
����������
�������

Citation: Khan, F.U.; Aziz, I.

PrimeNet: Adaptive Multi-Layer

Deep Neural Structure for Enhanced

Feature Selection in Early

Convolution Stage. Appl. Sci. 2022,

12, 1842. https://doi.org/10.3390/

app12041842

Academic Editor: Andrea Prati,

Carlos A. Iglesias, Vincent A.

Cicirello and Luis Javier García

Villalba

Received: 28 July 2021

Accepted: 8 October 2021

Published: 10 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

PrimeNet: Adaptive Multi-Layer Deep Neural Structure for
Enhanced Feature Selection in Early Convolution Stage
Farhat Ullah Khan 1,* and Izzatdin Aziz 2

1 Computer and Information Sciences Department, Universiti Teknologi PETRONAS,
Seri Iskander 31750, Perak, Malaysia

2 Center for Research in Data Science (CeRDaS), Universiti Teknologi PETRONAS,
Seri Iskander 31750, Perak, Malaysia; izzatdin@utp.edu.my

* Correspondence: farhat_17000870@utp.edu.my

Abstract: The colossal depths of the deep neural network sometimes suffer from ineffective back-
propagation of the gradients through all its depths, whereas the strong performance of shallower
multilayer neural structures proves their ability to increase the gradient signals in the early stages
of training, which easily gets backpropagated for global loss corrections. Shallow neural structures
are always a good starting point for encouraging the sturdy feature characteristics of the input. In
this research, a shallow, deep neural structure called PrimeNet is proposed. PrimeNet is aimed
to dynamically identify and encourage the quality visual indicators from the input to be used by
the subsequent deep network layers and increase the gradient signals in the lower stages of the
training pipeline. In addition to this, the layer-wise training is performed with the help of locally
generated errors, which means the gradient is not backpropagated to previous layers, and the hidden
layer weights are updated during the forward pass, making this structure a backpropagation free
variant. PrimeNet has obtained state-of-the-art results on various image datasets, attaining the dual
objective of: (1) a compact dynamic deep neural structure, which (2) eliminates the problem of
backward-locking. The PrimeNet unit is proposed as an alternative to traditional convolution and
dense blocks for faster and memory-efficient training, outperforming previously reported results
aimed at adaptive methods for parallel and multilayer deep neural systems.

Keywords: deep neural structures; deep learning; CNN; DNN; dynamic training

1. Introduction

This decade has witnessed a remarkable reclaim of artificial neural structures in var-
ious forms of deep learning techniques. The evolving robust computing infrastructure
efficiently leveraged the designs of bigger deep neural models on new larger datasets.
The inculcation of new ideas in algorithms and complex neural structures in different do-
mains has also contributed to high-quality image and vision results. The quest to build deep
neural-based intelligent machines has reached the IoT and AI-enabled light infrastructured
interconnected devices, portable machines, and embedded systems. To devise efficient al-
gorithms, eventually, seeking minimal power and memory usage for such devices becomes
an essential design paradigm.

It is argued that the generalized linear models (GLMs), such as convolutional filters in
convolutional neural networks (CNNs), have inadequate feature abstraction capability [1,2]
because it assumes that the latent concepts for the underlying sliding data patches are
linearly separable. There could be a possible improvement by replacing the linear approxi-
mators with a multilayer perceptron (MLP) structure [3]. MLP structure is the universal
function approximator that is also trainable by the backpropagation technique. Classically,
backpropagation, in a typical deep neural-based classification scenario, is a way to inform
the subsequent layers to adjust the weights to reduce the error, which is approximated by

Appl. Sci. 2022, 12, 1842. https://doi.org/10.3390/app12041842 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12041842
https://doi.org/10.3390/app12041842
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-7193-0895
https://orcid.org/0000-0003-2654-4463
https://doi.org/10.3390/app12041842
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12041842?type=check_update&version=1


Appl. Sci. 2022, 12, 1842 2 of 15

global loss functions. Intermediate layers carry a vast memory overhead during the forward
and backpropagation phase. Weights cannot be updated until the forward and backward
phases are completed. This issue of backward-locking restricts the parallelization and
simultaneous update of the weight parameters [4].

Combining these two issues, we ought to refine the existing multilayer neural struc-
tures to encourage potentially the most vital visual indicators from the depths of the model
and alleviate the problem of the backward-locking loop using local loss update for a com-
pact and faster training design outcome. The proposed method leverages upon the classical
benefits of multiscale visual information abstraction. It also allows the broader deep neural
structures with the increased number of units at each stage without demanding additional
computational resources.

In this paper, we presented a dynamic MLP structure called PrimeNet (Keras imple-
mentation of PrimeNet is available at https://github.com/farcaz/PrimeNet/, accessed
on 7 October 2021). PrimeNet dynamically determines the layer-wise local loss and relays
only the layer configuration which has incurred a minimum loss. We argue that dynamic
tracking of locally generated errors and operating over minimum loss in a multilayer
structure organization will automatically relieve the necessity of higher depths to propa-
gate gradients back through all the layers effectively. This research presents an advanced
neural architecture combined with a more effective training method following the adaptive
inference mechanism. The overall contributions of this work could be summarized as:

• A backward-locking free novel dynamic MLP structure ‘PrimeNet’ is proposed to encour-
age the most vital distinctive attributes within highly correlated multiscale activations.

• PrimeNet builds a localized learning strategy to train the weight layers with locally
generated errors.

• To avoid extreme compression of the information passing through PrimeNet and to
avoid correlated regions concentrating in local regions, a summarized local translation-
invariant features projection is utilized in this research.

PrimeNet has been trained and evaluated with different standard datasets and has
obtained competitive results. The proposed ‘PrimeNet’ can reduce the computational
complexities while retaining state-of-the-art results. The superior image classification per-
formance and the result visualizations demonstrate that the backpropagation-free variant
of a complex deep neural structure is efficient and valuable for computationally con-
strained tasks.

The rest of the paper is organized as follows: Section 2 presents the most relevant
research contributions in the category of adaptive and conditional neural computing.
Section 3 discusses the methods. Section 4 presents the experiment and results, and
Section 5 presents the component analysis. Finally, in Section 6, the research is concluded
with some suggested future work.

2. Relevant Work

In our proposed work, an advanced complex deep neural structure designs to enhance
feature selection. In addition, an adaptive inference technique with a local loss update
procedure is incorporated to make it a backpropagation-free version. Before the concoction
of the proposed design, we meticulously reviewed several recent research contributions in
different related categories as follows.

2.1. Conditional Computation

Conditional computation, also known as adaptive inference, has gained attention
recently due to its compatibility, ease of use, and high-performance advantages. Adap-
tive inference aims at achieving efficient dynamic computational resource allocation by
strategically invoking lighter or complex deep neural units, depending on input [5–18].
Zhichao Li [12] has presented an extension work of a Recurrent Visual Attention Model by
Mnih et al. [19] and proposed a dynamic computational time model (DT-RAM) to speed
up the overall processing time. Rather than ‘attention’ to a finite number of steps, they

https://github.com/farcaz/PrimeNet/


Appl. Sci. 2022, 12, 1842 3 of 15

added one extra binary action, which dynamically decides to continue/stop for each input
image. In DT-RAM, initially, a pre-trained Recurrent Attentional Model (RAM) is utilized,
and, later, it is fine-tuned with REINFORCE. The RAM model defines that every input
has a corresponding attention measure. The internal state of local regions is computed
and updated with a recurrent neural network over each previous time step. The model
then computes over two branches, which are location network and classification network.
The location network models the attention policy and samples the attention location based
on the learned policy. The classification network computes simply classification score. In
DT-RAM, as an extension of RAM, a stopping network operation is introduced, which
decides when it should stop taking more ‘attentions’ and output results as an early exit.
Since the intermediate supervision at every time step requires the output of the classifica-
tion score, the loss is defined as an average cross-entropy over N training samples and T(n)
time steps.

