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Abstract: Smart industrial workstations for the training and evaluation of workers are an innovative
approach to face the problems of manufacturing quality assessment and fast training. However, such
products do not implement algorithms that are able to accurately track the pose of a hand tool that
might also be partially occluded by the operator’s hands. In the best case, the already proposed
systems roughly track the position of the operator’s hand center assuming that a certain task has been
performed if the hand center position is close enough to a specified area. The problem of the pose
estimation of 3D objects, including the hand tool, is an open and debated problem. The methods that
lead to high accuracies are time consuming and require a 3D model of the object to detect, which is
why they cannot be adopted for a real-time training system. The rise in deep learning has stimulated
the search for better-performing vision-based solutions. Nevertheless, the problem of hand tool pose
estimation for assembly and training procedures appears to not have been extensively investigated.
In this study, four different vision-based methods based, respectively, on ArUco markers, OpenPose,
Azure Kinect Body Tracking and the YOLO network have been proposed in order to estimate the
position of a specific point of interest of the tool that has to be tracked in real-time during an assembly
or maintenance procedure. The proposed approaches have been tested on a real scenario with four
users handling a power drill simulating three different conditions during an assembly procedure. The
performance of the methods has been evaluated and compared with the HTC Vive tracking system
as a benchmark. Then, the advantages and drawbacks in terms of the accuracy and invasiveness of
the method have been discussed. The authors can state that OpenPose is the most robust proposal
arising from the study. The authors will investigate the OpenPose performance in more depth in
further studies. The framework appears to be very interesting regarding its integration into a smart
workstation for quality assessment and training.

Keywords: Industry 4.0; manufacturing; hand tool tracking; artificial vision; deep learning; tracker;
quality; training

1. Introduction

The Industry 4.0 revolution has affirmed the centrality of the human operator, propos-
ing a new way to automate production processes based on human and robotic expertise
synergy. The impact of new technologies, such as collaborative robots (co-bots), virtual
reality (VR) and augmented reality (AR) [1], wearable devices, Internet of Things (IoT)
and artificial vision [2,3], allows the companies to streamline their processes, ensuring
better quality and enhancing the flexibility of their production potential [4,5]. From this
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perspective, the human-centered approach has once again been reaffirmed in the automo-
tive sector in the era of electric vehicles [6]; as an example, the technological processes of
battery pack assembly require several manual procedures, especially in the completion of
electrical connections.

The continuous evolution of production processes, not only in the automotive in-
dustry [7] but in the whole world of automation, together with the problem of employee
turnover, has led to a progressive and ceaseless need to train novel operators on new tech-
niques and to assess the quality of their job. The assembly and maintenance of industrial
assets are complex tasks that require a large number of training hours in classrooms and
hands-on sessions. Furthermore, especially in times of restrictions related to the pandemic,
only a few trainees can access training on a physical asset at the same time, and their
availability is always a trade-off with production line efficiency. Training all the operators
of a plant on a piece of new equipment in a reasonable lead time is a huge challenge.

In addition to the personnel training, one of the key factors of success in the new
industry is the traceability of manual operations to ensure product quality [8]. Indeed,
in most of the manufacturing processes, it is important to collect data from the manual
assembly and maintenance interventions and to store these data in a centralized data
management system for subsequent analysis of the performance of the plants [9]. In this
scenario, the companies that can accurately understand workers’ behaviors and evaluate
their performance in real-time will outperform their competitors.

Smart industrial workstations for training and evaluating the performance of the
workers are drawing attention as an innovative approach to facing the problem. These
systems are designed to guide a non-experienced operator in achieving the same level of
precision and performance as the expert [10,11]. In addition, they ensure that procedures
are carried out in the right way while collecting anonymous real-time data that can be used
to verify technical parameters and to improve the working efficiency where needed.

The market proposes some commercial solutions for virtual guidance, such as Bosch’s
Active Assist system (https://www.boschrexroth.com/en/xc/products/product-groups/
assembly-technology/news/activeassist-assistance-system/index/, accessed on 20 Jan-
uary 2022), Arkite HIM (https://arkite.com/product/, accessed on 20 January 2022), Rhi-
noassembly Light Guide System (https://www.rhinoassembly.com/en/catalog/product/
-Light-Guide--LGS--LGS/, accessed on 20 January 2022) and Vir.GIL (https://www.comau.
com/it/competencies/digital-initiatives/technologies/vir-gil/, accessed on 20 January
2022) (Figure 1). They are powerful and flexible systems that are able to guide the operator
during the training of a new assembly, inspection or maintenance procedure by means of
digital information projected on a workbench or directly on the asset to be manipulated.
However, such innovative products do not implement algorithms that are able to accurately
track the pose of a hand tool that might also be partially occluded by the operator’s hands.
In fact, in the best case, these industrial solutions roughly track the position of the hand
center and assume that a certain task has been performed if the hand center position is
enough close to a specified area. This can clearly lead to a rough performance evaluation
and the learning of bad habits. In order to make a difference, it is fundamental to track,
with high accuracy, the pose of the tools the worker handles during the learning session
of the procedure [12]. As an example, if a worker is required to tighten several screws
in sequence, an evaluation of whether the screws were tightened following the correct
sequence without missing any screws might be requested.

https://www.boschrexroth.com/en/xc/products/product-groups/assembly-technology/news/activeassist-assistance-system/index/
https://www.boschrexroth.com/en/xc/products/product-groups/assembly-technology/news/activeassist-assistance-system/index/
https://arkite.com/product/
https://www.rhinoassembly.com/en/catalog/product/-Light-Guide--LGS--LGS/
https://www.rhinoassembly.com/en/catalog/product/-Light-Guide--LGS--LGS/
https://www.comau.com/it/competencies/digital-initiatives/technologies/vir-gil/
https://www.comau.com/it/competencies/digital-initiatives/technologies/vir-gil/
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Figure 1. Vir.GIL virtual guidance system: (Left) hardware setup of the system; (Right) application
UI workflow for starting a new procedure.

