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Abstract: Photoplethysmographic (PPG) pulses contain information about cardiovascular parameters.
In particular, blood pressure can be estimated using PPG pulse decomposition analysis, which
assumes that a PPG pulse is composed of the original heart ejection blood wave and its reflections
in arterial branchings. Among pulse decomposition wave functions that have been studied in
the literature, Gaussian waves are the most successful ones. However, a more adequate pulse
decomposition function could be found to improve blood pressure estimates. In this paper, we
propose pulse decomposition analysis using hyperbolic secant (sech) waves and compare results
with corresponding Gaussian wave decomposition. We analyze how the parameters of each of the
two types of decomposition waves correlate with blood pressure. For this analysis, continuous
blood pressure data and PPG data were acquired from ten healthy volunteers. The blood pressure of
volunteers was varied by asking them to hold their breath for up to 60 s. The results suggested sech
wave decomposition had higher accuracy in estimating blood pressure than the Gaussian function.
Thus, sech wave decomposition should be considered as a more robust alternative to Gaussian wave
pulse decomposition for blood pressure estimation models.

Keywords: blood pressure; hyperbolic secant function; photoplethysmography; pulse decomposition
analysis

1. Introduction

Blood pressure is one of the most important indicators of human health. Blood pressure
is a measure of the pressure in the arteries, which depends on parameters such as cardiac
output, blood vessel stiffness, and blood viscosity. Keeping blood pressure high on a daily
basis increases the risk of various diseases such as heart failure, myocardial infarction,
cerebral infarction, cerebral hemorrhage, and chronic kidney disease [1]. Epidemiological
study [2] shows the importance of blood pressure control. To prevent such diseases, it is
important to be able to measure blood pressure easily and continuously.

Currently, there are two main types of blood pressure measurement methods: invasive
and non-invasive. The invasive method is mainly used for critically ill patients in intensive
care units and operating rooms, and is a method of obtaining blood pressure by inserting a
thin tube called a catheter to measure real-time pressure directly through the catheter [3].
This method is the most accurate way to measure blood pressure. However, an invasive
method is not suitable for daily use, making it difficult to use for routine monitoring
applications. The non-invasive method is widely used and measures blood pressure by
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wrapping a cuff around the arm. This is called the oscillometric method and measures blood
pressure by detecting pressure pulses that occur when the cuff pressure is between systolic
blood pressure and diastolic blood pressure [4,5]. However, the oscillometric method
cannot measure blood pressure continuously because the tightening of the cuff may cause
discomfort to the patient. Thus, it is desirable to develop alternative non-invasive cuffless
methods for continuous blood pressure measurement.

Pulse Decomposition Analysis (PDA) [6,7] is a non-invasive method of measuring
blood pressure without a cuff. The pulse in PDA is a wave resulting from blood pressure
and volume changes in the peripheral vasculature, and associated with one heartbeat.
With each heartbeat, blood flows from the heart’s left ventricle to the aorta, and the
resulting blood pressure fluctuations propagate to the peripheral arteries, generating
a pulse wave. The pulse wave is usually measured non-invasively using a device called a
photoplethysmograph (PPG). A PPG is an optical device that measures light transmission,
typically on a finger or earlobe. As the volume of the arteries changes with each heart
pulsation, the amount of light reflected or transmitted by the skin changes, allowing the
non-invasive measurement of pulse waves.

