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Abstract: Knowledge graph-based recommendation methods are a hot research topic in the field
of recommender systems in recent years. As a mainstream knowledge graph-based recommenda-
tion method, the propagation-based recommendation method captures users’ potential interests in
items by integrating the representations of entities and relations in the knowledge graph and the
high-order connection patterns between entities to provide personalized recommendations. For
example, the collaborative knowledge-aware attentive network (CKAN) is a typical state-of-the-art
propagation-based recommendation method that combines user-item interactions and knowledge
associations in the knowledge graph, and performs heterogeneous propagation in the knowledge
graph to generate multi-hop ripple sets, thereby capturing users’ potential interests. However, ex-
isting propagation-based recommendation methods, including CKAN, usually ignore the complex
relations between entities in the multi-hop ripple sets and do not distinguish the importance of
different ripple sets, resulting in inaccurate user potential interests being captured. Therefore, this
paper proposes a top-N recommendation method named collaborative knowledge-aware graph
attention network (CKGAT). Based on the heterogeneous propagation strategy, CKGAT uses the
knowledge-aware graph attention network to extract the topological proximity structures of entities
in the multi-hop ripple sets and then learn high-order entity representations, thereby generating
refined ripple set embeddings. CKGAT further uses an attention aggregator to perform weighted
aggregation on the ripple set embeddings, the user/item initial entity set embeddings, and the
original representations of items to generate accurate user embeddings and item embeddings for
the top-N recommendations. Experimental results show that CKGAT, overall, outperforms three
baseline methods and six state-of-the-art propagation-based recommendation methods in terms of
recommendation accuracy, and outperforms four representative propagation-based recommendation
methods in terms of recommendation diversity.

Keywords: knowledge graph-based recommendation; top-N recommendation; user preference;
heterogeneous propagation; graph attention network; attention aggregator

1. Introduction

Although recommendation technology has achieved considerable development and
has been widely used in various domains, recommender systems still suffer from several
challenges, such as inaccurate recommendations, data sparsity, and cold-start problems.
In recent years, introducing a knowledge graph (KG) into the recommender system as
side information has attracted considerable research interest, and the knowledge graph-
based recommendation method has recently become a hot research topic in the field of
recommender systems [1].

Knowledge graphs have proven to be effective in improving recommendation per-
formance and alleviating the aforementioned challenges, because the knowledge graph
can provide background knowledge for users and items in the recommender system,
which helps to more accurately capture user preferences for items. According to how the
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knowledge in the knowledge graph is utilized, knowledge graph-based recommendation
methods can be classified into three categories [1]: embedding-based recommendation
methods, connection-based recommendation methods, and propagation-based recommen-
dation methods. The core idea of the embedding-based recommendation methods, such
as collaborative knowledge-base embedding (CKE) [2], is leveraging the fruitful facts in
the knowledge graph to enrich the representations of users and item. The core idea of
connection-based recommendation methods, such as knowledge-aware path recurrent
network (KPRN) [3], is using the connection patterns between entities (users/items) in the
knowledge graph to guide recommendation. The core idea of the propagation-based recom-
mendation methods, such as collaborative knowledge-aware attentive network (CKAN) [4],
knowledge graph convolutional networks (KGCN) [5], and knowledge graph-based intent
network (KGIN) [6], is integrating entity representations, relation representations, and high-
order connection patterns between entities to provide more personalized recommendation.
For a more comprehensive review of knowledge graph-based recommender systems, we
refer readers to [1].

As commented in [1], the embedding-based recommendation methods are difficult
to capture the high-order relations between entities, whereas the connection-based recom-
mendation methods tend to lose information by decomposing the sophisticated connection
pattern into separate linear paths. The propagation-based recommendation methods aim
to make full use of the information in the knowledge graph, and thus become the main-
stream methods for knowledge graph-based recommender systems. These methods adopt
the idea of embedding propagation [7,8], and usually employ an architecture based on
graph neural network [9] to refine entity representations by aggregating the embeddings of
multi-hop neighbors in the knowledge graph to better predict user preferences for items.
For example, CKAN, a typical state-of-the-art propagation-based recommendation method,
combines user-item interactions and knowledge associations in the knowledge graph, and
performs heterogeneous propagation in the knowledge graph to generate multi-hop ripple
sets, thereby capturing users’ potential interests. However, existing propagation-based
recommendation methods, including CKAN, usually ignore the complex relations between
entities in the multi-hop ripple sets [5,10] and do not distinguish the importance of different
ripple sets, resulting in inaccurate user potential interests being captured.

In order to capture more accurate user potential interests in items, which is the key to
improving the performance of personalized recommendation, this paper proposes a top-N
recommendation method named collaborative knowledge-aware graph attention network
(CKGAT), which consists of three layers: heterogeneous propagation, knowledge-aware
graph attention network (GAT)-based attentive embedding, and user-item interaction prob-
ability prediction. Intuitively, different from existing propagation-based recommendation
methods, CKGAT can distinguish the importance of different multi-hop ripple sets of
either users or items and take full advantage of the topological proximity structures of
entities in the multi-hop ripple sets to refine user representations and item representations,
thus capturing more accurate potential user interests in items. Specifically, based on the
heterogeneous propagation strategy, CKGAT employs the knowledge-aware GAT to ex-
tract the topological proximity structures of entities in the multi-hop ripple sets and then
learn high-order entity representations, thereby generating refined ripple set embeddings.
Furthermore, CKGAT adopts the attention aggregator to perform weighted aggregation on
the ripple set embeddings, user/item initial entity set embeddings, as well as the original
representations of items, so as to generate accurate user embeddings and item embeddings
for top-N recommendations. We used four real-world datasets, including Last.FM, Book-
Crossing, MovieLens 20M, and Dianping-Food, to empirically evaluate the performance
of CKGAT. Experimental results show that CKGAT overall outperforms three baseline
methods and six state-of-the-art propagation-based recommendation methods in terms
of recommendation accuracy, and outperforms four representative propagation-based
recommendation methods in terms of recommendation diversity.

The contributions of this work are summarized as follows:
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1. We propose a novel method called collaborative knowledge-aware graph attention
network (CKGAT) for top-N recommendation. This method can learn refined ripple
set embeddings, thereby generating accurate user embeddings and item embeddings,
so as to accurately capture users’ potential interests in items. To the best of our
knowledge, it is the first method that uses the knowledge-aware graph attention
network to learn the refined ripple set embeddings;

2. We use the attention aggregator to generate accurate user embeddings and item
embeddings for top-N recommendation;

3. Extensive experiments on four real-world datasets demonstrate the superiority of our
CKGAT in comparison with state-of-the-art methods.