The problem of the pose estimation of 3D objects, including the hand tool for allowing
autonomous manipulation [13], has been studied for years and is an open and debated
problem. The approaches that allow for high accuracies rely on a 3D model of the object that
has to be detected within a 3D point cloud [14]. However, such methods are time consuming
and may not be applicable due to the unavailability of the 3D model [14]. The unstoppable
rise of deep learning in recent years has pushed the pose estimation research out of the
the boundaries of classical computer vision techniques, and new approaches based on
deep neural networks have been exploited [15]. Novel methods require minimal human
intervention, improve the performance of 3D data-based approaches [16,17] and, in some
cases, avoid the usage of 3D models for estimating the pose of an object [18,19]. To the best of
the authors’ knowledge, even if the problem has also been extended to the general situation
of occluded objects, hand tool pose estimation and tracking in the industrial environment
during assembly and maintenance procedures has not been extensively investigated.

Detecting and tracking a tool handled by an operator performing an assembly or
maintenance procedure is not easy, mainly because of the tool’s occlusion due to the
operator’s hands. In the authors’ opinion, the problem of hand tool pose estimation can
be solved with a direct or indirect approach. In a direct approach, the tool is detected
and then tracked using some robust features that are visible even if it is occluded. In an
indirect approach, body joints of the operator and their hands are detected and tracked; the
tool pose is derived assuming a unique handling pose of the tool. In order to investigate
both paradigms, four artificial vision-based systems have been design, implemented and
compared. Each developed system has been evaluated with a set of experiments replicating
real industrial scenarios, and their performances have been compared to analyze the pros
and cons according to the task properties. Even though, in this work, the authors proposed
general methodologies, the developed systems have been tested with a specific use case
considering the estimation of the 3D position of a cordless power drill.

This study has the ambition to identify the best method(s) to integrate in the next
cutting-edge workstations for training and assessment in Industry 4.0. Such systems will
be designed with the following objectives:

• Training an operator on assembly and maintenance procedures with a recorded se-
quence of actions;
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• Tracking an operator activity to validate each manual operation and certify the quality
of the job;

• Detecting risky actions and behaviors in time and alerting the operator;
• Ergonomics monitoring during the procedure for always proposing to the operator

the less stressful posture to perform the operations.

The main constraints of these solutions should be:

• Real-time execution;
• High accuracy.

The real-time execution is a key factor of a virtual guidance system because it has
to be ready to warn the operator as soon as possible when their safety is compromised,
when ergonomics guidelines are not respected [3,20] or when the process is going to be
completed in the wrong way. On the other hand, a high level of accuracy is required to
control the operator’s movement in the assembling process to avoid errors.

The paper is organized as follows: in Section 2, the authors explain the technical
characteristics of the selected methods, how they have been implemented, the experiments
designed to evaluate the relative performance, the metrics computed and the statistical
analysis conducted for the quantitative comparisons; Section 3 reports the results of the
metrics computed on the data acquired during the experiment and the statistical analysis;
in Section 4, the results are extensively discussed; Section 5 reports the conclusions of this
paper and the future scope.

2. Materials and Methods
2.1. Systems for Hand Tool Tracking

In this work, four different systems based on either open-source or commercial solu-
tions have been developed and compared:

1. The first system is a marker-based solution using the ArUco markers [21,22];
2. The second system is based on a deep learning model engineered for 2D detection

problems and is called YOLO v4 [23,24];
3. The third system is based on the Azure Kinect Body Tracking (AKBT) service [25,26]
4. The fourth system considers the use of the OpenPose [27–30] library.

Each system has been designed to estimate a single interesting point of a hand-held tool,
even though three out of four systems have the intrinsic capability of estimating the entire pose
of the tool. It is worth citing that all four systems are based on RGBD camera, except for the
method based on Aruco, which does not need the depth information. For this reason, the new
Kinect Azure camera has been used either for acquiring RGBD data or estimating the human
skeleton configuration with the Microsoft SDK “Azure Kinect Body Tracking”.

2.1.1. ArUco-Based SYSTEM

The system based on ArUco marker considers the possibility of applying a 2D planar
marker on the hand tool that must be always visible by a RGB 2D camera. The main benefit
of this approach is that a single marker provides enough correspondences to obtain the
camera pose and, from that, a tracked object pose can be derived. Once the position of the
tracked tool’s point within the marker reference frame is known, the path of such a point
can be reconstructed by the marker frame pose. Such an approach is the most invasive
one since it considers the introduction of a new object, i.e., the marker, within the scenario.
The strength of this approach is that it can determine a robust 3D pose estimation using
a simple 2D camera and some printed markers, keeping computational costs low and
therefore saving hardware resources for other essential tasks. On the other hand, it is an
invasive way to track an object because markers have to be installed on it. Furthermore,
if the marker is not visible, it is not possible to detect the object and, as a consequence, to
establish the correct pose.

ArUco [21,22] is a popular opensource library for detection of square fiducial markers
and camera pose estimation mostly used in augmented reality applications. An ArUco
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marker is a synthetic square marker composed of a wide black border and an inner binary
matrix that determines its identifier (id). The black border facilitates its fast detection in the
image, and the binary codification allows for its identification and the application of error
detection and correction techniques. The marker size determines the size of the internal
matrix. For instance, a marker size of 4 × 4 is composed of 16 bits. The ArUco decoding
algorithm can locate, decode and estimate the pose in realtime of any ArUco markers in
the camera’s field of view, as shown in Figure 2. It is based on the knowledge of the matrix
encoded in the square. Multiple matrices are encoded in a group of markers, identified in
dictionaries. It is possible to choose among several predefined dictionaries or by generating
one yourself.

Figure 2. Example of ArUco markers pose estimation: (Left) three markers placed on a desk in
different poses; (Right) three markers placed on three different objects.

For the sake of simplicity, in this study, a wooden support for the power drill was
realized and three ArUco square markers with 5 cm side were stuck on it. Usage of a
group of markers was preferred to a single marker in order to provide a more robust pose
estimation: a single marker being visible but not recognized quickly in the scene, or not
recognized at all because of an occlusion, could occur. When more markers of the group
are detected in the same frame, only one marker’s pose needs to be chosen as reference for
the power drill chuck pose estimation. The area in pixels of a marker was used as selection
criteria for the best marker because it is a matter of fact that AruCo algorithms have better
performance the bigger the detected marker appears in the frame.

