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Abstract: Hyperspectral imaging (HSI), measuring the reflectance over visible (VIS), near-infrared
(NIR), and shortwave infrared wavelengths (SWIR), has empowered the task of classification and
can be useful in a variety of application areas like agriculture, even at a minor level. Band selection
(BS) refers to the process of selecting the most relevant bands from a hyperspectral image, which is
a necessary and important step for classification in HSI. Though numerous successful methods are
available for selecting informative bands, reflectance properties are not taken into account, which is
crucial for application-specific BS. The present paper aims at crop mapping for agriculture, where
physical properties of light and biological conditions of plants are considered for BS. Initially, bands
were partitioned according to their wavelength boundaries in visible, near-infrared, and shortwave
infrared regions. Then, bands were quantized and selected via metrics like entropy, Normalized
Difference Vegetation Index (NDVI), and Modified Normalized Difference Water Index (MNDWI)
from each region, respectively. A Convolutional Neural Network was designed with the finer
generated sub-cube to map the selective crops. Experiments were conducted on two standard HSI
datasets, Indian Pines and Salinas, to classify different types of crops from Corn, Soya, Fallow,
and Romaine Lettuce classes. Quantitatively, overall accuracy between 95.97% and 99.35% was
achieved for Corn and Soya classes from Indian Pines; between 94.53% and 100% was achieved for
Fallow and Romaine Lettuce classes from Salinas. The effectiveness of the proposed band selection
with Convolutional Neural Network (CNN) can be seen from the resulted classification maps and
ablation study.

Keywords: band selection; CNN; NDVI; hyperspectral imaging; crops; agriculture

1. Introduction

Due to advancements in remote sensing image acquisition mechanisms and the grow-
ing availability of rich spectral and spatial information by using a variety of sensors,
hyperspectral imaging has gained importance. In particular, Hyperspectral Image (HSI)
classification has become a prominent source for practical applications in fields like agricul-
ture, environment, forestry, mineral mapping, etc. [1–5].

The present paper focuses on analyzing and using HSI in the agriculture field. Accu-
rate information about growing crops with different climate conditions and agricultural
resources and with different timestamps (before, during, and after cultivation) is extremely
important and useful for agricultural development. Traditional methods, like field surveys
and other statistical-based analyses, are very time-consuming. Advanced remote sensing
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technology, including HSI, provides a suitable solution and can fill the gap [6–10] with
solutions like crop classification.

The problem of crop classification using hyperspectral images has been addressed
by researchers with various methods [11,12]. A method based on regression analysis was
used to classify the variety of sugarcane crops in Brazil. This HSI data was captured
using the EO-1 satellite [13]. The method, proposed in [14], is a combination of Support
Vector Machine (SVM) and linear spectral models and was used successfully on the data
captured from the Hyperion satellite. This method was also used to classify litchi crops
in Guangzhou. Crops in the Karnataka area were classified using the Spectral Angular
Mapper (SAM) classifier method for the Hyperion data [15].

The HSI sensor called Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS) has
recently become important in the remote sensing community. AVIRIS has high spectral
bands (224 bands) and spatial resolution (20 m for Indian Pines and 3.7 m for Salinas
datasets) with a wavelength range of 380–2500 nm covering VIS, NIR, and SWIR regions
and hence is known to be crucial for agricultural applications [16].

Some of the crop classification methods in this connection are as follows. Combined
linear and nonlinear SVM algorithms were used to classify corn crops on AVIRIS data.
This method obtained moderate accuracy. Soybeans and wheat crops were classified
using SVM and Markov Random Field with good accuracy for the AVIRIS HSI data [17].
Unmanned Aerial Vehicle (UAV) datasets also experimented with classifying crops like
cabbage, cotton, and strawberry. High accuracy was noticed using Conditional Random
fields [18,19]. Further, the Salinas data set was tested to classify different crops using a
support vector machine. This method achieved a moderate level of accuracy [20]. Other
methods, including spatial context support vector machines, had reasonable accuracy [21].

