.
10. Wilhelm, R. Real time spent on real time. Commun. ACM 2020, 63, 54–60. https://doi.org/10.1145/3375545.
11. Lee, E.; Messerschmitt, D. Pipeline interleaved programmable DSP’s: Architecture. IEEE Trans. Acoust. Speech Signal Process

1987, 35, 1320–1333.
12. Davis, R.I.; Altmeyer, S.; Indrusiak, L.S.; Maiza, C.; Nélis, V.; Reineke, J. An extensible framework for multicore response time

analysis. Real Time Syst. 2018, 54, 607–661.
13. Schoeberl, M.; Schleuniger, P.; Puffitsch, W.; Brandner, F.W.; Probst, C. Towards a Time-predictable Dual-Issue Microprocessor:

The Patmos Approach. In Proceedings of the First Workshop on Bringing Theory to Practice: Predictability and Performance in
Embedded Systems (PPES 2011), Grenoble, France, 18 March 2011; pp. 11–21.

14. Pedram, M. Power Minimization in IC Design, Principles and Applications. ACM Trans. Des. Automat. Electron. Syst. 1996, 1, 3–
56.

15. Kim, D.; Ko, Y.; Lim, S. Energy-Efficient Real-Time Multi-Core Assignment Scheme for Asymmetric Multi-Core Mobile Devices.
IEEE Access 2020, 8, 117324–117334. https://doi.org/10.1109/ACCESS.2020.3005235.

16. Lorenzon, A.F.; Cera, M.C.; Beck, A.C. Investigating different general-purpose and embedded multicores to achieve optimal
trade-offs between performance and energy. J. Parallel Distrib. Comput. 2016, 95, 107–123.

17. Xie, G.; Zeng, G.; Xiao, X.; Li, L.; Li, K. Energy-Efficient Scheduling Algorithms for Real-Time Parallel Applications on Hetero-
geneous Distributed Embedded Systems. IEEE Trans. Parallel Distrib. Syst. 2017, 28, 3426–3442.
https://doi.org/10.1109/TPDS.2017.2730876.

18. Chniter, H.; Mosbahi, O.; Khalgui, M.; Zhou, M.; Li, Z. Improved Multi-Core Real-Time Task Scheduling of Reconfigurable
Systems with Energy Constraints. IEEE Access 2020, 8, 95698–95713. https://doi.org/10.1109/ACCESS.2020.2990973.

19. Ge, Y.; Liu, R. A Group-Based Energy-Efficient Dual Priority Scheduling for Real-Time Embedded Systems. Information 2020,
11, 191. https://doi.org/10.3390/info11040191.

Appl. Sci. 2022, 12, 1630 22 of 22

20. Huang, C. HDA: Hierarchical and dependency-aware task mapping for network-on-chip based embedded systems. J. Syst.
Archit. 2020, 108, 101740.

21. Rehman, A.U.; Ahmad, Z.; Jehangiri, A.I.; Ala’Anzy, M.A.; Othman, M.; Umar, A.I.; Ahmad, J. Dynamic Energy Efficient Re-
source Allocation Strategy for Load Balancing in Fog Environment. IEEE Access 2020, 8, 199829–199839.
https://doi.org/10.1109/ACCESS.2020.3035181.

22. Salloum, C.; Elshuber, M.; Höftberger, O.; Isakovic, H.; Wasicek, A. The ACROSS MPSoC—A new generation of multi-core
processors designed for safety-critical embedded systems. Microprocess. Microsyst. 2012, 37, 1020–1032.
https://doi.org/10.1109/DSD.2012.126.

23. Glaser, F.; Tagliavini, G.; Rossi, D.; Haugou, G.; Huang, Q.; Benini, L. Energy-Efficient Hardware-Accelerated Synchronization
for Shared-L1-Memory Multiprocessor Clusters. IEEE Trans. Parallel Distrib. Syst. 2021, 32, 633–648.
https://doi.org/10.1109/TPDS.2020.3028691.

24. Geier, M.; Brändle, M.; Chakraborty, S. Insert & Save: Energy Optimization in IP Core Integration for FPGA-based Real-time
Systems. In Proceedings of the 2021 IEEE 27th Real-Time and Embedded Technology and Applications Symposium (RTAS),
Nashville, TN, USA, 18–21 May 2021; pp. 80–91. https://doi.org/10.1109/RTAS52030.2021.00015.

25. Wimer, S.; Koren, I. Design Flow for Flip-Flop Grouping in Data-Driven Clock Gating. IEEE Trans. Very Large Scale Integr. (VLSI)
Syst. 2014, 22, 771–778. https://doi.org/10.1109/TVLSI.2013.2253338.

26. Bezati, E.; Casale-Brunet, S.; Mattavelli, M.; Janneck, J.W. Clock-Gating of Streaming Applications for Energy Efficient Imple-
mentations on FPGAs. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2017, 36, 699–703.
https://doi.org/10.1109/TCAD.2016.2597215.

27. Bsoul, A.A.M.; Wilton, S.J.E.; Tsoi, K.H.; Luk, W. An FPGA Architecture and CAD Flow Supporting Dynamically Controlled
Power Gating. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2016, 24, 178–191. https://doi.org/10.1109/TVLSI.2015.2393914.

28. Çakmak, I.Y.; Toms, W.; Navaridas, J.; Luján, M. Cyclic Power-Gating as an Alternative to Voltage and Frequency Scaling. IEEE
Comput. Archit. Lett. 2016, 15, 77–80. https://doi.org/10.1109/LCA.2015.2478784.

29. Greenberg, S.; Rabinowicz, J.; Tsechanski, R.; Paperno, E. Selective State Retention Power Gating Based on Gate-Level Analysis.
IEEE Trans. Circuits Syst. I Regul. Pap. 2014, 61, 1095–1104. https://doi.org/10.1109/TCSI.2013.2286029.

30. Stallings, W. Reduced instruction set computer architecture. Proc. IEEE 1988, 76, 38–55.
31. VC707 Evaluation Board for the Virtex-7 FPGA. Available online: https://www.xilinx.com/support/documenta-

tion/boards_and_kits/vc707/ug885_VC707_Eval_Bd.pdf (accessed on 1 November 2019).
32. Mälardalen: WCET Benchmark Programs. Available online: http://www.mrtc.mdh.se/projects/wcet/benchmarks.html (ac-

cessed on 1 March 2021).
33. Hussein, J.; Klein, M.; Hart, M. Lowering Power at 28 nm with Xilinx 7 Series Devices; Xilinx White Paper, WP389; 2015.

Available online: https://www.xilinx.com/support/documentation/white_papers/wp389_Lowering_Power_at_28nm.pdf (ac-
cessed on 1 February 2022)