The remainder of this paper is organized as follows. In Section 2, we briefly summarize
the related work focusing on the knowledge graph-based recommendation methods. After
the problem formulation in Section 3, we describe in detail our proposed CKGAT method
in Section 4. Section 5 presents the experiments. Finally, we conclude our work in Section 6.

2. Related Work

In this section, we briefly review the related work on knowledge graph-based recom-
mendation methods, which are divided into three categories including embedding-based
recommendation methods, connection-based recommendation methods, and propagation-
based recommendation methods. The propagation-based recommendation methods are
further divided into three types of approaches: user representation-refinement approaches,
item representation-refinement approaches, as well as both user and item representation-
refinement approaches.

2.1. Embedding-Based Recommendation Methods

The embedding-based recommendation methods use fruitful facts in the knowledge
graph to enrich user representations and item representations [1]. This category of methods
has two basic modules: the graph embedding module and the recommendation module [1].
The former is used to learn the embeddings of entities and relations encoded in knowledge
graphs, and the latter is used to calculate user preferences for items. The embedding-based
recommendation methods are relatively early knowledge graph-based recommendation
methods, and have been widely used in the fields of word embedding, information re-
trieval, and recommendation [11]. For example, Zhang et al. [2] proposed the collaborative
knowledge-base embedding (CKE) framework, which uses collaborative filtering and
knowledge graph embedding to extract item features and capture the implicit relations
between users and items. Wang H. et al. [12] proposed the deep knowledge-aware net-
work (DKN), which uses a convolutional neural network (CNN) [13] and the knowledge
graph embedding model TransD [14] to learn news embeddings for recommendations.
Cao et al. [15] proposed the knowledge-enhanced translation-based user preference (KTUP)
model, which can train both the knowledge graph completion task and the recommenda-
tion task at the same time to jointly learn user representations, item representations, entity
representations, and relation representations. The embedding-based recommendation
methods are simple to implement, but have difficulty capturing the high-order relations
between entities, which causes the learned entity embeddings to be inaccurate, thus limiting
recommendation performance.

2.2. Connection-Based Recommendation Methods

The connection-based recommendation methods use the connection patterns between
entities (users/items) in a knowledge graph to guide recommendations. Traditional
connection-based methods use meta-structures (such as meta-paths [16,17] and meta-
graphs [18], etc.) to calculate the similarity between entities, and use it as a constraint for
learning user and item representations [1]. For example, Luo et al. [19] used heterogeneous
social networks for social recommendation and proposed a collaborative filtering algorithm,
Hete-CF, based on metapath similarity. Some recent connection-based recommendation
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methods provide recommendations by explicitly learning the embeddings of connection
patterns [1,4,20]. For example, Sun et al. [21] proposed a recommendation method using
recurrent knowledge graph embedding (RKGE), which uses a recurrent network [22] archi-
tecture to learn the embeddings of semantic paths between entities, thereby learning entity
embeddings and path representations. Wang X. et al. [3] proposed the knowledge-aware
path recurrent network (KPRN), which generates path representations by combining the
semantics of entities and relations. Furthermore, KPRN employs a weighted aggregation
operation to distinguish the importance of different paths, so as to capture the user pref-
erences. The connection-based method decomposes the complex connection patterns in
the knowledge graph into separate linear paths to learn path embeddings, which will
inevitably lose information and cause the learned path embedding to be inaccurate. This
will make the captured user preferences not accurate enough to produce accurate recom-
mendation. Additionally, the connection-based recommendation method enumerates all
possible paths between user-item pairs or item-item pairs. Therefore, when the scale of
the knowledge graph is large and contains a large number of paths, this will inevitably
reduce the scalability of the method. At the same time, this category of methods requires a
high cost to calculate recommendations [1]. This may be the reason why the connection-
based recommendation methods did not become the mainstream knowledge graph-based
recommendation methods.

2.3. Propagation-Based Recommendation Methods

The embedding-based recommendation methods are simple to implement, but have
difficulty capturing the high-order relations between entities. The connection-based recom-
mendation methods use the connection patterns between entities in a knowledge graph to
guide the recommendation, but they require high calculation cost and have poor scalability.
In order to make full use of the information in the knowledge graph, scalable propagation-
based recommendation methods capable of capturing the high-order relations between
entities have recently been proposed and become the mainstream methods for knowledge
graph-based recommender systems. The propagation-based recommendation method
integrates entity representations, relation representations, and high-order connection pat-
terns between entities to provide more personalized recommendation. According to the
types of entities that are refined during the propagation process, the propagation-based
recommendation methods can be further divided into three types of approaches [1]: user
representation-refinement approaches, item representation-refinement approaches, and
both user and item representation-refinement approaches.

2.3.1. User Representation-Refinement Approaches

The user representation-refinement approaches use the embeddings of the items
interacted with by the user and the embeddings of the entities (i.e., items) in multi-hop
ripple sets to learn user representations. For example, Wang H. et al. [23] proposed the
RippleNet framework, which uses preference propagation to learn ripple set embeddings to
generate user embeddings. Wang Z. et al. [4] proposed the collaborative knowledge-aware
attentive network (CKAN) method, which uses a heterogeneous propagation strategy to
obtain multi-hop ripple sets, and then inputs the ripple sets into the attentive network to
learn user representations and item representations. He M. et al. [24] proposed the relation-
enhanced knowledge graph reasoning for recommendation (RE-KGR) method, which
calculates all user-item interaction paths to refine user embeddings, thereby generating
recommendations. However, this type of methods has two limitations: one is that it
ignores the topological proximity structures of the entities in multi-hop ripple sets, leading
to inaccurate ripple set embeddings; the other is that it simply uses vector addition or
concatenation operations to aggregate all the ripple set embeddings, thus reducing the
accuracy of user/item embeddings.
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2.3.2. Item Representation-Refinement Approaches

The item representation-refinement approaches refine item representations by aggre-
gating the embeddings of items’ multi-hop neighbors, and usually adopt graph neural
network architectures suitable for the embedding propagation process [25,26]. For exam-
ple, Wang H. et al. [5] proposed the knowledge graph convolutional networks (KGCN)
framework, which uses a graph convolutional network [26,27] to iteratively aggregate the
embeddings of neighboring entities to refine item representations. The authors [7] further
proposed the knowledge-aware graph neural networks with label smoothness regular-
ization (KGNN-LS) framework, in which a label-smoothness mechanism is added to the
KGCN framework to propagate user-interaction labels, in order to simultaneously capture
the semantic relations between entities as well as the users’ personalized preferences for
items, so as to provide effective recommendations. The gated knowledge graph neural
networks for top-N recommendation system (GKGNN) method, proposed by Mu et al. [28],
refines item representations by selecting more relevant neighboring entities in the process
of aggregating neighboring item embeddings. The knowledge-aware conditional attention
networks (KCAN) method, proposed by Tu et al. [29], condenses and refines the knowl-
edge graph according to a given user, thus retaining useful information and refining item
representations. The differentiable sampling on knowledge graph for recommendation
with relational GNN (DSKReG) method proposed by Wang Y. et al. [30] adopts a differ-
entiable sampling strategy, and uses the item categories and the relations between item
entities to obtain the items related to the recommendations, thereby improving the item
representations. However, this type of method only exploits the knowledge in knowledge
graphs to learn item embeddings without leveraging the user-item interaction information.