MSDNet [18] also proposed a progressively updating deep learning model. They com-
bined the convolutional and dense network so that the intermediate classifiers maximally
and efficiently use the computation resource. They utilized the combined fine and coarse
level features at two scales to retain high-quality classification performance early. To update
the losses between these intermediate classifiers, they targeted minimizing the weighted
cumulative loss.

Li et al. [17] designed their adaptive inference model by setting up multiple interme-
diate classifiers (multiple exits) and settling these early classifiers’ gradient conflicts by
introducing Gradient Equilibrium technique. To enhance the information sharing and col-
laboration between these classifiers, they also introduced Inline Subnetwork Collaboration
(ISC) and One-for-all Knowledge Distillation (OFA) techniques. The multi-exit simple clas-
sifiers were responsible for learning discriminative features for themselves and maintaining
information to pass to complex classifiers at later stages. Here, MSDNet [18] has calculated
the weighted cumulative loss of all the intermediate classifiers and minimized it. In Li’s [17]
inference model, intermediate classifiers have the overlapping arrangement, and the loss
minimization strategy by MSDNet [18] may create an issue of gradient imbalance due to its
overlapping model structure. To handle the issue of gradient balancing, they introduced the
Gradient Equilibrium (GE) method, which normalizes the gradients by a two-level scaling
method. With their Inline Subnetwork Collaboration (ISC), they attempted to collaborate
between intermediate adjacent classifiers by adding a knowledge transfer path function to
promote forward knowledge transfer. In this stage, the early intermediate classifiers help
to boost the performance of the latter classifiers. Similarly, the deepest classifiers at the
farthest end help increase the learning of shallow classifiers in the Backward Knowledge
Transfer approach.

The discussed conditional computation-based research works have overall shown the
strength and utility of shallow, intermediate classifiers. Zhichao Li [12], in his proposed
DT-RAM, has put a discrete decision unit on Recurrent Visual Attention Model (RAM),
which operates upon N training samples over n time steps for each sample, raising the
computational cost of O(n2). MSDNet [18] has utilized the multiscale feature abstraction
in the early stage of classification. To update the losses, they considered backpropagating
the gradients to minimize the overall weighted cumulative loss. Backpropagation has
always been considered a more computationally spendthrift procedure than the forward-
propagation [4,20]. Li et al. [17] have also exploited the advantages of early and multi-
exits in the form of shallow neural structures and presented sophisticated ISC and OFA
techniques. They also relied on the backpropagation of gradients from weighted cumulative
losses of several intermediate classifiers, resulting in slow training responses with added
computational complexity than the standard training procedures.

2.2. Network Pruning and Distillation

Network pruning generally refers to the techniques of reducing weight parameters
of a deep neural network. With similar objectives of adaptive inference, neural pruning



Appl. Sci. 2022, 12, 1842 4 of 15

techniques also try to minimize the computational complexities in dynamic deep neural
decision surface without reducing the classification performance. [7,21–26]. While preserv-
ing the total network capacity, Ji Lin [7] presented an input dependent adaptive layer-wise
pruning strategy. Markovian decision agent judges the convolution kernel’s importance
and performs channel-wise pruning for each input sample. Easy inputs are recognized
by shallower (more pruned) networks, while total capacity could be utilized for complex
input samples. Training is performed using reinforced learning. In another research study,
He et al. [21] indicated that the weight pruning models are unstructured and, hence, does
not save much computational cost, whereas filter pruning is advocated in their research.
Instead of layer-wise hard pruning of filters, Reference [21] suggested Soft Filter Pruning
(SFP) in which filters are deactivated, and they named it ‘soft pruning’. These deactivated
(dynamically pruned) filters have the advantage that they are updated during training
epochs and compete in the next iteration for their inclusion due to the soft pruned existence.
The model preserves total capacity but operates on compressed deep CNN. Moreover,
the model performs pruning all at once, which is another advantage from slower layer-wise
pruning. However, the global loss update procedure is again proven to be computationally
expensive to update the weights during training.

2.3. Knowledge Distillation

Our proposed method can also be aligned with knowledge distillation techniques.
The ensemble model designed by Li et al. [17] has used a cascade arrangement of shallow
and deep network models. They ensembled the specialist shallow and generalist full-
networks to collaborate and share the knowledge. Generalist models supervise the learning
of specialist networks with their knowledge (output). Our research proposes a knowledge
distillation process within a deep neural structure that we named PrimeNet.

2.4. Discussion

With this discussion, we intend to converge and highlight the salient points in our
proposed research. The main focus of our research is to amalgamate the proven concepts of
deep neural advances to their lowest unit level. To perform this, we devised a multiscale
deep neural structure named PrimeNet. The related studies inferred that advanced deep
neural structures could easily replace the traditional convolution layer without much
performance penalty. We also extended the knowledge distillation strategy [27,28] in our
research by distilling and including the most promising visual indicators in training, while
soft pruning the sparsed ones. The backpropagation is proven to be costlier [4,20] than
forward-propagation; hence, we introduced layer-wise local loss update procedure to our
proposed PrimeNet algorithm to further reduce the computational complexity.

We performed extensive experiments on MNIST, CIFAR-10, and SVHN datasets to
evaluate the validity and effectiveness of the proposed method.

3. Method

The convolution architectures are proven for higher performance on image classi-
fication at lower computational penalties; hence, we preferred to use convolution ar-
chitecture for our proposed network structure design. We implemented PrimeNet as a
backpropagation-free version of the convolution block as a custom layer. PrimeNet is
the advanced multiscale micro-network block that implements the soft pruning of entire
layer parameters using adaptive inference on local loss. We also presented the mechanism
to work with standard convolution blocks (ResNet variants) or layers to present robust
generalized convolution operations with local loss. Both layers are backpropagation free
and update their weights locally.

3.1. Local Loss Computation

To compute the local loss, we measure the cross-entropy (CE) between the local classifier
predictions and the target. Our PrimeNet design has four intermediate classifiers that



Appl. Sci. 2022, 12, 1842 5 of 15

separately predict the output and compute the loss for the same one-hot-encoded target.
We represent local loss as Llocal , and this can be defined as given below:

Llocal = CE(yi, f (xi; θ)), (1)

where Yi is the one-hot-encoded target, and f (xi; θ) is a result of the previous activation.
We flattened the feature maps and applied soft-max activation to obtain the local loss
in PrimeNet. To perform backpropagation free, layer-wise training, we detached the
computation graph to stop the gradient flow. Weights are updated using the cross-entropy
loss function. Adam [29] optimizer is used with β set to 0.99.