The above methods are insufficient to extract the required information, and it is diffi-
cult to obtain commendable results [22–24]. Several successful band selection methods have
been introduced (to perform before classification) in the literature over the last few decades,
including ranking-based approaches, clustering-based approaches, searching-based ap-
proaches, relative entropy, and information entropy-based approaches [25–28]. The optimal
clustering framework was introduced in [29] for band selection and successfully applied
the novel objective function with several constraints. In these methods, bands are clustered
initially and then ranked according to different measures to select the representative bands
from the image. All these methods work well for selecting the informative bands and
hence produce high classification accuracy. However, these methods may not be suitable
for application-specific classification problems. For example, in the present context, we
consider crop classification as our target. It is important to adopt the band section strategy
in the view of agricultural phenology, where biophysical properties of plants are also taken
into consideration. This is shown in Figure 1 (Source for Figure 1a: Vegetation analysis:
using vegetation indices in ENVI [16]).

The details of the measures used for the band selection, mathematical equations, range
of the measures, and BS procedure are discussed in the Section 2.

The contributions of the paper are shown below:

• There are different successful methods in the literature for HSI classification. However,
not all methods are suitable for all the available application areas to perform classifica-
tion. In the present paper, we designed a band selection model for crop classification
based on the physical and biological properties of plants.

• A new framework for informative band selection is proposed by partitioning the
original hyperspectral cube based on the reflectance nature in the visible, near-infrared,
and short wave infrared regions of the electromagnetic spectrum. This further uses
measures such as entropy, NDVI, and NDWI, respectively, for band quantization.

• A two-dimensional convolution network for hyperspectral image classification is
designed and implemented for the accurate classification of agriculture crops with the
selected bands. Detailed analysis of the results in crop classification is showcased.
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The following is a breakdown of the paper’s structure: materials and methods are
presented in Section 2, which consists of a technical description of the proposed method.
Dataset description is described in Section 3, followed by Section 4, which includes HSI
classification, experimental results, and analysis. Finally, the conclusions are presented in
Section 5.
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Figure 1. (a): Spectral Reflectance Properties of Vegetation Spectrum, (b): Leaf cell structure showing
the interaction of light with VIS, NIR, and SWIR regions of the electromagnetic spectrum.

2. Materials and Methods

Crop classification using HSI consists of two steps. The first is band selection, and the
second is classification. Partition-based band selection is proposed in this paper. Initially,
the partition is performed based on properties of the vegetation spectrum, and three parti-
tions are created. These are termed VIS, NIR, and SWIR partitions (Figure 1). Further bands
are selected from these three partitions based on three relevant metrics, entropy, NDVI,
and MNDWI, respectively. In the second step to perform classification, the concatenated
bands are given as input to the designed CNN model. The CNN model consists of a series
of convolution and fully connected layers. Finally, crop classification can be achieved for
the selected input data. The proposed architecture for the classification of crops using HSI
data is shown in Figure 2.
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Let H be hyperspectral data with h rows, w columns and d represents number of
spectral bands of H. Each denotes one band in the dataset. According to spectral re-
flectance properties in various regions of the electromagnetic spectrum, HSI data can be
separated into n partitions Partition#1, Partition#2 . . . Partition#n with bands d1, d2, . . . ,
dn respectively. Here:

d1 + d2 + · · · dn = d (1)

In the present context, n value is considered as 3 with Partition#1 denoting bands in
the VIS region, Partition#2 denotes bands in the NIR region, and Partition#3 denotes bands
in the SWIR region. Three metrics are then chosen to select bands from each partition.

Information Entropy (IE) is a criterion to measure spatial information in the HSI bands.
For a particular band Xj, Information Entropy is defined as:

IE
(
Xj
)
= −∑x∈Xj

P(x) ∗ log P(x) (2)

where P(x) is the probability of number of grey level of the histogram of the band x in
the image.

Based on IE, each band in the VIS region is quantified, and top m1(< d1) bands are
selected from Partition#1 based on the threshold limit value of δ1.

Normalized Difference Vegetation Index (NDVI) measures plant health in terms of
greenness density, as shown in Equation (3). This is a widely used vegetation index in
the remote sensing community. The NDVI ranges from +1 to −1. Dead plants have −1 as
NDVI value, and healthy plants have values between 0.65 and 1.

NDVI =
(NIR− RED)

(NIR + RED)
(3)

Based on NDVI, each band in the NIR region is quantified, and top m2(< d2) bands
are selected from Partition#2 based on the threshold limit value of δ2.