2.1.2. System Based on Deep Detection Model (YOLO)

The system that uses a deep neural network, i.e., YOLO, is based on two subsequent
steps: (1) a deep neural network is trained to localize within a 2D RGB image the specific
tool’s area (or point) that has to be tracked, and (2) the 3D position of the tracked tool’s
point is estimated by computing the spacial centroid of the point cloud underlying the ROI
found in the previous step.

You Only Look Once (YOLO) [23,24] is a family of convolutional neural networks
(CNN) that achieve near state-of-the-art results with a single end-to-end model that can
perform object detection in real-time. Compared to the approach taken by previous object
detection algorithms, YOLO proposes the use of an end-to-end neural network that makes
predictions of bounding boxes and class probabilities all at once (Figure 3). Starting from
YOLO’s pre-trained models, it is possible to re-train the last layers to introduce new classes
that are not available in the original dataset to fit the object detector capabilities to new
objects. In the re-training process, it is also possible to tune settings of the net and to
adjust accuracy over performance, training time and batch iterations, choosing the best
weight candidate. YOLO’s performance has improved over time, starting from the v1
version. The original YOLO v1 was born as the first object detection network to combine
the problem of drawing bounding boxes and identifying class labels in one end-to-end
differentiable network. YOLO v4 outperforms most of the other object detection models [31]
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by a significant margin, keeping frame-rate high and making it the best opportunity to
detect objects in real-time.

Figure 3. YOLO object detection output for office scene (from MTheiler, CC BY-SA 4.0, via Wikimedia
Commons).

In this study, YOLO was implemented in its fourth version. The last layers of the
model were re-trained to recognize the power drill chuck as a new class, and then the
performance of the model inference was evaluated. In order to train the model, a dataset
consisting of 735 images was created. The images were acquired by Azure Kinect RGB
camera with the power drill in different poses, with heterogeneous light conditions and
in different environments. Considering the objective of study, the model was trained
with images containing only the particular power drill used for our experiment, leading
the net to recognize only the chuck of this tool and not that of other power drills. Data
augmentation was performed in order to improve the performance of the model using flip
upside-down, flip left-right, rotation and Gaussian blur. The training process was based on
transfer learning and the CNN model was initialized with the weights retrieved from the
GitHub page of YOLO v4 based on darknet framework. The net was trained with images of
512 × 512 resolution and max batches set to 2000. The starting weights were obtained from
the training on the COCO dataset, containing 80,000 images and 80 different object classes.

The trained model was able to recognize the power drill chunk in every frame of
real-time acquisition, returning the pixel coordinates x and y of the top-left corner of a box
that contains it, the width and the height of the box and the confidence as the probability
that the object was classified correctly. In order to estimate the 3D pose of the power drill
chuck, the center point (x,y) of the box returned by YOLO model was calculated and the
3D coordinates of that point in the scene were computed by using the functions of Azure
Kinect SDK.

2.1.3. System Based on Azure Kinect Body Tracking

The system based on the Azure Kinect Body Tracking exploits the 3D body configu-
ration estimation performed by the AKBD SDK of Microsoft. The system is based on the
tracking of the upper link main segments to estimate a specific tool’s point if the relative
position of such a point, with respect to the hand reference system, is known.

The Azure Kinect from Microsoft is a cutting-edge spatial computing developer kit
with sophisticated computer vision and speech models, advanced AI sensors and a range of
powerful SDKs. It is equipped with several sensors in order to sense the surrounding envi-
ronment; the device integrates a 12-megapixel RGB camera supplemented by 1-megapixel
depth camera, a 360-degree seven-microphone array and an orientation sensor. The main
modules of the SDKs are the Sensor SDK and Body Tracking SDK. The first one is designed
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for the interface with sensors and for managing data provided by them, automatically
handling the problem of RGB and depth camera data alignment; the Body Tracking SDK
is based on a complex deep learning model that supports body segmentation, human
skeleton reconstruction, human body instance recognition and body tracking in real-time.
The model recognizes 31 joints of the human body, each joint with its own reference system
organized in a hierarchical structure, as shown in Figure 4. The deep learning model is able
to reconstruct the entire human body model, where the higher the accuracy, the better the
visibility of the body; the model has a good tolerance to the occlusions only for the highest
joints of the hierarchical structure.

Figure 4. Azure Kinect Body Tracking detectable joints: (Left) joints with reference systems;
(Right) joints’ hierarchy.

Body Tracking SDK is able to detect and track all joints of a human body in the scene,
returning position and orientation (in quaternion form) for each of them [25,26].

Intuitively, the kinect hand joints, i.e., n.8—left hand and n.15—right hand, should
be the most useful to estimate the power drill chunk pose. Unfortunately, several tests led
the authors to exclude the above-mentioned joints because experimental trials proved the
poor quality of the orientation prediction. In fact, most of the time, the model predicted the
power drill in the scene as part of the hand of the operator. Thus, the joints of the wrists
(n.7—left and n.14 right) have been considered. The downside of this choice is that the
tool pose changes relative to the wrist flexion/extension, and wrist radial–ulnar deviation
movements are not considered.

2.1.4. System Based on OpenPose

This system, like the one based on the AKBT, uses the information of the operator
upper limb pose to obtain the tool’s point position. In detail, it relies on the 3D position
of some hand’s keypoints. OpenPose [27–30] can be considered as the state-of-the-art
approach for real-time human pose estimation. It is the first framework that can jointly
detect human body, hand, facial and foot keypoints on single images. OpenPose is a
multi-stage CNN that uses a bottom-up approach to find every instance of a key point and
then attempts to assemble groups of key points into skeletons of distinct humans. The deep
learning OpenPose model is based on a CNN and follows a precise pipeline: in the first
step, the model computes confidence maps for every body part detection; in the second
part, it predicts part affinity fields (PAF) in order to associate every key point of every
person in the frame; in the third step, bipartite matching is computed, so a several-graph
connection is evaluated in order to choose the best performing PAF; in the last step, results
are parsed and the skeleton is reconstructed. A confidence map is the 2D representation of
the belief that a particular body part can be located. A single body part will be represented
on a single map. Therefore, the number of maps is the same as the total number of body
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parts, and is a number that depends on the dataset the model is trained on. Instead, PAF is
a set of 2D vector fields that encode the location and orientation of limbs over the frame
domain. The framework integrates three different trained models for body, hands and face
keypoint estimation. They return, respectively, 25 keypoints for the body, 21 × 2 keypoints
for hands and 70 keypoints for the face (135 keypoints).