The PDA considers that the shape of the peripheral pulse consists of a primary wave
coming directly from the heartbeat and its reflected wave, which is shown in Figure 1.
Reflection occurs when the pulse wave propagates to the lower extremities and is reflected
in the aorta bifurcations at the iliac artery and at the renal artery. The most successful PDAs
use Gaussian pulse decomposition [6,7]. For example, in [7], the authors use Gaussian
PDA and define the primary systolic pulse as Py, the renal reflection pulse as Py, and the
iliac reflection pulse as P3. The amplitude ratios P, to Pj, the Ty3 interval, and the time
delay between systolic (P1) and iliac peak (P3) are used as parameters to estimate the blood
pressure. Their results show statistically significant correlations between Py, Py, T13, and
blood pressure as measured by central line catheters (systole: R?: 0.92, p < 0.0001, diastole:
R%: 0.78, p < 0.0001). Several PDA parameters, such as systolic upstroke time, diastolic
time, 2/3, and 1/2 pulse amplitude, are possible candidates for estimating blood pressure
from pulse waves using PPG [8-11]. Despite the success of PDA in monitoring changes
in BP using a finger PPG, the degree of uncertainty in the fit parameters determined from
literature PDA models is high (up to 30%) [12-14], and a potentially large number of
heartbeats are required to obtain acceptable signal-to-noise blood pressure estimates. As
an alternative Gaussian PDA, the use of secant hyperbolic waves (sech) for the PDA of
PPG signals was considered in [14]. Sech may provide a better PDA for blood pressure
estimation because it represents a possible solution to the Moens—Korteweg equation
describing a pressure pulse in an elastic tube. Indeed, in [14], their results suggest that
the hyperbolic secant wave function performs better for three-wave PDA than previous
functions in the PDA literature, as sech reduces pulse-to-pulse parameter noises in the
reflected waves P, and Ps3.
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Figure 1. Pulse decomposition into three constituent waves (adapted from [14,15]).

In the present study, we compared sech waves PDA for blood pressure estimation
with the corresponding Gaussian waves PDA. We experimentally acquired PPG data and
simultaneously acquired near-real-time continuous blood pressure using a Finapres finger
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cuff. The sech waves” PDA parameters were used for multiple regression against the
acquired blood pressure compared with the corresponding values of the Gaussian waves’
PDA. The results indicated that sech PDA correlated better with blood pressure than
Gaussian PDA. Thus, sech should be considered when building PDA models.

2. Methods
2.1. Pulse Wave Model for Blood Pressure Estimation

In this subsection, we first describe pulse decomposition models used for both sech and
Gaussian PDAs. Then, we present the characteristics of the PPG PDA used for regression
analysis using the experimental ground truth blood pressure readings.

2.1.1. Mathematical Models for Pulse Decomposition Analysis

The PDA model assumes that each pulse wave measured by a PPG device is composed
of multiple pulse wave reflections, as illustrated in Figure 1. The multiple reflections do not
necessarily propagate at the same speed. Here, we use three-wave decomposition, which
has been shown to be adequate for blood pressure estimates using Gaussian decomposi-
tion [6]. For this study, we used both the Gaussian PDA (Equation (1)) and our proposed
sech PDA (Equation (2)):

RV
fc =acexp [—(tz;éc)} : @)
fs = agpsech {tz_a];:h} . (2)

where a; and agy, are amplitudes, o and oy, are widths, and u¢ and yugy, are the center
positions along the time axis of the respective waveforms. The waves in the pulse wave
decomposition of Figure 2 can be described by a set of three Gaussian waves, or by three
sech waves. These models were used to perform na analysis, described below, to determine
between Gaussian waves and sech waves, and which one was better suited to estimate
blood pressure by PDA.

Figure 2. PPG pulse decomposition into three constituent waves and extracted features.

2.1.2. Features Extraction from Decomposed Waves Based on Pulse Wave

First, the PPG pulse waves were fitted with Equation (1) and with Equation (2).
For curve fitting, after data preprocessing and individual pulse wave separation, we
used Matlab’s Isqcurvefit to solve the nonlinear curve approximation by the least-squares
method. The fitting of each pulse wave to three sets of Equations, such as Equations (1)
or (2), gave 3 sets of parameters. First, the time difference between the peak of the first
wave and the peak of the second wave of the three decomposed waves, Atg 1, and the time
difference between the peak of the first wave and the peak of the third wave, Aty,, were
obtained as features corresponding to PTT. Next, the amplitude ‘a’ of the waves was used
as a feature. The pulse wave amplitude was obtained from each of the three decomposition
waves. Finally, the half-width at half-maximum (HWHM) of the waves was also used as a
feature. The reason for using the half-width at half-maximum is that it is known that pulse
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wave strain correlates with blood pressure, and changes in pulse wave strain are thought to
affect the half-width [9]. The half-width at half-maximum was also obtained from each of
the three decomposition waves. In this study, we investigated the possibility of estimating
blood pressure using a total of eight features: the time difference Aty 1, Aty from the three
decomposed waveforms, the amplitudes ag, a;, and a; of the three waveforms, and the
half-width at half-maximums HWHM,, HWHM;, and HWHM), of the three waveforms.