Modified Normalized Difference Water Index (MNDWI) measures the open water
enhanced identification and is computed using Equation (4). This will suppress noise
generated by vegetation and soil and, at the same time, improve the open water features.
MNDWI ranges from +1 to −1.

MNDWI =
(GREEN− SWIR)
(GREEN + SWIR)

(4)
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Based on MNDWI, each band in the SWIR region is quantified, and top m3(< d3)
bands are selected from Partition#3 based on the threshold limit value of δ3.

Here:
m1 + m2 + m3 = m and strictly m < d. (5)

The proposed band selection algorithm is presented as Algorithm 1 below.

Algorithm 1: Proposed Band Selection Approach for Crop Classification

Input: H ∈ Rh×w×d be the Hyperspectral image Data, R: Red band, G: Green band, thresholds:
δ1, δ2, and δ3
Output: HBS, finer sub cube with informative and selected bands
Step 1: Partition the image H with d bands into three sub cubes based on light properties and
biological conditions
Step 2: Let the number of bands in each of the sub cubes be d1, d2 and d3 bands respectively from
visible, near Infrared, and shortwave infrared regions
Step 3: for i:1 to d1, Compute the entropy, Ei, of each band using Equation (2)
Step 4: Generate finer sub cube Hvis with m1 bands for those bands from d1 whose Ei > δ1
Step 5: for i = 1 to d2, Compute the Normalized Difference Vegetation Index, NDVIi, using
Equation (3)
Step 6: Generate finer sub cube HNIR with m2 bands for those bands from d2 whose NDVIi > δ2
Step 7: for i = 1 to d3, Compute the Modified Normalized Difference Water Index, MNDWIi,
using Equation (4)
Step 8: Generate finer sub cube HSWIR with m3 bands for those bands from d2 whose
MNDwIi > δ3
Step 9: Combine the sub cubes Hvis, HNIR and HSWIR as HBS = Hvis ∪ HNIR ∪ HSWIR which
satisfies Equation (5)

There are two modules in the proposed methodology for the band selection task
known as Partition and Ranking. The partition module is focused on the Biophysical
properties of plants in Visible, NIR, and SWIR regions. These regions are named Partition#1,
Partition#2, and Partition#3. In the ranking module, agricultural phenology metrics such as
Entropy, NDVI, and MNDWI are computed using Equations (2)–(4) for the three partitions,
respectively. Then, the computed values and selected representative bands are ranked
using an adaptive threshold for each of the measures. The parameter tunning is shown in
the experimental section.

Let HBS ∈ Rh×w×m denote hyperspectral data cube after the selection of m spectral
bands [30–32]. This data can be split into two parts. One is for training and the other
for testing. Let imagine χ as a training vector that will be input to the CNN model.
The first layer is the convolution layer which follows according to Equation (6). Here
⊗ denotes convolution operator, filter is denoted Ғ and (i, j) denotes the corresponding
spatial location.

CONVOLUTIONi,j = σ((Ғ⊗ χ)i,j + b) (6)

Here σ (.) denotes activation function. For better convergence, the ReLU activation
function is used in the present model as in Equation (7). This function gives output as same
as input or zero.

σ(x) = max(0, x) (7)

After a series of convolution layers, the feature vectors are converted into a single
Flatten Vector (FV), which will be given as input to Fully Connected (FC) layers. In FC
layers, two operations, pre-activation and activation, will be performed at every node. All
the FC layers use the ReLU activation function. However, the last layer uses the softmax
activation function, as shown in Equation (8).

Softmax(xi) =
exi

∑j exj
(8)
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This function gives output probabilities of each crop, and hence classification is possible.
The proposed method performance was tested with state-of-the-art methods (a brief

description of the methods is given in Section 4). The experimental works were carried out
using MATLAB R 2018b and Python with Google co-laboratory. The hardware utilized for
the work was a personal computer with Intel(R) Core(TM) i5-6500 CPU with 3.20 GHz and
8 GB RAM.

3. Dataset Description

In the present work, experiments were conducted using two popular AVIRIS sensor-
based datasets. These datasets are freely available and can be downloaded from [33]. The
first hyperspectral data used is Indian Pines. These data were captured in the agricultural
area of northwestern Indiana, USA, on 12 June 1992. The number of pixels is 145*145,
collected in the form of 224 bands by covering the electromagnetic spectrum in the range of
400–2500 nm. Agriculture crops like corn and soya are covered in this data as 64% area.
The vegetation types of grass and pastures are covered with 25% area [34–36].