3.2. Convolution with Local Loss

Our proposed PrimeNet is a multiscale, backwards-locking free, adaptive inference
neural structure. PrimeNet can be used with other traditional convolution layers, but the
standard convolution and hidden layer weights are updated by sending the gradients back
to the previous layers through the backpropagation process, and PrimeNet updates the
weights layer-wise. To facilitate the end-to-end backpropagation free convolution operation
in PrimeNet, we customized and used a standard convolution layer enabled with inline
layer-wise training [4].

Each layer respective to each feature scale in PrimeNet block is constituted of this
custom convolution operation enabled with local loss update within local loss block (LLB).
The CONV → BN → LReLU → FC → SOFTMAX layer sequence is followed in order to
compute the local loss. Here, CONV refers to the convolution layer, and BN refers to the
batch normalization operations. LReLU is the activation function, and FC (fully connected)
refers to the dense layer operation just before the softmax classifier.

3.3. PrimeNet

In the proposed PrimeNet framework, the shallow, deep learning structures work as
a catalyst in the overall learning of the primary discriminative network. The capsule-like
shallow structures present multiscale feature representations, and the dynamic selection
logic encourages the representations with immediate minimum local loss. The learned
feature representation is dynamically added to the secondary classifier network, which
benefits the model into faster convergence. To design the PrimeNet block, we first set up
the conditional computation model with multiple intermediate classifiers. Each classifier
in this arrangement operates on a different feature scale. The shallow Local Loss Block
layer order ( CONV → BN → LReLU → FC → SOFTMAX) from Figure 1 is followed to
compute local loss from each intermediate classifier.

From Figure 2, it can be seen that larger filter sizes (namely 5 × 5 and 7 × 7) are used,
which will result in an increased number of parameters and require more computation
power. A 1 × 1 convolution layer is used just after the input for dimensionality reduction,
while retaining the salient features from the input. The memory and computational savings
by dimensionality reduction allowed us to use a 3× 3 projection further to pool features
across the channels and increase feature maps.

Translation invariant feature projection: The convolution layer feature maps, unlike
dense layers, are inherently insensitive to the location of the features in the input [2,30,31].
There may be chances that the loss-based conditional computation may always choose
and concentrate in a particular local region. Moreover, the proposed multiscale feature
abstraction process distills the most prominent visual indicators set, and the remaining
features of the other layers are soft pruned. Sometimes, soft pruning could also result in
the loss of essential features, which is a problem known as extreme compression.



Appl. Sci. 2022, 12, 1842 6 of 15

Version September 17, 2021 submitted to Appl. Sci. 5 of 16

3.1. Local loss computation170

To compute the local loss, we measure the cross-entropy (CE) between the local classifier predictions
and the target. Our PrimeNet design has four intermediate classifiers that separately predict the output
and compute the loss for the same one-hot-encoded target. We represent local loss as Llocal , this can be
defined as given below:

Llocal = CE(yi, f (xi; θ)) (1)

where Yi is the one-hot-encoded target and f (xi; θ) is a result of the previous activation. We flattened171

the feature maps and applied soft-max activation to obtain the local loss in PrimeNet. To perform172

backpropagation free, layerwise training, we detached the computation graph to stop the gradient173

flow. Weights are updated using the cross-entropy loss function. Adam [29] optimizer is used with β174

set to 0.99.175

3.2. Convolution with local loss176

Our proposed PrimeNet is a multiscale, backwards-locking free, adaptive inference neural177

structure. PrimeNet can be used with other traditional convolution layers, but the standard convolution178

and hidden layer weights are updated by sending the gradients back to the previous layers through179

the backpropagation process, and PrimeNet updates the weights layerwise. To facilitate the end-to-end180

backpropagation free convolution operation in PrimeNet, we customized and used a standard181

convolution layer enabled with inline layerwise training [4].182

Figure 1. The backward-locking free, custom convolution block that updates the layer-wise local loss
instead of sending the gradients back through backpropagation. Redrawn from figure source [4]

Each layer respective to each feature scale in PrimeNet block is constituted with this custom183

convolution operation enabled with local loss update within local loss block (LLB). The CONV → BN →184

LReLU → FC → SOFTMAX layer sequence is followed in order to compute the local loss. Here,185

CONV refers to the convolution layer and BN refers to the batch normalization operations. LReLU is the186

activation function and FC (fully connected) refers to the dense layer operation just before the softmax187

classifier.188

3.3. PrimeNet189

In the proposed PrimeNet framework, the shallow, deep learning structures work as a catalyst in190

the overall learning of the primary discriminative network. The capsule-like shallow structures present191

multiscale feature representations, and the dynamic selection logic encourages the representations192

with immediate minimum local loss. The learned feature representation is dynamically added to the193

secondary classifier network, which benefits the model into faster convergence. To design the PrimeNet194

block, we first set up the conditional computation model with multiple intermediate classifiers. Each195

Figure 1. The backward-locking free, custom convolution block that updates the layer-wise local
loss instead of sending the gradients back through backpropagation. Redrawn from figure source in
Reference [4].

Version September 17, 2021 submitted to Appl. Sci. 6 of 16

classifier in this arrangement operates on a different feature scale. The shallow Local Loss Block layer196

order ( CONV → BN → LReLU → FC → SOFTMAX) from figure 1 is followed to compute local197

loss from each intermediate classifier.198

Figure 2. The Proposed PrimeNet architecture. Multi-scale micro-network operates to perform
intermediate classifications. Local loss is computed for each scale convolution, and the adaptive
convolution is performed. The other layers with higher losses are soft pruned, and their weights are
locally updated.

From figure 2, it can be seen that larger filter sizes (namely 5x5 and 7x7) are used, which will199

result in an increased number of parameters and require more computation power. A 1x1 convolution200

layer is used just after the input for dimensionality reduction while retaining the salient features from201

the input. The memory and computational savings by dimensionality reduction allowed us to use a202

3x3 projection further to pool features across the channels and increase feature maps.203

Translation invariant feature projection: The convolution layer feature maps, unlike dense layers,204

are inherently insensitive to the location of the features in the input [2,30,31]. There may be chances205

that the loss-based conditional computation may always choose and concentrate in a particular local206

region. Moreover, the proposed multiscale feature abstraction process distils the most prominent visual207

indicators set, and the remaining features of the other layers are soft pruned. Sometimes, soft pruning208

could also result in the loss of essential features, which is a problem known as extreme compression.209

The translation invariance in CNN is achieved by combining the convolution and maxpooling layer210

operations. The convolution layer convolves through an image patch and abstracts the features with211

their respective position. After that, max-pooling filters out the max value of the feature from the212

convolved output and reduces the dimension and complexity. By obtaining the max-value, it inherently213

discards the positional information of the features, which makes it translation invariant.214

In the proposed research, we innovatively used the translation invariance of the input, projected215

with input features of the same image. This helped our adaptive convolution design to avoid the216

correlated units being concentrated in the same region. The projection layer also reduces the effect of217

extreme compression caused by soft pruning and presents a normalized local translation invariant218

feature presentation of the same input.219

To implement the adaptive convolution strategy, we set up our conditional computation block as220

a primary external network which consists of four intermediate classifiers respective to each feature221

scale. Each intermediate classifier (we name it as a capsule network.) implements the shared input222

for the same target output. The Proposed PrimeNet architecture. Multiscale micro-network operates223

to perform intermediate classifications. Local loss is computed for each scale convolution, and the224

adaptive convolution is performed. The other layers with higher losses are soft pruned, and their225

weights are locally updated.226

[y1, y2, y3, y4] = f (x; θ) = [ f1(x; θ1), ..., f4(x; θ4)] (2)

Figure 2. The proposed PrimeNet architecture. Multi-scale micro-network operates to perform
intermediate classifications. Local loss is computed for each scale convolution, and the adaptive
convolution is performed. The other layers with higher losses are soft pruned, and their weights are
locally updated.