2.1.3. Multiple Regression for the Relationship between the Features and Blood Pressure

To determine the adequacy of the PDA features of PPG for blood pressure estimation,
we performed a multiple regression between the features and the ground truth blood
pressure. Up to eight features can be used in this study, and the feature combination
depends on the number of features used. Since the number of features was small, we
decided to adopt the set of features that indicated the best performance in all combinations
of the features.

2.2. Dataset Construction for the Verification of Our Proposed Method
2.2.1. Vital Signs Acquisition

We experimentally constructed a data set by continuously measuring blood pressure
using a continuous sphygmomanometer (Finometer MIDI, Finapres Medical Systems),
which measures blood pressure with each beat of pulse and pulse wave with a sampling
rate of 200 [Hz]. This continuous sphygmomanometer can measure blood pressure non-
invasively by attaching a cuff to the fingertip. In addition, we simultaneously acquired
the pulse wave, which was measured using photoplethysmography (Procomp/BVP fin-
gertip PPG, 2048 samples per second, with an output sampling rate of 200 samples per
second). The subjects in this experiment were 10 adult Japanese volunteer students, aged
22.4 + 1.7 years (2 females, 8 males). The risks of the exercise were explained to each
volunteer both orally and in writing before they consented to the experiment. Since it
is necessary to vary the subject’s blood pressure in the experiment, subjects were asked
to repeatedly relax and hold their breath for as long as they comfortably could, or up to
60 s. The relaxation phase was placed before and after each breath-holding phase, and was
repeated three times.

2.2.2. Data Pre-Processing

Since the measured pulse wave contained noise, pre-processing was necessary. In
particular, if the pressure applied to the finger wearing the PPG changed, a trend appeared
in the pulse wave, as shown in Figure 3. Therefore, it was necessary to remove the trend.
First, trend elimination was performed on the measured pulse wave. For trend elimination,
the trend elimination method proposed by Tarvainen et al. was used [11]. Next, a band-pass
filter (0.5 to 10 Hz) was applied to the trend-removed pulse wave to remove mainly high-
frequency noise. By performing this process, the trend and noise of the pulse wave could be
removed, as shown in Figure 4. Next, each subject’s experimental data with a data length of
480 s was divided into 60 segments with a data length of 8 s. In each segment, unitary pulse
waveforms were extracted, and the features obtained from the unitary waveforms in the
8-s interval were averaged to be further used for multiple regression. Each unitary pulse
waveform was obtained by segmenting the pulse wave based on the position of the detected
pulse wave trough. Blood pressure measured with a continuous sphygmomanometer was
similarly divided into 60 segments, with a data book of 8 s from one experimental data
with a data length of 480 s. In each segment, the mean value of systolic blood pressure was
used for multiple regression analysis. Figure 5 shows a box plot with the 60 systolic blood
pressures (sbp) of each subject, which are averaged in each window of 8 s.
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Figure 5. Box plots with 60 systolic blood pressure (sbp) for each subject. Each sbp point is the
average of an 8-s window.

2.3. The Verification of Our Proposed Method

In this study, the two estimation methods based on sech function-based PDA or
Gaussian function-based PDA were subjected to two validations: the first was the accuracy
of the model for training (regression) with known data, and the second was the accuracy
of the model to predict blood pressure (“unknown” data not used for training) with the
regression coefficients obtained from the training data.

In addition, two analyses were performed for each validation. The first wanaan
analysis using a within-subject model, which did not consider individual differences. The



Appl. Sci. 2022,12,1798

6 of 12

second was an analysis using a between-subjects model, that is, the regression coefficients
were obtained using multiple subjects.

First, multiple regression analysis was performed using all subjects’” data without
data division. The goodness of fit of the multiple regression analysis was quantified by
calculating the multiple correlation coefficients, which determined the extent to which the
features achieved a description of blood pressure for all subjects” data. In this test, two
analyses were performed, one for each subject data (within-subject test) and the other for
all subject data (between-subjects test). We adopted first-order regression models.