The second hyperspectral data used is Salinas. These data were captured in the
agricultural area of the Salinas Valley region, CA, USA, on 9 October 1998. The number
of pixels is 512*217, collected in the form of 224 bands by covering the electromagnetic
spectrum in the range of 400–2500 nm. Agriculture crops like vineyard fields, broccoli
weeds, celery, fallow, and lettuce crops are covered with 100% area [37–39]. The class
description and pixel samples information for the two datasets is shown in Table 1 [40–42].

The major type of classes that exist in both Indian Pines and Salinas are shown in
Figure 3. As per our interest for the present paper, different types of crops that exist in both
Indian Pines and Salinas are also shown in Figure 4 [43–46].

The Indian Pines data belongs to the agricultural area of northwestern Indiana, USA.
The area includes major portions of the Indian Creek and Pine Creek watersheds. Indiana
is the tenth-largest farming state in the USA. More than 80% of the land in Indiana is
dedicated to farms, forests, and woodland. The Salinas data belongs to one of the efficacious
agricultural areas located in the central coast region of California, called the Salinas Valley,
USA. This site is famous for producing most of the agricultural activities in the county due
to its rich soil and plentiful underground water supplies [47].

The nomenclature for the individual classes is set according to the type of land, grow-
ing type, and spectral properties. For example, the classes “Brocoli_green_weeds_1” and
“Brocoli_green_weeds_2” of Salinas’s data belong to the same type of land cover repre-
senting broccoli weeds, but they have different spectral properties due to their different
conditions. The crop “Lettuce_romanine_4wk” refers to the lettuce crop that grows in
the fourth week. The same terminology is used for the classes “Lettuce_romanine_5wk”,
“Lettuce_romanine_6wk”, and “Lettuce_romanine_7wk”. From the Indian Pines data,
“Corn-notill” represents cultivation without tillage and “Corn-mintill” represents cultiva-
tion with minimum tillage. The same terminology is used for the classes “Soybean-notill”
and “Soybean-mintill”. These two classes, along with “Soybean clean”, represent different
growing periods of the same soybean crop.

More information about the data and subclass regions in both datasets is presented in
Figure 5.

On the whole, it can be concluded that the selected data is more suitable for crop
classification applications. Indian Pines data consists of 64% pixel regions as different types
of crops, and for Salinas data, crop regions are found to be 56%.
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Table 1. Number of samples per class and description of each class for two standard data sets of AVIRIS Sensor.

Indian Pines Salinas

Name of
the Class

Number of
Pixel Samples

per Band
Class Description Name of

the Class

Number of
Pixel Samples

per Band
Class Description

Alfalfa 46 Type of green grass Brocoli_green_weeds_1 2009 Green colored vegetable

Corn-notill 1428 Corn crop cultivation without tillage Brocoli_green_weeds_2 3726 Green colored vegetable

Corn-mintill 830 Corn crop cultivation with
minimum tillage Fallow 1976 Land Region

Corn 237 Corn crop Fallow_rough_plow 1394 Land Region

Grass-pasture 483 Type of green grass Fallow_smooth 2678 Land Region

Grass-trees 730 Type of green grass Stubble 3959 Land Region

Grass-pasture-mowed 28 Type of green grass Celery 3579 Green colored Plant region

Hay-windrowed 478 Row of cut small grain grass Grapes_untrained 11,271 Type of Vineyard

Oats 20 Plant in Brown color Soil_vinyard_develop 6203 Soil Region

Soybean-notill 972 Soya crop cultivation without tillage Corn_senesced_green_weeds 3278 Green colored Plant

Soybean-mintill 2455 Soya crop cultivation with minimum
tillage Lettuce_romaine_4wk 1068 lettuce crop that grows in

the fourth week

Soybean-clean 593 Soya Plant Lettuce_romaine_5wk 1927 lettuce crop that grows in
the fifth week

Wheat 205 Brown colored Wheat Plant Lettuce_romaine_6wk 916 lettuce crop that grows in
the sixth week

Woods 1265 Type of Tree Lettuce_romaine_7wk 1070 lettuce crop that grows in
the seventh week

Buildings-Grass-Trees-Drives 386 Building area Vinyard_untrained 7268 Type of Vineyard

Stone-Steel-Towers 93 Tower area Vinyard_vertical_trellis 1807 Type of Vineyard

Background 10,776 56,975
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4. Experimental Results and Analysis

This section consists of parameter tuning, complete experimental results, and analysis.
Crop classification results are evaluated against standard metrics.