2.3.3. Both User and Item Representation-Refinement Approaches

Different from the aforementioned two types of propagation-based recommenda-
tion methods, the both user and item representation-refinement approaches construct
user–item knowledge graphs [1,8], a.k.a. collaborative knowledge graphs (CKGs), which
contain users, items, item attribute entities, and the relations between them, and use
graph neural networks to refine user embeddings and item embeddings. For example,
Wang X. et al. [8] proposed the knowledge graph attention network (KGAT) method, which
first uses TransR [31] to obtain the initial representations of the entities in a CKG, and
then uses the graph attention network to refine user embeddings and item embeddings.
Zhao et al. [32] proposed an extensible recommendation framework IntentGC, which uses
graph convolutional networks to capture user preferences and heterogeneous relations
in the knowledge graph, and then learns user representations and item representations
for recommendations. Huang et al. [33] proposed the entity-aware collaborative relation
network (ECRN) method, which uses a knowledge graph to explore the entity-granularity
relation semantics behind user-item interactions, thus refining user representations and
item representations. The X-2ch model proposed by Lo et al. [34] employs a four-channel
mechanism to propagate information in the knowledge graph to obtain representative user
representations and item representations. The knowledge graph-based intent network
(KGIN) method, proposed by Wang X. et al. [6], uses auxiliary item knowledge to explore
the users’ intention behind the user-item interactions, and uses an information aggregation
mechanism to refine the information related to the users’ intention, and finally encodes
this information in the user representations and the item representations to improve these
representations. However, the CKGs that these methods rely on do not distinguish be-
tween user nodes and other entity nodes. Therefore, it is impossible to make full use of
the collaborative signals in the user-item interactions to refine user representations and
item representations, and it is difficult to deal with new users [4]. Our CKGAT method
belongs to the both user and item representations refinement approaches. Different from
the existing work, CKGAT can make full use of both the topological proximity structures of
entities and the collaborative signals in user-item interactions to refine user representations
and item representations, thus achieving better recommendation results.
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3. Problem Formulation

This section first introduces some necessary concepts and mathematical symbols, and
then describes the task of the propagation-based recommendation method.

Definition 1. Recommender system. A recommender system involves the set U of m users and
the set V of n items. For the system, a user-item interaction matrix, Y ∈ Rm×n, is constructed
according to the users’ implicit feedback, where an element yuv = 1 represents that user u ∈ U has
interacted with item v ∈ V (e.g., clicking, watching, or purchasing), which is generally considered
to indicate that the user likes the item; otherwise yuv = 0.

Definition 2. Knowledge graph G. A knowledge graph is defined as a set of triples, that is,
G = {(h, r, t) | h, t ∈ E , r ∈ R}, where E is the set of entities, R is the set of relations, and each
triple (h, r, t) describes the relation r ∈ R from the head entity h ∈ E to the tail entity t ∈ E . Note
thatR contains relations in both canonical direction (e.g., DirectorOf) and inverse direction (e.g.,
DirectedBy). In the graph, an entity is represented as a node, and a relation is represented as a
directed edge (link) from the head entity node to the tail entity node.

This paper uses a set A = {(v, e) | v ∈ V can be aligned with e ∈ E} to describe the
alignments between items in the recommender system and entities in the knowledge graph.
An element (v, e) ∈ A indicates that item v can be aligned with entity e. The task of the
propagation-based recommendation method is formulated in Definition 3.

Definition 3. The task of the propagation-based recommendation method. As described in [4,5],
given the user-item interaction matrix Y and the knowledge graph G, the recommendation task is to
predict the probability that user u ∈ U will interact with item v ∈ V that the user has not interacted
with before. More specifically, the goal of the task is to learn a prediction function ŷuv = F (u, v |
Θ, Y,G), where ŷuv represents the predicted probability that user u will interact with item v, and
Θ denotes the model parameters of function F . Given a target user, the recommendation method
sorts the predicted probabilities in descending order to generate a top-N recommendation list for the
target user.

4. Proposed CKGAT Method

This section elaborates on our proposed CKGAT method. First, we briefly describe
the overall framework of CKGAT. Then, we explain in detail the three layers within the
framework. Finally, we describe model learning and recommendation generation.

4.1. Overall Framework of CKGAT

The core ideas of CKGAT are as follows. On the basis of the heterogeneous propaga-
tion strategy, CKGAT uses the knowledge-aware graph attention network to extract the
topological proximity structures of entities in the multi-hop ripple sets and then learn the
high-order entity representations, thereby generating refined ripple set embeddings. CK-
GAT further uses the attention aggregator to perform weighted aggregation on the ripple set
embeddings, the user/item initial entity set embeddings, and the original representations
of items, so as to generate accurate user embeddings and item embeddings.

Figure 1 shows the overall framework of CKGAT, which consists of three layers: the
heterogeneous propagation layer, the knowledge-aware GAT-based attentive embedding
layer, and the user-item interaction probability prediction layer. These layers are briefly
described as follows.
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Figure 1. The overall framework of CKGAT.

• Heterogeneous propagation layer. This layer is composed of the collaboration prop-
agation module and the knowledge graph propagation module. The first module
propagates collaborative signals through the user-item interactions to obtain the user
initial entity set and the item initial entity set. On the basis of the two initial entity
sets, the second module propagates knowledge associations along the links in the
knowledge graph to obtain the user’s multi-hop ripple sets and the item’s multi-hop
ripple sets. Then, this layer outputs these sets to the next layer;

• Knowledge-aware GAT-based attentive embedding layer. For each input ripple set
of the user/item, this layer uses a knowledge-aware graph attention network to
capture the topological proximity structures of the entities (i.e., items) in the ripple
set to learn the high-order entity representations, thereby generating the ripple set
embedding (i.e., vector). This layer also generates the user initial entity set embedding,
the item initial entity set embedding, and the original representation (i.e., vector) of
the item. Finally, all these embeddings (vectors) are output to the next layer;
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• User-item interaction probability prediction layer. For the input embeddings, this
layer uses the attention aggregator to learn the weight of each embedding, and per-
forms weighted aggregation on these embeddings to generate the user embedding
and the item embedding. The two embeddings are then used to calculate the predicted
probability that the user will interact with the item.