For this study, the authors focused on OpenPose capability to track up to twenty
keypoints of the hand, consisting of wrist, finger’s knuckles and phalanges. The adopted
configuration for the framework has the following characteristics: Body Network input
size equal to 160 × 160, Hands Net input size equal to 368 × 368 and Face Net disabled.
The keypoints are just recognized in the 2D frame and the output is expressed in pixel
coordinates within the image. Hence, a registered 3D point cloud is used to obtain the 3D
position of the keypoints.

Three out of all detected keypoints of the hand have been considered to compute the
estimated hand’s pose (Figure 5):

• Keypoint n.0 (wrist);
• Keypoint n.9 (middle finger knuckles);
• Keypoint n.17 (little finger knuckles).

Figure 5. OpenPose keypoints for the hand, where the ones used for the calculation are highlighted.
(Keypoint n.9) Middle finger knuckles; Keypoint n.0) wrist; (Keypoint n.17) little finger knuckles.

The reference frame of the operator’s hand was computed as follows. First, two
vectors are computed: one from the wrist point (kp0) to the middle finger knuckle point
(v1) (Equation (1)) and one from the wrist point to the little finger knuckle point (v2)
(Equation (2)). The cross-product between v1 and v2 returns v3, as shown in Equation (3); it
is an orthogonal vector to v1 and v2 with a direction given by the right-hand rule outgoing
from the back of the hand. Then, it was possible to calculate the vector whose direction is
toward the thumb (v4) as cross-product between v1 and v3 (Equation (4)).

v1 = [kp9x − kp0x , kp9y − kp0y , kp9z − kp0z] (1)

v2 = [kp17x − kp0x , kp17y − kp0y , kp17z − kp0z] (2)

v3 = v1 × v2 (3)

v4 = v1 × v3 (4)
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with
x ≡ v1 , y ≡ v3 , z ≡ v4 (5)

2.1.5. Calibration of the Proposed Systems

All of the proposed methodologies consider the estimation of the 3D position of a
specific point of interest of the hand tool. The system based on YOLO is the only one that
directly estimate such a position. The other three systems are based on the knowledge of
the position (that can be considered fixed) of such a point with respect to the estimated
reference system. A specific calibration procedure is thus needed to acquire the position
of such a point that, in this work, has been experimentally found by positioning the tool’s
point (while it was hand-held by the operator) in correspondence of a known position.
However, other model-based techniques might be investigated.

2.2. Experimental Validation

In order to evaluate and compare the proposed systems, the authors selected a specific
scenario that considered an operator holding a cordless power drill; then, its mandrel was
considered as the point of interest to be tracked. As will be deeply discussed below, the
pose of the power drill and the position of the mandrel were also acquired with an accurate
system in order to quantitatively evaluate the performance of each system.

2.2.1. Evaluation System Setup

The experiment environment was set up with the Azure Kinect positioned at approxi-
mately 1.8 m from the ground and two meters from a wall, tilted 15 degrees downwards
with respect to the horizon. The distance of the operator from the Kinect camera could
be in a range between 0.80 m and 2 m, compatible with the range defined in the official
documentation of the device.

In order to evaluate the performance of the four frameworks under investigation, a
highly accurate tracking of the power drill chunk pose was needed as reference. The HTC
Vive (Figure 6) was selected as benchmark for the experiment since the precision of its
tracking technologies has been tested to be around RMS 1.5 mm, and its accuracy around
RMS 1.9 mm [32–34].

The HTC Vive system is used for rendering 3D virtual reality and it is developed by
HTC in partnership with Valve. The headset (Figure 6—Top-left) uses room scale tracking
technology (Lighthouse, as shown in Figure 6—Middle) for virtual reality experiences
that allow users to freely move around a play area, accurately tracking the position and
orientation of the user’s head-mounted display and controllers, reflecting all real-life
movement in the VR simulation environment. The tracking is possible thanks to two
infrared signals emitters called base stations (Figure 6—Top-right) and special active sensors
that cover the surface of the headset, and controllers that intercept the infrared pulses can
autonomously track their own position and orientation in the workspace determined by the
field of view of the stations. The HTC Vive capabilities can be extended by means of small
devices called Vive trackers (Figure 6—Bottom) [35] that implement Lighthouse technology
too. They allow for a high degree of flexibility, making it possible to track items or body
parts if correctly configured [36].

HTC Vive base stations were placed in the space between Azure Kinect, delimiting
a workspace that completely contained the field of view of the Kinect cameras to ensure
the operator movements were in a monitored space. An HTC Vive tracker was placed on
the power drill to track its pose. The position of the chunk with respect to the Vive tracker
reference frame was found using the calibration procedure described above. The power
drill Vive tracker was installed by means of a wooden support (Figure 7—Right) designed
for the purpose.
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Figure 6. HTC Vive components: (Top-Left) the VR headset with a controller; (Top-Right) front and
rear of a base station; (Middle) Lighthouse tracking system setup; (Bottom) a HTC Vive tracker with
details scheme.

Figure 7. (Left) The power drill used for the experiment. (Right) The wooden support mounted on
the power drill with ArUco markers and HTC Vive tracker installed.
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It is worth noting that the position of the tool’s point of interest estimated by the
proposed system is referred to as the reference frame of the kinect camera. Since the
accurate measure of the power drill pose is with respect to the reference system of the HTC
Vive, it is necessary to know the relative pose between the two reference systems in order
to compare the accurate measure with the estimated one. Hence, a second Vive tracker was
fixed on the Azure kinect chassis by using a 3D-printed support (Figure 8). Such a support
designed by the authors allowed for the positioning of the Vive tracker with a well-known
pose with respect to the camera frame.