4.1. Subsection Parameter Tuning in Band Selection

AVIRIS Sensor data is observed to be spread over three partitions. The first partition
is the visible region (VIS) in the wavelength region of 400–700 nm and is equipped with
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32 bands (d1). The second partition is the near-infrared region (NIR) in the wavelength
region of 700–1000 nm and is equipped with 40 bands (d2). The third partition is the short
wave infrared region (SWIR) in the wavelength region of 1000–2500 nm and is equipped
with 148 bands (d3).

The threshold value to select bands from the VIS region is set as 4.6 (δ1), and the
number of bands selected is 15 (m1) for Indian Pines data, and for Salinas data, these values
are set as 4 and 12, respectively. The threshold value to select bands from the NIR region is
set as 0.2 (δ2), and the number of bands selected is 15 (m2) for Indian Pines data, and for
Salinas data, these values are set as 0.11 and 16, respectively. The threshold value to select
bands from the SWIR region is set as 0.62 (δ3), and the number of bands selected is 15 (m3)
for Indian Pines data, and for Salinas data, these values are set as 0.99 and 15, respectively.

The red band and green band information is essential to calculate NDVI and MNDWI.
These are shown in Figure 6 for both datasets [48,49].
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number 15.

The δ1, δ2, and δ3 values were set as shown in Figure 7. Using the number of available
bands (224) from the AVIRIS Sensor, we considered 1/5th of the number of the bands.
Accordingly, we set m1, m2, and m3 values.
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The graphical representation, which shows the entropy of visible region bands, NDVI

of NIR region bands, and MNDWI of SWIR region bands, is in Figure 7 for both datasets.

4.2. Parameter Tuning in Classification Using CNN

After the selection of representative bands, it is necessary to perform classification.
The detail of the split between training and testing samples of both datasets is presented in
Table 2.

Table 2. Details of training and testing samples per band for the data sets.

Dataset
Name

Total Number
of Pixel
Samples

Number of
Training

Pixels

Number of
Test Pixels

Number of
Background

Pixels

Indian Pines 10,249 7679 2569 10,776
Salinas 54,129 40,593 13,536 56,975

Parameter tuning for common parameters of the CNN model is presented in Table 3.
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Table 3. Selected Parameters for CNN Model for two data sets.

S.No Parameter Type Value

1 Loss Function Categorical cross entropy
2 Model Sequential
3 Epochs 100
4 Optimizer Adam
5 Batch size 2**3
6 Convolution Layer: filters_1 2**6
7 Convolution Layer: filters_2 2**7
8 Dropout rate 0.35
9 Fully Connected Layer:Units_1 2**8
10 Fully Connected Layer:Units_2 2**7
11 Fully Connected Layer:Units_3 2**6
12 Fully Connected Layer:Units_4 2**5

CNN network model for Indian Pines data is presented in Table 4, and the CNN
network model for Salinas data is presented in Table 5.

Table 4. CNN Model used for Indian Pines data.

Layer (Type) Output Shape Param #

conv2d_10 (Conv2D) (None, 5, 5, 64) 10,432
conv2d_11 (Conv2D) (None, 5, 5, 128) 73,856
dropout_5 (Dropout) (None, 5, 5, 128) 0

flatten_5 (Flatten) (None, 3200) 0
dense_23 (Dense) (None, 256) 819,456
dense_24 (Dense) (None, 128) 32,896
dense_25 (Dense) (None, 64) 8256
dense_26 (Dense) (None, 32) 2080
dense_27 (Dense) (None, 16) 528

Table 5. CNN Model used for Salinas data.