4.2. Heterogeneous Propagation Layer

As shown in Figure 1, the heterogeneous propagation layer of CKGAT uses the same
heterogeneous propagation strategy as in CKAN [4] to obtain the user’s multi-hop ripple
sets and the item’s multi-hop ripple sets. The knowledge-based high-order interaction
information of the user and the item is encoded in these multi-hop ripple sets. This layer is
composed of the collaboration propagation module and the knowledge graph propagation
module. The former explicitly encodes the collaborative signals in the user-item interactions
into the user representation and the item representation to form the first-order interaction
information, whereas the latter uses the knowledge associations in the knowledge graph
to expand the user representation and the item representation based on the first-order
interaction information, so as to form the high-order interaction information.

4.2.1. Collaboration Propagation Module

The goal of the collaboration propagation module in CKGAT is to obtain the user
initial entity set and the item initial entity set as initial seeds in the process of knowledge
propagation. An item that a user has interacted with can represent the user preference to a
certain extent. Therefore, for a user u ∈ U , the items which the user has interacted with
and are in the alignment set A can be used as the initial entities of the user. The user initial
entity set E0

u is composed of these initial entities, which is defined in Equation (1) [4].

E0
u = {e | (v, e) ∈ A and v ∈ {v | yuv = 1}} (1)

Similarly, the users who interacted with the same item (essentially, all the items that
these users interacted with) can also contribute to the item’s feature representation as these
users have similar preferences. Therefore, for an item v ∈ V , the collaboration propagation
module first obtains all the users who interacted with item v. Then, all the items that
these users interacted with form the collaborative item set Vv of v, which is defined in
Equation (2) [4].

Vv = {vu | u ∈ {u | yuv = 1} and yuvu = 1} (2)

Furthermore, this module filters out the items in Vv that cannot be aligned with the
entities in the knowledge graph through the alignment setA to obtain the item initial entity
set E0

v , which is defined in Equation (3) [4].

E0
v = {e | (vu, e) ∈ A and vu ∈ Vv} (3)

The collaboration propagation module explicitly encodes the first-order interaction
information into the user/item initial entity set, thereby enhancing the user representations
and item representations.

4.2.2. Knowledge Graph Propagation Module

Similar to the method in [4,23], the knowledge graph propagation module in CKGAT
uses the obtained initial seeds to propagate knowledge associations along the links in
the knowledge graph from near to distant, thereby obtaining the user’s multi-hop ripple
sets and the item’s multi-hop ripple sets. These multi-hop ripple sets contain the user’s
extended entity sets and the item’s extended entity sets, respectively. Formally, we use a
uniform placeholder o to represent the symbol of user u ∈ U or item v ∈ V , and use E l

o to
represent the extended entity set of u or v. E l

o is composed of the tail entities in the triples
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with h ∈ E l−1
o as the head entities in the knowledge graph G, which is defined recursively

in Equation (4).

E l
o =

{
t | (h, r, t) ∈ G and h ∈ E l−1

o

}
, l = 1, 2, . . . , L (4)

where l represents the hop number away from the initial seeds (entities), and the hyperpa-
rameter L is the maximum hop number of the multi-hop ripple sets.

On the basis of the two extended entity sets, the knowledge graph propagation module
can form the user’s multi-hop ripple sets and the item’s multi-hop ripple sets, in which the
knowledge-based high-order interaction information of the user and the item is encoded.
Formally, the l-th hop ripple set S l

o is constructed by all the triples whose head entities are
in the extended entity set E l−1

o , as defined in Equation (5).

S l
o =

{
(h, r, t) | (h, r, t) ∈ G and h ∈ E l−1

o

}
, l = 1, 2, . . . , L (5)

4.3. Knowledge-Aware GAT-Based Attentive Embedding Layer

As aforementioned, to generate the ripple set embeddings, the RippleNet frame-
work [23] adopts the user preference propagation module, whereas the CKAN method [4]
adopts the attentive network. However, these methods ignore the complex relations be-
tween entities in the multi-hop ripple sets, leading to inaccurate ripple set embeddings.
This will affect the accuracy of the user/item embedding, and ultimately will affect the
accuracy of the captured user’s potential interest. In order to more accurately capture the
user’s potential interest, CKGAT adopts a knowledge-aware graph attention network to
generate the ripple set embeddings. More specifically, on the basis of the graph attention
network [35], we construct the knowledge-aware graph attention network by additionally
exploiting the embeddings of the relations between entities.

As shown in Figure 1, the knowledge-aware GAT-based attentive embedding layer
uses the knowledge-aware graph attention network to capture the topological proximity
structures of the entities in the multi-hop ripple sets and learn the high-order entity rep-
resentations, thereby generating the ripple set embeddings. More specifically, this layer
consists of the following four steps.

The first step is to obtain multiple neighboring head entities of the tail entity in each
triple from the user’s or the item’s multi-hop ripple sets, thereby forming the neighboring
entity sets. Assuming that the input of the knowledge-aware graph attention network is
the ripple set S l

o, l = 1, 2, . . . , L, where the unified placeholder o represents the user u or
the item v, and the corresponding extended entity set of S l

o is E l
o. The knowledge-aware

graph attention network acquires the K neighboring head entities of each tail entity to ∈ E l
o

of each triple in S l
o to form the neighboring entity set N (to), with the hyperparameter

K = |N (to)|. The neighboring entity set is defined in Equation (6).

N (to) =
{

hk
o | hk

o ∈ E l−1
o and

(
hk

o, rk
o, to

)
∈ S l

o

}
, k = 1, 2, . . . , K (6)

The second step is to learn the neighborhood representation of the tail entity to ∈ E l
o

based on the obtained neighboring entity set. As shown in Figure 2, let the embedding
of each neighboring head entity hk

o ∈ N (to) be ehk
o
, k = 1, 2, . . . , K. The knowledge-aware

graph attention network first uses the triple
(

hk
o, rk

o, to

)
∈ S l

o to learn a score πk, and

normalize the score to obtain the weight π̃k. Then, the network performs weighted aggre-
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gation on the embedding ehk
o

of each neighboring head entity to obtain the neighborhood
representation eN (to) of the entity to. The above process is defined in Equation (7).