The translation invariance in CNN is achieved by combining the convolution and
maxpooling layer operations. The convolution layer convolves through an image patch
and abstracts the features with their respective position. After that, max-pooling filters out
the max value of the feature from the convolved output and reduces the dimension and
complexity. By obtaining the max-value, it inherently discards the positional information
of the features, which makes it translation invariant.

In the proposed research, we innovatively used the translation invariance of the input,
projected with input features of the same image. This helped our adaptive convolution
design to avoid the correlated units being concentrated in the same region. The projection
layer also reduces the effect of extreme compression caused by soft pruning and presents a
normalized local translation invariant feature presentation of the same input.

To implement the adaptive convolution strategy, we set up our conditional compu-
tation block as a primary external network which consists of four intermediate classifiers
respective to each feature scale. Each intermediate classifier (named a capsule network)
implements the shared input for the same target output. The proposed PrimeNet archi-
tecture multiscale micro-network operates to perform intermediate classifications. Local
loss is computed for each scale convolution, and the adaptive convolution is performed.
The other layers with higher losses are soft pruned, and their weights are locally updated.

[y1, y2, y3, y4] = f (x; θ) = [ f1(x; θ1), ..., f4(x; θ4)], (2)



Appl. Sci. 2022, 12, 1842 7 of 15

where x is the input image, and f(1,2 ,3 ,4 ) and θ(1,2 ,3 ,4 ) represents the transformation
operation (conv→ fc→ softmax) for yi classifier. Now, each capsule operates on same input
images for the same classifier output, and Equation (2) can be reduced as following:

[y] = fi(x; θ)]; (3)

here, fi represents the transformation operation at i-th convolution scale for the same y
target output. Similarly, from Equation (1), the loss function can be expanded here as

L(y, f (x; θ)) = CE[y1( f1(x; θ1)), ..., (y4( f4(x; θ4))]; (4)

which is further reduced as:

Li(y, fi(x; θ)) = CE[y( fi(x; θ1))] (5)

here, Li(y, fi(x; θ)) represents the loss as a result of a cross-entropy operation between
the i-th scale convolution output prediction and the expected prediction. After this, the
loss based adaptive inference is implemented as a simple if-then-else operation, and the
following selected convolution layer is written as:

fmin(x; θ) = MIN[L(y, f (x; θ))]. (6)

Once the local predictions are made, and the min-loss layer is identified, the next
challenge is to extract the min-loss features. To address this issue, we provisioned our
capsule network instances to generate predictions along with their raw convolution feature
output. After the min-loss layer is identified, the generated convolution feature output
is taken and forwarded to be used by the next layer. At this stage, we obtain the most
prominent visual indicators. Typically, an iterative algorithm overfits when the network is
too complex or algorithm runs for too long [32]. By complex network, we refer that it is over
parameterized. The capsule network’s decoupled local weight training and update have an
advantage here: it prevents the classifier model’s overlearning. The disconnected training
ensures that the model is simple and not too complex. In addition, the capsule instances do
not participate in classifier model weight training which prevents over parameterization of
the network. This means the capsule instances are trained per batch per iteration, and their
previous weights are discarded once the min-loss features are extracted for every epoch.
By disconnected training design, the simplicity of the network with reduced parameters is
achieved. Now, the translation invariant feature projection can be applied as follows:

fnext(x; θ) = [ fmin(x; θ)_S(x; θ)], (7)

where fnext(x; θ) is the next layer input after concatenation (_) of convolution output with
minimum loss fmin(x; θ) and pool projection S(x; θ).

3.4. Feature Representation with Minimum Loss Local Structure Transferring

To implement the PrimeNet framework, we divided the training design into two
parts (Figure 3). In the first part, we implemented a multiscale shallow neural structure
for reusable feature representation. Each shallow neural, structure termed as capsule,
will learn a feature representation at a specific convolutional scale. The simultaneous
feature representations will be analyzed for minimum batch input loss. The minimum
loss feature representation will be forwarded to be inculcated in the second part of the
model design. The weights for each lightweight network will be updated there itself
using the local loss update procedure. The secondary part of the design is an instance
of the PrimeNet classifier that takes the selected minimum loss feature representation as
input and concatenates it with the batch input projection. With this feature projection,
a summarized local translation invariant feature representation is obtained. The features



Appl. Sci. 2022, 12, 1842 8 of 15

are flattened, and a linear representation with a softmax activation function is used to
obtain classification output.

3.5. Learning Algorithm

Various substantial implementation settings have been studied to design the learning
algorithm, including non-linear model topologies, shared input, and multiple model inputs
and outputs. Typically, a deep learning model is a compound directed acyclic graph
(DAG) structure of different layers. An extension to DAG is to build graphs of layers.
In our training routine (Algorithm 1), the proposed deep learning structure runs multiple
instances non-linearly and shares the input. We reused the unit architecture and its weights
by running the multiple instances of the proposed PrimeNet structure.

Algorithm 1 Training algorithm for classifier model.
Input: Batch Images
Output: Prediction

1: procedure TRAIN( )
2: capsuleX=Capsule() . Shallow network instance for x scale.
3: capsuleY=Capsule() . Shallow network instance for y scale.
4: capsuleZ=Capsule() . Shallow network instance for z scale.
5: classi f ier=PrimeNet() . Classifier Network Instance.
6: procedure FEATURE_TRAIN(images) . Individual capsule training for feature generarion
7: f eaturesX = capsule(images) . Features X from Capsule X.
8: lossX = loss( f eaturesX) . loss from feature X.
9: f eaturesY = capsule(images) . Features Y from Capsule Y.

10: lossY = loss( f eaturesY) . loss from feature Y.
11: f eaturesZ = capsule(images) . Features Z from Capsule Z.
12: lossZ = loss( f eaturesZ) . loss from feature Z.
13: if (lossX < lossY) &(lossX < lossZ) then
14: min_loss_ f eatures= f eatureX
15: else if (lossY > lossX)&(lossY > lossZ) then
16: min_loss_ f eatures= f eatureY
17: else
18: min_loss_ f eatures= f eatureZ
19: end if
20: gradient_update(capsuleX, capsuleY, capsuleZ) . local gradient update
21: end procedure
22: for epoch in range(epochs) do
23: classi f ier_loss = 0
24: total_classi f ier_loss = 0
25: for batch_images in train_dataset do
26: MinLossFeature= f eature_train(batch_images)
27: f eatures=MinLossFeature + input_projection . Input feature projection is concatenated.
28: classi f ier_output = classi f ier( f eatures)
29: classi f ier_loss = loss(classi f ier_output)
30: total_classi f ier_loss += classi f ier_loss . Combined classifier loss
31: update_weights=gradient_update(classi f ier)
32: end for
33: end for
34: end procedure



Appl. Sci. 2022, 12, 1842 9 of 15

Further, to learn from the local multiscale representations (Capsule instances) and
transfer the encoding for final classification (classifier model), our iterative training strategy
chains the dynamically selected capsule output with the classification model. In the first
part, we trained the batch input through the proposed selection network block (Figure 3)
and obtained the local representation for local loss computation. After computation of the
local loss, we compared the capsule for minimum loss and transferred the capsule instance’s
convoluted output to the classifier block. In the classifier part of the training, the selected
convolved output from the capsule is concatenated with input feature projection. The input
feature projection presents a local translation-invariant version of the input, which further
balances the domination of correlated regions in overall feature representation. The rest of
the classifier block is designed as a simple convolutional network that facilitates a swift
classification of dynamically learned feature representations.