Layer (Type) Output Shape Param #

conv2d_6 (Conv2D) (None, 5, 5, 64) 11,584
conv2d_7 (Conv2D) (None, 5, 5, 128) 73,856
dropout_3 (Dropout) (None, 5, 5, 128) 0

flatten_3 (Flatten) (None, 3200) 0
dense_16 (Dense) (None, 128) 32,896
dense_17 (Dense) (None, 64) 8256
dense_18 (Dense) (None, 32) 2080
dense_19 (Dense) (None, 16) 528

conv2d_6 (Conv2D) (None, 5, 5, 64) 11,584

4.3. Results with Accuracy Measures

In this work, we used both quantitative and qualitative result analysis to show the
performance of the proposed approach for crop classification. Three standard evaluation
quantitative metrics were used [42] and are defined as:

• Overall Accuracy (OA): The percentage of correctly labeled pixels in the crop classifi-
cation;

• Average Accuracy (AA): Average percentage of correctly labeled pixels for each crop;
• Class-wise Accuracies (CA): Percentage of correctly labeled pixels in each crop.
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The OA, AA, and CA values of Indian Pines and Salinas, along with execution time,
are shown in Table 6.

Table 6. Details of class-wise accuracy of Indian Pines and Salinas data.

Indian Pines Salinas

Class ID Accuracy Class ID Accuracy

1 0.6667 1 1.0000
2 0.9664 2 0.9388
3 0.9712 3 0.9453
4 0.9667 4 1.0000
5 1.0000 5 0.9925
6 0.9891 6 0.9970
7 0.9000 7 0.9966
8 1.0000 8 0.9411
9 1.0000 9 0.9974

10 0.9794 10 0.9817
11 0.9935 11 0.9652
12 0.9597 12 0.9751
13 1.0000 13 1.0000
14 0.9937 14 0.9366
15 0.9485 15 0.9004
16 1.0000 16 0.9912

AA 95.84% AA 97.24%
OA 97.62% OA 96.08%

Execution Time (in
seconds) 460.45 Execution Time (in

seconds) 1024.35

The qualitative metric used in this work is the classification map. Figure 7 shows the
classification map of the Indian Pines data, and Figure 8 shows the classification map of the
Salinas data [49–51].

For Indian Pines data, the highest classification result was obtained for two crop
classes: (Corn-mintill: class number “3”) with an accuracy of 97.12%, and (Soybean-mintill:
class number “11”) with an accuracy of 99.35%. These two crop class regions are circled in
Figure 8d of the classification map result.

For Salinas data, the highest classification result was obtained for two crop classes: (Fal-
low_rough_plow: class number “4”) with an accuracy of 100%, and (Lettuce_romaine_6wk:
class number “13”) with an accuracy of 100%. These two crop class regions are pointed out
in Figure 9d of the classification map result.

4.4. Discussion

This subsection discusses the classification accuracies of classes from the two datasets
and also elaborates on the comparison of the proposed framework with the state-of-the-art
methods.

From the Indian Pines data, it was observed that there are 6 types of crops, Corn-
notill, Corn-mintill, Corn, Soybean-notill, Soybean-mintill, and Soybean-clean, with class
numbers 2, 3, 4, 10, 11, and 12. The robust implementation of the classification method
resulted in accuracies of 96.64%, 97.12%, 96.67%, 97.94%, 99.67%, and 95.97%, respectively.
The accuracy range was found to be 95.97–99.35%.
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From the Salinas data, it was observed that there are 6 types of crops, Fallow, Fal-
low_rough_plow, Fallow_smooth, Lettuce_romaine_4wk, Lettuce_romaine_5wk, and Let-
tuce_romaine_6wk, with class numbers 3, 4, 5, 11, 12, and 13. The robust implementation
of the classification method resulted in accuracies of 94.53%, 100%, 99.25%, 96.52%, 97.51%,
and 100%, respectively. The accuracy range was found to be 94.53–100%.

The proposed method for HSI classifications was compared with four state-of-the-art
methods, including 3DGSVM [52], CNN-MFL [53], SS3FC [54], and WEDCT-MI [30], to
prove the effectiveness in classifying the different crop regions.

The first method used for the comparison is the integration of 3-dimensional discrete
wavelet transform and Markov random field for hyperspectral image classification called
3DGSVM [52]. In this work, more importance was given to spatial information. 3DDWT is
used to extract spatial features. Probabilistic SVM coupled with MRF-based post-processing
was used for HSI classification.

The second method used for the comparison is Hyperspectral Image Classification Us-
ing Convolutional Neural Networks and Multiple Feature Learning called CNN-MFL [53].
In this work, multiple features were extracted first, followed by several CNN blocks for
each set of features. Here, geometric features were incorporated using attribute profiles.
This is a novel technique that takes advantage of multiple feature learning and CNN to
perform accurate HSI classification.