πk = LeakyReLU
(

w>1
[
W1ehk

o
||W1rk

o||W1eto

])
π̃k =

exp
(

πk
)

∑hk′
o ∈N (to)

exp
(
πk′
)

eN (to) =
K

∑
k=1

π̃kehk
o

(7)

where LeakyReLU is a type of activation function based on a ReLU; this activation func-
tion can assign a non-zero slope to all negative values. The parameters w1 ∈ R3d and
W1 ∈ Rd×d are a weight vector and a weight matrix, respectively, that are determined
through parameter learning. ehk

o
, rk

o, eto ∈ Rd represent the d-dimensional embedding
(vector) of entity hk

o, relation rk
o, and entity to, respectively. ‖ denotes a concatenation

operation.

Figure 2. Knowledge-aware graph attention network.

In the third step, the graph attention network combines the obtained neighborhood
representation eN (to) with the embedding eto of entity to to generate a high-order represen-
tation e′to

of to, which is defined in Equation (8).

e′to = σ
(

W1

(
eto + eN (to)

))
(8)

where σ(·) is the sigmoid activation function.
In the fourth step, the graph attention network obtains the embedding e(l)o of the ripple

set S l
o by aggregating the high-order representation of each entity to ∈ E l

o, which is defined
in Equation (9).

e(l)o = ∑
to∈εl

o

e′to , l = 1, 2, . . . , L (9)

In this way, L ripple set embeddings of the user and L ripple set embeddings of the
item are obtained, respectively.

Finally, since the entities in the user initial entity set have a strong connection with
the user, and the entities in the item initial entity set have a strong connection with the
item, the knowledge-aware GAT-based attentive embedding layer also needs to use the
user initial entity set embedding e(0)u to enrich the user embedding, and use the item initial
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entity set embedding e(0)v and the original item representation (vector) e(origin)
v to enrich

the item embedding. This way, the user representation sets Tu and the item representation
sets Tv are formed, which are defined in Equation (10).

Tu =
{

e(0)u , e(1)u , . . . , e(L)
u

}
Tv =

{
e(origin)

v , e(0)v , e(1)v , . . . , e(L)
v

} (10)

Using the same calculation method in [4], the user/item initial entity set embedding
e(0)o is defined in Equation (11).

e(0)o =
∑e∈ε0

o
e∣∣E0

o
∣∣ (11)

As in [4], the embedding of the entity aligned with the item v ∈ V in the knowledge
graph G can be used as the original representation e(origin)

v of v, as defined in Equation (12).

e(origin)
v =

∑e∈{e|(e,v)∈A} e
|{e | (e, v) ∈ A}| (12)

4.4. User-Item Interaction Probability Prediction Layer

This layer in CKGAT uses the user representation set Tu and the item representation
set Tv, which are uniformly denoted as To, to respectively generate the user embedding
and the item embedding, thereby calculating the predicted probability that the user will
interact with the item. Inspired by the attention mechanism [36–38], for the input user/item
representation set To, the prediction layer uses the attention aggregator to generate the
user/item embedding eo. Specifically, the attention aggregator first learns an attention
score α

(i)
o for each embedding e(i)o ∈ To. Then, it normalizes the score to obtain the weight

coefficient α̃
(i)
o of the embedding e(i)o . Finally, the attention aggregator performs weighted

aggregation on all e(i)o to obtain the user/item embedding eo. The above process is defined
in Equation (13).

α
(i)
o = w>2 tanh

(
W2e(i)o

)
α̃
(i)
o =

exp
(

α
(i)
o

)
∑
|To |
i′=1 exp

(
α
(i′)
o

)
eo =σ

W3 ∑
e(i)o ∈To

α̃
(i)
o e(i)o + b


(13)

where tanh is an activation function which endows the prediction model with nonlinearity.
Parameters w2 ∈ Rd and W2, W3 ∈ Rd×d are the weight vector and the weight matrices,
respectively. b ∈ Rd is the bias. These parameters are determined through parameter
learning.

After obtaining the user embedding eu and the item embedding ev, CKGAT calculates
the predicted probability ŷuv that the user u will interact with the item v by performing the
inner product operation on the two embeddings, as defined in Equation (14).

ŷuv = e>u ev (14)
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4.5. Model Learning and Recommendation Generation

CKGAT adopts the negative sampling strategy to improve the efficiency of model
learning, and the number of negative samples is the same as that of positive ones for each
user. As in CKAN [4], the loss function of CKGAT is defined in Equation (15).

L = ∑
u∈U

 ∑
v∈{v|(u,v)∈P+}

J (yuv, ŷuv)− ∑
v∈{v|(u,v)∈P−}

J (yuv, ŷuv)

+ λ‖Θ‖2
2 (15)

where J (yuv, ŷuv) is the cross-entropy loss. P+ represents the positive user-item pair set,
P− is the opposite. Θ = {E, R, w1, w2, b, Wi, ∀i ∈ {0, 1, 2}} represents the set of model
parameters, where E and R are the embedding table of all entities and the embedding
table of all relations, respectively. ‖Θ‖2

2 is the L2-regularizer. Hyper-parameter λ is used to
balance the regularizer.

CKGAT uses the stochastic gradient descent (SGD) algorithm to minimize the above
loss function to learn all the parameters of CKGAT. Once the learning process is completed,
CKGAT can obtain the trained user embedding and item embedding. Given a target user,
CKGAT first uses the user embedding and the embeddings of all candidate items that the
user has not interacted with to calculate the predicted probabilities of the items. Then
the predicted probabilities are sorted in descending order, thereby generating a top-N
recommendation list for the user.

5. Experiments

In this section, we describe our experiments, purposes of which are answering the
following research questions (RQs).

(1) RQ1: Does our CKGAT method outperform the state-of-the-art methods in the
field of knowledge graph-based recommendation in terms of recommendation accuracy?

(2) RQ2: Is CKGAT superior to the current state-of-the-art propagation-based recom-
mendation methods in terms of recommendation diversity?

(3) RQ3: How do the different components of CKGAT (i.e., the knowledge-aware
GAT-based attentive embedding layer and the attention aggregator) influence the recom-
mendation accuracy of the method?

(4) RQ4: How do different hyperparameter settings affect the CKGAT method?

5.1. Experimental Datasets

Our experiments used the following four real-world datasets, Last.FM, Book-Crossing,
MovieLens 20M, and Dianping-Food, as follows.

• Last.FM [39]. This dataset contains social networking, tagging, and music artist
listening information from a set of 2000 users from the Last.fm online music system;

• Book-Crossing [40]. This dataset collects explicit ratings (ranging from 0 to 10) from
different readers about various books in the book-crossing community;

• MovieLens 20M [41]. This dataset is a widely used benchmark dataset in movie
recommendation, which contains approximately 20 million explicit user ratings for
movies (ranging from one to five) on the MovieLens website;

• Dianping-Food [42]. This dataset is provided by Dianping.com, which contains 10
million interaction data (including clicks and purchases, etc.) between approximately
2 million users and 1000 restaurants.