Second, to quantify the estimability for the test data, the Leave One Out method was
applied to the dataset, and the correlation coefficient between the ground truth and the
estimate was calculated. Similar to the first case, here, two analyses were performed: one
for each subject’s data and the other for all subject’s data. The Leave One Out method was
used to split the segment data into training data and test data. These data were divided into
59:1 segments by the Leave One Out method for the within-subject model, and into 599:1
segments for the between-subjects model. The Leave One Out method was conducted with
the Python programming language library Scikit-learn, which is a machine learning library.

Regarding the selected features, we used the feature set that provided the best per-
formance for each subject’s data. This was because the optimal feature set for each subject
could have been different because of individual differences. For verification with the
training data, the feature set (function parameters) that provided the best performance was
used to determine multiple correlation coefficients. As a result, all features provided the
best performance on all subjects’ data. For verification with the test data, the feature set that
provided the best performance was used to determine the multiple correlation coefficients.
As a result, the features set shown in Table 1 provided the best performance.

Table 1. The combination of the features used in the Leave One Out test.

Combination of Features

Subject Number Sech-PDA Gaussian-PDA
1 At 1, FWHM, Ato/z, a1, ap, FWHM;, FWHM,, FWHM;3;
2 az, FWHM;, FWHM,, FWHM3; Atgr, FWHM;
3 Aty 1, a1, ap, FWHM, Atg 1, ap
4 Atg 1, a1, ap, FWHM; AtO,lr FWHM;
5 FWHM,, FWHM3; Atg 1, FWHM;, FWHM,, FWHM3;
6 Aty 1, ap, a3, FWHM;3 Aty 1, Atgp, a1, ap, FWHM;
7 ai, az, FWHMz, FWHM3 AtO,lr FWHM3
8 AtO,l/ as AtO,l/ ai, ap, asz, FWHMl, FWHMz, FWHM3
9 AtO,l/ ap, FWHM;, FWHM, AtO,l/ a,, FWHM,, FWHM,
10 Atg 1, Atyp, ap, FWHM;, FWHM, Aty 1, a1, ap, FWHM,, FWHM3
all ap, FWHMl, FWHM2 Ato/l, Ato/z, ap, FWHMz, FWHM3

Statistical p-values were calculated using t-tests for comparison between two quantities
with standard deviations. For the determination of the p-value of the slope of the linear
regressions of the ground truth vs. the estimated value of systolic blood pressure, we
considered that the null hypothesis was that the slope was zero (no correlation).

3. Results

Multiple regression was performed between PDA (Gaussian and sech) on plethysmo-
graphic data and the continuous blood pressure measurement data from the 10 subjects
(60 segments of 8 s, for each subject), as discussed in Section 2.

Initially, we studied multiple correlations between BP and PDA parameters indepen-
dently for each subject. For each subject’s data (60 8-s segments), the average Gaussian
PDA and sech PDA parameters in the 8-s segments were used to determine the multiple
correlation coefficient against the corresponding average BP ground truth in the same
segments (Figure 6a). Moreover, in Figure 6a, using similar data segmentation and multiple
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regression, we show the correlation coefficient of the Leave One Out (59:1) BP prediction
vs. the corresponding average BP ground truth in the segment left out. This correlation
coefficient was thus calculated using 60 data points per volunteer, since the Leave One Out
(LOO) procedure was executed comprehensively for all 8-s segments of each subject. In
Figure 6a, all results are calculated on an individual-by-individual basis.
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Figure 6. Multiple correlation coefficients for each subject data as the training data and the correlation
coefficients calculated by Leave One Out for each subject dataset. (a) Results for each subject
independently. (b) Mean value of results from (a). For the group, the differences between the
Gaussian and sech results are not statistically significant.

Figure 7 shows a scatterplot with all the 600 data points (for all 10 subjects), where the
BP was predicted using the regression model learned with each subject data individually.
We call this “training data”. Note that the Gaussian PDA (R? = 0.77, p = 0.0000) underper-
formed compared with the prediction power of the sech PDA (R? = 0.81, p = 0.0000).