The third method used for the comparison is Spectral–Spatial Exploration for Hy-
perspectral Image Classification via the Fusion of Fully Convolutional Networks called
SS3FC [54]. This method used spectral, spatial, and semantic information along with
Fusion of Fully Convolutional Networks for HSI classification. A novel technique for
the balanced splitting of the training/test dataset was introduced to solve the insufficient
training samples problem.

The fourth method used for the comparison is unsupervised band selection based on
weighted information entropy and 3D discrete cosine transform for hyperspectral image
classification called WEDCT-MI [30]. In this work, original HSI data was first converted in
discrete cosine transform-based coefficient matrices. The weighted entropy was calculated
to quantify each band. Then, top-ranked bands were selected. Finally, SVM was used for
classification.

Figure 10 shows the crop classification from Indian Pines and Salinas datasets. It can
be seen from Figure 10 that the proposed band selection approach is effective in extracting
the bands which contain much information about the crops. This is due to the inclusion of
the physical properties of light in partitioning the bands and the biological properties of
plants in band quantization.

4.5. Crop-Wise Analysis

The crop-wise analysis [55] on the two datasets is shown in this subsection.

4.5.1. Corn Crops

The first crop used for the comparison is “Corn-notill,” class number 2 from the Indian
Pines data. For this crop, the proposed method outperformed the state-of-the-art methods
3DGSVM, SS3FC, and WEDCT-MI with higher accuracy of 96.64%. The CNN-MFL method
had 94.82% accuracy, which is on par with the proposed method. The second crop used for
the comparison is “Corn-mintill”, class number 3 from the Indian Pines data. For this crop,
the proposed method outperformed the state-of-the-art methods 3DGSVM, SS3FC, and
WEDCT-MI with higher accuracy of 97.12%. The CNN-MFL method had 96% accuracy,
which is on par with the proposed method. The third crop used for the comparison is
“Corn”, class number 4 from the Indian Pines data. For this crop, the proposed method
outperformed the state-of-the-art methods SS3FC and WEDCT-MI with higher accuracy of
96.67%. The methods 3DGSVM and CNN-MFL had 96.64% and 96% accuracy, respectively,
which are on par with the proposed method.
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4.5.2. Soya Crops

The first crop used for the comparison is “Soybean-no till”, class number 10 from the
Indian Pines data. For this crop, the proposed method outperformed the state-of-the-art
methods 3DGSVM, CNN-MFL, SS3FC, and WEDCT-MI with higher accuracy of 97.94%.
The second crop used for the comparison is “Soybean-min till”, class number 11 from
Indian Pines data. For this crop, the proposed method outperformed the state-of-the-art
methods 3DGSVM, SS3FC, and WEDCT-MI with higher accuracy of 99.35%. The third crop
used for the comparison is “Soybean-clean”, class number 12 from the Indian Pines data.
For this crop, the proposed method outperformed the state-of-the-art methods 3DGSVM,
SS3FC, and WEDCT-MI with higher accuracy of 95.97%. The method CNN-MFL had 95%
accuracy, which is on par with the proposed method.

4.5.3. Fallow Crops

The first crop used for the comparison is “Fallow”, class number 3 from the Salinas
data. For this crop, the proposed method outperformed the state-of-the-art methods
SS3FC and WEDCT-MI with higher accuracy of 94.53%. The methods 3DGSVM and CNN-
MFL were slightly more accurate than the proposed method. The second crop used for the
comparison “Fallow-rough-plough”, class number 4 from the Salinas data. For this crop, the
proposed method outperformed the state-of-the-art methods 3DGSVM, CNN-MFL, SS3FC,
and WEDCT-MI with higher accuracy of 100%. The third crop used for the comparison
was “Fallow-smooth”, class number 5 from the Salinas data. For this crop, the proposed
method outperformed the state-of-the-art methods 3DGSVM, CNN-MFL, and SS3FC with
higher accuracy of 99.25%. The method WEDCT-MI had 99.03% accuracy, which is on par
with the proposed method.