Instead of the above four original datasets, our experiments directly used the prepro-
cessed Last.FM, Book-Crossing, and MovieLens 20M datasets, and their corresponding
knowledge graphs released on GitHub [43] by Wang Z. et al. [4]. We also used the pre-
processed Dianping-Food dataset and its corresponding knowledge graph released on
GitHub [44] by Wang H. et al. [7]. Table 1 shows the statistics of the four experimental
datasets and their corresponding knowledge graphs. As in [4,7], each dataset was randomly
divided into a training set, a validation set, and a test set in a ratio of 6:2:2. Furthermore, we
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followed the methods in [4,7] to randomly select 100 users from the test set and generate a
top-N recommendation list for each user.

Table 1. Statistics of the experimental datasets and their corresponding knowledge graphs.

Datasets Last.FM Book-Crossing MovieLens 20M Dianping-Food

user-item
interactions

#users 1872 17,860 138,159 2,298,698
#items 3846 14,967 16,954 1362

#interactions 42,346 139,746 13,501,622 23,416,418

knowledge
graph

#entities 9366 77,903 102,569 28,115
#relations 60 25 32 7

#triples 15,518 151,500 499,474 160,519

5.2. Comparison Methods

In order to evaluate the effectiveness of our CKGAT method, we chose experimental
comparison methods according to the following three rules.

• In accordance with the practice of choosing experimental comparison methods in
the existing research work [2–8,15,21,23,24,28–30,33,34] in the field, we chose one
classical collaborative filtering method, one typical embedding-based recommendation
method, and six representative propagation-based recommendation methods (as the
mainstream methods of knowledge graph-based recommendation);

• Unlike the above-mentioned research works, which did not choose a connection-based
recommendation method as an experimental comparison method, we chose KPRN, a
typical connection-based recommendation method, as the comparison method;

• We excluded recommendation methods whose codes were not available at the time of
writing this paper, such as the methods in [24,28–30,33,34].

As a consequence, CKGAT was compared with nine representative methods which
are divided into four categories: collaborative filtering method (BPRMF), embedding-based
recommendation method (CKE), connection-based recommendation method (KPRN), and
propagation-based recommendation methods which are further divided into the user
representation-refinement approaches (RippleNet and CKAN), the item representation-
refinement approaches (KGCN and KGNN-LS), and both user and item representation-
refinements approaches (KGAT and KGIN). Below are brief descriptions of these compari-
son methods.

• BPRMF [45]. This method is a Bayesian personalized ranking (BPR) optimized matrix
factorization (MF) model achieved by applying LearnBPR to MF.

• CKE [2]. This method is a typical knowledge graph embedding-based recommenda-
tion method that combines the structural knowledge, textual knowledge and visual
knowledge of items to learn item representations.

• KPRN [3]. This method is a typical connection-based recommendation method that
generates path representations by combining the semantics of entities and relations and
distinguishes the importance of different paths, thereby capturing user preferences.

• RippleNet [23]. This method is a classical propagation-based recommendation method
that enhances user representations by propagating users’ potential preferences in the
knowledge graph.

• CKAN [4]. This method belongs to the propagation-based recommendation methods
that uses a heterogeneous propagation strategy and an attention network to learn
ripple set embeddings, thereby generating user embeddings and item embeddings.

• KGCN [5]. This method belongs to the propagation-based recommendation methods,
which applies the graph convolutional network to the knowledge graph to aggregate
neighborhood information to refine item representations.
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• KGNN-LS [7]. This method belongs to the propagation-based recommendation meth-
ods that adds a label-smoothness mechanism to the KGCN framework to propagate
user-interaction labels, so as to provide effective recommendations.

• KGAT [8]. This method belongs to the propagation-based recommendation methods
that applies the graph attention network to the collaborative knowledge graph to learn
user representations and item representations.

• KGIN [6]. This method is currently the state-of-the-art propagation-based recommen-
dation method. It uses auxiliary item knowledge to explore the users’ intention behind
the user-item interactions, thus refining the representations of users and items.

Our experiments directly used the Python codes released on GitHub by the original
publications of the methods (or a third party) to implement these comparison methods.
More specifically, the codes of BPRMF, CKE and KGAT were from the GitHub repository
knowledge_graph_attention_network [46]. The code of KPRN was from the GitHub reposi-
tory KPRN [47]. The code of RippleNet was from the GitHub repository RippleNet [48].
The code of CKAN was from the GitHub repository CKAN [49]. The code of KGCN was
from the GitHub repository KGCN [50]. The code of KGNN-LS was from the GitHub
repository KGNN-LS [51]. The code of KGIN was from the GitHub repository Knowl-
edge_Graph_based_intent_Network [52].

In essence, our CKGAT method makes two important improvements to CKAN [4]:
the generation of ripple-set embeddings, and the generation of user/item embeddings.
When implementing our CKGAT method, we used the PyTorch framework to modify the
CKAN code in two major aspects: (1) Modify the knowledge-aware attentive embedding
layer in CKAN to the knowledge-aware GAT-based attentive embedding layer in CKGAT;
(2) Modify the aggregator in CKAN to the attention aggregator in CKGAT. Therefore, the
CKAN method can be regarded as a basic method of our CKGAT method. The Python code
of our CKGAT method is released on the GitHub repository CKGAT at https://github.
com/hu-dske/CKGAT (accessed on 29 December 2021).

5.3. Hyperparameter Settings

During the experiments, the hyperparameters for the nine comparison methods were
set in the same way as in the original publications of the comparison methods.

The hyperparameters for our CKGAT method were optimized via grid search on the
four experimental datasets. More specifically, the hyperparameter ranges for grid search
were as follows: the embedding dimension d in {8, 16, 32, 64, 128, 256}, the learning rate
δ of the stochastic gradient descent algorithm in {10−3, 5× 10−3, 10−2, 5× 10−2, 10−1},
the L2 regularization coefficient λ in {10−5, 10−4, 10−3, 10−2, 10−1}, the maximum hop
number L of ripple sets in {1, 2, 3, 4}, the number K of neighboring entities in {2, 3, 4, 5}.
Finally, in the following experiments, d was set to 64, δ was set to 5× 10−3, and λ was set
to 10−5 for the four datasets. The hyperparameters L and K were obtained through the
hyperparameter sensitivity experiment as described in Section 5.4.4. As a result, in the
following experiments we set L = 3 and K = 3 for the Last.FM dataset, L = 2 and K = 4
for the Book-Crossing dataset, as well as L = 1 and K = 5 for the MovieLens 20M, and
Dianping-Food datasets.