Version September 17, 2021 submitted to Appl. Sci. 9 of 16

selected capsule output with the classification model. In the first part, we trained the batch input263

through the proposed selection network block ( figure 3) and obtained the local representation for local264

loss computation. After computation of the local loss, we compared the capsule for minimum loss and265

transferred the capsule instance’s convoluted output to the classifier block. In the classifier part of the266

training, the selected convolved output from the capsule is concatenated with input feature projection.267

The input feature projection presents a local translation-invariant version of the input, which further268

balances the domination of correlated regions in overall feature representation. The rest of the classifier269

block is designed as a simple convolutional network that facilitates a swift classification of dynamically270

learned feature representations.271

Figure 3. PrimeNet training flow. The shallow capsules network inside the selection block convolve
at different scale and the batch-wise loss is calculated an gradients are updated locally. The feature
representation with minimum loss is forwarded as an input to the classifier and classification is
performed on locally learned feature representation.

4. Experiments and Results272

Our experiments present the PrimeNet as a shallow multiscale neural structure mainly to obtain273

the input’s prime discriminative characteristics. We also present the backpropagation free layerwise274

gradient update procedure within PrimeNet, which combines with the other traditional layers and275

allows the weight update alternatively with the traditional backpropagation method. To evaluate the276

performance of the representation learning algorithm, we used PrimeNet as a feature extractor on277

various benchmarked datasets and evaluated the performance of linear models fitted on top of these278

features. Moreover, we visualize and compare the feature representations generated by PrimeNet and279

ResNet models using t-Distributed Stochastic Neighbor Embedding (t-SNE) [33] feature visualizations.280

Finally, we presented the result analysis by comparing with different considered baseline performances.281

4.1. Implementation Details282

We utilized three simultaneous multiscale capsule-like networks in the initial step by following283

the structure from figure 1 (Conv → BN → LReLU → Flatten → Dense). For every iteration, one284

input batch is fed as an input to these shallow capsules. These small networks are trained with batch285

input, and we extract the feature representation occurring minimum loss from the convolved output of286

the same capsule. The selected feature representation is concatenated with input feature projection. The287

projection function S(x; θ) in equation 7 is implemented as maxpool2D→ conv2D with ReLU activation288

function. The capsule and PrimeNet’s classifier model information is provided in the table below:289

Figure 3. PrimeNet training flow. The shallow capsules network inside the selection block convolves
at different scales, and the batch-wise loss is calculated as gradients are updated locally. The feature
representation with minimum loss is forwarded as an input to the classifier, and classification is
performed on locally learned feature representation.

4. Experiments and Results

Our experiments present the PrimeNet as a shallow multiscale neural structure mainly
to obtain the input’s prime discriminative characteristics. We also present the backpropa-
gation free layer-wise gradient update procedure within PrimeNet, which combines with
the other traditional layers and allows the weight update alternatively with the traditional
backpropagation method. To evaluate the performance of the representation learning
algorithm, we used PrimeNet as a feature extractor on various benchmarked datasets and
evaluated the performance of linear models fitted on top of these features. Moreover, we
visualize and compare the feature representations generated by PrimeNet and ResNet
models using t-Distributed Stochastic Neighbor Embedding (t-SNE) [33] feature visual-
izations. Finally, we presented the result analysis by comparing with different considered
baseline performances.

4.1. Implementation Details

We utilized three simultaneous multiscale capsule-like networks in the initial step
by following the structure from Figure 1 (Conv → BN → LReLU → Flatten → Dense).
For every iteration, one input batch is fed as an input to these shallow capsules. These
small networks are trained with batch input, and we extract the feature representation
occurring minimum loss from the convolved output of the same capsule. The selected
feature representation is concatenated with input feature projection. The projection function
S(x; θ) in Equation (7) is implemented as the maxpool2D→ conv2D with ReLU activation
function. The capsule and PrimeNet’s classifier model information is provided in the
table below:



Appl. Sci. 2022, 12, 1842 10 of 15

Here, the parameter column refers to the convolution scales and number of filters (e.g.,
1 × 1 is the convolution scale, and 32 is the number of filters). NA means that there are no
trainable parameters involved. GAP refers to the meaning Global Average Pooling in the
Classifier configuration.

We set the maximum iteration for 100 epochs in the training phase and use a mini-
batch of size 200. For fine-tuning and evaluation, we use 50 iterations and a reduced batch
size of 32. Moreover, we use the Adam optimizer with a default learning rate of 0.0002
with a beta value of 0.99. To recreate and compare with baseline ResNet50 and other SOTA
models for computational results, we reshaped the MNIST input into three dimensions as
per the experimental requirement. No data augmentation is used in PrimeNet experiments
for any of the three datasets.

4.2. Experimental Setup

We selected three datasets for our experiments, which includes MNIST, CIFAR-10, and
SVHN. The model information of shallow network (Capsule; works as an enhanced feature
extractor) and main classifier network is presented in Table 1. A brief description of the
datasets is in the following table (Table 2).

Table 1. Capsule and classifier model configuration information.

Capsule (Shallow Network) PrimeNet (Classifer)

Layer Parameter Layer Parameter

Conv2D 1 × 1, 32 MaxPool 3 × 3
Conv2D 3 × 3, 5 × 5, 7 × 7, 64 Conv2D 1 × 1, 64

BN NA BN NA
LReLU NA MaxPool 2 × 2
Flatten NA Conv2D 3 × 3, 128
Dense 28 × 28 × 1, 32 × 32 × 3 GAP NA

Flatten NA
Dense 10

Table 2. Summary of the datasets used for the experiments.

Dataset Input Size No. of Classes Train Size Test Size

MNIST 28 × 28 × 1 10 60,000 10,000
CIFAR-10 32 × 32 × 3 10 50,000 10,000

SVHN 32 × 32 × 3 10 73,257 26,032

4.3. Results

Table 3 presents the obtained error rate performances of different state-of-the-art
network models in the category of three related techniques, comparing with the proposed
PrimeNet learning algorithm. We run the PrimeNet algorithm for several repetitions and
recorded the top-1 and top-5 results with their mean (µ) and standard deviation (σ). For the
MNIST digits dataset, PrimeNet has obtained a record top-1 performance surpassing all the
results from considered baselines. MNIST is assumed to be too easy, but it is our first choice
to test our algorithm because, if an algorithm fails on MNIST, it is likely to fail on other
tests. To further evaluate the performance of the proposed algorithm, we tested it on the
Street View House Number (SVHN) dataset. With SVHN, the PrimeNet has obtained an
acceptable performance close to the considered state-of-the-art method. We also evaluated
our algorithm on the CIFAR-10 dataset for more generalized observations. This is to
note that the state-of-the-art results are obtained without using any data preconditioning,
and the input batches are shuffled while loading datasets.