4.5.4. Lettuce Romaine Crops

The first crop used for the comparison is “Lettuce-romaine-4wk”, class number 11
from the Salinas data. For this crop, the proposed method outperformed the state-of-the-art
methods 3DGSVM and SS3FC with higher accuracy of 96.52%. Methods CNN-MFL and
WEDCT-MI were slightly more accurate than the proposed method. The second crop
used for the comparison is “Lettuce-romaine-5wk”, class number 12 from the Salinas
data. For this crop, the proposed method outperformed the state-of-the-art methods
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3DGSVM, CNN-MFL, and WEDCT-MI with higher accuracy of 97.51%. Method SS3FC was
slightly more accurate than the proposed method. The third crop used for the comparison
is “Lettuce-romaine-6wk”, class number 13 from the Salinas data. For this crop, the
proposed method and CNN-MFL had 100% accuracy and outperformed the remaining
state-of-the-art methods.

4.6. Ablation Study

We conducted an ablation study to verify the effectiveness of the proposed band selec-
tion. There are two modules in the proposed methodology known as Partition and Ranking.
We conducted experiments by varying the modules (replace Proposed partition based on
VIS, NIR, and SWIR regions into Coarser partition into 3 regions and replace Proposed
ranking based on Entropy, NDVI, and NDWI into random selection). The ablation analysis
for Indian Pines and Salinas data is shown in Table 7. The accuracy values show that the
proposed band selection method has a positive impact on the hyperspectral classification.

Table 7. Ablation experiments of proposed network.

Partition Ranking

OA AACoarser
Partition in to

3 Regions

Proposed Partition Based on
VIS, NIR, and SWIR Regions

Entropy
Based

Ranking

NDVI
Based

Ranking

NDWI
Based

Ranking

Indian Pines data
X X X X 97.62% 95.84%

X X X X 77.76% 79.31%
X 82.51% 84.45%

X 69.72% 62.81%
Salinas data

X X X X 96.08% 97.24%
X X X X 80.5% 74.6%

X 83.9% 86.76%
X 48.92% 51.33%

4.7. Application of Proposed Methodology with Other Satellite Data

In order to test the adaptability and the effectiveness as in [56], we applied the pro-
posed framework on the WHU-Hi-HongHu dataset [57–59]. This data consists of a complex
agricultural area with a variety of crops. The data were acquired in Honghu City, China.
The number of pixels is 940× 475, with 270 bands acquired from 400 to 1000 nm wavelength.
The data were acquired using an unmanned aerial vehicle (UAV)-borne hyperspectral sys-
tem with high spatial resolution of 0.043 m. Out of 22 class regions, 15 classes were found
with class numbers 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20. Table 8 shows class-wise
accuracies after the application of the proposed framework on the WHU-Hi-Hong Hu
dataset. We used all the parameters similar to the Indian Pines and Salinas datasets. It can
be concluded that the proposed framework was successful in classifying, with an average
accuracy of 98.56% for 15 crop classes.
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Table 8. Ablation experiments of the proposed network.

Class No Class Name Accuracy in %

1 Red roof 99.63
2 Road 94.76
3 Bare soil 99.43
4 Cotton 99.82
5 Cotton firewood 96.85
6 Rape 99.62
7 Chinese cabbage 97.81
8 Packchoi 97.93
9 Cabbage 99.59
10 Tuber mustard 98.45
11 Brassica parachinesis 97.75
12 Brassica chinesis 96.38
13 Small brassica chinesis 97.81
14 Latuca sativa 99.02
15 Celuce 97.21
16 Film covered lettuce 99.72
17 Romaine lettuce 98.41
18 Carrot 99.63
19 White radish 97.70
20 Garlic sprout 98.82
21 Broad bean 94.88
22 Tree 99.01

5. Conclusions

In this paper, an approach for crop classification for HSI images is proposed. Firstly,
the bands are selected based on agricultural phenology, where biophysical properties of
plants are also taken into consideration. Then, a two-dimensional CNN is trained with the
extracted bands. The proposed method is tested and validated on two benchmark datasets.
The average accuracy of the crops corn and soya from Indian Pines is 96.81% and 97.75%.
For the Salinas dataset, the average accuracy of the crops fallow and lettuce romaine is
97.93% and 98.01%, respectively. The results clearly show the effectiveness of the proposed
band selection in selecting the required features necessary for crop classification. In the
future, we can incorporate spatial information along with spectral information and extend
it to more crops from the datasets.
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