5.4. Experimental Results
5.4.1. Recommendation Accuracy (RQ1)

Like the related work [4,5,7,8] in the recommendation field, our experiments used four
popular accuracy metrics [53], Precision@N, Recall@N, F1-measure@N, and NDCG@N,
with N = {5, 10, 20, 50, 100}, to evaluate the accuracy of the recommendation methods.
Figures 3–6 show the top-N recommendation accuracy comparisons between our CKGAT
method and the nine comparison methods on the four experimental datasets. We have the
following observations from the results:

https://github.com/hu-dske/CKGAT
https://github.com/hu-dske/CKGAT
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(a) (b)

(c) (d)

Figure 3. Top-N recommendation performance comparison on the Last.FM dataset. (a) Precesion@N;
(b) Recall@N; (c) F1-measure@N; (d) NDCG@N.

(a) (b)

(c) (d)

Figure 4. Top-N recommendation performance comparison on the Book-Crossing dataset. (a) Prece-
sion@N; (b) Recall@N; (c) F1-measure@N; (d) NDCG@N.
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(a) (b)

(c) (d)

Figure 5. Top-N recommendation performance comparison on the MovieLens 20M dataset. (a) Prece-
sion@N; (b) Recall@N; (c) F1-measure@N; (d) NDCG@N.

(a) (b)

(c) (d)

Figure 6. Top-N recommendation performance comparison on the Dianping-Food dataset. (a) Prece-
sion@N; (b) Recall@N; (c) F1-measure@N; (d) NDCG@N.
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1. CKGAT achieves the best recommendation accuracy across all evaluation metrics
on the four datasets, with the exception of the precision metric on the MovieLens
20M dataset. This result shows that on the basis of the heterogeneous propagation
strategy, the user embeddings and the item embeddings generated by the knowledge-
aware GAT-based attentive embedding layer and the attention aggregator enable
CKGAT to accurately capture the users’ potential interests and improve the accuracy
of personalized recommendation.

2. In terms of the precision metric on the MovieLens 20M dataset, CKGAT is slightly
lower than KGNN-LS, but is comparable with KGNN-LS in terms of Precision@20.
Since N is usually set to 20–50 [54] in most practical application scenarios, it can be
considered that CKGAT still has good recommendation accuracy on the MovieLens
20M dataset. The reason why the above exception exists may be that the average num-
ber of user-item interactions per user is so large that the propagation of knowledge in
the knowledge graph is almost ineffective.

3. The recommendation accuracy of CKGAT on all the datasets is significantly better
than CKAN. This result indicates that the topological proximity structures of entities
in multi-hop ripple sets can effectively enrich the ripple set embeddings, thereby
generating the refined user embeddings and item embeddings.

4. We have observed that the recommendation accuracy of CKGAT on all the datasets
is overall better than all the comparison methods, and the recommendation accu-
racy of CKAN on all the datasets is overall better than other comparison methods
except KGIN. These results show that both CKGAT and CKAN, which adopt the
heterogeneous propagation strategy, can enhance the user embeddings and the item
embeddings by effectively combining the collaborative signals in the user-item inter-
actions and the knowledge associations in the knowledge graph, thereby improving
the recommendation performance.

5. CKGAT, KGIN, CKAN, and KGAT outperform KGNN-LS, KGCN, and RippleNet
in terms of most evaluation metrics on all the datasets. This result shows that CK-
GAT, KGIN, CKAN, and KGAT can use both the first-order user-item interaction
information in the user-item interaction matrix and the knowledge associations in the
knowledge graph to mine accurate user preferences.

6. The seven propagation-based recommendation methods, including CKGAT, are signif-
icantly better than the baseline methods BPRMF, CKE and KPRN across all evaluation
metrics on all the datasets. This result shows that the propagation-based methods can
effectively exploit the high-order relations in the knowledge graph to more accurately
capture the users’ potential interests in items.

5.4.2. Recommendation Diversity (RQ2)

The notion of diversity means that the set of items within a single recommended list
should be as diverse as possible [53]. Even if the accuracy of a recommendation method is
high, it may not be able to generate diversified recommendations for users. The diversity of
recommended results can prevent users from getting bored because of many non-diversified
items being recommended. Therefore, the diversity of recommendation results is also an
important evaluation aspect to measure recommendation performance. Our experiment
used the DIV@N metric [55] to evaluate the diversity of recommendation results. The total
number of all possible recommendation pairs (Ri,Rj), i 6= j in M top-N recommendations
is M(M − 1)/2, the overlap rate of a recommendation pair is

∣∣Ri ∩ Rj
∣∣/∣∣Ri ∪ Rj

∣∣. The
DIV@N metric measures the mean non-overlap ratio of all recommendation pairs, which is
defined in Equation (16) [55].

DIV @ N =
2

M(M− 1) ∑
i,j∈{1,2,...,M},i 6=j

(
1−

∣∣Ri ∩ Rj
∣∣∣∣Ri ∪ Rj
∣∣
)

(16)
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where M = 100 because we randomly generate top-N recommendations for 100 users
during the test.

Figure 7 shows the DIV@10 and DIV@20 results of CKGAT and the four propagation-
based methods (KGNN-LS, KGAT, CKAN and KGIN) on the Movielens 20M dataset. We
have the following observations from the results:

(a) (b)

Figure 7. Recommendation diversity performance comparison on the MovieLens 20M dataset.
(a) DIV@10; (b) DIV@20.

1. The diversity of CKGAT’s recommendation results is significantly better than that
of KGNN-LS, KGAT, CKAN, and KGIN, although the recommendation accuracy of
CKGAT on the MovieLens 20M dataset is slightly better than these four methods.

2. The diversity of KGIN’s recommendation results is slightly better than that of CKAN,
KGAT and KGNN-LS. This may be due to the fact that KGIN handles user intent at a
more fine-grained level, and considers multiple aspects of user intent.

3. The diversity of CKAN’s recommendation results is slightly better than that of KGNN-
LS and KGAT. This may be due to the fact that CKAN can extract a variety of user
preferences and various item features in the process of heterogeneous propagation.

4. The diversity of KGAT’s recommendation results is better than that of KGNN-LS. This
may be because KGAT uses a collaborative knowledge graph containing user-item
interaction information, which contains a wealth of user preference information.

5.4.3. Different Components’ Influences (RQ3)

To evaluate the influences of the two components of CKGAT (i.e., the knowledge-aware
GAT-based attentive embedding layer and the attention aggregator) on recommendation
accuracy, we have designed the following two variant methods of CKGAT:

• CKGATw/o Att. This variant method is achieved by removing the attention aggregator
from CKGAT. The purpose is to verify the influence of the knowledge-aware GAT-
based attentive embedding layer on recommendation accuracy.