The observations are: (1) The proposed PrimeNet structure acts as a helper network
for obtaining the prime visual indicators from the input and is most suitable for early
convolution stages. PrimeNet is helpful to reduce the size of large deep networks with



Appl. Sci. 2022, 12, 1842 11 of 15

lesser weight adjustment operations. (2) The PrimeNet is an independent adaptive deep
neural structure with its own backpropagation free gradient update technique. PrimeNet
infers that the complex deep neural networks can comprise a backwards-locking free
mechanism to reduce computational complexities further. (3) The experiments also suggest
that the standard convolutional layers can be easily replaced or combined with PrimeNet.

Table 3. Comparison of classification error rate on evaluation model (%). The symbols (µ) and (σ)

represent the mean and standard deviation, respectively, for the top 5 scores from each dataset.

Dataset PrimeNet Test Error (%) Model Baseline Error (%) Baseline Method
Top-1 Top-5 (µ) σ

MNIST 0.59 0.706 0.14 DT-RAM [12] 1.46, 1.12 Conditional Computation

Condensenet [18] 3.46, 3.76 Conditional Computation

ITADN [17] 5.9 Conditional Computation

CIFAR-10 6.21 7.34 3.67 RNP [7] 15.05 Network Pruning

SFP [21] 7.74, 6.32 Network Pruning

ITADN [17] 3.13, 5.99 Knowledge Distillation

SVHN 1.71 2.2 0.42 ONE [27] 1.63 Knowledge Distillation

4.4. Computational Analysis

While achieving the state-of-the-art results, we have significant gains on the computa-
tional efficiency of the proposed algorithm. To evaluate the computational efficiency, we
have considered and compared three key characteristics from each model. The considered
characteristics are (i) number of FLOPs (floating-point operations), (ii) model parameters,
and (iii) memory requirement.

Table 4 (Tensorflow or Keras model’s computational information is obtained using
model profiler function available at https://pypi.org/project/model-profiler/, accessed
on 7 October 2021) presents the computational gains achieved by PrimeNet and compares
them with different considered baseline results, depending on the information available
in the original paper. The majority of related research results are obtained using ResNet
architecture as a base model, so we also considered ResNet50 computational results as
the first baseline to be compared. RestNet50 with pre-trained Imagenet weights has been
recreated for our task data classifier with the same settings for each experiment.

Table 4. Summary of the computational results for MNIST, CIFAR-10, and SVHN experiments.

Model Dataset Params (Millions) FLOPs (Millions) Epochs

ResNet [34] All Three 23.6 409 50
PrimeNet (Ours) All Three 0.41 2.7 100 + 50

Condensenetlight [18] CIFAR-10 0.33 122 300
Condensenet86 [18] CIFAR-10 0.52 65 300

ONE [27] SVHN 0.5 2.28 300, 40

Here, we have considered the combined computational information from the shal-
low dynamic deep neural structure and its classifier for computational analysis. Hence,
the number of epochs for our algorithm is 100 + 50, which means 100 iterations for classifier
network using shallow PrimeNet structure. Once the learned feature representation is
extracted from the classifier, another 50 epochs are used for retraining. ResNet is trained for
50 epochs for the same purpose, and other baselines take 300 minimum epochs. Since we
have used the same architecture for PrimeNet and ResNet baseline, we obtained the same
number of parameters and FLOPs for all datasets. ResNet is one sizeable deep network
that involves the highest computational cost. ONE [27] has produced the computational
information for the experiment on SVHN, which has a precise, reduced number of FLOPs,

https://pypi.org/project/model-profiler/


Appl. Sci. 2022, 12, 1842 12 of 15

whereas PrimeNet is just 15% costlier, but, on the other side, PrimeNet can reduce to
number of parameters by 18%. Similarly, for Cifar-10, Condensenetlight [18] can reduce the
parameter size by 20% from PrimeNet, but PrimeNet has a tremendous gain of almost
99% reduced number of FLOPs. For another Condensenet experiment on the same dataset,
PrimeNet has obtained almost 20% parameters and 95% FLOPs gain. Thus, the experi-
ments suggest the proposed method’s efficacy in various computational and classification
performance categories (Table 4).

5. Ablation Study

We perform an ablation study on MNIST data in which we investigate (1) the simul-
taneous local gradient updates from each PrimeNet instance with the effect of dynamic
selection on the classifier network and (2) the quality of resultant features extracted from
the classifier network to be used for evaluation and compared it with the ResNet50 fea-
ture visualization.

5.1. Local Gradient Update

The local gradient update strategy is simple and straightforward. The capsule-like
instances are capable of computing the layer-wise loss. Since these tiny networks are decou-
pled from the training loop, the local layer loss is computed as described in Equation (5).
Figure 4 presents qualitative results for a single input instance. To generate the feature
maps as qualitative output, we accessed the layer attributes within the PrimeNet structure
of the model. To identify the exact layer within the PrimeNet structure, the model summary
comes as a handy tool. The features maps are nothing, but the weights and deep learning
models have layer weight attributes with which the weights are accessible. We have visu-
alized sixteen feature maps (16 filter activations) from each PrimeNet layer (particularly
the convolution layer) and normalized their values to visualize them easily. For the same
input instance, the proposed PrimeNet design is able to compute the losses. With the help
of visualization libraries, the feature maps are plotted.

Input
Conv2D (3x3) Conv2D (5x5) Conv2D (7x7) Conv2D (3x3)

Loss: 1.65Loss: 1.65 Loss: 1.89 Loss: 2.09

=

Figure 4. Qualitative output and dynamic selection strategy for capsule-like shallow networks.

In the training phase, we visualized the gradient updates by recording the loss val-
ues of each capsule in each iteration, along with the resulting classifier’s total loss value.
The total loss of the classifier is the dynamically selected capsule loss added with the classi-
fier’s loss (Figure 5). This result shows the gradual loss update from all the intermediate
capsule-like networks and their cumulative effect on the classifier model.

5.2. Adaptive Cost-Conscious Local Structure Transfer

To exhibit the efficiency of the cost-conscious local structure transfer technique, we
extracted learned feature representations by the proposed PrimeNet. We extracted the
trained representation of the features and performed clustering using t-SNE visualization
and then compared it with the ResNet50 baseline. From Figure 6, this can be observed
that the extracted feature representation using PrimeNet has more clear cluster margins
than the ResNet features, proving that it could lead models to converge faster and obtain
promising classification test results.



Appl. Sci. 2022, 12, 1842 13 of 15
Version September 17, 2021 submitted to Appl. Sci. 13 of 16

Figure 5. visualization of local gradient updates from shallow and classifier networks.

5.2. Adaptive cost-conscious Local structure transfer370

To exhibit the efficiency of the cost-conscious local structure transfer technique, we extracted371

learned feature representations by the proposed PrimeNet. We extracted the trained representation of372

the features and performed clustering using t-SNE visualization, then compared it with the ResNet50373

baseline. From figure 6, this can be observed that the extracted feature representation using PrimeNet374

has more clear cluster margins than the ResNet features, proving that it could lead models to converge375

faster and obtain promising classification test results.376

(a) Proposed PrimeNet feature visualization. (b) Resnet feature visualization.
Figure 6. The t-SNE visualization of features from image representations by proposed PrimeNet (a)
and ResNet50 (b).