Figure 8 is similar to Figure 7, but each one of the 600 data points was generated by an
LOO prediction (‘test data’), with an underlying regression model learned for each subject
data individually. For each subject, 60 data points were generated by LOO 59:1. Again, the
Gaussian PDA (R? = 0.58, p = 0.0000) underperformed compared with the prediction power
of the sech-PDA (R? = 0.76, p = 0.0000).

To further investigate possible performance differences between Gaussian PDA and
sech PDA, we reanalyzed the data produced for Figure 6a. First, we averaged the multiple
correlation coefficients, and the correlation coefficient, both from Figure 6a, which were
determined independently for each one subject. The result of such an average is shown in
Figure 6b. There was no statistically significant difference between the performance of the
Gaussian PDA and the sech PDA by this analysis.
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Figure 7. Scatter plots for each subject data as training data in multiple regression. (a) Result
based on Gaussian PDA. (b) The result based on sech PDA multiple regression was performed with
60 simultaneous 8-s segments of continuous systolic blood pressure vs. PPG pulse decomposition
features for each subject data. Each scatterplot contains 600 data points. For both plots, p = 0.0000.
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Figure 8. Scatter plots for each subject data as test data by multiple regression using Leave One Out.
(a) Result based on Gaussian PDA. (b) Result based on sech PDA. In Leave One Out, we estimated
systolic blood pressure with an 8-s segment based on the multiple regression model learned with
the other segments of the subject data, and we repeated the process to test all 60 segments data
comprehensively. Each scatterplot contains 600 data points. For both plots, p = 0.0000.

Finally, Figure 9 shows multiple regression and correlation coefficients (from LOO)
conducted on the data of all the subjects processed together (600 segments). Notice in
Figure 9, there is a reduction in the multiple correlation coefficient, and in the correlation
coefficient compared to regressions with the data of only one subject at a time, as in
Figure 6b. Again, there was no statistically significant difference between the performance
of Gaussian PDA and the sech PDA. This seems to indicate that, for long timeframes,
Gaussian PDA and sech PDA, on average, converge to the same prediction power.

For completeness, we show in Figure 10 mean squared errors (MSE) between the
original pulse wave and the reproduced wave based on Gaussian PDA or Sech PDA in each
subject (for all data regressions, analogous to Figure 7). Although Gaussian PDA showed a
slightly better fit (slightly lower MSE), Figure 8 (leave one out prediction) makes it evident
that the sech PDA better explained BP. The results of Figure 10 may suggest that the sech
PDA was a better fit for the pulse contour region, and was more relevant for estimating
blood pressure [16]. The small MSE values come from having normalized the PPG pulse
amplitudes to one, for both Gaussian PDA and sech PDA, for a fair comparison.
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Figure 10. Mean squared error between the original pulse wave and the reproduced wave based on
Gaussian PDA or sech PDA in each subject.

We also conducted a multiple regression using only the coefficient’s ratio a2/al, as
suggested by [3]. Specifically, we conducted multiple regression with each subject data, for
all ten subject data, to calculate a multiple correlation coefficient, and averaged the ten mul-
tiple correlation coefficients. For Gaussian PDA the multiple correlation coefficients gave
0.20 £ 0.17 (mean = standard deviation), with the range 0.031, 0.50, and for the sech PDA,
the multiple correlation coefficients gave 0.26 £ 0.17 (mean + standard deviation), with
range 0.034, 0.59. No statistically significant difference was found between the Gaussian
PDA and the sech PDA results, but the low multiple correlation coefficient discourages the
use of the coefficient’s ratios for PDA-based BP estimation.

4. Discussion

Here, we compared models of blood pressure description by sech PDA and by Gaus-
sian PDA, and their characteristics. Gaussian PDA showed the best performance in the
literature on PDA blood pressure measurement [8]; however, sech PDA has not been tested
in the literature for blood pressure estimates. Our results showed that the use of sech
PDA instead of Gaussian PDA could lead to more accurate and robust blood pressure
measurement.