• CKGATw/o GAT. This variant method is achieved by removing the knowledge-aware
GAT-based attentive embedding layer from CKGAT. The purpose is to verify the
influence of the attention aggregator on recommendation accuracy.

Table 2 shows the top-N recommendation results of CKAN, CKGAT, and the two vari-
ant methods on the four datasets, with the best results among all the methods highlighted
in bold.
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Table 2. Recommendation accuracy of CKAN, CKGAT, and the two variants on the four datasets.

Datasets Metrics CKAN CKGATw/o Att CKGATw/o GAT CKGAT

Last.FM

precision@10 0.0310 0.0353 0.0338 0.0390
recall@10 0.1215 0.1383 0.1345 0.1481

F1-measure@10 0.0469 0.0562 0.0530 0.0587
NDCG@10 0.0893 0.0935 0.0928 0.0984

Book-Crossing

precision@10 0.0149 0.0152 0.0154 0.0157
recall@10 0.0537 0.0562 0.0553 0.0603

F1-measure@10 0.0183 0.0185 0.0186 0.0193
NDCG@10 0.0623 0.0628 0.0640 0.0635

MovieLens
20M

precision@10 0.0610 0.0622 0.0628 0.0640
recall@10 0.1273 0.1282 0.1280 0.1319

F1-measure@10 0.0687 0.0692 0.0694 0.0719
NDCG@10 0.0962 0.0923 0.0935 0.0935

Dianping-
Food

precision@10 0.0360 0.0430 0.0406 0.0450
recall@10 0.1254 0.1545 0.1432 0.1855

F1-measure@10 0.0500 0.0566 0.0542 0.0632
NDCG@10 0.0883 0.0993 0.0965 0.1168

We have the following observations from the results:

1. CKGAT is significantly better than the two variants CKGATw/o Att and CKGATw/o GAT
across all evaluation metrics on all the datasets, with the exception of the NDCG@10
metric on the Book-Crossing dataset. This shows that CKGAT can more effectively
capture users’ preferences and improve recommendation accuracy by integrating the
knowledge-aware GAT-based attentive embedding layer and the attention aggregator
to learn user embeddings and item embeddings.

2. The two variant methods are superior to CKAN (the basic method of CKGAT) across
all the evaluation metrics on all the datasets, with the exception of the NDCG@10
metric on the MovieLens 20M dataset. This shows that using the knowledge-aware
GAT-based attentive embedding layer to capture the topological proximity structures
of entities in multi-hop ripple sets as well as using the attention aggregator to distin-
guish the importance of ripple set embeddings can refine the representations of users
and the representations of items.

3. The recommendation accuracy of CKGATw/o Att is better than CKGATw/o GAT in
terms of most evaluation metrics on all the datasets. This shows that the topological
proximity structures of the entities in multi-hop ripple sets play a more important role
in learning the user representations and item representations.

5.4.4. Hyperparameter Sensitivity (RQ4)

The CKGAT method generates user/item embeddings by aggregating the ripple set
embeddings. Therefore, the maximum hop number L of the ripple sets directly affects the
generation of user/item embeddings, and then affects the recommendation performance. In
order to verify the influence of the hyperparameter L on the recommendation performance,
we analyzed the sensitivity of CKGAT to L through experiments. In the experiments, L was
changed from one to four, while other hyperparameters remained fixed. The experimental
results are shown in Table 3, with the best results among different parameter values on a
dataset highlighted in bold.
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Table 3. The Recall@10 results in terms of the maximum hop number L.

L 1 2 3 4

Last.FM 0.1042 0.1269 0.1481 0.1203
Book-Crossing 0.0371 0.0603 0.0417 0.0201

MovieLens 20M 0.1319 0.1072 0.0808 0.0742
Dianping-Food 0.1855 0.1409 0.1125 0.1061

We have the following observations from the experimental results:

1. CKGAT achieves the best recommendation performance when L = 3 and L = 2 on
the Last.FM and Book-Crossing datasets, respectively, and achieves the best recom-
mendation performance when L = 1 on both the MovieLens 20M and Dianping-Food
datasets.

2. When L increases to four, the recommendation performance of CKGAT on the four
datasets is the worst. This may be because when the maximum hop number is
large, CKGAT introduces entities with lower relevance to users/items and generates
inaccurate user/item embeddings, thus limiting the recommendation performance.

In addition, CKGAT learns the high-order entity representations with the help of
their multiple neighboring entities in multi-hop ripple sets. Therefore, the number K of
neighboring entities directly affects the learning of the entity’s high-order representation
and then affects the recommendation performance. In order to verify the influence of
hyperparameter K on the recommendation performance, we further analyzed the sensitivity
of CKGAT to K through experiments. In the experiments, K varied from two to five while
other hyperparameters remained fixed. The experimental results are shown in Table 4, with
the best results among different parameter values on a dataset highlighted in bold.

Table 4. The Recall@10 results in terms of the number of neighboring entities K.

K 2 3 4 5

Last.FM 0.1173 0.1481 0.1071 0.0762
Book-Crossing 0.0208 0.0298 0.0603 0.0450

MovieLens 20M 0.0477 0.0672 0.1014 0.1319
Dianping-Food 0.0570 0.1257 0.1345 0.1855

We have the following observations from the experimental results:

1. CKGAT achieves the best recommendation performance when K = 3 and K = 4 on
the Last.FM and Book-Crossing datasets, respectively, and achieves the best recom-
mendation performance when K = 5 on both the MovieLens 20M and Dianping-Food
datasets.

2. When K decreases to two, the recommendation performance of CKGAT on the four
datasets is the worst. This may be because when the number of neighbors is small, the
high-order entity representations learned by CKGAT from the topological proximity
structures are insufficient to support the generation of accurate user/item embeddings,
thus limiting the recommendation performance.

6. Conclusions

Knowledge graph-based recommendation methods are a hot research topic in the
field of recommender systems. The propagation-based recommendation methods are main-
stream knowledge graph-based recommendation methods, but they usually ignore the
complex relations between entities in the multi-hop ripple sets and do not distinguish the
importance of different ripple sets, resulting in inaccurate user potential interests being
captured. To overcome these shortcomings, this paper proposes a top-N recommenda-
tion method named collaborative knowledge-aware graph attention network (CKGAT).
This method can learn refined ripple set embeddings, thereby generating accurate user
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embeddings and item embeddings, so as to accurately capture users’ potential interests
in items. The extensive experiments on four real-world datasets have demonstrated that
the proposed CKGAT method outperforms the state-of-the-art methods for knowledge
graph-based recommendation, in terms of recommendation accuracy and diversity.

Our future work will focus on investigating how to extend the method to exploit the
relations between users and the user information contained in social networks, so as to
provide more accurate recommendations.
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