To further support the experimental evidence, we also visualized the learned feature377

representation of a single random train image. The learned feature output is extracted simply by378

obtaining the convolution output just before the linear operation(FC + Softmax). The sample input379

image is evaluated, and the headless model generates the feature maps. The extracted feature map380

is reshaped into the original shape (e.g MNIST 28x28x1) as presented in figure 7. We also presented381

the learned feature visualization of the same image using the ResNet model using the same method382

(Figure 8).383

Figure 7. Visualization of learned feature representation using PrimeNet’s classifier model.

Figure 5. Visualization of local gradient updates from shallow and classifier networks.

Version September 17, 2021 submitted to Appl. Sci. 13 of 16

Figure 5. visualization of local gradient updates from shallow and classifier networks.

5.2. Adaptive cost-conscious Local structure transfer370

To exhibit the efficiency of the cost-conscious local structure transfer technique, we extracted371

learned feature representations by the proposed PrimeNet. We extracted the trained representation of372

the features and performed clustering using t-SNE visualization, then compared it with the ResNet50373

baseline. From figure 6, this can be observed that the extracted feature representation using PrimeNet374

has more clear cluster margins than the ResNet features, proving that it could lead models to converge375

faster and obtain promising classification test results.376

(a) Proposed PrimeNet feature visualization (b) Resnet feature visualization
Figure 6. The t-SNE visualization of features from image representations by proposed PrimeNet (a)
and ResNet50 (b).

To further support the experimental evidence, we also visualized the learned feature377

representation of a single random train image. The learned feature output is extracted simply by378

obtaining the convolution output just before the linear operation(FC + Softmax). The sample input379

image is evaluated, and the headless model generates the feature maps. The extracted feature map380

is reshaped into the original shape (e.g MNIST 28x28x1) as presented in figure 7. We also presented381

the learned feature visualization of the same image using the ResNet model using the same method382

(Figure 8).383

Figure 7. Visualization of learned feature representation using PrimeNet’s classifier model.

Figure 6. The t-SNE visualization of features from image representations by proposed PrimeNet (a)
and ResNet50 (b).

To further support the experimental evidence, we also visualized the learned feature
representation of a single random train image. The learned feature output is extracted
simply by obtaining the convolution output just before the linear operation (FC + Softmax).
The sample input image is evaluated, and the headless model generates the feature maps.
The extracted feature map is reshaped into the original shape (e.g., MNIST 28 × 28 × 1)
as presented in Figure 7. We also presented the learned feature visualization of the same
image using the ResNet model using the same method (Figure 8).

Figure 7. Visualization of learned feature representation using PrimeNet’s classifier model.

Figure 8. Visualization of learned feature representation using ResNet model.

Figure 9 presents the impact of our adaptive convolution selection strategy over the
linear convolution neural networks. The classifiers with standard convolution layers are
presented with labels Layer 3 × 3, Layer 5 × 5, Layer 7 × 7, and the evaluation model’s loss
is presented with label train_acc and train_loss.

Figure 9 also reflects the learned feature representation extracted from the secondary
classifier has resulted in faster convergence and fewer epochs (less than 10).



Appl. Sci. 2022, 12, 1842 14 of 15

Version September 17, 2021 submitted to Appl. Sci. 14 of 16

Figure 8. Visualization of learned feature representation using ResNet model.

Figure 9 presents the impact of our adaptive convolution selection strategy over the linear384

convolution neural networks. The classifiers with standard convolution layers are presented with385

labels Layer 3x3, Layer 5x5, Layer 7x7 and the evaluation model’s loss is presented with label train_acc386

and train_loss.387

(a) Train accuracies (b) Train losses
Figure 9. Figure (a) and (b) presents the incremental model learning from the dynamically selected
feature representations as a result of fine tuning on top of the classifier. Linear classifier network (static
convolutional) losses and accuracies are also presented to demonstrate the difference in performance.

Figure 9 also reflects the learned feature representation extracted from the secondary classifier388

has resulted in faster convergence and fewer epochs (less than 10).389

6. Conclusion390

In this research, we introduced a flexible deep neural structure called PrimeNet. PrimeNet391

is an efficient convolutional neural network design that encourages strong visual indicators and392

reusing the same via backpropagation free convolutional layers. With its learned multiple multiscale393

convolutions, it attempts to soft prune the filters with less valuable features. The simplistic adaptive394

and cost-conscious local structure transfer technique can reduce the overall computational cost of395

the models while retaining the latest SOTA performance. Due to its simple implementation, the396

PrimeNet structure replaces traditional convolutional layers, combining the local or global gradient397

update methods. There are specific suggested future directions in which we would like to extend398

this research. (1) The PrimeNet can headway complex modules as layers like Inception, Attention or399

Residual modules. (2) PrimeNet can lead to finding several other conditional computing operations in400

different applications.401

Funding: This research work is partly supported and funded by the Yayasan UTP grants: (i) (015LC0-274) with402

title ’The Development of Data Quality Metrics to Assess the Quality of Big Datasets’, and (ii) 015LC0-281 with title403

’Deep Learning Model of Masking Vision Based Panoramic View Understanding to Detect Non-safety Situations404

in Mining’, under the Centre for research in Data Science (CerDaS), Universiti Teknologi PETRONAS, Malaysia.405

Acknowledgments: We wish to acknowledge the tremendous support from Department of Computer and406

Information Sciences (CISD), UTP, Malaysia for all academic support and facilities.407

Conflicts of Interest: The authors declare no conflict of interest.408

References409

1. Lin, M.; Chen, Q.; Yan, S. Network in network. arXiv preprint arXiv:1312.4400 2013.410

Figure 9. (a,b) The incremental model learning from the dynamically selected feature representations
as a result of fine tuning on top of the classifier. Linear classifier network (static convolutional) losses
and accuracies are also presented to demonstrate the difference in performance.

6. Conclusions

In this research, we introduced a flexible deep neural structure called PrimeNet.
PrimeNet is an efficient convolutional neural network design that encourages strong visual
indicators and reusing the same via backpropagation free convolutional layers. With its
learned multiple multiscale convolutions, it attempts to soft prune the filters with less
valuable features. The simplistic adaptive and cost-conscious local structure transfer
technique can reduce the overall computational cost of the models while retaining the latest
SOTA performance. Due to its simple implementation, the PrimeNet structure replaces
traditional convolutional layers, combining the local or global gradient update methods.
There are specific suggested future directions in which we would like to extend this research.
(1) The PrimeNet can headway complex modules as layers, such as Inception, Attention, or
Residual modules. (2) PrimeNet can lead to finding several other conditional computing
operations in different applications.

Author Contributions: Conceptualization, F.U.K. and I.A.; methodology, F.U.K.; software, F.U.K.;
validation, F.U.K.; formal analysis, I.A. and F.U.K.; investigation, F.U.K.; resources, F.U.K.; writing—
original draft preparation, F.U.K.; writing—review and editing, F.U.K.; visualization, F.U.K.; supervi-
sion, I.A.; project administration, I.A.; funding acquisition, I.A. All authors have read and agreed to
the published version of the manuscript.