Figure 8. The support mounted on the Azure Kinect: (Left) the 3D model of the support; (Right) the
3D-printed support mounted on the Azure Kinect with the HTC Vive tracker.

2.2.2. Experiment Description

In order to evaluate and compare the pose estimation performance of the proposed systems,
some experiments reproducing typical manual task performed by a worker were conducted. As
already reported, a power drill (Figure 7—Left) was selected for the experiment because it is one of
the most frequently used tools in industrial assembly/disassembly procedures.

Three different scenarios have been designed:

• In the first scenario, the operator holds the power drill in static position on a work-
bench (stationary position) (Figure 9—Left);

• In the second scenario, the operator follows a trajectory with the power drill on the platform,
keeping the speed of the movement low (slow-motion condition) (Figure 9—Right);

• In the last scenario, the previous trajectory is considered, but the speed was increased
(fast-motion condition).

For the second and third scenario, the trajectory was defined as a path from a starting
point A to another point B on a horizontal workbench. Two different velocities were adopted
for performing the same trajectory (approximately 4 cm/s for slow-motion condition;
approximately 8 cm/s for fast-motion condition). A vision feedback on a monitor was used
as a virtual reference to follow. Four users were involved in the experiment. Everyone was
asked to perform three trials in each condition, for a total amount of twelve trials.

The execution of all of the proposed systems was performed by a real-time C++
application that both integrated all of the frameworks and synchronized the data acquired
by the HTC Vive system with the estimation positions computed by each system (Figure 10).

The application ran on a computer with the following configuration: Intel i7-8750H,
GTX 1060 with 6 GB memory and 16 GB RAM. The frame per second (FPS) performance
for the frameworks on the machine was the following: YOLO 30+ FPS, AKBT 10 FPS,
OpenPose 10 FPS and ArUco 30+ FPS. The leveling off of all the performances to the lowest
FPS (10 FPS) was required. The final performance of the application was under 10 FPS.
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Figure 9. A user performing a trial in (Left) stationary condition and (Right) slow-motion condition.

Figure 10. Output of the application for a scene with a user holding the power drill.

2.2.3. Evaluation Metrics

The performance of each proposed methodology was evaluated considering both the
root mean square point to point distance (D. RMS) and the multivariate R2 between the
estimated and measured tool path. In particular, such metrics have been independently
computed for each trajectory of a trial. It is worth remembering that the tool’s pose acquired
by the HTC Vive system was considered as the measured pose.

The multivariate R2 index represents how much variability of the estimated path
components is explained by the variability of the measured path components. It is then a
global indicator of the goodness of the estimation. The R2 was computed as follows:

R2 = 1 − SSE
SST

= 1 − ∑C=X,Y,Z ∑N
k=1

∥∥pathC(tk)− pathest
C (tk)

∥∥2

∑C=X,Y,Z ∑N
k=1

∥∥pathC(tk)− ¯pathC
∥∥2 (6)

where pathC(tk) is the value of the measured path component (on the X, Y or Z axis) at the
specific sample time tk, pathest

C (tk) is the value of the estimated path component (on the
X, Y or Z axis) at the specific sample time tk, SSE is the sum of the squared errors and SST
is the sum of the squared residuals from the mean ¯pathC.
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2.2.4. Statistics

For a deeper look into the difference in the methods, the authors performed the
Friedman test and the Dunn’s pairwise post hoc tests with Bonferroni correction on root
mean square point to point distance (D. RMS) and multivariate R2 data for each condition,
comparing the four methods. The significance level was set to 0.05. Non-parametric
tests were adopted since the assumptions underlying parametric tests resulted in being
violated for all sets of data. All the analyses were performed using the SPSS software
(Version 21). The authors left out the correlation data of stationary condition from this
analysis, considering it pointless to apply the test in that particular condition because its
variability is already explained by standard deviation previously calculated.

3. Results

For each trajectory estimated by the four proposed systems during the 12 trials, the
root mean square point to point distance (D. RMS) and the multivariate R2 (see Equation (6))
between the measured and estimated trajectory were computed.

The results obtained for the stationary, slow-motion and fast-motion conditions are
reported in Tables 1, 2 and 3, respectively.

Table 1. Mean and standard deviation of root mean square point to point distance (D. RMS) expressed
in cm calculated on each trajectory for all methods (stationary condition).

Traj. # ArUco AKBT OpenPose YOLO

1 2.8 (0.4) 6.1 (1.0) 6.1 (0.4) 13.1 (0.5)
2 2.7 (0.4) 8.9 (0.9) 5.3 (0.2) 14.5 (0.4)
3 3.0 (0.4) 6.9 (2.3) 5.6 (0.2) 24.4 (0.5)
4 2.5 (0.5) 5.4 (1.2) 5.9 (0.2) 25.1 (0.4)
5 4.7 (0.1) 2.1 (1.5) 10.1 (0.7) 13.4 (0.1)
6 4.6 (0.8) 11.2 (1.6) 5.1 (0.8) 8.7 (0.4)
7 4.6 (0.9) 10.3 (1.0) 4.1 (0.4) 8.5 (0.3)
8 3.1 (1.3) 7.3 (0.4) 7.6 (0.2) 7.9 (0.1)
9 3.0 (1.0) 9.2 (0.7) 7.4 (0.2) 7.9 (0.1)
10 2.6 (0.4) 8.7 (0.2) 7.2 (0.1) 7.9 (0.1)
11 3.1 (0.3) 8.9 (0.3) 7.1 (0.1) 8.0 (0.1)
12 1.5 (0.1) 15.3 (0.4) 8.1 (0.2) 7.9 (0.1)

3.1 (1.0) 8.9 (3.8) 6.7 (1.6) 11.9 (6.1)

Table 2. Mean and standard deviation of root mean square point to point distance (D. RMS) expressed
in cm and multivariate R2 calculated on each trajectory for all methods (slow-motion condition).