Our main results are shown in Figures 7 and 8. Sech PDA better explains BP (78% vs. 58%,
p = 0.0000) than Gaussian PDA, in our data. Our data is challenging because it presented
a large variation in BP in 8 min (Figure 5). To prevent possible issues in the comparison
between the sech and the Gaussian function PDA, in our tests, we did not complete a full
prediction, but instead performed a Leave One Out model test, in 8-s intervals. The choice
of Leave One Out and the choice of the 8-s intervals were arbitrary.
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Results of Figures 6 and 9 do not show statistically significant differences between
sech PDA and Gaussian PDA for timeframes (averages) of the order of 80 minutes, with
averages also between individuals. This was expected since Gaussian PDA is a good
method for BP estimates. In addition, our results of Figures 7 and 8 imply that sech PDA
correlated at least as well with blood pressure as Gaussian PDA.

We also found that multiple regression between PDA features and blood pressure,
using all features, achieved higher accuracy compared to simply using one feature—which
was not surprising. We had a higher accuracy with all features than the other combinations
of features in the multiple correlation coefficients. Arithmetic operations (such as the ratio
index a2/al used in [13]) gave a lower (worse) multiple correlation coefficient for all subject
data. We believe this behavior was caused by the dimensionality loss in arithmetically
combining multiple features, worsening the pulse contour description.

Figure 10 shows that the mean square error of the PDA fits was slightly lower for
Gaussian PDA than for sech PDA. Because sech PDA gave a better correlation with blood
pressure, we speculated that if sech did not provide a better fit to the pulse than the
Gaussian function, this was due to the difference in the importance of different regions of
pulse wave contour for blood pressure estimates [16]. Pulse wave contours reproduced by
Gaussian PDA and sech PDA fit different contours, despite the same goodness of fit. Such
analysis is beyond the scope of the present paper.

An important early study based on Gaussian PDA [7] found R? correlations with
central line catheter SBP and DBP to be 0.92 and 0.78, respectively. By comparison, our study
shows the R? was 0.58 for SBP based on the Gaussian PDA (Figure 8a), and 0.76 for SBP
based on the sech PDA (Figure 8b), with ground truth reference BP peripherally measured in
the finger. While [7] used data from 38 male and 25 female patients of 62.7 & 11.5 years old,
our study used data of healthy volunteers 22.4 £ 1.7 years old (8 males and 2 females) whose
blood pressures varied by up to 60% during data collection, which made the prediction in
our case more challenging. More detailed tests on clinical datasets will be the subject of
future work.

Among the limitations in our study was the windowing process, which averaged
the feature values and blood pressure in time intervals of 8 s. It is possible that the mean
value of the parameters in this window could not accommodate for a wide variation of
blood pressure. The windowing process also brought a second limitation: the 8-s interval
of the moving window limited “real-time” blood pressure estimates at the beginning of
the measurement. Sudden changes in BP may have limited the response of the finger
cuff continuous BP meter, limiting the accuracy of our study compared with a central line
catheter BP meter. Moreover, we used the mean values of the BP and the PDA parameters
in each 8-s segment. If the statistical distribution of values in the segments were skewed, the
prediction was poor, and the median or other metric would be more appropriate. Another
limitation in this study was that, to simplify the analysis, we focused only on the systolic
blood pressure.

Finally, we will consider future work. Blood pressure depends on an individual’s
weight, height, and body mass index [17]. There is room to consider this information in the
description of blood pressure using PDA. In addition, it may be possible to estimate blood
pressure using more individually appropriate models and methods by grouping subjects
based on their biometric information and creating estimation models for each group. This
point also needs to be verified. Furthermore, the optimal number of sech-waves on a pulse
contour needs to be investigated, since the optimal number of waves to be used for PDA
may vary [18].

5. Conclusions

In this study, we proposed a method for decomposing the pulse wave into three
hyperbolic orthogonal waves and estimating blood pressure based on the features ob-
tained from the waves. This method was applied to a dataset constructed by measur-
ing pulse waves while varying blood pressure. The multiple regression based on sech
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PDA showed equal or higher accuracy than multiple regressions based on Gaussian PDA
(Supplementary Materials).

Supplementary Materials: The data produced for this paper are available at https://github.com/
iuchik/est_bp_with_pda.
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