Funding: This research work is supported and funded by the Yayasan UTP grants: (015LC0-353)
with title ’Predicting Missing Values in Big Upstream Oil and Gas Industrial Dataset using Enhanced
Evolved Bat Algorithm and Support Vector Regression’, under the Center for research in Data Science
(CerDaS), Universiti Teknologi PETRONAS, Malaysia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We wish to acknowledge the tremendous support from Department of Computer
and Information Sciences (CISD), UTP, Malaysia for all academic support and facilities.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lin, M.; Chen, Q.; Yan, S. Network in network. arXiv 2013, arXiv:1312.4400.
2. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper

with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA,
7–12 June 2015; pp. 1–9.

3. Rosenblatt, F. Principles of Neurodynamics. Perceptrons and the Theory of Brain Mechanisms; Technical Report; Cornell Aeronautical
Lab. Inc.: Buffalo, NY, USA, 1961.



Appl. Sci. 2022, 12, 1842 15 of 15

4. Nøkland, A.; Eidnes, L.H. Training neural networks with local error signals. In Proceedings of the International Conference on
Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 4839–4850.

5. Bolukbasi, T.; Wang, J.; Dekel, O.; Saligrama, V. Adaptive neural networks for fast test-time prediction. arXiv 2017,
arXiv:1702.07811.

6. Huang, G.; Chen, D.; Li, T.; Wu, F.; van der Maaten, L.; Weinberger, K.Q. Multi-scale dense networks for resource efficient image
classification. arXiv 2017, arXiv:1703.09844.

7. Lin, J.; Rao, Y.; Lu, J.; Zhou, J. Runtime neural pruning. In Proceedings of the 31st International Conference on Neural Information
Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 2178–2188.

8. Wang, X.; Yu, F.; Dou, Z.Y.; Darrell, T.; Gonzalez, J.E. Skipnet: Learning dynamic routing in convolutional networks. In
Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 409–424.

9. Veit, A.; Belongie, S. Convolutional networks with adaptive inference graphs. In Proceedings of the European Conference on
Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–18.

10. Figurnov, M.; Collins, M.D.; Zhu, Y.; Zhang, L.; Huang, J.; Vetrov, D.; Salakhutdinov, R. Spatially adaptive computation time for
residual networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA,
21–26 July 2017; pp. 1039–1048.

11. Kong, S.; Fowlkes, C. Pixel-wise attentional gating for parsimonious pixel labeling. arXiv 2018, arXiv:1805.01556.
12. Li, Z.; Yang, Y.; Liu, X.; Zhou, F.; Wen, S.; Xu, W. Dynamic computational time for visual attention. In Proceedings of the IEEE

International Conference on Computer Vision Workshops, Venice, Italy, 22–29 October 2017; pp. 1199–1209.
13. Ying, C.; Fragkiadaki, K. Depth-adaptive computational policies for efficient visual tracking. In International Workshop on Energy

Minimization Methods in Computer Vision and Pattern Recognition; Springer: Berlin/Heidelberg, Germany, 2017; pp. 109–122.
14. Wu, Z.; Nagarajan, T.; Kumar, A.; Rennie, S.; Davis, L.S.; Grauman, K.; Feris, R. Blockdrop: Dynamic inference paths in residual

networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA,
18–22 June 2018; pp. 8817–8826.

15. McIntosh, L.; Maheswaranathan, N.; Sussillo, D.; Shlens, J. Recurrent segmentation for variable computational budgets.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA,
18–22 June 2018; pp. 1648–1657.

16. Kang, D.; Dhar, D.; Chan, A.B. Incorporating Side Information by Adaptive Convolution. Int. J. Comput. Vis. 2020, 128, 2897–2918. [CrossRef]
17. Li, H.; Zhang, H.; Qi, X.; Yang, R.; Huang, G. Improved techniques for training adaptive deep networks. In Proceedings of the

IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019; pp. 1891–1900.
18. Huang, G.; Liu, S.; Van der Maaten, L.; Weinberger, K.Q. Condensenet: An efficient densenet using learned group convolutions.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 2752–2761.

19. Mnih, V.; Heess, N.; Graves, A.; Kavukcuoglu, K. Recurrent models of visual attention. arXiv 2014, arXiv:1406.6247.
20. Khan, F.U.; Aziz, I.B.; Akhir, E.A.P. Pluggable Micronetwork for Layer Configuration Relay in a Dynamic Deep Neural Surface.

IEEE Access 2021, 9, 124831–124846. doi: 10.1109/ACCESS.2021.3110709. [CrossRef]
21. He, Y.; Kang, G.; Dong, X.; Fu, Y.; Yang, Y. Soft filter pruning for accelerating deep convolutional neural networks. arXiv 2018,

arXiv:1808.06866.
22. Singh, P.; Verma, V.K.; Rai, P.; Namboodiri, V.P. Play and prune: Adaptive filter pruning for deep model compression. arXiv 2019,

arXiv:1905.04446.
23. Lin, M.; Ji, R.; Zhang, Y.; Zhang, B.; Wu, Y.; Tian, Y. Channel pruning via automatic structure search. arXiv 2020, arXiv:2001.08565.
24. Wang, L.; Dong, X.; Wang, Y.; Ying, X.; Lin, Z.; An, W.; Guo, Y. Exploring Sparsity in Image Super-Resolution for Efficient

Inference. arXiv 2021, arXiv:2006.09603.
25. Kim, J.; Chang, S.; Yun, S.; Kwak, N. Prototype-based Personalized Pruning. arXiv 2021, arXiv:2103.15564.
26. Luo, C.; Zhan, J.; Hao, T.; Wang, L.; Gao, W. Shift-and-Balance Attention. arXiv 2021, arXiv:2103.13080.
27. Lan, X.; Zhu, X.; Gong, S. Knowledge distillation by on-the-fly native ensemble. arXiv 2018, arXiv:1806.04606.
28. Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531.
29. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980.
30. Springenberg, J.T.; Dosovitskiy, A.; Brox, T.; Riedmiller, M. Striving for Simplicity: The All Convolutional Net. arXiv 2015,

arXiv:1412.6806.
31. Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks? arXiv 2014, arXiv:1411.1792.
32. Panchal, G.; Ganatra, A.; Shah, P.; Panchal, D. Determination of over-learning and over-fitting problem in back propagation

neural network. Int. J. Soft Comput. 2011, 2, 40–51. [CrossRef]
33. Van der Maaten, L.; Hinton, G. Visualizing Data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
34. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385.

http://doi.org/10.1007/s11263-020-01345-8
http://dx.doi.org/10.1109/ACCESS.2021.3110709
http://dx.doi.org/10.5121/ijsc.2011.2204

	Introduction
	Relevant Work
	Conditional Computation
	Network Pruning and Distillation
	Knowledge Distillation
	Discussion

	Method
	Local Loss Computation
	Convolution with Local Loss
	PrimeNet
	Feature Representation with Minimum Loss Local Structure Transferring
	Learning Algorithm

	Experiments and Results
	Implementation Details
	Experimental Setup
	Results
	Computational Analysis

	Ablation Study
	Local Gradient Update
	Adaptive Cost-Conscious Local Structure Transfer 

	Conclusions
	References