Traj. # ArUco AKBT OpenPose YOLO

D. RMS R2 D. RMS R2 D. RMS R2 D. RMS R2

1 7.0 (1.1) 0.99 20.6 (5.3) 0.98 11.2 (1.3) 0.99 14.7 (1.8) 0.99
2 9.0 (3.3) 0.99 23.1 (2.7) 0.97 12.4 (1.3) 0.99 11.6 (1.9) 0.99
3 8.2 (3.5) 0.99 20.0 (1.7) 0.98 11.1 (0.7) 0.99 12.1 (1.2) 0.99
4 9.8 (4.6) 0.99 22.4 (1.5) 0.97 12.6 (0.9) 0.99 13.4 (1.2) 0.99
5 5.0 (2.7) 0.99 18.3 (0.9) 0.92 9.1 (1.9) 0.98 13.4 (3.4) 0.96
6 6.2 (1.9) 0.99 27.5 (15.6) 0.84 10.0 (2.2) 0.98 15.7 (4.9) 0.95
7 9.0 (2.3) 0.98 13.1 (1.4) 0.97 10.7 (1.3) 0.98 12.5 (0.9) 0.97
8 9.7 (4.5) 0.98 15.0 (2.9) 0.97 6.8 (1.5) 0.99 14.9 (6.4) 0.96
9 11.0 (4.7) 0.98 14.1 (3.6) 0.97 6.6 (1.1) 0.99 18.5 (4.5) 0.95

10 8.9 (3.8) 0.98 12.3 (2.3) 0.97 8.1 (1.5) 0.98 13.4 (2.0) 0.97
11 7.4 (2.6) 0.99 31.6 (12.3) 0.83 7.3 (1.8) 0.99 13.0 (1.7) 0.97
12 4.6 (1.9) 0.99 26.9 (2.4) 0.75 8.3 (1.0) 0.97 9.8 (1.4) 0.96

M (SD) 7.8 (2.0) - 20.0 (6.1) - 13.3 (2.4) - 13.3 (2.3) -
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Table 3. Mean and standard deviation of root mean square point to point distance (D. RMS) expressed
in cm and multivariate R2 calculated on each trajectory for all methods (fast-motion condition).

Traj. # ArUco AKBT OpenPose YOLO

D. RMS R2 D. RMS R2 D. RMS R2 D. RMS R2

1 12.5 (6.3) 0.99 25.2 (3.3) 0.97 13.4 (1.8) 0.99 16.6 (2.8) 0.98
2 5.4 (1.7) 0.99 28.7 (1.2) 0.96 11.7 (0.9) 0.99 11.9 (1.1) 0.99
3 12.2 (4.7) 0.99 21.3 (3.1) 0.98 13.1 (2.0) 0.99 14.5 (1.6) 0.99
4 6.3 (1.9) 0.99 21.8 (2.4) 0.97 13.1 (1.8) 0.99 13.5 (2.4) 0.99
5 5.6 (1.0) 0.99 22.6 (0.9) 0.97 11.6 (0.5) 0.99 11.6 (1.7) 0.99
6 13.6 (8.5) 0.98 20.5 (2.9) 0.98 13.0 (1.7) 0.99 15.3 (2.4) 0.99
7 8.7 (6.1) 0.99 18.1 (6.5) 0.98 11.4 (1.6) 0.99 16.3 (4.5) 0.98
8 10.1 (4.0) 0.99 15.5 (5.0) 0.98 11.7 (1.8) 0.99 19.6 (10.1) 0.97
9 9.4 (4.2) 0.99 17.1 (5.6) 0.98 11.6 (1.3) 0.99 14.6 (1.7) 0.99

10 10.7 (6.5) 0.99 15.0 (2.7) 0.99 11.6 (1.4) 0.99 13.9 (2.2) 0.99
11 4.0 (0.6) 0.99 17.4 (4.3) 0.94 10.2 (0.6) 0.98 11.6 (1.8) 0.97
12 5.9 (2.8) 0.99 12.5 (5.4) 0.96 10.0 (0.7) 0.98 10.9 (2.3) 0.97

M (SD) 8.7 (3.2) - 19.6 (4.6) - 11.8 (1.1) - 14.2 (2.5) -

In order to compare the performance of the methods side by side in the three different
conditions, the authors represented the results in boxplot charts. This is a useful way to
visualize differences between groups and to quickly identify information, such as median
and data dispersion. The resulting boxplots are shown in Figures 11 and 12. Then, the
Friedman test and the Dunn’s pairwise post hoc tests with Bonferroni correction were
performed on the data to compare one-to-one the methods and to understand if their
distributions were significantly different (Tables 4 and 5).

Figure 11. Box plots of root mean square point to point distance (D. RMS) expressed in cm calculated
for (a) stationary condition, (b) slow-motion condition and (c) fast-motion condition.
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Figure 12. Box plots of multivariate R2 index values calculated for (a) stationary condition, (b) slow-
motion condition and (c) fast-motion condition.

Table 4. p-values of root mean square point to point distance (D. RMS) Bonferroni-corrected post hoc
methods comparison for dynamic conditions. Significant results (p ≤ 0.05) are highlighted in bold.

Pairwise Comparison Stationary Slow Fast

ArUco vs. YOLO <0.001 0.003 0.002
ArUco vs. AKBT <0.001 <0.001 <0.001

ArUco vs. OpenPose 0.09 1.00 0.492
YOLO vs. AKBT 1.00 0.772 0.492

YOLO vs. OpenPose 0.41 0.05 0.347
AKBT vs. OpenPose 0.201 <0.001 0.002

Table 5. p-values of multivariate R2 Bonferroni-corrected post hoc methods comparison for dynamic
conditions. Significant results (p ≤ 0.05) are highlighted in bold.

Pairwise Comparison Slow Fast

ArUco vs. YOLO 0.002 0.009
ArUco vs. AKBT <0.001 <0.001

ArUco vs. OpenPose 1.00 1.00
YOLO vs. AKBT 1.00 0.492

YOLO vs. OpenPose 0.037 0.106
AKBT vs. OpenPose <0.001 <0.001

The results show that, in all of the conditions, the ArUco method has a great perfor-
mance. Indeed, it shows a significantly lower root mean square point to point distance
(D.RMS) than AKBT and YOLO (stationary ArUco vs. YOLO: t-stat = −2.154, p < 0.001;
stationary ArUco vs. AKBT: t-stat = −2.308, p < 0.001; slow-motion ArUco vs. YOLO: t-stat
= −1.769, p = 0.003; slow-motion ArUco vs. AKBT: t-stat = −2.538, p < 0.001; fast-motion
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ArUco vs. YOLO: t-stat = −1.917, p = 0.002; fast-motion ArUco vs. AKBT: t-stat = −2.833,
p < 0.001), but not OpenPose; the ArUco variability increases in dynamic conditions. In ad-
dition, OpenPose obtained notable results, showing a significantly lower D.RMS than AKBT
and YOLO in the slow-motion condition (OpenPose vs. AKBT: t-stat = 2.077, p < 0.001;
OpenPose vs. YOLO: t-stat = −1.308, p = 0.05) and only AKBT in the fast-motion con-
dition (t-stat = 1.917, p = 0.002). It appears to be the most reliable in terms of variability
compared to all of the methods. On the other hand, the multivariate R2 results (Figure 12,
Table 5) show that the ArUco performance is significantly better than YOLO and AKBT
(slow-motion ArUco vs. YOLO: t-stat = 1.846, p = 0.002; slow-motion ArUco vs. AKBT:
t-stat = 2.462, p < 0.001; fast-motion ArUco vs. YOLO: t-stat = 1.667, p = 0.009; fast-motion
ArUco vs. AKBT: t-stat = 2.583, p < 0.001) but is comparable with OpenPose in dynamic con-
ditions, and also confirm the difference between OpenPose and Kinect (slow-motion Open-
Pose vs. YOLO: t-stat = 1.385, p = 0.037; slow-motion OpenPose vs. AKBT: t-stat = −2.0,
p < 0.001; fast-motion OpenPose vs. AKBT: t-stat = −2.167, p < 0.001).

4. Discussion

In order to evaluate and compare ArUco-, OpenPose-, YOLO- and AKBT-based methods,
the authors designed a system composed of an Azure Kinect device, HTC Vive tracking system
(the benchmark) and an application with all of the frameworks in one that runs on a computer
with this configuration: Intel I7-8750H, GTX 1060 with 6GB memory and 16 GB RAM.

The frame per second (FPS) performance for the frameworks on the machine were
the following: YOLO 30+ FPS, AKBT 10 FPS, OpenPose 10 FPS and ArUco 30+ FPS.
The leveling off of all performances to the lowest FPS (10 FPS) was required. The final
performance of the application was under 10 FPS because it was subjected to the overhead
of the post-processing phases and the simultaneous execution of the methods.

The authors designed an experiment in which a user handling a power drill simulated
three different conditions during an assembly procedure: holding the tool in a static
position (stationary condition) and moving the tool at two different velocities (slow-motion
condition, 4 cm/s, and fast-motion condition, 8 cm/s).

The performance of the four methods has been evaluated on two metrics: the root
mean square point to point distance (D. RMS) and the multivariate R2 of a trajectory
compared to the benchmark system (HTC Vive tracking system).The results have been
reported as boxplot charts and a statistical analysis has been performed.

As reported in Figure 11, ArUco resulted in a very accurate method in the stationary
condition, showing a D. RMS lower than all the other methods and a low variability. The
slow-motion and fast-motion conditions boxplot charts (Figure 11) show that the better
accuracy of ArUco is also preserved in dynamic conditions, even if the variability increases,
becoming comparable with the one of OpenPose and YOLO for the slow-motion condition
and even being the worst overall for the fast-motion condition. The correlation boxplots in
Figure 12 confirm the same situations, and the ranking of the methods seems, globally, the
following: ArUco, OpenPose, YOLO, AKBT.

The authors could presume that ArUco would be the most accurate of the frameworks
because it implements a marker-based technique, unlike the others. It confirms the results
of other studies, such as [37]. Nevertheless, it is not enough, because an invasive method
cannot be seriously considered in a real industrial application; it is rarely accepted, for
safety and ergonomics reasons, to install markers on a hand tool and to handle it in a way
that always keeps them visible.

Although OpenPose does not have the best performance in term of D. RMS, it could be
considered a valid framework for building a virtual guidance system; the low variability of
the D. RMS suggests it is a reliable method if the user can accept a D.RMS of around 10 cm.
Furthermore, its non-invasiveness and flexibility make OpenPose a brilliant option to adopt.
As a matter of fact, its performance is probably reduced by the limited hardware used for
the experiment; a network with a higher resolution should improve its performance.
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YOLO v4 did not show an exceptional performance, but it has a good variability of
D.RMS for dynamic conditions. The main problem of the framework is that it requires
being retrained with many pictures of the hand tool under consideration (735 images were
used in this study) in order to make the model able to recognize the point/s of interest.
This framework would require a deeper investigation exploiting different points of interest
for the selected hand tool to be detected and considering a more effective reinforcement
learning for the DL model.

Azure Kinect Body tracking returned the worst results. It is certainly an innovative,
compact, lightweight and well-documented framework; its DL model capabilities and
accuracy improve with time thanks to continuous support from Microsoft. A study could
be designed, in order to reinforce the model performance, on tracking some interesting
points of the upper limb for more accurately deriving the hand tool position.

5. Conclusions

In this study, the authors conducted a literature review and market research, looking
for studies and out-of-the-box solutions that proposed or implemented methodologies for
hand tool pose estimation during assembly and maintenance procedures in the industrial
field. They discovered that, even if there are plenty of studies concerning static and dynamic
object pose estimation in the literature, the problem of occluded hand tool pose estimation
and tracking in the industrial environment is not extensively investigated. Furthermore, it
emerged that all of the commercial solutions do not really implement algorithms that are
able to accurately track the pose of a tool partially occluded by the operator’s hands, but
they roughly derive it by the hand pose or by using color matching techniques.

For this reason, the authors selected four of the most promising computer vision and
deep learning frameworks (ArUco, OpenPose, YOLO and AKBT) in the field to evaluate
their performance in the task of industrial hand tool detection and pose estimation in
real-time during an assembly or maintenance procedure. Two different approaches have
been considered: a direct approach, in which the tool is directly detected and tracked using
some robust features that are visible, and an indirect approach, in which the body joints
of the operator and their hands are detected and tracked, and the tool pose is derived by
considering the unique handling pose of the tool. To the best of the authors’ knowledge,
this study is the first that compares the performance of ArUco-, OpenPose-, YOLO- and
AKBT-based methods side by side in the task of occluded hand tool tracking.

In order to fairly compare these frameworks, the objective was redefined, reducing the
pose estimation problem to only 3D position estimation, because it is intuitive that a method
such as YOLO, which only returns a position estimation, requires being complemented with
another technique for orientation estimation. A complete pose estimation investigation is
worth a further study.

The results of the study suggests OpenPose is the most complete proposal, thanks to
its acceptable root mean square point to point distance, D. RMS (approximately 12 cm) and
low variability in dynamic conditions, even when a limited network resolution is adopted.
This framework is worth a dedicated study in order to exploit all model capabilities in
extracting the information with a higher accuracy. OpenPose could be used to implement a
tool pose estimation module in a smart workstation for training and assessment. A system
designed with this feature would have a great impact in the automotive industry, especially
for critical procedures that require monitoring, with high accuracy, the movements of the
operator and the correct usage of hand tools for battery-pack assembling, engine repairing
and overhauling, glue smearing and adhesive and sealant application. In future studies, the
authors aim to investigate the problem of complete pose estimation (including orientation)
and to conduct a deeper study on OpenPose, implementing a pose estimation module
based on it and evaluating the performance in experiments that simulate procedures at
different levels of complexity.
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to Combine Recommendations and Active Learning in Manufacturing. Information 2021, 12, 473. [CrossRef]
13. Holz, D.; Ichim, A.E.; Tombari, F.; Rusu, R.B.; Behnke, S. Registration with the point cloud library: A modular framework for

aligning in 3-D. IEEE Robot. Autom. Mag. 2015, 22, 110–124. [CrossRef]
14. Du, G.; Wang, K.; Lian, S.; Zhao, K. Vision-based robotic grasping from object localization, object pose estimation to grasp

estimation for parallel grippers: A review. Artif. Intell. Rev. 2021, 54, 1677–1734. [CrossRef]
15. Altini, N.; De Giosa, G.; Fragasso, N.; Coscia, C.; Sibilano, E.; Prencipe, B.; Hussain, S.M.; Brunetti, A.; Buongiorno, D.; Guerriero,

A.; et al. Segmentation and Identification of Vertebrae in CT Scans Using CNN, k-Means Clustering and k-NN. Informatics 2021,
8, 40. [CrossRef]

16. Zhu, M.; Derpanis, K.G.; Yang, Y.; Brahmbhatt, S.; Zhang, M.; Phillips, C.; Lecce, M.; Daniilidis, K. Single image 3D object detection
and pose estimation for grasping. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA),
Hong Kong, China, 31 May–7 June 2014; pp. 3936–3943.

17. Schwarz, M.; Schulz, H.; Behnke, S. RGB-D object recognition and pose estimation based on pre-trained convolutional neural
network features. In Proceedings of the 2015 IEEE international conference on robotics and automation (ICRA), Seattle, WA,
USA, 26–30 May 2015; pp. 1329–1335.

18. Periyasamy, A.S.; Schwarz, M.; Behnke, S. Robust 6D object pose estimation in cluttered scenes using semantic segmentation and
pose regression networks. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Madrid, Spain, 1–5 October 2018; pp. 6660–6666.

19. Kendall, A.; Grimes, M.; Cipolla, R. Posenet: A convolutional network for real-time 6-dof camera relocalization. In Proceedings
of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 2938–2946.

http://doi.org/10.3390/info12120519
http://dx.doi.org/10.1016/j.neucom.2018.01.092
http://dx.doi.org/10.1016/j.apergo.2017.02.015
http://dx.doi.org/10.1007/s10845-018-1433-8
http://dx.doi.org/10.1080/00207543.2018.1444806
http://dx.doi.org/10.1007/978-3-319-60922-5_14
http://dx.doi.org/10.1007/s12008-021-00776-y
http://dx.doi.org/10.1109/TII.2019.2942211
http://dx.doi.org/10.3390/info12100411
http://dx.doi.org/10.1007/978-3-642-22021-0_15
http://dx.doi.org/10.1007/s11528-012-0559-3
http://dx.doi.org/10.3390/info12110473
http://dx.doi.org/10.1109/MRA.2015.2432331
http://dx.doi.org/10.1007/s10462-020-09888-5
http://dx.doi.org/10.3390/informatics8020040


Appl. Sci. 2022, 12, 1796 19 of 19

20. Banga, H.K.; Goel, P.; Kumar, R.; Kumar, V.; Kalra, P.; Singh, S.; Singh, S.; Prakash, C.; Pruncu, C. Vibration Exposure and
Transmissibility on Dentist’s Anatomy: A Study of Micro Motors and Air-Turbines. Int. J. Environ. Res. Public Health 2021,
18, 4084. [CrossRef] [PubMed]

21. Romero-Ramirez, F.J.; Muñoz-Salinas, R.; Medina-Carnicer, R. Speeded up detection of squared fiducial markers. Image Vis.
Comput. 2018, 76, 38–47. [CrossRef]

22. Garrido-Jurado, S.; Munoz-Salinas, R.; Madrid-Cuevas, F.J.; Medina-Carnicer, R. Generation of fiducial marker dictionaries using
mixed integer linear programming. Pattern Recognit. 2016, 51, 481–491. [CrossRef]

23. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
24. Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. Scaled-yolov4: Scaling cross stage partial network. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 13029–13038.
25. Romeo, L.; Marani, R.; Malosio, M.; Perri, A.G.; D’Orazio, T. Performance analysis of body tracking with the microsoft azure

kinect. In Proceedings of the 2021 29th Mediterranean Conference on Control and Automation (MED), Puglia, Italy, 22–25 June
2021; pp. 572–577.
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